sched/numa: Kill the wrong/dead TASK_DEAD check in task_numa_fault()
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77
78 #include <asm/pgtable.h>
79 #include <asm/pgalloc.h>
80 #include <asm/uaccess.h>
81 #include <asm/mmu_context.h>
82 #include <asm/cacheflush.h>
83 #include <asm/tlbflush.h>
84
85 #include <trace/events/sched.h>
86
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/task.h>
89
90 /*
91 * Protected counters by write_lock_irq(&tasklist_lock)
92 */
93 unsigned long total_forks; /* Handle normal Linux uptimes. */
94 int nr_threads; /* The idle threads do not count.. */
95
96 int max_threads; /* tunable limit on nr_threads */
97
98 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
99
100 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
101
102 #ifdef CONFIG_PROVE_RCU
103 int lockdep_tasklist_lock_is_held(void)
104 {
105 return lockdep_is_held(&tasklist_lock);
106 }
107 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
108 #endif /* #ifdef CONFIG_PROVE_RCU */
109
110 int nr_processes(void)
111 {
112 int cpu;
113 int total = 0;
114
115 for_each_possible_cpu(cpu)
116 total += per_cpu(process_counts, cpu);
117
118 return total;
119 }
120
121 void __weak arch_release_task_struct(struct task_struct *tsk)
122 {
123 }
124
125 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
126 static struct kmem_cache *task_struct_cachep;
127
128 static inline struct task_struct *alloc_task_struct_node(int node)
129 {
130 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
131 }
132
133 static inline void free_task_struct(struct task_struct *tsk)
134 {
135 kmem_cache_free(task_struct_cachep, tsk);
136 }
137 #endif
138
139 void __weak arch_release_thread_info(struct thread_info *ti)
140 {
141 }
142
143 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
144
145 /*
146 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
147 * kmemcache based allocator.
148 */
149 # if THREAD_SIZE >= PAGE_SIZE
150 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
151 int node)
152 {
153 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
154 THREAD_SIZE_ORDER);
155
156 return page ? page_address(page) : NULL;
157 }
158
159 static inline void free_thread_info(struct thread_info *ti)
160 {
161 free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
162 }
163 # else
164 static struct kmem_cache *thread_info_cache;
165
166 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
167 int node)
168 {
169 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
170 }
171
172 static void free_thread_info(struct thread_info *ti)
173 {
174 kmem_cache_free(thread_info_cache, ti);
175 }
176
177 void thread_info_cache_init(void)
178 {
179 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
180 THREAD_SIZE, 0, NULL);
181 BUG_ON(thread_info_cache == NULL);
182 }
183 # endif
184 #endif
185
186 /* SLAB cache for signal_struct structures (tsk->signal) */
187 static struct kmem_cache *signal_cachep;
188
189 /* SLAB cache for sighand_struct structures (tsk->sighand) */
190 struct kmem_cache *sighand_cachep;
191
192 /* SLAB cache for files_struct structures (tsk->files) */
193 struct kmem_cache *files_cachep;
194
195 /* SLAB cache for fs_struct structures (tsk->fs) */
196 struct kmem_cache *fs_cachep;
197
198 /* SLAB cache for vm_area_struct structures */
199 struct kmem_cache *vm_area_cachep;
200
201 /* SLAB cache for mm_struct structures (tsk->mm) */
202 static struct kmem_cache *mm_cachep;
203
204 static void account_kernel_stack(struct thread_info *ti, int account)
205 {
206 struct zone *zone = page_zone(virt_to_page(ti));
207
208 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
209 }
210
211 void free_task(struct task_struct *tsk)
212 {
213 account_kernel_stack(tsk->stack, -1);
214 arch_release_thread_info(tsk->stack);
215 free_thread_info(tsk->stack);
216 rt_mutex_debug_task_free(tsk);
217 ftrace_graph_exit_task(tsk);
218 put_seccomp_filter(tsk);
219 arch_release_task_struct(tsk);
220 free_task_struct(tsk);
221 }
222 EXPORT_SYMBOL(free_task);
223
224 static inline void free_signal_struct(struct signal_struct *sig)
225 {
226 taskstats_tgid_free(sig);
227 sched_autogroup_exit(sig);
228 kmem_cache_free(signal_cachep, sig);
229 }
230
231 static inline void put_signal_struct(struct signal_struct *sig)
232 {
233 if (atomic_dec_and_test(&sig->sigcnt))
234 free_signal_struct(sig);
235 }
236
237 void __put_task_struct(struct task_struct *tsk)
238 {
239 WARN_ON(!tsk->exit_state);
240 WARN_ON(atomic_read(&tsk->usage));
241 WARN_ON(tsk == current);
242
243 task_numa_free(tsk);
244 security_task_free(tsk);
245 exit_creds(tsk);
246 delayacct_tsk_free(tsk);
247 put_signal_struct(tsk->signal);
248
249 if (!profile_handoff_task(tsk))
250 free_task(tsk);
251 }
252 EXPORT_SYMBOL_GPL(__put_task_struct);
253
254 void __init __weak arch_task_cache_init(void) { }
255
256 void __init fork_init(unsigned long mempages)
257 {
258 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
259 #ifndef ARCH_MIN_TASKALIGN
260 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
261 #endif
262 /* create a slab on which task_structs can be allocated */
263 task_struct_cachep =
264 kmem_cache_create("task_struct", sizeof(struct task_struct),
265 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
266 #endif
267
268 /* do the arch specific task caches init */
269 arch_task_cache_init();
270
271 /*
272 * The default maximum number of threads is set to a safe
273 * value: the thread structures can take up at most half
274 * of memory.
275 */
276 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
277
278 /*
279 * we need to allow at least 20 threads to boot a system
280 */
281 if (max_threads < 20)
282 max_threads = 20;
283
284 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
285 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
286 init_task.signal->rlim[RLIMIT_SIGPENDING] =
287 init_task.signal->rlim[RLIMIT_NPROC];
288 }
289
290 int __weak arch_dup_task_struct(struct task_struct *dst,
291 struct task_struct *src)
292 {
293 *dst = *src;
294 return 0;
295 }
296
297 void set_task_stack_end_magic(struct task_struct *tsk)
298 {
299 unsigned long *stackend;
300
301 stackend = end_of_stack(tsk);
302 *stackend = STACK_END_MAGIC; /* for overflow detection */
303 }
304
305 static struct task_struct *dup_task_struct(struct task_struct *orig)
306 {
307 struct task_struct *tsk;
308 struct thread_info *ti;
309 int node = tsk_fork_get_node(orig);
310 int err;
311
312 tsk = alloc_task_struct_node(node);
313 if (!tsk)
314 return NULL;
315
316 ti = alloc_thread_info_node(tsk, node);
317 if (!ti)
318 goto free_tsk;
319
320 err = arch_dup_task_struct(tsk, orig);
321 if (err)
322 goto free_ti;
323
324 tsk->stack = ti;
325 #ifdef CONFIG_SECCOMP
326 /*
327 * We must handle setting up seccomp filters once we're under
328 * the sighand lock in case orig has changed between now and
329 * then. Until then, filter must be NULL to avoid messing up
330 * the usage counts on the error path calling free_task.
