mm: account pmd page tables to the process
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77
78 #include <asm/pgtable.h>
79 #include <asm/pgalloc.h>
80 #include <asm/uaccess.h>
81 #include <asm/mmu_context.h>
82 #include <asm/cacheflush.h>
83 #include <asm/tlbflush.h>
84
85 #include <trace/events/sched.h>
86
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/task.h>
89
90 /*
91 * Protected counters by write_lock_irq(&tasklist_lock)
92 */
93 unsigned long total_forks; /* Handle normal Linux uptimes. */
94 int nr_threads; /* The idle threads do not count.. */
95
96 int max_threads; /* tunable limit on nr_threads */
97
98 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
99
100 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
101
102 #ifdef CONFIG_PROVE_RCU
103 int lockdep_tasklist_lock_is_held(void)
104 {
105 return lockdep_is_held(&tasklist_lock);
106 }
107 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
108 #endif /* #ifdef CONFIG_PROVE_RCU */
109
110 int nr_processes(void)
111 {
112 int cpu;
113 int total = 0;
114
115 for_each_possible_cpu(cpu)
116 total += per_cpu(process_counts, cpu);
117
118 return total;
119 }
120
121 void __weak arch_release_task_struct(struct task_struct *tsk)
122 {
123 }
124
125 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
126 static struct kmem_cache *task_struct_cachep;
127
128 static inline struct task_struct *alloc_task_struct_node(int node)
129 {
130 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
131 }
132
133 static inline void free_task_struct(struct task_struct *tsk)
134 {
135 kmem_cache_free(task_struct_cachep, tsk);
136 }
137 #endif
138
139 void __weak arch_release_thread_info(struct thread_info *ti)
140 {
141 }
142
143 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
144
145 /*
146 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
147 * kmemcache based allocator.
148 */
149 # if THREAD_SIZE >= PAGE_SIZE
150 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
151 int node)
152 {
153 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
154 THREAD_SIZE_ORDER);
155
156 return page ? page_address(page) : NULL;
157 }
158
159 static inline void free_thread_info(struct thread_info *ti)
160 {
161 free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
162 }
163 # else
164 static struct kmem_cache *thread_info_cache;
165
166 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
167 int node)
168 {
169 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
170 }
171
172 static void free_thread_info(struct thread_info *ti)
173 {
174 kmem_cache_free(thread_info_cache, ti);
175 }
176
177 void thread_info_cache_init(void)
178 {
179 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
180 THREAD_SIZE, 0, NULL);
181 BUG_ON(thread_info_cache == NULL);
182 }
183 # endif
184 #endif
185
186 /* SLAB cache for signal_struct structures (tsk->signal) */
187 static struct kmem_cache *signal_cachep;
188
189 /* SLAB cache for sighand_struct structures (tsk->sighand) */
190 struct kmem_cache *sighand_cachep;
191
192 /* SLAB cache for files_struct structures (tsk->files) */
193 struct kmem_cache *files_cachep;
194
195 /* SLAB cache for fs_struct structures (tsk->fs) */
196 struct kmem_cache *fs_cachep;
197
198 /* SLAB cache for vm_area_struct structures */
199 struct kmem_cache *vm_area_cachep;
200
201 /* SLAB cache for mm_struct structures (tsk->mm) */
202 static struct kmem_cache *mm_cachep;
203
204 static void account_kernel_stack(struct thread_info *ti, int account)
205 {
206 struct zone *zone = page_zone(virt_to_page(ti));
207
208 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
209 }
210
211 void free_task(struct task_struct *tsk)
212 {
213 account_kernel_stack(tsk->stack, -1);
214 arch_release_thread_info(tsk->stack);
215 free_thread_info(tsk->stack);
216 rt_mutex_debug_task_free(tsk);
217 ftrace_graph_exit_task(tsk);
218 put_seccomp_filter(tsk);
219 arch_release_task_struct(tsk);
220 free_task_struct(tsk);
221 }
222 EXPORT_SYMBOL(free_task);
223
224 static inline void free_signal_struct(struct signal_struct *sig)
225 {
226 taskstats_tgid_free(sig);
227 sched_autogroup_exit(sig);
228 kmem_cache_free(signal_cachep, sig);
229 }
230
231 static inline void put_signal_struct(struct signal_struct *sig)
232 {
233 if (atomic_dec_and_test(&sig->sigcnt))
234 free_signal_struct(sig);
235 }
236
237 void __put_task_struct(struct task_struct *tsk)
238 {
239 WARN_ON(!tsk->exit_state);
240 WARN_ON(atomic_read(&tsk->usage));
241 WARN_ON(tsk == current);
242
243 task_numa_free(tsk);
244 security_task_free(tsk);
245 exit_creds(tsk);
246 delayacct_tsk_free(tsk);
247 put_signal_struct(tsk->signal);
248
249 if (!profile_handoff_task(tsk))
250 free_task(tsk);
251 }
252 EXPORT_SYMBOL_GPL(__put_task_struct);
253
254 void __init __weak arch_task_cache_init(void) { }
255
256 void __init fork_init(unsigned long mempages)
257 {
258 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
259 #ifndef ARCH_MIN_TASKALIGN
260 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
261 #endif
262 /* create a slab on which task_structs can be allocated */
263 task_struct_cachep =
264 kmem_cache_create("task_struct", sizeof(struct task_struct),
265 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
266 #endif
267
268 /* do the arch specific task caches init */
269 arch_task_cache_init();
270
271 /*
272 * The default maximum number of threads is set to a safe
273 * value: the thread structures can take up at most half
274 * of memory.
275 */
276 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
277
278 /*
279 * we need to allow at least 20 threads to boot a system
280 */
281 if (max_threads < 20)
282 max_threads = 20;
283
284 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
285 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
286 init_task.signal->rlim[RLIMIT_SIGPENDING] =
287 init_task.signal->rlim[RLIMIT_NPROC];
288 }
289
290 int __weak arch_dup_task_struct(struct task_struct *dst,
291 struct task_struct *src)
292 {
293 *dst = *src;
294 return 0;
295 }
296
297 void set_task_stack_end_magic(struct task_struct *tsk)
298 {
299 unsigned long *stackend;
300
301 stackend = end_of_stack(tsk);
302 *stackend = STACK_END_MAGIC; /* for overflow detection */
303 }
304
305 static struct task_struct *dup_task_struct(struct task_struct *orig)
306 {
307 struct task_struct *tsk;
308 struct thread_info *ti;
309 int node = tsk_fork_get_node(orig);
310 int err;
311
312 tsk = alloc_task_struct_node(node);
313 if (!tsk)
314 return NULL;
315
316 ti = alloc_thread_info_node(tsk, node);
317 if (!ti)
318 goto free_tsk;
319
320 err = arch_dup_task_struct(tsk, orig);
321 if (err)
322 goto free_ti;
323
324 tsk->stack = ti;
325 #ifdef CONFIG_SECCOMP
326 /*
327 * We must handle setting up seccomp filters once we're under
328 * the sighand lock in case orig has changed between now and
329 * then. Until then, filter must be NULL to avoid messing up
330 * the usage counts on the error path calling free_task.
