perf, x86: Fix __initconst vs const
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68
69 #include <asm/pgtable.h>
70 #include <asm/pgalloc.h>
71 #include <asm/uaccess.h>
72 #include <asm/mmu_context.h>
73 #include <asm/cacheflush.h>
74 #include <asm/tlbflush.h>
75
76 #include <trace/events/sched.h>
77
78 /*
79 * Protected counters by write_lock_irq(&tasklist_lock)
80 */
81 unsigned long total_forks; /* Handle normal Linux uptimes. */
82 int nr_threads; /* The idle threads do not count.. */
83
84 int max_threads; /* tunable limit on nr_threads */
85
86 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
87
88 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
89
90 #ifdef CONFIG_PROVE_RCU
91 int lockdep_tasklist_lock_is_held(void)
92 {
93 return lockdep_is_held(&tasklist_lock);
94 }
95 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
96 #endif /* #ifdef CONFIG_PROVE_RCU */
97
98 int nr_processes(void)
99 {
100 int cpu;
101 int total = 0;
102
103 for_each_possible_cpu(cpu)
104 total += per_cpu(process_counts, cpu);
105
106 return total;
107 }
108
109 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
110 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
111 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
112 static struct kmem_cache *task_struct_cachep;
113 #endif
114
115 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
116 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
117 {
118 #ifdef CONFIG_DEBUG_STACK_USAGE
119 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
120 #else
121 gfp_t mask = GFP_KERNEL;
122 #endif
123 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
124 }
125
126 static inline void free_thread_info(struct thread_info *ti)
127 {
128 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
129 }
130 #endif
131
132 /* SLAB cache for signal_struct structures (tsk->signal) */
133 static struct kmem_cache *signal_cachep;
134
135 /* SLAB cache for sighand_struct structures (tsk->sighand) */
136 struct kmem_cache *sighand_cachep;
137
138 /* SLAB cache for files_struct structures (tsk->files) */
139 struct kmem_cache *files_cachep;
140
141 /* SLAB cache for fs_struct structures (tsk->fs) */
142 struct kmem_cache *fs_cachep;
143
144 /* SLAB cache for vm_area_struct structures */
145 struct kmem_cache *vm_area_cachep;
146
147 /* SLAB cache for mm_struct structures (tsk->mm) */
148 static struct kmem_cache *mm_cachep;
149
150 static void account_kernel_stack(struct thread_info *ti, int account)
151 {
152 struct zone *zone = page_zone(virt_to_page(ti));
153
154 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
155 }
156
157 void free_task(struct task_struct *tsk)
158 {
159 prop_local_destroy_single(&tsk->dirties);
160 account_kernel_stack(tsk->stack, -1);
161 free_thread_info(tsk->stack);
162 rt_mutex_debug_task_free(tsk);
163 ftrace_graph_exit_task(tsk);
164 free_task_struct(tsk);
165 }
166 EXPORT_SYMBOL(free_task);
167
168 void __put_task_struct(struct task_struct *tsk)
169 {
170 WARN_ON(!tsk->exit_state);
171 WARN_ON(atomic_read(&tsk->usage));
172 WARN_ON(tsk == current);
173
174 exit_creds(tsk);
175 delayacct_tsk_free(tsk);
176
177 if (!profile_handoff_task(tsk))
178 free_task(tsk);
179 }
180
181 /*
182 * macro override instead of weak attribute alias, to workaround
183 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
184 */
185 #ifndef arch_task_cache_init
186 #define arch_task_cache_init()
187 #endif
188
189 void __init fork_init(unsigned long mempages)
190 {
191 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
192 #ifndef ARCH_MIN_TASKALIGN
193 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
194 #endif
195 /* create a slab on which task_structs can be allocated */
196 task_struct_cachep =
197 kmem_cache_create("task_struct", sizeof(struct task_struct),
198 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
199 #endif
200
201 /* do the arch specific task caches init */
202 arch_task_cache_init();
203
204 /*
205 * The default maximum number of threads is set to a safe
206 * value: the thread structures can take up at most half
207 * of memory.