331 */
332 tsk->seccomp.filter = NULL;
333 #endif
334
335 setup_thread_stack(tsk, orig);
336 clear_user_return_notifier(tsk);
337 clear_tsk_need_resched(tsk);
338 set_task_stack_end_magic(tsk);
339
340 #ifdef CONFIG_CC_STACKPROTECTOR
341 tsk->stack_canary = get_random_int();
342 #endif
343
344 /*
345 * One for us, one for whoever does the "release_task()" (usually
346 * parent)
347 */
348 atomic_set(&tsk->usage, 2);
349 #ifdef CONFIG_BLK_DEV_IO_TRACE
350 tsk->btrace_seq = 0;
351 #endif
352 tsk->splice_pipe = NULL;
353 tsk->task_frag.page = NULL;
354
355 account_kernel_stack(ti, 1);
356
357 return tsk;
358
359 free_ti:
360 free_thread_info(ti);
361 free_tsk:
362 free_task_struct(tsk);
363 return NULL;
364 }
365
366 #ifdef CONFIG_MMU
367 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
368 {
369 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
370 struct rb_node **rb_link, *rb_parent;
371 int retval;
372 unsigned long charge;
373
374 uprobe_start_dup_mmap();
375 down_write(&oldmm->mmap_sem);
376 flush_cache_dup_mm(oldmm);
377 uprobe_dup_mmap(oldmm, mm);
378 /*
379 * Not linked in yet - no deadlock potential:
380 */
381 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
382
383 mm->total_vm = oldmm->total_vm;
384 mm->shared_vm = oldmm->shared_vm;
385 mm->exec_vm = oldmm->exec_vm;
386 mm->stack_vm = oldmm->stack_vm;
387
388 rb_link = &mm->mm_rb.rb_node;
389 rb_parent = NULL;
390 pprev = &mm->mmap;
391 retval = ksm_fork(mm, oldmm);
392 if (retval)
393 goto out;
394 retval = khugepaged_fork(mm, oldmm);
395 if (retval)
396 goto out;
397
398 prev = NULL;
399 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
400 struct file *file;
401
402 if (mpnt->vm_flags & VM_DONTCOPY) {
403 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
404 -vma_pages(mpnt));
405 continue;
406 }
407 charge = 0;
408 if (mpnt->vm_flags & VM_ACCOUNT) {
409 unsigned long len = vma_pages(mpnt);
410
411 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
412 goto fail_nomem;
413 charge = len;
414 }
415 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
416 if (!tmp)
417 goto fail_nomem;
418 *tmp = *mpnt;
419 INIT_LIST_HEAD(&tmp->anon_vma_chain);
420 retval = vma_dup_policy(mpnt, tmp);
421 if (retval)
422 goto fail_nomem_policy;
423 tmp->vm_mm = mm;
424 if (anon_vma_fork(tmp, mpnt))
425 goto fail_nomem_anon_vma_fork;
426 tmp->vm_flags &= ~VM_LOCKED;
427 tmp->vm_next = tmp->vm_prev = NULL;
428 file = tmp->vm_file;
429 if (file) {
430 struct inode *inode = file_inode(file);
431 struct address_space *mapping = file->f_mapping;
432
433 get_file(file);
434 if (tmp->vm_flags & VM_DENYWRITE)
435 atomic_dec(&inode->i_writecount);
436 mutex_lock(&mapping->i_mmap_mutex);
437 if (tmp->vm_flags & VM_SHARED)
438 atomic_inc(&mapping->i_mmap_writable);
439 flush_dcache_mmap_lock(mapping);
440 /* insert tmp into the share list, just after mpnt */
441 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
442 vma_nonlinear_insert(tmp,
443 &mapping->i_mmap_nonlinear);
444 else
445 vma_interval_tree_insert_after(tmp, mpnt,
446 &mapping->i_mmap);
447 flush_dcache_mmap_unlock(mapping);
448 mutex_unlock(&mapping->i_mmap_mutex);
449 }
450
451 /*
452 * Clear hugetlb-related page reserves for children. This only
453 * affects MAP_PRIVATE mappings. Faults generated by the child
454 * are not guaranteed to succeed, even if read-only
455 */
456 if (is_vm_hugetlb_page(tmp))
457 reset_vma_resv_huge_pages(tmp);
458
459 /*
460 * Link in the new vma and copy the page table entries.
461 */
462 *pprev = tmp;
463 pprev = &tmp->vm_next;
464 tmp->vm_prev = prev;
465 prev = tmp;
466
467 __vma_link_rb(mm, tmp, rb_link, rb_parent);
468 rb_link = &tmp->vm_rb.rb_right;
469 rb_parent = &tmp->vm_rb;
470
471 mm->map_count++;
472 retval = copy_page_range(mm, oldmm, mpnt);
473
474 if (tmp->vm_ops && tmp->vm_ops->open)
475 tmp->vm_ops->open(tmp);
476
477 if (retval)
478 goto out;
479 }
480 /* a new mm has just been created */
481 arch_dup_mmap(oldmm, mm);
482 retval = 0;
483 out:
484 up_write(&mm->mmap_sem);
485 flush_tlb_mm(oldmm);
486 up_write(&oldmm->mmap_sem);
487 uprobe_end_dup_mmap();
488 return retval;
489 fail_nomem_anon_vma_fork:
490 mpol_put(vma_policy(tmp));
491 fail_nomem_policy:
492 kmem_cache_free(vm_area_cachep, tmp);
493 fail_nomem:
494 retval = -ENOMEM;
495 vm_unacct_memory(charge);
496 goto out;
497 }
498
499 static inline int mm_alloc_pgd(struct mm_struct *mm)
500 {
501 mm->pgd = pgd_alloc(mm);
502 if (unlikely(!mm->pgd))
503 return -ENOMEM;
504 return 0;
505 }
506
507 static inline void mm_free_pgd(struct mm_struct *mm)
508 {
509 pgd_free(mm, mm->pgd);
510 }
511 #else
512 #define dup_mmap(mm, oldmm) (0)
513 #define mm_alloc_pgd(mm) (0)
514 #define mm_free_pgd(mm)
515 #endif /* CONFIG_MMU */
516
517 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
518
519 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
520 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
521
522 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
523
524 static int __init coredump_filter_setup(char *s)
525 {
526 default_dump_filter =
527 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
528 MMF_DUMP_FILTER_MASK;
529 return 1;
530 }
531
532 __setup("coredump_filter=", coredump_filter_setup);
533
534 #include <linux/init_task.h>
535
536 static void mm_init_aio(struct mm_struct *mm)
537 {
538 #ifdef CONFIG_AIO
539 spin_lock_init(&mm->ioctx_lock);
540 mm->ioctx_table = NULL;
541 #endif
542 }
543
544 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
545 {
546 #ifdef CONFIG_MEMCG
547 mm->owner = p;
548 #endif
549 }
550
551 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
552 {
553 mm->mmap = NULL;
554 mm->mm_rb = RB_ROOT;
555 mm->vmacache_seqnum = 0;
556 atomic_set(&mm->mm_users, 1);
557 atomic_set(&mm->mm_count, 1);
558 init_rwsem(&mm->mmap_sem);
559 INIT_LIST_HEAD(&mm->mmlist);
560 mm->core_state = NULL;
561 atomic_long_set(&mm->nr_ptes, 0);
562 mm->map_count = 0;
563 mm->locked_vm = 0;
564 mm->pinned_vm = 0;
565 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
566 spin_lock_init(&mm->page_table_lock);
567 mm_init_cpumask(mm);
568 mm_init_aio(mm);
569 mm_init_owner(mm, p);
570 mmu_notifier_mm_init(mm);
571 clear_tlb_flush_pending(mm);
572 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
573 mm->pmd_huge_pte = NULL;
574 #endif
575
576 if (current->mm) {
577 mm->flags = current->mm->flags & MMF_INIT_MASK;
578 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
579 } else {
580 mm->flags = default_dump_filter;
581 mm->def_flags = 0;
582 }
583
584 if (mm_alloc_pgd(mm))
585 goto fail_nopgd;
586
587 if (init_new_context(p, mm))
588 goto fail_nocontext;
589
590 return mm;
591
592 fail_nocontext:
593 mm_free_pgd(mm);
594 fail_nopgd:
595 free_mm(mm);
596 return NULL;
597 }
598
599 static void check_mm(struct mm_struct *mm)
600 {
601 int i;
602
603 for (i = 0; i < NR_MM_COUNTERS; i++) {
604 long x = atomic_long_read(&mm->rss_stat.count[i]);
605
606 if (unlikely(x))
607 printk(KERN_ALERT "BUG: Bad rss-counter state "
608 "mm:%p idx:%d val:%ld\n", mm, i, x);
609 }
610
611 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
612 VM_BUG_ON(mm->pmd_huge_pte);
613 #endif
614 }
615
616 /*
617 * Allocate and initialize an mm_struct.