331 */
332 tsk->seccomp.filter = NULL;
333 #endif
334
335 setup_thread_stack(tsk, orig);
336 clear_user_return_notifier(tsk);
337 clear_tsk_need_resched(tsk);
338 set_task_stack_end_magic(tsk);
339
340 #ifdef CONFIG_CC_STACKPROTECTOR
341 tsk->stack_canary = get_random_int();
342 #endif
343
344 /*
345 * One for us, one for whoever does the "release_task()" (usually
346 * parent)
347 */
348 atomic_set(&tsk->usage, 2);
349 #ifdef CONFIG_BLK_DEV_IO_TRACE
350 tsk->btrace_seq = 0;
351 #endif
352 tsk->splice_pipe = NULL;
353 tsk->task_frag.page = NULL;
354
355 account_kernel_stack(ti, 1);
356
357 return tsk;
358
359 free_ti:
360 free_thread_info(ti);
361 free_tsk:
362 free_task_struct(tsk);
363 return NULL;
364 }
365
366 #ifdef CONFIG_MMU
367 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
368 {
369 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
370 struct rb_node **rb_link, *rb_parent;
371 int retval;
372 unsigned long charge;
373
374 uprobe_start_dup_mmap();
375 down_write(&oldmm->mmap_sem);
376 flush_cache_dup_mm(oldmm);
377 uprobe_dup_mmap(oldmm, mm);
378 /*
379 * Not linked in yet - no deadlock potential:
380 */
381 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
382
383 mm->total_vm = oldmm->total_vm;
384 mm->shared_vm = oldmm->shared_vm;
385 mm->exec_vm = oldmm->exec_vm;
386 mm->stack_vm = oldmm->stack_vm;
387
388 rb_link = &mm->mm_rb.rb_node;
389 rb_parent = NULL;
390 pprev = &mm->mmap;
391 retval = ksm_fork(mm, oldmm);
392 if (retval)
393 goto out;
394 retval = khugepaged_fork(mm, oldmm);
395 if (retval)
396 goto out;
397
398 prev = NULL;
399 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
400 struct file *file;
401
402 if (mpnt->vm_flags & VM_DONTCOPY) {
403 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
404 -vma_pages(mpnt));
405 continue;
406 }
407 charge = 0;
408 if (mpnt->vm_flags & VM_ACCOUNT) {
409 unsigned long len = vma_pages(mpnt);
410
411 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
412 goto fail_nomem;
413 charge = len;
414 }
415 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
416 if (!tmp)
417 goto fail_nomem;
418 *tmp = *mpnt;
419 INIT_LIST_HEAD(&tmp->anon_vma_chain);
420 retval = vma_dup_policy(mpnt, tmp);
421 if (retval)
422 goto fail_nomem_policy;
423 tmp->vm_mm = mm;
424 if (anon_vma_fork(tmp, mpnt))
425 goto fail_nomem_anon_vma_fork;
426 tmp->vm_flags &= ~VM_LOCKED;
427 tmp->vm_next = tmp->vm_prev = NULL;
428 file = tmp->vm_file;
429 if (file) {
430 struct inode *inode = file_inode(file);
431 struct address_space *mapping = file->f_mapping;
432
433 get_file(file);
434 if (tmp->vm_flags & VM_DENYWRITE)
435 atomic_dec(&inode->i_writecount);
436 i_mmap_lock_write(mapping);
437 if (tmp->vm_flags & VM_SHARED)
438 atomic_inc(&mapping->i_mmap_writable);
439 flush_dcache_mmap_lock(mapping);
440 /* insert tmp into the share list, just after mpnt */
441 vma_interval_tree_insert_after(tmp, mpnt,
442 &mapping->i_mmap);
443 flush_dcache_mmap_unlock(mapping);
444 i_mmap_unlock_write(mapping);
445 }
446
447 /*
448 * Clear hugetlb-related page reserves for children. This only
449 * affects MAP_PRIVATE mappings. Faults generated by the child
450 * are not guaranteed to succeed, even if read-only
451 */
452 if (is_vm_hugetlb_page(tmp))
453 reset_vma_resv_huge_pages(tmp);
454
455 /*
456 * Link in the new vma and copy the page table entries.
457 */
458 *pprev = tmp;
459 pprev = &tmp->vm_next;
460 tmp->vm_prev = prev;
461 prev = tmp;
462
463 __vma_link_rb(mm, tmp, rb_link, rb_parent);
464 rb_link = &tmp->vm_rb.rb_right;
465 rb_parent = &tmp->vm_rb;
466
467 mm->map_count++;
468 retval = copy_page_range(mm, oldmm, mpnt);
469
470 if (tmp->vm_ops && tmp->vm_ops->open)
471 tmp->vm_ops->open(tmp);
472
473 if (retval)
474 goto out;
475 }
476 /* a new mm has just been created */
477 arch_dup_mmap(oldmm, mm);
478 retval = 0;
479 out:
480 up_write(&mm->mmap_sem);
481 flush_tlb_mm(oldmm);
482 up_write(&oldmm->mmap_sem);
483 uprobe_end_dup_mmap();
484 return retval;
485 fail_nomem_anon_vma_fork:
486 mpol_put(vma_policy(tmp));
487 fail_nomem_policy:
488 kmem_cache_free(vm_area_cachep, tmp);
489 fail_nomem:
490 retval = -ENOMEM;
491 vm_unacct_memory(charge);
492 goto out;
493 }
494
495 static inline int mm_alloc_pgd(struct mm_struct *mm)
496 {
497 mm->pgd = pgd_alloc(mm);
498 if (unlikely(!mm->pgd))
499 return -ENOMEM;
500 return 0;
501 }
502
503 static inline void mm_free_pgd(struct mm_struct *mm)
504 {
505 pgd_free(mm, mm->pgd);
506 }
507 #else
508 #define dup_mmap(mm, oldmm) (0)
509 #define mm_alloc_pgd(mm) (0)
510 #define mm_free_pgd(mm)
511 #endif /* CONFIG_MMU */
512
513 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
514
515 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
516 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
517
518 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
519
520 static int __init coredump_filter_setup(char *s)
521 {
522 default_dump_filter =
523 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
524 MMF_DUMP_FILTER_MASK;
525 return 1;
526 }
527
528 __setup("coredump_filter=", coredump_filter_setup);
529
530 #include <linux/init_task.h>
531
532 static void mm_init_aio(struct mm_struct *mm)
533 {
534 #ifdef CONFIG_AIO
535 spin_lock_init(&mm->ioctx_lock);
536 mm->ioctx_table = NULL;
537 #endif
538 }
539
540 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
541 {
542 #ifdef CONFIG_MEMCG
543 mm->owner = p;
544 #endif
545 }
546
547 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
548 {
549 mm->mmap = NULL;
550 mm->mm_rb = RB_ROOT;
551 mm->vmacache_seqnum = 0;
552 atomic_set(&mm->mm_users, 1);
553 atomic_set(&mm->mm_count, 1);
554 init_rwsem(&mm->mmap_sem);
555 INIT_LIST_HEAD(&mm->mmlist);
556 mm->core_state = NULL;
557 atomic_long_set(&mm->nr_ptes, 0);
558 #ifndef __PAGETABLE_PMD_FOLDED
559 atomic_long_set(&mm->nr_pmds, 0);
560 #endif
561 mm->map_count = 0;
562 mm->locked_vm = 0;
563 mm->pinned_vm = 0;
564 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
565 spin_lock_init(&mm->page_table_lock);
566 mm_init_cpumask(mm);
567 mm_init_aio(mm);
568 mm_init_owner(mm, p);
569 mmu_notifier_mm_init(mm);
570 clear_tlb_flush_pending(mm);
571 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
572 mm->pmd_huge_pte = NULL;
573 #endif
574
575 if (current->mm) {
576 mm->flags = current->mm->flags & MMF_INIT_MASK;
577 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
578 } else {
579 mm->flags = default_dump_filter;
580 mm->def_flags = 0;
581 }
582
583 if (mm_alloc_pgd(mm))
584 goto fail_nopgd;
585
586 if (init_new_context(p, mm))
587 goto fail_nocontext;
588
589 return mm;
590
591 fail_nocontext:
592 mm_free_pgd(mm);
593 fail_nopgd:
594 free_mm(mm);
595 return NULL;
596 }
597
598 static void check_mm(struct mm_struct *mm)
599 {
600 int i;
601
602 for (i = 0; i < NR_MM_COUNTERS; i++) {
603 long x = atomic_long_read(&mm->rss_stat.count[i]);
604
605 if (unlikely(x))
606 printk(KERN_ALERT "BUG: Bad rss-counter state "
607 "mm:%p idx:%d val:%ld\n", mm, i, x);
608 }
609 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
610 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
611 #endif
612 }
613
614 /*
615 * Allocate and initialize an mm_struct.