208 */
209 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
210
211 /*
212 * we need to allow at least 20 threads to boot a system
213 */
214 if(max_threads < 20)
215 max_threads = 20;
216
217 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
218 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
219 init_task.signal->rlim[RLIMIT_SIGPENDING] =
220 init_task.signal->rlim[RLIMIT_NPROC];
221 }
222
223 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
224 struct task_struct *src)
225 {
226 *dst = *src;
227 return 0;
228 }
229
230 static struct task_struct *dup_task_struct(struct task_struct *orig)
231 {
232 struct task_struct *tsk;
233 struct thread_info *ti;
234 unsigned long *stackend;
235
236 int err;
237
238 prepare_to_copy(orig);
239
240 tsk = alloc_task_struct();
241 if (!tsk)
242 return NULL;
243
244 ti = alloc_thread_info(tsk);
245 if (!ti) {
246 free_task_struct(tsk);
247 return NULL;
248 }
249
250 err = arch_dup_task_struct(tsk, orig);
251 if (err)
252 goto out;
253
254 tsk->stack = ti;
255
256 err = prop_local_init_single(&tsk->dirties);
257 if (err)
258 goto out;
259
260 setup_thread_stack(tsk, orig);
261 clear_user_return_notifier(tsk);
262 stackend = end_of_stack(tsk);
263 *stackend = STACK_END_MAGIC; /* for overflow detection */
264
265 #ifdef CONFIG_CC_STACKPROTECTOR
266 tsk->stack_canary = get_random_int();
267 #endif
268
269 /* One for us, one for whoever does the "release_task()" (usually parent) */
270 atomic_set(&tsk->usage,2);
271 atomic_set(&tsk->fs_excl, 0);
272 #ifdef CONFIG_BLK_DEV_IO_TRACE
273 tsk->btrace_seq = 0;
274 #endif
275 tsk->splice_pipe = NULL;
276
277 account_kernel_stack(ti, 1);
278
279 return tsk;
280
281 out:
282 free_thread_info(ti);
283 free_task_struct(tsk);
284 return NULL;
285 }
286
287 #ifdef CONFIG_MMU
288 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
289 {
290 struct vm_area_struct *mpnt, *tmp, **pprev;
291 struct rb_node **rb_link, *rb_parent;
292 int retval;
293 unsigned long charge;
294 struct mempolicy *pol;
295
296 down_write(&oldmm->mmap_sem);
297 flush_cache_dup_mm(oldmm);
298 /*
299 * Not linked in yet - no deadlock potential:
300 */
301 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
302
303 mm->locked_vm = 0;
304 mm->mmap = NULL;
305 mm->mmap_cache = NULL;
306 mm->free_area_cache = oldmm->mmap_base;
307 mm->cached_hole_size = ~0UL;
308 mm->map_count = 0;
309 cpumask_clear(mm_cpumask(mm));
310 mm->mm_rb = RB_ROOT;
311 rb_link = &mm->mm_rb.rb_node;
312 rb_parent = NULL;
313 pprev = &mm->mmap;
314 retval = ksm_fork(mm, oldmm);
315 if (retval)
316 goto out;
317
318 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
319 struct file *file;
320
321 if (mpnt->vm_flags & VM_DONTCOPY) {
322 long pages = vma_pages(mpnt);
323 mm->total_vm -= pages;
324 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
325 -pages);
326 continue;
327 }
328 charge = 0;
329 if (mpnt->vm_flags & VM_ACCOUNT) {
330 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
331 if (security_vm_enough_memory(len))
332 goto fail_nomem;
333 charge = len;
334 }
335 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
336 if (!tmp)
337 goto fail_nomem;
338 *tmp = *mpnt;
339 INIT_LIST_HEAD(&tmp->anon_vma_chain);
340 pol = mpol_dup(vma_policy(mpnt));
341 retval = PTR_ERR(pol);
342 if (IS_ERR(pol))
343 goto fail_nomem_policy;
344 vma_set_policy(tmp, pol);
345 if (anon_vma_fork(tmp, mpnt))
346 goto fail_nomem_anon_vma_fork;
347 tmp->vm_flags &= ~VM_LOCKED;
348 tmp->vm_mm = mm;
349 tmp->vm_next = NULL;
350 file = tmp->vm_file;
351 if (file) {
352 struct inode *inode = file->f_path.dentry->d_inode;
353 struct address_space *mapping = file->f_mapping;
354
355 get_file(file);
356 if (tmp->vm_flags & VM_DENYWRITE)
357 atomic_dec(&inode->i_writecount);
358 spin_lock(&mapping->i_mmap_lock);
359 if (tmp->vm_flags & VM_SHARED)
360 mapping->i_mmap_writable++;
361 tmp->vm_truncate_count = mpnt->vm_truncate_count;
362 flush_dcache_mmap_lock(mapping);
363 /* insert tmp into the share list, just after mpnt */
364 vma_prio_tree_add(tmp, mpnt);
365 flush_dcache_mmap_unlock(mapping);
366 spin_unlock(&mapping->i_mmap_lock);
367 }
368
369 /*
370 * Clear hugetlb-related page reserves for children. This only
371 * affects MAP_PRIVATE mappings. Faults generated by the child
372 * are not guaranteed to succeed, even if read-only
373 */
374 if (is_vm_hugetlb_page(tmp))
375 reset_vma_resv_huge_pages(tmp);
376
377 /*
378 * Link in the new vma and copy the page table entries.