618 */
619 struct mm_struct *mm_alloc(void)
620 {
621 struct mm_struct *mm;
622
623 mm = allocate_mm();
624 if (!mm)
625 return NULL;
626
627 memset(mm, 0, sizeof(*mm));
628 return mm_init(mm, current);
629 }
630
631 /*
632 * Called when the last reference to the mm
633 * is dropped: either by a lazy thread or by
634 * mmput. Free the page directory and the mm.
635 */
636 void __mmdrop(struct mm_struct *mm)
637 {
638 BUG_ON(mm == &init_mm);
639 mm_free_pgd(mm);
640 destroy_context(mm);
641 mmu_notifier_mm_destroy(mm);
642 check_mm(mm);
643 free_mm(mm);
644 }
645 EXPORT_SYMBOL_GPL(__mmdrop);
646
647 /*
648 * Decrement the use count and release all resources for an mm.
649 */
650 void mmput(struct mm_struct *mm)
651 {
652 might_sleep();
653
654 if (atomic_dec_and_test(&mm->mm_users)) {
655 uprobe_clear_state(mm);
656 exit_aio(mm);
657 ksm_exit(mm);
658 khugepaged_exit(mm); /* must run before exit_mmap */
659 exit_mmap(mm);
660 set_mm_exe_file(mm, NULL);
661 if (!list_empty(&mm->mmlist)) {
662 spin_lock(&mmlist_lock);
663 list_del(&mm->mmlist);
664 spin_unlock(&mmlist_lock);
665 }
666 if (mm->binfmt)
667 module_put(mm->binfmt->module);
668 mmdrop(mm);
669 }
670 }
671 EXPORT_SYMBOL_GPL(mmput);
672
673 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
674 {
675 if (new_exe_file)
676 get_file(new_exe_file);
677 if (mm->exe_file)
678 fput(mm->exe_file);
679 mm->exe_file = new_exe_file;
680 }
681
682 struct file *get_mm_exe_file(struct mm_struct *mm)
683 {
684 struct file *exe_file;
685
686 /* We need mmap_sem to protect against races with removal of exe_file */
687 down_read(&mm->mmap_sem);
688 exe_file = mm->exe_file;
689 if (exe_file)
690 get_file(exe_file);
691 up_read(&mm->mmap_sem);
692 return exe_file;
693 }
694
695 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
696 {
697 /* It's safe to write the exe_file pointer without exe_file_lock because
698 * this is called during fork when the task is not yet in /proc */
699 newmm->exe_file = get_mm_exe_file(oldmm);
700 }
701
702 /**
703 * get_task_mm - acquire a reference to the task's mm
704 *
705 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
706 * this kernel workthread has transiently adopted a user mm with use_mm,
707 * to do its AIO) is not set and if so returns a reference to it, after
708 * bumping up the use count. User must release the mm via mmput()
709 * after use. Typically used by /proc and ptrace.
710 */
711 struct mm_struct *get_task_mm(struct task_struct *task)
712 {
713 struct mm_struct *mm;
714
715 task_lock(task);
716 mm = task->mm;
717 if (mm) {
718 if (task->flags & PF_KTHREAD)
719 mm = NULL;
720 else
721 atomic_inc(&mm->mm_users);
722 }
723 task_unlock(task);
724 return mm;
725 }
726 EXPORT_SYMBOL_GPL(get_task_mm);
727
728 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
729 {
730 struct mm_struct *mm;
731 int err;
732
733 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
734 if (err)
735 return ERR_PTR(err);
736
737 mm = get_task_mm(task);
738 if (mm && mm != current->mm &&
739 !ptrace_may_access(task, mode)) {
740 mmput(mm);
741 mm = ERR_PTR(-EACCES);
742 }
743 mutex_unlock(&task->signal->cred_guard_mutex);
744
745 return mm;
746 }
747
748 static void complete_vfork_done(struct task_struct *tsk)
749 {
750 struct completion *vfork;
751
752 task_lock(tsk);
753 vfork = tsk->vfork_done;
754 if (likely(vfork)) {
755 tsk->vfork_done = NULL;
756 complete(vfork);
757 }
758 task_unlock(tsk);
759 }
760
761 static int wait_for_vfork_done(struct task_struct *child,
762 struct completion *vfork)
763 {
764 int killed;
765
766 freezer_do_not_count();
767 killed = wait_for_completion_killable(vfork);
768 freezer_count();
769
770 if (killed) {
771 task_lock(child);
772 child->vfork_done = NULL;
773 task_unlock(child);
774 }
775
776 put_task_struct(child);
777 return killed;
778 }
779
780 /* Please note the differences between mmput and mm_release.
781 * mmput is called whenever we stop holding onto a mm_struct,
782 * error success whatever.
783 *
784 * mm_release is called after a mm_struct has been removed
785 * from the current process.
786 *
787 * This difference is important for error handling, when we
788 * only half set up a mm_struct for a new process and need to restore
789 * the old one. Because we mmput the new mm_struct before
790 * restoring the old one. . .
791 * Eric Biederman 10 January 1998
792 */
793 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
794 {
795 /* Get rid of any futexes when releasing the mm */
796 #ifdef CONFIG_FUTEX
797 if (unlikely(tsk->robust_list)) {
798 exit_robust_list(tsk);
799 tsk->robust_list = NULL;
800 }
801 #ifdef CONFIG_COMPAT
802 if (unlikely(tsk->compat_robust_list)) {
803 compat_exit_robust_list(tsk);
804 tsk->compat_robust_list = NULL;
805 }
806 #endif
807 if (unlikely(!list_empty(&tsk->pi_state_list)))
808 exit_pi_state_list(tsk);
809 #endif
810
811 uprobe_free_utask(tsk);
812
813 /* Get rid of any cached register state */
814 deactivate_mm(tsk, mm);
815
816 /*
817 * If we're exiting normally, clear a user-space tid field if
818 * requested. We leave this alone when dying by signal, to leave
819 * the value intact in a core dump, and to save the unnecessary
820 * trouble, say, a killed vfork parent shouldn't touch this mm.