616 */
617 struct mm_struct *mm_alloc(void)
618 {
619 struct mm_struct *mm;
620
621 mm = allocate_mm();
622 if (!mm)
623 return NULL;
624
625 memset(mm, 0, sizeof(*mm));
626 return mm_init(mm, current);
627 }
628
629 /*
630 * Called when the last reference to the mm
631 * is dropped: either by a lazy thread or by
632 * mmput. Free the page directory and the mm.
633 */
634 void __mmdrop(struct mm_struct *mm)
635 {
636 BUG_ON(mm == &init_mm);
637 mm_free_pgd(mm);
638 destroy_context(mm);
639 mmu_notifier_mm_destroy(mm);
640 check_mm(mm);
641 free_mm(mm);
642 }
643 EXPORT_SYMBOL_GPL(__mmdrop);
644
645 /*
646 * Decrement the use count and release all resources for an mm.
647 */
648 void mmput(struct mm_struct *mm)
649 {
650 might_sleep();
651
652 if (atomic_dec_and_test(&mm->mm_users)) {
653 uprobe_clear_state(mm);
654 exit_aio(mm);
655 ksm_exit(mm);
656 khugepaged_exit(mm); /* must run before exit_mmap */
657 exit_mmap(mm);
658 set_mm_exe_file(mm, NULL);
659 if (!list_empty(&mm->mmlist)) {
660 spin_lock(&mmlist_lock);
661 list_del(&mm->mmlist);
662 spin_unlock(&mmlist_lock);
663 }
664 if (mm->binfmt)
665 module_put(mm->binfmt->module);
666 mmdrop(mm);
667 }
668 }
669 EXPORT_SYMBOL_GPL(mmput);
670
671 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
672 {
673 if (new_exe_file)
674 get_file(new_exe_file);
675 if (mm->exe_file)
676 fput(mm->exe_file);
677 mm->exe_file = new_exe_file;
678 }
679
680 struct file *get_mm_exe_file(struct mm_struct *mm)
681 {
682 struct file *exe_file;
683
684 /* We need mmap_sem to protect against races with removal of exe_file */
685 down_read(&mm->mmap_sem);
686 exe_file = mm->exe_file;
687 if (exe_file)
688 get_file(exe_file);
689 up_read(&mm->mmap_sem);
690 return exe_file;
691 }
692
693 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
694 {
695 /* It's safe to write the exe_file pointer without exe_file_lock because
696 * this is called during fork when the task is not yet in /proc */
697 newmm->exe_file = get_mm_exe_file(oldmm);
698 }
699
700 /**
701 * get_task_mm - acquire a reference to the task's mm
702 *
703 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
704 * this kernel workthread has transiently adopted a user mm with use_mm,
705 * to do its AIO) is not set and if so returns a reference to it, after
706 * bumping up the use count. User must release the mm via mmput()
707 * after use. Typically used by /proc and ptrace.
708 */
709 struct mm_struct *get_task_mm(struct task_struct *task)
710 {
711 struct mm_struct *mm;
712
713 task_lock(task);
714 mm = task->mm;
715 if (mm) {
716 if (task->flags & PF_KTHREAD)
717 mm = NULL;
718 else
719 atomic_inc(&mm->mm_users);
720 }
721 task_unlock(task);
722 return mm;
723 }
724 EXPORT_SYMBOL_GPL(get_task_mm);
725
726 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
727 {
728 struct mm_struct *mm;
729 int err;
730
731 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
732 if (err)
733 return ERR_PTR(err);
734
735 mm = get_task_mm(task);
736 if (mm && mm != current->mm &&
737 !ptrace_may_access(task, mode)) {
738 mmput(mm);
739 mm = ERR_PTR(-EACCES);
740 }
741 mutex_unlock(&task->signal->cred_guard_mutex);
742
743 return mm;
744 }
745
746 static void complete_vfork_done(struct task_struct *tsk)
747 {
748 struct completion *vfork;
749
750 task_lock(tsk);
751 vfork = tsk->vfork_done;
752 if (likely(vfork)) {
753 tsk->vfork_done = NULL;
754 complete(vfork);
755 }
756 task_unlock(tsk);
757 }
758
759 static int wait_for_vfork_done(struct task_struct *child,
760 struct completion *vfork)
761 {
762 int killed;
763
764 freezer_do_not_count();
765 killed = wait_for_completion_killable(vfork);
766 freezer_count();
767
768 if (killed) {
769 task_lock(child);
770 child->vfork_done = NULL;
771 task_unlock(child);
772 }
773
774 put_task_struct(child);
775 return killed;
776 }
777
778 /* Please note the differences between mmput and mm_release.
779 * mmput is called whenever we stop holding onto a mm_struct,
780 * error success whatever.
781 *
782 * mm_release is called after a mm_struct has been removed
783 * from the current process.
784 *
785 * This difference is important for error handling, when we
786 * only half set up a mm_struct for a new process and need to restore
787 * the old one. Because we mmput the new mm_struct before
788 * restoring the old one. . .
789 * Eric Biederman 10 January 1998
790 */
791 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
792 {
793 /* Get rid of any futexes when releasing the mm */
794 #ifdef CONFIG_FUTEX
795 if (unlikely(tsk->robust_list)) {
796 exit_robust_list(tsk);
797 tsk->robust_list = NULL;
798 }
799 #ifdef CONFIG_COMPAT
800 if (unlikely(tsk->compat_robust_list)) {
801 compat_exit_robust_list(tsk);
802 tsk->compat_robust_list = NULL;
803 }
804 #endif
805 if (unlikely(!list_empty(&tsk->pi_state_list)))
806 exit_pi_state_list(tsk);
807 #endif
808
809 uprobe_free_utask(tsk);
810
811 /* Get rid of any cached register state */
812 deactivate_mm(tsk, mm);
813
814 /*
815 * If we're exiting normally, clear a user-space tid field if
816 * requested. We leave this alone when dying by signal, to leave
817 * the value intact in a core dump, and to save the unnecessary
818 * trouble, say, a killed vfork parent shouldn't touch this mm.
819 * Userland only wants this done for a sys_exit.