821 * Userland only wants this done for a sys_exit.
822 */
823 if (tsk->clear_child_tid) {
824 if (!(tsk->flags & PF_SIGNALED) &&
825 atomic_read(&mm->mm_users) > 1) {
826 /*
827 * We don't check the error code - if userspace has
828 * not set up a proper pointer then tough luck.
829 */
830 put_user(0, tsk->clear_child_tid);
831 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
832 1, NULL, NULL, 0);
833 }
834 tsk->clear_child_tid = NULL;
835 }
836
837 /*
838 * All done, finally we can wake up parent and return this mm to him.
839 * Also kthread_stop() uses this completion for synchronization.
840 */
841 if (tsk->vfork_done)
842 complete_vfork_done(tsk);
843 }
844
845 /*
846 * Allocate a new mm structure and copy contents from the
847 * mm structure of the passed in task structure.
848 */
849 static struct mm_struct *dup_mm(struct task_struct *tsk)
850 {
851 struct mm_struct *mm, *oldmm = current->mm;
852 int err;
853
854 mm = allocate_mm();
855 if (!mm)
856 goto fail_nomem;
857
858 memcpy(mm, oldmm, sizeof(*mm));
859
860 if (!mm_init(mm, tsk))
861 goto fail_nomem;
862
863 dup_mm_exe_file(oldmm, mm);
864
865 err = dup_mmap(mm, oldmm);
866 if (err)
867 goto free_pt;
868
869 mm->hiwater_rss = get_mm_rss(mm);
870 mm->hiwater_vm = mm->total_vm;
871
872 if (mm->binfmt && !try_module_get(mm->binfmt->module))
873 goto free_pt;
874
875 return mm;
876
877 free_pt:
878 /* don't put binfmt in mmput, we haven't got module yet */
879 mm->binfmt = NULL;
880 mmput(mm);
881
882 fail_nomem:
883 return NULL;
884 }
885
886 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
887 {
888 struct mm_struct *mm, *oldmm;
889 int retval;
890
891 tsk->min_flt = tsk->maj_flt = 0;
892 tsk->nvcsw = tsk->nivcsw = 0;
893 #ifdef CONFIG_DETECT_HUNG_TASK
894 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
895 #endif
896
897 tsk->mm = NULL;
898 tsk->active_mm = NULL;
899
900 /*
901 * Are we cloning a kernel thread?
902 *
903 * We need to steal a active VM for that..
904 */
905 oldmm = current->mm;
906 if (!oldmm)
907 return 0;
908
909 /* initialize the new vmacache entries */
910 vmacache_flush(tsk);
911
912 if (clone_flags & CLONE_VM) {
913 atomic_inc(&oldmm->mm_users);
914 mm = oldmm;
915 goto good_mm;
916 }
917
918 retval = -ENOMEM;
919 mm = dup_mm(tsk);
920 if (!mm)
921 goto fail_nomem;
922
923 good_mm:
924 tsk->mm = mm;
925 tsk->active_mm = mm;
926 return 0;
927
928 fail_nomem:
929 return retval;
930 }
931
932 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
933 {
934 struct fs_struct *fs = current->fs;
935 if (clone_flags & CLONE_FS) {
936 /* tsk->fs is already what we want */
937 spin_lock(&fs->lock);
938 if (fs->in_exec) {
939 spin_unlock(&fs->lock);
940 return -EAGAIN;
941 }
942 fs->users++;
943 spin_unlock(&fs->lock);
944 return 0;
945 }
946 tsk->fs = copy_fs_struct(fs);
947 if (!tsk->fs)
948 return -ENOMEM;
949 return 0;
950 }
951
952 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
953 {
954 struct files_struct *oldf, *newf;
955 int error = 0;
956
957 /*
958 * A background process may not have any files ...
959 */
960 oldf = current->files;
961 if (!oldf)
962 goto out;
963
964 if (clone_flags & CLONE_FILES) {
965 atomic_inc(&oldf->count);
966 goto out;
967 }
968
969 newf = dup_fd(oldf, &error);
970 if (!newf)
971 goto out;
972
973 tsk->files = newf;
974 error = 0;
975 out:
976 return error;
977 }
978
979 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
980 {
981 #ifdef CONFIG_BLOCK
982 struct io_context *ioc = current->io_context;
983 struct io_context *new_ioc;
984
985 if (!ioc)
986 return 0;
987 /*
988 * Share io context with parent, if CLONE_IO is set
989 */
990 if (clone_flags & CLONE_IO) {
991 ioc_task_link(ioc);
992 tsk->io_context = ioc;
993 } else if (ioprio_valid(ioc->ioprio)) {
994 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
995 if (unlikely(!new_ioc))
996 return -ENOMEM;
997
998 new_ioc->ioprio = ioc->ioprio;
999 put_io_context(new_ioc);
1000 }
1001 #endif
1002 return 0;
1003 }
1004
1005 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1006 {
1007 struct sighand_struct *sig;
1008
1009 if (clone_flags & CLONE_SIGHAND) {
1010 atomic_inc(&current->sighand->count);
1011 return 0;
1012 }
1013 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1014 rcu_assign_pointer(tsk->sighand, sig);
1015 if (!sig)
1016 return -ENOMEM;
1017 atomic_set(&sig->count, 1);
1018 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1019 return 0;
1020 }
1021
1022 void __cleanup_sighand(struct sighand_struct *sighand)
1023 {
1024 if (atomic_dec_and_test(&sighand->count)) {
1025 signalfd_cleanup(sighand);
1026 kmem_cache_free(sighand_cachep, sighand);
1027 }
1028 }
1029
1030
1031 /*
1032 * Initialize POSIX timer handling for a thread group.
1033 */
1034 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1035 {
1036 unsigned long cpu_limit;
1037
1038 /* Thread group counters. */
1039 thread_group_cputime_init(sig);
1040
1041 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1042 if (cpu_limit != RLIM_INFINITY) {
1043 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1044 sig->cputimer.running = 1;
1045 }
1046
1047 /* The timer lists. */
1048 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1049 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1050 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1051 }
1052
1053 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1054 {
1055 struct signal_struct *sig;
1056
1057 if (clone_flags & CLONE_THREAD)
1058 return 0;
1059
1060 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1061 tsk->signal = sig;
1062 if (!sig)
1063 return -ENOMEM;
1064
1065 sig->nr_threads = 1;
1066 atomic_set(&sig->live, 1);
1067 atomic_set(&sig->sigcnt, 1);
1068
1069 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1070 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1071 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1072
1073 init_waitqueue_head(&sig->wait_chldexit);
1074 sig->curr_target = tsk;
1075 init_sigpending(&sig->shared_pending);
1076 INIT_LIST_HEAD(&sig->posix_timers);
1077 seqlock_init(&sig->stats_lock);
1078
1079 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1080 sig->real_timer.function = it_real_fn;
1081
1082 task_lock(current->group_leader);
1083 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1084 task_unlock(current->group_leader);
1085
1086 posix_cpu_timers_init_group(sig);
1087
1088 tty_audit_fork(sig);
1089 sched_autogroup_fork(sig);
1090
1091 #ifdef CONFIG_CGROUPS
1092 init_rwsem(&sig->group_rwsem);
1093 #endif
1094
1095 sig->oom_score_adj = current->signal->oom_score_adj;
1096 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1097
1098 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1099 current->signal->is_child_subreaper;
1100
1101 mutex_init(&sig->cred_guard_mutex);
1102
1103 return 0;
1104 }
1105
1106 static void copy_seccomp(struct task_struct *p)
1107 {
1108 #ifdef CONFIG_SECCOMP
1109 /*
1110 * Must be called with sighand->lock held, which is common to
1111 * all threads in the group. Holding cred_guard_mutex is not
1112 * needed because this new task is not yet running and cannot
1113 * be racing exec.