820 */
821 if (tsk->clear_child_tid) {
822 if (!(tsk->flags & PF_SIGNALED) &&
823 atomic_read(&mm->mm_users) > 1) {
824 /*
825 * We don't check the error code - if userspace has
826 * not set up a proper pointer then tough luck.
827 */
828 put_user(0, tsk->clear_child_tid);
829 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
830 1, NULL, NULL, 0);
831 }
832 tsk->clear_child_tid = NULL;
833 }
834
835 /*
836 * All done, finally we can wake up parent and return this mm to him.
837 * Also kthread_stop() uses this completion for synchronization.
838 */
839 if (tsk->vfork_done)
840 complete_vfork_done(tsk);
841 }
842
843 /*
844 * Allocate a new mm structure and copy contents from the
845 * mm structure of the passed in task structure.
846 */
847 static struct mm_struct *dup_mm(struct task_struct *tsk)
848 {
849 struct mm_struct *mm, *oldmm = current->mm;
850 int err;
851
852 mm = allocate_mm();
853 if (!mm)
854 goto fail_nomem;
855
856 memcpy(mm, oldmm, sizeof(*mm));
857
858 if (!mm_init(mm, tsk))
859 goto fail_nomem;
860
861 dup_mm_exe_file(oldmm, mm);
862
863 err = dup_mmap(mm, oldmm);
864 if (err)
865 goto free_pt;
866
867 mm->hiwater_rss = get_mm_rss(mm);
868 mm->hiwater_vm = mm->total_vm;
869
870 if (mm->binfmt && !try_module_get(mm->binfmt->module))
871 goto free_pt;
872
873 return mm;
874
875 free_pt:
876 /* don't put binfmt in mmput, we haven't got module yet */
877 mm->binfmt = NULL;
878 mmput(mm);
879
880 fail_nomem:
881 return NULL;
882 }
883
884 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
885 {
886 struct mm_struct *mm, *oldmm;
887 int retval;
888
889 tsk->min_flt = tsk->maj_flt = 0;
890 tsk->nvcsw = tsk->nivcsw = 0;
891 #ifdef CONFIG_DETECT_HUNG_TASK
892 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
893 #endif
894
895 tsk->mm = NULL;
896 tsk->active_mm = NULL;
897
898 /*
899 * Are we cloning a kernel thread?
900 *
901 * We need to steal a active VM for that..
902 */
903 oldmm = current->mm;
904 if (!oldmm)
905 return 0;
906
907 /* initialize the new vmacache entries */
908 vmacache_flush(tsk);
909
910 if (clone_flags & CLONE_VM) {
911 atomic_inc(&oldmm->mm_users);
912 mm = oldmm;
913 goto good_mm;
914 }
915
916 retval = -ENOMEM;
917 mm = dup_mm(tsk);
918 if (!mm)
919 goto fail_nomem;
920
921 good_mm:
922 tsk->mm = mm;
923 tsk->active_mm = mm;
924 return 0;
925
926 fail_nomem:
927 return retval;
928 }
929
930 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
931 {
932 struct fs_struct *fs = current->fs;
933 if (clone_flags & CLONE_FS) {
934 /* tsk->fs is already what we want */
935 spin_lock(&fs->lock);
936 if (fs->in_exec) {
937 spin_unlock(&fs->lock);
938 return -EAGAIN;
939 }
940 fs->users++;
941 spin_unlock(&fs->lock);
942 return 0;
943 }
944 tsk->fs = copy_fs_struct(fs);
945 if (!tsk->fs)
946 return -ENOMEM;
947 return 0;
948 }
949
950 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
951 {
952 struct files_struct *oldf, *newf;
953 int error = 0;
954
955 /*
956 * A background process may not have any files ...
957 */
958 oldf = current->files;
959 if (!oldf)
960 goto out;
961
962 if (clone_flags & CLONE_FILES) {
963 atomic_inc(&oldf->count);
964 goto out;
965 }
966
967 newf = dup_fd(oldf, &error);
968 if (!newf)
969 goto out;
970
971 tsk->files = newf;
972 error = 0;
973 out:
974 return error;
975 }
976
977 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
978 {
979 #ifdef CONFIG_BLOCK
980 struct io_context *ioc = current->io_context;
981 struct io_context *new_ioc;
982
983 if (!ioc)
984 return 0;
985 /*
986 * Share io context with parent, if CLONE_IO is set
987 */
988 if (clone_flags & CLONE_IO) {
989 ioc_task_link(ioc);
990 tsk->io_context = ioc;
991 } else if (ioprio_valid(ioc->ioprio)) {
992 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
993 if (unlikely(!new_ioc))
994 return -ENOMEM;
995
996 new_ioc->ioprio = ioc->ioprio;
997 put_io_context(new_ioc);
998 }
999 #endif
1000 return 0;
1001 }
1002
1003 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1004 {
1005 struct sighand_struct *sig;
1006
1007 if (clone_flags & CLONE_SIGHAND) {
1008 atomic_inc(&current->sighand->count);
1009 return 0;
1010 }
1011 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1012 rcu_assign_pointer(tsk->sighand, sig);
1013 if (!sig)
1014 return -ENOMEM;
1015 atomic_set(&sig->count, 1);
1016 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1017 return 0;
1018 }
1019
1020 void __cleanup_sighand(struct sighand_struct *sighand)
1021 {
1022 if (atomic_dec_and_test(&sighand->count)) {
1023 signalfd_cleanup(sighand);
1024 /*
1025 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1026 * without an RCU grace period, see __lock_task_sighand().
1027 */
1028 kmem_cache_free(sighand_cachep, sighand);
1029 }
1030 }
1031
1032 /*
1033 * Initialize POSIX timer handling for a thread group.
1034 */
1035 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1036 {
1037 unsigned long cpu_limit;
1038
1039 /* Thread group counters. */
1040 thread_group_cputime_init(sig);
1041
1042 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1043 if (cpu_limit != RLIM_INFINITY) {
1044 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1045 sig->cputimer.running = 1;
1046 }
1047
1048 /* The timer lists. */
1049 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1050 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1051 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1052 }
1053
1054 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1055 {
1056 struct signal_struct *sig;
1057
1058 if (clone_flags & CLONE_THREAD)
1059 return 0;
1060
1061 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1062 tsk->signal = sig;
1063 if (!sig)
1064 return -ENOMEM;
1065
1066 sig->nr_threads = 1;
1067 atomic_set(&sig->live, 1);
1068 atomic_set(&sig->sigcnt, 1);
1069
1070 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1071 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1072 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1073
1074 init_waitqueue_head(&sig->wait_chldexit);
1075 sig->curr_target = tsk;
1076 init_sigpending(&sig->shared_pending);
1077 INIT_LIST_HEAD(&sig->posix_timers);
1078 seqlock_init(&sig->stats_lock);
1079
1080 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1081 sig->real_timer.function = it_real_fn;
1082
1083 task_lock(current->group_leader);
1084 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1085 task_unlock(current->group_leader);
1086
1087 posix_cpu_timers_init_group(sig);
1088
1089 tty_audit_fork(sig);
1090 sched_autogroup_fork(sig);
1091
1092 #ifdef CONFIG_CGROUPS
1093 init_rwsem(&sig->group_rwsem);
1094 #endif
1095
1096 sig->oom_score_adj = current->signal->oom_score_adj;
1097 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1098
1099 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1100 current->signal->is_child_subreaper;
1101
1102 mutex_init(&sig->cred_guard_mutex);
1103
1104 return 0;
1105 }
1106
1107 static void copy_seccomp(struct task_struct *p)
1108 {
1109 #ifdef CONFIG_SECCOMP
1110 /*
1111 * Must be called with sighand->lock held, which is common to
1112 * all threads in the group. Holding cred_guard_mutex is not
1113 * needed because this new task is not yet running and cannot
1114 * be racing exec.
1115 */
1116 assert_spin_locked(&current->sighand->siglock);
1117
1118 /* Ref-count the new filter user, and assign it. */
1119 get_seccomp_filter(current);
1120 p->seccomp = current->seccomp;
1121
1122 /*
1123 * Explicitly enable no_new_privs here in case it got set
1124 * between the task_struct being duplicated and holding the
1125 * sighand lock. The seccomp state and nnp must be in sync.
1126 */
1127 if (task_no_new_privs(current))
1128 task_set_no_new_privs(p);
1129
1130 /*
1131 * If the parent gained a seccomp mode after copying thread
1132 * flags and between before we held the sighand lock, we have
1133 * to manually enable the seccomp thread flag here.
1134 */
1135 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1136 set_tsk_thread_flag(p, TIF_SECCOMP);
1137 #endif
1138 }
1139
1140 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1141 {
1142 current->clear_child_tid = tidptr;
1143
1144 return task_pid_vnr(current);
1145 }
1146
1147 static void rt_mutex_init_task(struct task_struct *p)
1148 {
1149 raw_spin_lock_init(&p->pi_lock);
1150 #ifdef CONFIG_RT_MUTEXES
1151 p->pi_waiters = RB_ROOT;
1152 p->pi_waiters_leftmost = NULL;
1153 p->pi_blocked_on = NULL;
1154 #endif
1155 }
1156
1157 /*
1158 * Initialize POSIX timer handling for a single task.
1159 */
1160 static void posix_cpu_timers_init(struct task_struct *tsk)
1161 {
1162 tsk->cputime_expires.prof_exp = 0;
1163 tsk->cputime_expires.virt_exp = 0;
1164 tsk->cputime_expires.sched_exp = 0;
1165 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1166 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1167 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1168 }
1169
1170 static inline void
1171 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1172 {
1173 task->pids[type].pid = pid;
1174 }
1175
1176 /*
1177 * This creates a new process as a copy of the old one,
1178 * but does not actually start it yet.
1179 *
1180 * It copies the registers, and all the appropriate
1181 * parts of the process environment (as per the clone
1182 * flags). The actual kick-off is left to the caller.
1183 */
1184 static struct task_struct *copy_process(unsigned long clone_flags,
1185 unsigned long stack_start,
1186 unsigned long stack_size,
1187 int __user *child_tidptr,
1188 struct pid *pid,
1189 int trace)
1190 {
1191 int retval;
1192 struct task_struct *p;
1193
1194 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1195 return ERR_PTR(-EINVAL);
1196
1197 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1198 return ERR_PTR(-EINVAL);
1199
1200 /*
1201 * Thread groups must share signals as well, and detached threads
1202 * can only be started up within the thread group.
1203 */
1204 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1205 return ERR_PTR(-EINVAL);
1206
1207 /*
1208 * Shared signal handlers imply shared VM. By way of the above,
1209 * thread groups also imply shared VM. Blocking this case allows
1210 * for various simplifications in other code.
1211 */
1212 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1213 return ERR_PTR(-EINVAL);
1214
1215 /*
1216 * Siblings of global init remain as zombies on exit since they are
1217 * not reaped by their parent (swapper). To solve this and to avoid
1218 * multi-rooted process trees, prevent global and container-inits
1219 * from creating siblings.
1220 */
1221 if ((clone_flags & CLONE_PARENT) &&
1222 current->signal->flags & SIGNAL_UNKILLABLE)
1223 return ERR_PTR(-EINVAL);
1224
1225 /*
1226 * If the new process will be in a different pid or user namespace
1227 * do not allow it to share a thread group or signal handlers or
1228 * parent with the forking task.
1229 */
1230 if (clone_flags & CLONE_SIGHAND) {
1231 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1232 (task_active_pid_ns(current) !=
1233 current->nsproxy->pid_ns_for_children))
1234 return ERR_PTR(-EINVAL);
1235 }
1236
1237 retval = security_task_create(clone_flags);
1238 if (retval)
1239 goto fork_out;
1240
1241 retval = -ENOMEM;
1242 p = dup_task_struct(current);
1243 if (!p)
1244 goto fork_out;
1245
1246 ftrace_graph_init_task(p);
1247
1248 rt_mutex_init_task(p);
1249
1250 #ifdef CONFIG_PROVE_LOCKING
1251 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1252 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1253 #endif
1254 retval = -EAGAIN;
1255 if (atomic_read(&p->real_cred->user->processes) >=
1256 task_rlimit(p, RLIMIT_NPROC)) {
1257 if (p->real_cred->user != INIT_USER &&
1258 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1259 goto bad_fork_free;
1260 }
1261 current->flags &= ~PF_NPROC_EXCEEDED;
1262
1263 retval = copy_creds(p, clone_flags);
1264 if (retval < 0)
1265 goto bad_fork_free;
1266
1267 /*
1268 * If multiple threads are within copy_process(), then this check
1269 * triggers too late. This doesn't hurt, the check is only there
1270 * to stop root fork bombs.