1114 */
1115 assert_spin_locked(&current->sighand->siglock);
1116
1117 /* Ref-count the new filter user, and assign it. */
1118 get_seccomp_filter(current);
1119 p->seccomp = current->seccomp;
1120
1121 /*
1122 * Explicitly enable no_new_privs here in case it got set
1123 * between the task_struct being duplicated and holding the
1124 * sighand lock. The seccomp state and nnp must be in sync.
1125 */
1126 if (task_no_new_privs(current))
1127 task_set_no_new_privs(p);
1128
1129 /*
1130 * If the parent gained a seccomp mode after copying thread
1131 * flags and between before we held the sighand lock, we have
1132 * to manually enable the seccomp thread flag here.
1133 */
1134 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1135 set_tsk_thread_flag(p, TIF_SECCOMP);
1136 #endif
1137 }
1138
1139 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1140 {
1141 current->clear_child_tid = tidptr;
1142
1143 return task_pid_vnr(current);
1144 }
1145
1146 static void rt_mutex_init_task(struct task_struct *p)
1147 {
1148 raw_spin_lock_init(&p->pi_lock);
1149 #ifdef CONFIG_RT_MUTEXES
1150 p->pi_waiters = RB_ROOT;
1151 p->pi_waiters_leftmost = NULL;
1152 p->pi_blocked_on = NULL;
1153 #endif
1154 }
1155
1156 /*
1157 * Initialize POSIX timer handling for a single task.
1158 */
1159 static void posix_cpu_timers_init(struct task_struct *tsk)
1160 {
1161 tsk->cputime_expires.prof_exp = 0;
1162 tsk->cputime_expires.virt_exp = 0;
1163 tsk->cputime_expires.sched_exp = 0;
1164 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1165 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1166 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1167 }
1168
1169 static inline void
1170 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1171 {
1172 task->pids[type].pid = pid;
1173 }
1174
1175 /*
1176 * This creates a new process as a copy of the old one,
1177 * but does not actually start it yet.
1178 *
1179 * It copies the registers, and all the appropriate
1180 * parts of the process environment (as per the clone
1181 * flags). The actual kick-off is left to the caller.
1182 */
1183 static struct task_struct *copy_process(unsigned long clone_flags,
1184 unsigned long stack_start,
1185 unsigned long stack_size,
1186 int __user *child_tidptr,
1187 struct pid *pid,
1188 int trace)
1189 {
1190 int retval;
1191 struct task_struct *p;
1192
1193 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1194 return ERR_PTR(-EINVAL);
1195
1196 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1197 return ERR_PTR(-EINVAL);
1198
1199 /*
1200 * Thread groups must share signals as well, and detached threads
1201 * can only be started up within the thread group.
1202 */
1203 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1204 return ERR_PTR(-EINVAL);
1205
1206 /*
1207 * Shared signal handlers imply shared VM. By way of the above,
1208 * thread groups also imply shared VM. Blocking this case allows
1209 * for various simplifications in other code.
1210 */
1211 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1212 return ERR_PTR(-EINVAL);
1213
1214 /*
1215 * Siblings of global init remain as zombies on exit since they are
1216 * not reaped by their parent (swapper). To solve this and to avoid
1217 * multi-rooted process trees, prevent global and container-inits
1218 * from creating siblings.
1219 */
1220 if ((clone_flags & CLONE_PARENT) &&
1221 current->signal->flags & SIGNAL_UNKILLABLE)
1222 return ERR_PTR(-EINVAL);
1223
1224 /*
1225 * If the new process will be in a different pid or user namespace
1226 * do not allow it to share a thread group or signal handlers or
1227 * parent with the forking task.
1228 */
1229 if (clone_flags & CLONE_SIGHAND) {
1230 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1231 (task_active_pid_ns(current) !=
1232 current->nsproxy->pid_ns_for_children))
1233 return ERR_PTR(-EINVAL);
1234 }
1235
1236 retval = security_task_create(clone_flags);
1237 if (retval)
1238 goto fork_out;
1239
1240 retval = -ENOMEM;
1241 p = dup_task_struct(current);
1242 if (!p)
1243 goto fork_out;
1244
1245 ftrace_graph_init_task(p);
1246
1247 rt_mutex_init_task(p);
1248
1249 #ifdef CONFIG_PROVE_LOCKING
1250 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1251 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1252 #endif
1253 retval = -EAGAIN;
1254 if (atomic_read(&p->real_cred->user->processes) >=
1255 task_rlimit(p, RLIMIT_NPROC)) {
1256 if (p->real_cred->user != INIT_USER &&
1257 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1258 goto bad_fork_free;
1259 }
1260 current->flags &= ~PF_NPROC_EXCEEDED;
1261
1262 retval = copy_creds(p, clone_flags);
1263 if (retval < 0)
1264 goto bad_fork_free;
1265
1266 /*
1267 * If multiple threads are within copy_process(), then this check
1268 * triggers too late. This doesn't hurt, the check is only there
1269 * to stop root fork bombs.