1271 */
1272 retval = -EAGAIN;
1273 if (nr_threads >= max_threads)
1274 goto bad_fork_cleanup_count;
1275
1276 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1277 goto bad_fork_cleanup_count;
1278
1279 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1280 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1281 p->flags |= PF_FORKNOEXEC;
1282 INIT_LIST_HEAD(&p->children);
1283 INIT_LIST_HEAD(&p->sibling);
1284 rcu_copy_process(p);
1285 p->vfork_done = NULL;
1286 spin_lock_init(&p->alloc_lock);
1287
1288 init_sigpending(&p->pending);
1289
1290 p->utime = p->stime = p->gtime = 0;
1291 p->utimescaled = p->stimescaled = 0;
1292 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1293 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1294 #endif
1295 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1296 seqlock_init(&p->vtime_seqlock);
1297 p->vtime_snap = 0;
1298 p->vtime_snap_whence = VTIME_SLEEPING;
1299 #endif
1300
1301 #if defined(SPLIT_RSS_COUNTING)
1302 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1303 #endif
1304
1305 p->default_timer_slack_ns = current->timer_slack_ns;
1306
1307 task_io_accounting_init(&p->ioac);
1308 acct_clear_integrals(p);
1309
1310 posix_cpu_timers_init(p);
1311
1312 p->start_time = ktime_get_ns();
1313 p->real_start_time = ktime_get_boot_ns();
1314 p->io_context = NULL;
1315 p->audit_context = NULL;
1316 if (clone_flags & CLONE_THREAD)
1317 threadgroup_change_begin(current);
1318 cgroup_fork(p);
1319 #ifdef CONFIG_NUMA
1320 p->mempolicy = mpol_dup(p->mempolicy);
1321 if (IS_ERR(p->mempolicy)) {
1322 retval = PTR_ERR(p->mempolicy);
1323 p->mempolicy = NULL;
1324 goto bad_fork_cleanup_threadgroup_lock;
1325 }
1326 #endif
1327 #ifdef CONFIG_CPUSETS
1328 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1329 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1330 seqcount_init(&p->mems_allowed_seq);
1331 #endif
1332 #ifdef CONFIG_TRACE_IRQFLAGS
1333 p->irq_events = 0;
1334 p->hardirqs_enabled = 0;
1335 p->hardirq_enable_ip = 0;
1336 p->hardirq_enable_event = 0;
1337 p->hardirq_disable_ip = _THIS_IP_;
1338 p->hardirq_disable_event = 0;
1339 p->softirqs_enabled = 1;
1340 p->softirq_enable_ip = _THIS_IP_;
1341 p->softirq_enable_event = 0;
1342 p->softirq_disable_ip = 0;
1343 p->softirq_disable_event = 0;
1344 p->hardirq_context = 0;
1345 p->softirq_context = 0;
1346 #endif
1347 #ifdef CONFIG_LOCKDEP
1348 p->lockdep_depth = 0; /* no locks held yet */
1349 p->curr_chain_key = 0;
1350 p->lockdep_recursion = 0;
1351 #endif
1352
1353 #ifdef CONFIG_DEBUG_MUTEXES
1354 p->blocked_on = NULL; /* not blocked yet */
1355 #endif
1356 #ifdef CONFIG_BCACHE
1357 p->sequential_io = 0;
1358 p->sequential_io_avg = 0;
1359 #endif
1360
1361 /* Perform scheduler related setup. Assign this task to a CPU. */
1362 retval = sched_fork(clone_flags, p);
1363 if (retval)
1364 goto bad_fork_cleanup_policy;
1365
1366 retval = perf_event_init_task(p);
1367 if (retval)
1368 goto bad_fork_cleanup_policy;
1369 retval = audit_alloc(p);
1370 if (retval)
1371 goto bad_fork_cleanup_perf;
1372 /* copy all the process information */
1373 shm_init_task(p);
1374 retval = copy_semundo(clone_flags, p);
1375 if (retval)
1376 goto bad_fork_cleanup_audit;
1377 retval = copy_files(clone_flags, p);
1378 if (retval)
1379 goto bad_fork_cleanup_semundo;
1380 retval = copy_fs(clone_flags, p);
1381 if (retval)
1382 goto bad_fork_cleanup_files;
1383 retval = copy_sighand(clone_flags, p);
1384 if (retval)
1385 goto bad_fork_cleanup_fs;
1386 retval = copy_signal(clone_flags, p);
1387 if (retval)
1388 goto bad_fork_cleanup_sighand;
1389 retval = copy_mm(clone_flags, p);
1390 if (retval)
1391 goto bad_fork_cleanup_signal;
1392 retval = copy_namespaces(clone_flags, p);
1393 if (retval)
1394 goto bad_fork_cleanup_mm;
1395 retval = copy_io(clone_flags, p);
1396 if (retval)
1397 goto bad_fork_cleanup_namespaces;
1398 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1399 if (retval)
1400 goto bad_fork_cleanup_io;
1401
1402 if (pid != &init_struct_pid) {
1403 retval = -ENOMEM;
1404 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1405 if (!pid)
1406 goto bad_fork_cleanup_io;
1407 }
1408
1409 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1410 /*
1411 * Clear TID on mm_release()?
1412 */
1413 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1414 #ifdef CONFIG_BLOCK
1415 p->plug = NULL;
1416 #endif
1417 #ifdef CONFIG_FUTEX
1418 p->robust_list = NULL;
1419 #ifdef CONFIG_COMPAT
1420 p->compat_robust_list = NULL;
1421 #endif
1422 INIT_LIST_HEAD(&p->pi_state_list);
1423 p->pi_state_cache = NULL;
1424 #endif
1425 /*
1426 * sigaltstack should be cleared when sharing the same VM
1427 */
1428 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1429 p->sas_ss_sp = p->sas_ss_size = 0;
1430
1431 /*
1432 * Syscall tracing and stepping should be turned off in the
1433 * child regardless of CLONE_PTRACE.
1434 */
1435 user_disable_single_step(p);
1436 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1437 #ifdef TIF_SYSCALL_EMU
1438 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1439 #endif
1440 clear_all_latency_tracing(p);
1441
1442 /* ok, now we should be set up.. */
1443 p->pid = pid_nr(pid);
1444 if (clone_flags & CLONE_THREAD) {
1445 p->exit_signal = -1;
1446 p->group_leader = current->group_leader;
1447 p->tgid = current->tgid;
1448 } else {
1449 if (clone_flags & CLONE_PARENT)
1450 p->exit_signal = current->group_leader->exit_signal;
1451 else
1452 p->exit_signal = (clone_flags & CSIGNAL);
1453 p->group_leader = p;
1454 p->tgid = p->pid;
1455 }
1456
1457 p->nr_dirtied = 0;
1458 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1459 p->dirty_paused_when = 0;
1460
1461 p->pdeath_signal = 0;
1462 INIT_LIST_HEAD(&p->thread_group);
1463 p->task_works = NULL;
1464
1465 /*
1466 * Make it visible to the rest of the system, but dont wake it up yet.
1467 * Need tasklist lock for parent etc handling!
1468 */
1469 write_lock_irq(&tasklist_lock);
1470
1471 /* CLONE_PARENT re-uses the old parent */
1472 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1473 p->real_parent = current->real_parent;
1474 p->parent_exec_id = current->parent_exec_id;
1475 } else {
1476 p->real_parent = current;
1477 p->parent_exec_id = current->self_exec_id;
1478 }
1479
1480 spin_lock(&current->sighand->siglock);
1481
1482 /*
1483 * Copy seccomp details explicitly here, in case they were changed
1484 * before holding sighand lock.
1485 */
1486 copy_seccomp(p);
1487
1488 /*
1489 * Process group and session signals need to be delivered to just the
1490 * parent before the fork or both the parent and the child after the
1491 * fork. Restart if a signal comes in before we add the new process to
1492 * it's process group.
1493 * A fatal signal pending means that current will exit, so the new
1494 * thread can't slip out of an OOM kill (or normal SIGKILL).
1495 */
1496 recalc_sigpending();
1497 if (signal_pending(current)) {
1498 spin_unlock(&current->sighand->siglock);
1499 write_unlock_irq(&tasklist_lock);
1500 retval = -ERESTARTNOINTR;
1501 goto bad_fork_free_pid;
1502 }
1503
1504 if (likely(p->pid)) {
1505 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1506
1507 init_task_pid(p, PIDTYPE_PID, pid);
1508 if (thread_group_leader(p)) {
1509 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1510 init_task_pid(p, PIDTYPE_SID, task_session(current));
1511
1512 if (is_child_reaper(pid)) {
1513 ns_of_pid(pid)->child_reaper = p;
1514 p->signal->flags |= SIGNAL_UNKILLABLE;
1515 }
1516
1517 p->signal->leader_pid = pid;
1518 p->signal->tty = tty_kref_get(current->signal->tty);
1519 list_add_tail(&p->sibling, &p->real_parent->children);
1520 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1521 attach_pid(p, PIDTYPE_PGID);
1522 attach_pid(p, PIDTYPE_SID);
1523 __this_cpu_inc(process_counts);
1524 } else {
1525 current->signal->nr_threads++;
1526 atomic_inc(&current->signal->live);
1527 atomic_inc(&current->signal->sigcnt);
1528 list_add_tail_rcu(&p->thread_group,
1529 &p->group_leader->thread_group);
1530 list_add_tail_rcu(&p->thread_node,
1531 &p->signal->thread_head);
1532 }
1533 attach_pid(p, PIDTYPE_PID);
1534 nr_threads++;
1535 }
1536
1537 total_forks++;
1538 spin_unlock(&current->sighand->siglock);
1539 syscall_tracepoint_update(p);
1540 write_unlock_irq(&tasklist_lock);
1541
1542 proc_fork_connector(p);
1543 cgroup_post_fork(p);
1544 if (clone_flags & CLONE_THREAD)
1545 threadgroup_change_end(current);
1546 perf_event_fork(p);
1547
1548 trace_task_newtask(p, clone_flags);
1549 uprobe_copy_process(p, clone_flags);
1550
1551 return p;
1552
1553 bad_fork_free_pid:
1554 if (pid != &init_struct_pid)
1555 free_pid(pid);
1556 bad_fork_cleanup_io:
1557 if (p->io_context)
1558 exit_io_context(p);
1559 bad_fork_cleanup_namespaces:
1560 exit_task_namespaces(p);
1561 bad_fork_cleanup_mm:
1562 if (p->mm)
1563 mmput(p->mm);
1564 bad_fork_cleanup_signal:
1565 if (!(clone_flags & CLONE_THREAD))
1566 free_signal_struct(p->signal);
1567 bad_fork_cleanup_sighand:
1568 __cleanup_sighand(p->sighand);
1569 bad_fork_cleanup_fs:
1570 exit_fs(p); /* blocking */
1571 bad_fork_cleanup_files:
1572 exit_files(p); /* blocking */
1573 bad_fork_cleanup_semundo:
1574 exit_sem(p);
1575 bad_fork_cleanup_audit:
1576 audit_free(p);
1577 bad_fork_cleanup_perf:
1578 perf_event_free_task(p);
1579 bad_fork_cleanup_policy:
1580 #ifdef CONFIG_NUMA
1581 mpol_put(p->mempolicy);
1582 bad_fork_cleanup_threadgroup_lock:
1583 #endif
1584 if (clone_flags & CLONE_THREAD)
1585 threadgroup_change_end(current);
1586 delayacct_tsk_free(p);
1587 module_put(task_thread_info(p)->exec_domain->module);
1588 bad_fork_cleanup_count:
1589 atomic_dec(&p->cred->user->processes);
1590 exit_creds(p);
1591 bad_fork_free:
1592 free_task(p);
1593 fork_out:
1594 return ERR_PTR(retval);
1595 }
1596
1597 static inline void init_idle_pids(struct pid_link *links)
1598 {
1599 enum pid_type type;
1600
1601 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1602 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1603 links[type].pid = &init_struct_pid;
1604 }
1605 }
1606
1607 struct task_struct *fork_idle(int cpu)
1608 {
1609 struct task_struct *task;
1610 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1611 if (!IS_ERR(task)) {
1612 init_idle_pids(task->pids);
1613 init_idle(task, cpu);
1614 }
1615
1616 return task;
1617 }
1618
1619 /*
1620 * Ok, this is the main fork-routine.
1621 *
1622 * It copies the process, and if successful kick-starts
1623 * it and waits for it to finish using the VM if required.
1624 */
1625 long do_fork(unsigned long clone_flags,
1626 unsigned long stack_start,
1627 unsigned long stack_size,
1628 int __user *parent_tidptr,
1629 int __user *child_tidptr)
1630 {
1631 struct task_struct *p;
1632 int trace = 0;
1633 long nr;
1634
1635 /*
1636 * Determine whether and which event to report to ptracer. When
1637 * called from kernel_thread or CLONE_UNTRACED is explicitly
1638 * requested, no event is reported; otherwise, report if the event
1639 * for the type of forking is enabled.
1640 */
1641 if (!(clone_flags & CLONE_UNTRACED)) {
1642 if (clone_flags & CLONE_VFORK)
1643 trace = PTRACE_EVENT_VFORK;
1644 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1645 trace = PTRACE_EVENT_CLONE;
1646 else
1647 trace = PTRACE_EVENT_FORK;
1648
1649 if (likely(!ptrace_event_enabled(current, trace)))
1650 trace = 0;
1651 }
1652
1653 p = copy_process(clone_flags, stack_start, stack_size,
1654 child_tidptr, NULL, trace);
1655 /*
1656 * Do this prior waking up the new thread - the thread pointer
1657 * might get invalid after that point, if the thread exits quickly.
1658 */
1659 if (!IS_ERR(p)) {
1660 struct completion vfork;
1661 struct pid *pid;
1662
1663 trace_sched_process_fork(current, p);
1664
1665 pid = get_task_pid(p, PIDTYPE_PID);
1666 nr = pid_vnr(pid);
1667
1668 if (clone_flags & CLONE_PARENT_SETTID)
1669 put_user(nr, parent_tidptr);
1670
1671 if (clone_flags & CLONE_VFORK) {
1672 p->vfork_done = &vfork;
1673 init_completion(&vfork);
1674 get_task_struct(p);
1675 }
1676
1677 wake_up_new_task(p);
1678
1679 /* forking complete and child started to run, tell ptracer */
1680 if (unlikely(trace))
1681 ptrace_event_pid(trace, pid);
1682
1683 if (clone_flags & CLONE_VFORK) {
1684 if (!wait_for_vfork_done(p, &vfork))
1685 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1686 }
1687
1688 put_pid(pid);
1689 } else {
1690 nr = PTR_ERR(p);
1691 }
1692 return nr;
1693 }
1694
1695 /*
1696 * Create a kernel thread.
1697 */
1698 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1699 {
1700 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1701 (unsigned long)arg, NULL, NULL);
1702 }
1703
1704 #ifdef __ARCH_WANT_SYS_FORK
1705 SYSCALL_DEFINE0(fork)
1706 {
1707 #ifdef CONFIG_MMU
1708 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1709 #else
1710 /* can not support in nommu mode */
1711 return -EINVAL;
1712 #endif
1713 }
1714 #endif
1715
1716 #ifdef __ARCH_WANT_SYS_VFORK
1717 SYSCALL_DEFINE0(vfork)
1718 {
1719 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1720 0, NULL, NULL);
1721 }
1722 #endif
1723
1724 #ifdef __ARCH_WANT_SYS_CLONE
1725 #ifdef CONFIG_CLONE_BACKWARDS
1726 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1727 int __user *, parent_tidptr,
1728 int, tls_val,
1729 int __user *, child_tidptr)
1730 #elif defined(CONFIG_CLONE_BACKWARDS2)
1731 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1732 int __user *, parent_tidptr,
1733 int __user *, child_tidptr,
1734 int, tls_val)
1735 #elif defined(CONFIG_CLONE_BACKWARDS3)
1736 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1737 int, stack_size,
1738 int __user *, parent_tidptr,
1739 int __user *, child_tidptr,
1740 int, tls_val)
1741 #else
1742 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1743 int __user *, parent_tidptr,
1744 int __user *, child_tidptr,
1745 int, tls_val)
1746 #endif
1747 {
1748 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1749 }
1750 #endif
1751
1752 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1753 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1754 #endif
1755
1756 static void sighand_ctor(void *data)
1757 {
1758 struct sighand_struct *sighand = data;
1759
1760 spin_lock_init(&sighand->siglock);
1761 init_waitqueue_head(&sighand->signalfd_wqh);
1762 }
1763
1764 void __init proc_caches_init(void)
1765 {
1766 sighand_cachep = kmem_cache_create("sighand_cache",
1767 sizeof(struct sighand_struct), 0,
1768 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1769 SLAB_NOTRACK, sighand_ctor);
1770 signal_cachep = kmem_cache_create("signal_cache",
1771 sizeof(struct signal_struct), 0,
1772 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1773 files_cachep = kmem_cache_create("files_cache",
1774 sizeof(struct files_struct), 0,
1775 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1776 fs_cachep = kmem_cache_create("fs_cache",
1777 sizeof(struct fs_struct), 0,
1778 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1779 /*
1780 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1781 * whole struct cpumask for the OFFSTACK case. We could change
1782 * this to *only* allocate as much of it as required by the
1783 * maximum number of CPU's we can ever have. The cpumask_allocation
1784 * is at the end of the structure, exactly for that reason.