1270 */
1271 retval = -EAGAIN;
1272 if (nr_threads >= max_threads)
1273 goto bad_fork_cleanup_count;
1274
1275 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1276 goto bad_fork_cleanup_count;
1277
1278 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1279 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1280 p->flags |= PF_FORKNOEXEC;
1281 INIT_LIST_HEAD(&p->children);
1282 INIT_LIST_HEAD(&p->sibling);
1283 rcu_copy_process(p);
1284 p->vfork_done = NULL;
1285 spin_lock_init(&p->alloc_lock);
1286
1287 init_sigpending(&p->pending);
1288
1289 p->utime = p->stime = p->gtime = 0;
1290 p->utimescaled = p->stimescaled = 0;
1291 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1292 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1293 #endif
1294 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1295 seqlock_init(&p->vtime_seqlock);
1296 p->vtime_snap = 0;
1297 p->vtime_snap_whence = VTIME_SLEEPING;
1298 #endif
1299
1300 #if defined(SPLIT_RSS_COUNTING)
1301 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1302 #endif
1303
1304 p->default_timer_slack_ns = current->timer_slack_ns;
1305
1306 task_io_accounting_init(&p->ioac);
1307 acct_clear_integrals(p);
1308
1309 posix_cpu_timers_init(p);
1310
1311 p->start_time = ktime_get_ns();
1312 p->real_start_time = ktime_get_boot_ns();
1313 p->io_context = NULL;
1314 p->audit_context = NULL;
1315 if (clone_flags & CLONE_THREAD)
1316 threadgroup_change_begin(current);
1317 cgroup_fork(p);
1318 #ifdef CONFIG_NUMA
1319 p->mempolicy = mpol_dup(p->mempolicy);
1320 if (IS_ERR(p->mempolicy)) {
1321 retval = PTR_ERR(p->mempolicy);
1322 p->mempolicy = NULL;
1323 goto bad_fork_cleanup_threadgroup_lock;
1324 }
1325 #endif
1326 #ifdef CONFIG_CPUSETS
1327 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1328 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1329 seqcount_init(&p->mems_allowed_seq);
1330 #endif
1331 #ifdef CONFIG_TRACE_IRQFLAGS
1332 p->irq_events = 0;
1333 p->hardirqs_enabled = 0;
1334 p->hardirq_enable_ip = 0;
1335 p->hardirq_enable_event = 0;
1336 p->hardirq_disable_ip = _THIS_IP_;
1337 p->hardirq_disable_event = 0;
1338 p->softirqs_enabled = 1;
1339 p->softirq_enable_ip = _THIS_IP_;
1340 p->softirq_enable_event = 0;
1341 p->softirq_disable_ip = 0;
1342 p->softirq_disable_event = 0;
1343 p->hardirq_context = 0;
1344 p->softirq_context = 0;
1345 #endif
1346 #ifdef CONFIG_LOCKDEP
1347 p->lockdep_depth = 0; /* no locks held yet */
1348 p->curr_chain_key = 0;
1349 p->lockdep_recursion = 0;
1350 #endif
1351
1352 #ifdef CONFIG_DEBUG_MUTEXES
1353 p->blocked_on = NULL; /* not blocked yet */
1354 #endif
1355 #ifdef CONFIG_BCACHE
1356 p->sequential_io = 0;
1357 p->sequential_io_avg = 0;
1358 #endif
1359
1360 /* Perform scheduler related setup. Assign this task to a CPU. */
1361 retval = sched_fork(clone_flags, p);
1362 if (retval)
1363 goto bad_fork_cleanup_policy;
1364
1365 retval = perf_event_init_task(p);
1366 if (retval)
1367 goto bad_fork_cleanup_policy;
1368 retval = audit_alloc(p);
1369 if (retval)
1370 goto bad_fork_cleanup_policy;
1371 /* copy all the process information */
1372 shm_init_task(p);
1373 retval = copy_semundo(clone_flags, p);
1374 if (retval)
1375 goto bad_fork_cleanup_audit;
1376 retval = copy_files(clone_flags, p);
1377 if (retval)
1378 goto bad_fork_cleanup_semundo;
1379 retval = copy_fs(clone_flags, p);
1380 if (retval)
1381 goto bad_fork_cleanup_files;
1382 retval = copy_sighand(clone_flags, p);
1383 if (retval)
1384 goto bad_fork_cleanup_fs;
1385 retval = copy_signal(clone_flags, p);
1386 if (retval)
1387 goto bad_fork_cleanup_sighand;
1388 retval = copy_mm(clone_flags, p);
1389 if (retval)
1390 goto bad_fork_cleanup_signal;
1391 retval = copy_namespaces(clone_flags, p);
1392 if (retval)
1393 goto bad_fork_cleanup_mm;
1394 retval = copy_io(clone_flags, p);
1395 if (retval)
1396 goto bad_fork_cleanup_namespaces;
1397 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1398 if (retval)
1399 goto bad_fork_cleanup_io;
1400
1401 if (pid != &init_struct_pid) {
1402 retval = -ENOMEM;
1403 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1404 if (!pid)
1405 goto bad_fork_cleanup_io;
1406 }
1407
1408 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1409 /*
1410 * Clear TID on mm_release()?
1411 */
1412 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1413 #ifdef CONFIG_BLOCK
1414 p->plug = NULL;
1415 #endif
1416 #ifdef CONFIG_FUTEX
1417 p->robust_list = NULL;
1418 #ifdef CONFIG_COMPAT
1419 p->compat_robust_list = NULL;
1420 #endif
1421 INIT_LIST_HEAD(&p->pi_state_list);
1422 p->pi_state_cache = NULL;
1423 #endif
1424 /*
1425 * sigaltstack should be cleared when sharing the same VM
1426 */
1427 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1428 p->sas_ss_sp = p->sas_ss_size = 0;
1429
1430 /*
1431 * Syscall tracing and stepping should be turned off in the
1432 * child regardless of CLONE_PTRACE.
1433 */
1434 user_disable_single_step(p);
1435 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1436 #ifdef TIF_SYSCALL_EMU
1437 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1438 #endif
1439 clear_all_latency_tracing(p);
1440
1441 /* ok, now we should be set up.. */
1442 p->pid = pid_nr(pid);
1443 if (clone_flags & CLONE_THREAD) {
1444 p->exit_signal = -1;
1445 p->group_leader = current->group_leader;
1446 p->tgid = current->tgid;
1447 } else {
1448 if (clone_flags & CLONE_PARENT)
1449 p->exit_signal = current->group_leader->exit_signal;
1450 else
1451 p->exit_signal = (clone_flags & CSIGNAL);
1452 p->group_leader = p;
1453 p->tgid = p->pid;
1454 }
1455
1456 p->nr_dirtied = 0;
1457 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1458 p->dirty_paused_when = 0;
1459
1460 p->pdeath_signal = 0;
1461 INIT_LIST_HEAD(&p->thread_group);
1462 p->task_works = NULL;
1463
1464 /*
1465 * Make it visible to the rest of the system, but dont wake it up yet.
1466 * Need tasklist lock for parent etc handling!
1467 */
1468 write_lock_irq(&tasklist_lock);
1469
1470 /* CLONE_PARENT re-uses the old parent */
1471 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1472 p->real_parent = current->real_parent;
1473 p->parent_exec_id = current->parent_exec_id;
1474 } else {
1475 p->real_parent = current;
1476 p->parent_exec_id = current->self_exec_id;
1477 }
1478
1479 spin_lock(&current->sighand->siglock);
1480
1481 /*
1482 * Copy seccomp details explicitly here, in case they were changed
1483 * before holding sighand lock.
1484 */
1485 copy_seccomp(p);
1486
1487 /*
1488 * Process group and session signals need to be delivered to just the
1489 * parent before the fork or both the parent and the child after the
1490 * fork. Restart if a signal comes in before we add the new process to
1491 * it's process group.
1492 * A fatal signal pending means that current will exit, so the new
1493 * thread can't slip out of an OOM kill (or normal SIGKILL).
1494 */
1495 recalc_sigpending();
1496 if (signal_pending(current)) {
1497 spin_unlock(&current->sighand->siglock);
1498 write_unlock_irq(&tasklist_lock);
1499 retval = -ERESTARTNOINTR;
1500 goto bad_fork_free_pid;
1501 }
1502
1503 if (likely(p->pid)) {
1504 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1505
1506 init_task_pid(p, PIDTYPE_PID, pid);
1507 if (thread_group_leader(p)) {
1508 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1509 init_task_pid(p, PIDTYPE_SID, task_session(current));
1510
1511 if (is_child_reaper(pid)) {
1512 ns_of_pid(pid)->child_reaper = p;
1513 p->signal->flags |= SIGNAL_UNKILLABLE;
1514 }
1515
1516 p->signal->leader_pid = pid;
1517 p->signal->tty = tty_kref_get(current->signal->tty);
1518 list_add_tail(&p->sibling, &p->real_parent->children);
1519 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1520 attach_pid(p, PIDTYPE_PGID);
1521 attach_pid(p, PIDTYPE_SID);
1522 __this_cpu_inc(process_counts);
1523 } else {
1524 current->signal->nr_threads++;
1525 atomic_inc(&current->signal->live);
1526 atomic_inc(&current->signal->sigcnt);
1527 list_add_tail_rcu(&p->thread_group,
1528 &p->group_leader->thread_group);
1529 list_add_tail_rcu(&p->thread_node,
1530 &p->signal->thread_head);
1531 }
1532 attach_pid(p, PIDTYPE_PID);
1533 nr_threads++;
1534 }
1535
1536 total_forks++;
1537 spin_unlock(&current->sighand->siglock);
1538 syscall_tracepoint_update(p);
1539 write_unlock_irq(&tasklist_lock);
1540
1541 proc_fork_connector(p);
1542 cgroup_post_fork(p);
1543 if (clone_flags & CLONE_THREAD)
1544 threadgroup_change_end(current);
1545 perf_event_fork(p);
1546
1547 trace_task_newtask(p, clone_flags);
1548 uprobe_copy_process(p, clone_flags);
1549
1550 return p;
1551
1552 bad_fork_free_pid:
1553 if (pid != &init_struct_pid)
1554 free_pid(pid);
1555 bad_fork_cleanup_io:
1556 if (p->io_context)
1557 exit_io_context(p);
1558 bad_fork_cleanup_namespaces:
1559 exit_task_namespaces(p);
1560 bad_fork_cleanup_mm:
1561 if (p->mm)
1562 mmput(p->mm);
1563 bad_fork_cleanup_signal:
1564 if (!(clone_flags & CLONE_THREAD))
1565 free_signal_struct(p->signal);
1566 bad_fork_cleanup_sighand:
1567 __cleanup_sighand(p->sighand);
1568 bad_fork_cleanup_fs:
1569 exit_fs(p); /* blocking */
1570 bad_fork_cleanup_files:
1571 exit_files(p); /* blocking */
1572 bad_fork_cleanup_semundo:
1573 exit_sem(p);
1574 bad_fork_cleanup_audit:
1575 audit_free(p);
1576 bad_fork_cleanup_policy:
1577 perf_event_free_task(p);
1578 #ifdef CONFIG_NUMA
1579 mpol_put(p->mempolicy);
1580 bad_fork_cleanup_threadgroup_lock:
1581 #endif
1582 if (clone_flags & CLONE_THREAD)
1583 threadgroup_change_end(current);
1584 delayacct_tsk_free(p);
1585 module_put(task_thread_info(p)->exec_domain->module);
1586 bad_fork_cleanup_count:
1587 atomic_dec(&p->cred->user->processes);
1588 exit_creds(p);
1589 bad_fork_free:
1590 free_task(p);
1591 fork_out:
1592 return ERR_PTR(retval);
1593 }
1594
1595 static inline void init_idle_pids(struct pid_link *links)
1596 {
1597 enum pid_type type;
1598
1599 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1600 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1601 links[type].pid = &init_struct_pid;
1602 }
1603 }
1604
1605 struct task_struct *fork_idle(int cpu)
1606 {
1607 struct task_struct *task;
1608 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1609 if (!IS_ERR(task)) {
1610 init_idle_pids(task->pids);
1611 init_idle(task, cpu);
1612 }
1613
1614 return task;
1615 }
1616
1617 /*
1618 * Ok, this is the main fork-routine.
1619 *
1620 * It copies the process, and if successful kick-starts
1621 * it and waits for it to finish using the VM if required.
1622 */
1623 long do_fork(unsigned long clone_flags,
1624 unsigned long stack_start,
1625 unsigned long stack_size,
1626 int __user *parent_tidptr,
1627 int __user *child_tidptr)
1628 {
1629 struct task_struct *p;
1630 int trace = 0;
1631 long nr;
1632
1633 /*
1634 * Determine whether and which event to report to ptracer. When
1635 * called from kernel_thread or CLONE_UNTRACED is explicitly
1636 * requested, no event is reported; otherwise, report if the event
1637 * for the type of forking is enabled.
1638 */
1639 if (!(clone_flags & CLONE_UNTRACED)) {
1640 if (clone_flags & CLONE_VFORK)
1641 trace = PTRACE_EVENT_VFORK;
1642 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1643 trace = PTRACE_EVENT_CLONE;
1644 else
1645 trace = PTRACE_EVENT_FORK;
1646
1647 if (likely(!ptrace_event_enabled(current, trace)))
1648 trace = 0;
1649 }
1650
1651 p = copy_process(clone_flags, stack_start, stack_size,
1652 child_tidptr, NULL, trace);
1653 /*
1654 * Do this prior waking up the new thread - the thread pointer
1655 * might get invalid after that point, if the thread exits quickly.
1656 */
1657 if (!IS_ERR(p)) {
1658 struct completion vfork;
1659 struct pid *pid;
1660
1661 trace_sched_process_fork(current, p);
1662
1663 pid = get_task_pid(p, PIDTYPE_PID);
1664 nr = pid_vnr(pid);
1665
1666 if (clone_flags & CLONE_PARENT_SETTID)
1667 put_user(nr, parent_tidptr);
1668
1669 if (clone_flags & CLONE_VFORK) {
1670 p->vfork_done = &vfork;
1671 init_completion(&vfork);
1672 get_task_struct(p);
1673 }
1674
1675 wake_up_new_task(p);
1676
1677 /* forking complete and child started to run, tell ptracer */
1678 if (unlikely(trace))
1679 ptrace_event_pid(trace, pid);
1680
1681 if (clone_flags & CLONE_VFORK) {
1682 if (!wait_for_vfork_done(p, &vfork))
1683 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1684 }
1685
1686 put_pid(pid);
1687 } else {
1688 nr = PTR_ERR(p);
1689 }
1690 return nr;
1691 }
1692
1693 /*
1694 * Create a kernel thread.
1695 */
1696 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1697 {
1698 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1699 (unsigned long)arg, NULL, NULL);
1700 }
1701
1702 #ifdef __ARCH_WANT_SYS_FORK
1703 SYSCALL_DEFINE0(fork)
1704 {
1705 #ifdef CONFIG_MMU
1706 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1707 #else
1708 /* can not support in nommu mode */
1709 return -EINVAL;
1710 #endif
1711 }
1712 #endif
1713
1714 #ifdef __ARCH_WANT_SYS_VFORK
1715 SYSCALL_DEFINE0(vfork)
1716 {
1717 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1718 0, NULL, NULL);
1719 }
1720 #endif
1721
1722 #ifdef __ARCH_WANT_SYS_CLONE
1723 #ifdef CONFIG_CLONE_BACKWARDS
1724 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1725 int __user *, parent_tidptr,
1726 int, tls_val,
1727 int __user *, child_tidptr)
1728 #elif defined(CONFIG_CLONE_BACKWARDS2)
1729 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1730 int __user *, parent_tidptr,
1731 int __user *, child_tidptr,
1732 int, tls_val)
1733 #elif defined(CONFIG_CLONE_BACKWARDS3)
1734 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1735 int, stack_size,
1736 int __user *, parent_tidptr,
1737 int __user *, child_tidptr,
1738 int, tls_val)
1739 #else
1740 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1741 int __user *, parent_tidptr,
1742 int __user *, child_tidptr,
1743 int, tls_val)
1744 #endif
1745 {
1746 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1747 }
1748 #endif
1749
1750 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1751 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1752 #endif
1753
1754 static void sighand_ctor(void *data)
1755 {
1756 struct sighand_struct *sighand = data;
1757
1758 spin_lock_init(&sighand->siglock);
1759 init_waitqueue_head(&sighand->signalfd_wqh);
1760 }
1761
1762 void __init proc_caches_init(void)
1763 {
1764 sighand_cachep = kmem_cache_create("sighand_cache",
1765 sizeof(struct sighand_struct), 0,
1766 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1767 SLAB_NOTRACK, sighand_ctor);
1768 signal_cachep = kmem_cache_create("signal_cache",
1769 sizeof(struct signal_struct), 0,
1770 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1771 files_cachep = kmem_cache_create("files_cache",
1772 sizeof(struct files_struct), 0,
1773 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1774 fs_cachep = kmem_cache_create("fs_cache",
1775 sizeof(struct fs_struct), 0,
1776 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1777 /*
1778 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1779 * whole struct cpumask for the OFFSTACK case. We could change
1780 * this to *only* allocate as much of it as required by the
1781 * maximum number of CPU's we can ever have. The cpumask_allocation
1782 * is at the end of the structure, exactly for that reason.