1785 */
1786 mm_cachep = kmem_cache_create("mm_struct",
1787 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1788 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1789 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1790 mmap_init();
1791 nsproxy_cache_init();
1792 }
1793
1794 /*
1795 * Check constraints on flags passed to the unshare system call.
1796 */
1797 static int check_unshare_flags(unsigned long unshare_flags)
1798 {
1799 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1800 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1801 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1802 CLONE_NEWUSER|CLONE_NEWPID))
1803 return -EINVAL;
1804 /*
1805 * Not implemented, but pretend it works if there is nothing to
1806 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1807 * needs to unshare vm.
1808 */
1809 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1810 /* FIXME: get_task_mm() increments ->mm_users */
1811 if (atomic_read(&current->mm->mm_users) > 1)
1812 return -EINVAL;
1813 }
1814
1815 return 0;
1816 }
1817
1818 /*
1819 * Unshare the filesystem structure if it is being shared
1820 */
1821 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1822 {
1823 struct fs_struct *fs = current->fs;
1824
1825 if (!(unshare_flags & CLONE_FS) || !fs)
1826 return 0;
1827
1828 /* don't need lock here; in the worst case we'll do useless copy */
1829 if (fs->users == 1)
1830 return 0;
1831
1832 *new_fsp = copy_fs_struct(fs);
1833 if (!*new_fsp)
1834 return -ENOMEM;
1835
1836 return 0;
1837 }
1838
1839 /*
1840 * Unshare file descriptor table if it is being shared
1841 */
1842 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1843 {
1844 struct files_struct *fd = current->files;
1845 int error = 0;
1846
1847 if ((unshare_flags & CLONE_FILES) &&
1848 (fd && atomic_read(&fd->count) > 1)) {
1849 *new_fdp = dup_fd(fd, &error);
1850 if (!*new_fdp)
1851 return error;
1852 }
1853
1854 return 0;
1855 }
1856
1857 /*
1858 * unshare allows a process to 'unshare' part of the process
1859 * context which was originally shared using clone. copy_*
1860 * functions used by do_fork() cannot be used here directly
1861 * because they modify an inactive task_struct that is being
1862 * constructed. Here we are modifying the current, active,
1863 * task_struct.
1864 */
1865 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1866 {
1867 struct fs_struct *fs, *new_fs = NULL;
1868 struct files_struct *fd, *new_fd = NULL;
1869 struct cred *new_cred = NULL;
1870 struct nsproxy *new_nsproxy = NULL;
1871 int do_sysvsem = 0;
1872 int err;
1873
1874 /*
1875 * If unsharing a user namespace must also unshare the thread.
1876 */
1877 if (unshare_flags & CLONE_NEWUSER)
1878 unshare_flags |= CLONE_THREAD | CLONE_FS;
1879 /*
1880 * If unsharing a thread from a thread group, must also unshare vm.
1881 */
1882 if (unshare_flags & CLONE_THREAD)
1883 unshare_flags |= CLONE_VM;
1884 /*
1885 * If unsharing vm, must also unshare signal handlers.
1886 */
1887 if (unshare_flags & CLONE_VM)
1888 unshare_flags |= CLONE_SIGHAND;
1889 /*
1890 * If unsharing namespace, must also unshare filesystem information.
1891 */
1892 if (unshare_flags & CLONE_NEWNS)
1893 unshare_flags |= CLONE_FS;
1894
1895 err = check_unshare_flags(unshare_flags);
1896 if (err)
1897 goto bad_unshare_out;
1898 /*
1899 * CLONE_NEWIPC must also detach from the undolist: after switching
1900 * to a new ipc namespace, the semaphore arrays from the old
1901 * namespace are unreachable.
1902 */
1903 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1904 do_sysvsem = 1;
1905 err = unshare_fs(unshare_flags, &new_fs);
1906 if (err)
1907 goto bad_unshare_out;
1908 err = unshare_fd(unshare_flags, &new_fd);
1909 if (err)
1910 goto bad_unshare_cleanup_fs;
1911 err = unshare_userns(unshare_flags, &new_cred);
1912 if (err)
1913 goto bad_unshare_cleanup_fd;
1914 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1915 new_cred, new_fs);
1916 if (err)
1917 goto bad_unshare_cleanup_cred;
1918
1919 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1920 if (do_sysvsem) {
1921 /*
1922 * CLONE_SYSVSEM is equivalent to sys_exit().
1923 */
1924 exit_sem(current);
1925 }
1926 if (unshare_flags & CLONE_NEWIPC) {
1927 /* Orphan segments in old ns (see sem above). */
1928 exit_shm(current);
1929 shm_init_task(current);
1930 }
1931
1932 if (new_nsproxy)
1933 switch_task_namespaces(current, new_nsproxy);
1934
1935 task_lock(current);
1936
1937 if (new_fs) {
1938 fs = current->fs;
1939 spin_lock(&fs->lock);
1940 current->fs = new_fs;
1941 if (--fs->users)
1942 new_fs = NULL;
1943 else
1944 new_fs = fs;
1945 spin_unlock(&fs->lock);
1946 }
1947
1948 if (new_fd) {
1949 fd = current->files;
1950 current->files = new_fd;
1951 new_fd = fd;
1952 }
1953
1954 task_unlock(current);
1955
1956 if (new_cred) {
1957 /* Install the new user namespace */
1958 commit_creds(new_cred);
1959 new_cred = NULL;
1960 }
1961 }
1962
1963 bad_unshare_cleanup_cred:
1964 if (new_cred)
1965 put_cred(new_cred);
1966 bad_unshare_cleanup_fd:
1967 if (new_fd)
1968 put_files_struct(new_fd);
1969
1970 bad_unshare_cleanup_fs:
1971 if (new_fs)
1972 free_fs_struct(new_fs);
1973
1974 bad_unshare_out:
1975 return err;
1976 }
1977
1978 /*
1979 * Helper to unshare the files of the current task.
1980 * We don't want to expose copy_files internals to
1981 * the exec layer of the kernel.
1982 */
1983
1984 int unshare_files(struct files_struct **displaced)
1985 {
1986 struct task_struct *task = current;
1987 struct files_struct *copy = NULL;
1988 int error;
1989
1990 error = unshare_fd(CLONE_FILES, &copy);
1991 if (error || !copy) {
1992 *displaced = NULL;
1993 return error;
1994 }
1995 *displaced = task->files;
1996 task_lock(task);
1997 task->files = copy;
1998 task_unlock(task);
1999 return 0;
2000 }
This page took 0.081585 seconds and 5 git commands to generate.