1783 */
1784 mm_cachep = kmem_cache_create("mm_struct",
1785 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1786 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1787 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1788 mmap_init();
1789 nsproxy_cache_init();
1790 }
1791
1792 /*
1793 * Check constraints on flags passed to the unshare system call.
1794 */
1795 static int check_unshare_flags(unsigned long unshare_flags)
1796 {
1797 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1798 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1799 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1800 CLONE_NEWUSER|CLONE_NEWPID))
1801 return -EINVAL;
1802 /*
1803 * Not implemented, but pretend it works if there is nothing to
1804 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1805 * needs to unshare vm.
1806 */
1807 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1808 /* FIXME: get_task_mm() increments ->mm_users */
1809 if (atomic_read(&current->mm->mm_users) > 1)
1810 return -EINVAL;
1811 }
1812
1813 return 0;
1814 }
1815
1816 /*
1817 * Unshare the filesystem structure if it is being shared
1818 */
1819 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1820 {
1821 struct fs_struct *fs = current->fs;
1822
1823 if (!(unshare_flags & CLONE_FS) || !fs)
1824 return 0;
1825
1826 /* don't need lock here; in the worst case we'll do useless copy */
1827 if (fs->users == 1)
1828 return 0;
1829
1830 *new_fsp = copy_fs_struct(fs);
1831 if (!*new_fsp)
1832 return -ENOMEM;
1833
1834 return 0;
1835 }
1836
1837 /*
1838 * Unshare file descriptor table if it is being shared
1839 */
1840 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1841 {
1842 struct files_struct *fd = current->files;
1843 int error = 0;
1844
1845 if ((unshare_flags & CLONE_FILES) &&
1846 (fd && atomic_read(&fd->count) > 1)) {
1847 *new_fdp = dup_fd(fd, &error);
1848 if (!*new_fdp)
1849 return error;
1850 }
1851
1852 return 0;
1853 }
1854
1855 /*
1856 * unshare allows a process to 'unshare' part of the process
1857 * context which was originally shared using clone. copy_*
1858 * functions used by do_fork() cannot be used here directly
1859 * because they modify an inactive task_struct that is being
1860 * constructed. Here we are modifying the current, active,
1861 * task_struct.
1862 */
1863 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1864 {
1865 struct fs_struct *fs, *new_fs = NULL;
1866 struct files_struct *fd, *new_fd = NULL;
1867 struct cred *new_cred = NULL;
1868 struct nsproxy *new_nsproxy = NULL;
1869 int do_sysvsem = 0;
1870 int err;
1871
1872 /*
1873 * If unsharing a user namespace must also unshare the thread.
1874 */
1875 if (unshare_flags & CLONE_NEWUSER)
1876 unshare_flags |= CLONE_THREAD | CLONE_FS;
1877 /*
1878 * If unsharing a thread from a thread group, must also unshare vm.
1879 */
1880 if (unshare_flags & CLONE_THREAD)
1881 unshare_flags |= CLONE_VM;
1882 /*
1883 * If unsharing vm, must also unshare signal handlers.
1884 */
1885 if (unshare_flags & CLONE_VM)
1886 unshare_flags |= CLONE_SIGHAND;
1887 /*
1888 * If unsharing namespace, must also unshare filesystem information.
1889 */
1890 if (unshare_flags & CLONE_NEWNS)
1891 unshare_flags |= CLONE_FS;
1892
1893 err = check_unshare_flags(unshare_flags);
1894 if (err)
1895 goto bad_unshare_out;
1896 /*
1897 * CLONE_NEWIPC must also detach from the undolist: after switching
1898 * to a new ipc namespace, the semaphore arrays from the old
1899 * namespace are unreachable.
1900 */
1901 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1902 do_sysvsem = 1;
1903 err = unshare_fs(unshare_flags, &new_fs);
1904 if (err)
1905 goto bad_unshare_out;
1906 err = unshare_fd(unshare_flags, &new_fd);
1907 if (err)
1908 goto bad_unshare_cleanup_fs;
1909 err = unshare_userns(unshare_flags, &new_cred);
1910 if (err)
1911 goto bad_unshare_cleanup_fd;
1912 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1913 new_cred, new_fs);
1914 if (err)
1915 goto bad_unshare_cleanup_cred;
1916
1917 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1918 if (do_sysvsem) {
1919 /*
1920 * CLONE_SYSVSEM is equivalent to sys_exit().
1921 */
1922 exit_sem(current);
1923 }
1924 if (unshare_flags & CLONE_NEWIPC) {
1925 /* Orphan segments in old ns (see sem above). */
1926 exit_shm(current);
1927 shm_init_task(current);
1928 }
1929
1930 if (new_nsproxy)
1931 switch_task_namespaces(current, new_nsproxy);
1932
1933 task_lock(current);
1934
1935 if (new_fs) {
1936 fs = current->fs;
1937 spin_lock(&fs->lock);
1938 current->fs = new_fs;
1939 if (--fs->users)
1940 new_fs = NULL;
1941 else
1942 new_fs = fs;
1943 spin_unlock(&fs->lock);
1944 }
1945
1946 if (new_fd) {
1947 fd = current->files;
1948 current->files = new_fd;
1949 new_fd = fd;
1950 }
1951
1952 task_unlock(current);
1953
1954 if (new_cred) {
1955 /* Install the new user namespace */
1956 commit_creds(new_cred);
1957 new_cred = NULL;
1958 }
1959 }
1960
1961 bad_unshare_cleanup_cred:
1962 if (new_cred)
1963 put_cred(new_cred);
1964 bad_unshare_cleanup_fd:
1965 if (new_fd)
1966 put_files_struct(new_fd);
1967
1968 bad_unshare_cleanup_fs:
1969 if (new_fs)
1970 free_fs_struct(new_fs);
1971
1972 bad_unshare_out:
1973 return err;
1974 }
1975
1976 /*
1977 * Helper to unshare the files of the current task.
1978 * We don't want to expose copy_files internals to
1979 * the exec layer of the kernel.
1980 */
1981
1982 int unshare_files(struct files_struct **displaced)
1983 {
1984 struct task_struct *task = current;
1985 struct files_struct *copy = NULL;
1986 int error;
1987
1988 error = unshare_fd(CLONE_FILES, &copy);
1989 if (error || !copy) {
1990 *displaced = NULL;
1991 return error;
1992 }
1993 *displaced = task->files;
1994 task_lock(task);
1995 task->files = copy;
1996 task_unlock(task);
1997 return 0;
1998 }
This page took 0.069785 seconds and 5 git commands to generate.