379 */
380 *pprev = tmp;
381 pprev = &tmp->vm_next;
382
383 __vma_link_rb(mm, tmp, rb_link, rb_parent);
384 rb_link = &tmp->vm_rb.rb_right;
385 rb_parent = &tmp->vm_rb;
386
387 mm->map_count++;
388 retval = copy_page_range(mm, oldmm, mpnt);
389
390 if (tmp->vm_ops && tmp->vm_ops->open)
391 tmp->vm_ops->open(tmp);
392
393 if (retval)
394 goto out;
395 }
396 /* a new mm has just been created */
397 arch_dup_mmap(oldmm, mm);
398 retval = 0;
399 out:
400 up_write(&mm->mmap_sem);
401 flush_tlb_mm(oldmm);
402 up_write(&oldmm->mmap_sem);
403 return retval;
404 fail_nomem_anon_vma_fork:
405 mpol_put(pol);
406 fail_nomem_policy:
407 kmem_cache_free(vm_area_cachep, tmp);
408 fail_nomem:
409 retval = -ENOMEM;
410 vm_unacct_memory(charge);
411 goto out;
412 }
413
414 static inline int mm_alloc_pgd(struct mm_struct * mm)
415 {
416 mm->pgd = pgd_alloc(mm);
417 if (unlikely(!mm->pgd))
418 return -ENOMEM;
419 return 0;
420 }
421
422 static inline void mm_free_pgd(struct mm_struct * mm)
423 {
424 pgd_free(mm, mm->pgd);
425 }
426 #else
427 #define dup_mmap(mm, oldmm) (0)
428 #define mm_alloc_pgd(mm) (0)
429 #define mm_free_pgd(mm)
430 #endif /* CONFIG_MMU */
431
432 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
433
434 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
435 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
436
437 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
438
439 static int __init coredump_filter_setup(char *s)
440 {
441 default_dump_filter =
442 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
443 MMF_DUMP_FILTER_MASK;
444 return 1;
445 }
446
447 __setup("coredump_filter=", coredump_filter_setup);
448
449 #include <linux/init_task.h>
450
451 static void mm_init_aio(struct mm_struct *mm)
452 {
453 #ifdef CONFIG_AIO
454 spin_lock_init(&mm->ioctx_lock);
455 INIT_HLIST_HEAD(&mm->ioctx_list);
456 #endif
457 }
458
459 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
460 {
461 atomic_set(&mm->mm_users, 1);
462 atomic_set(&mm->mm_count, 1);
463 init_rwsem(&mm->mmap_sem);
464 INIT_LIST_HEAD(&mm->mmlist);
465 mm->flags = (current->mm) ?
466 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
467 mm->core_state = NULL;
468 mm->nr_ptes = 0;
469 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
470 spin_lock_init(&mm->page_table_lock);
471 mm->free_area_cache = TASK_UNMAPPED_BASE;
472 mm->cached_hole_size = ~0UL;
473 mm_init_aio(mm);
474 mm_init_owner(mm, p);
475
476 if (likely(!mm_alloc_pgd(mm))) {
477 mm->def_flags = 0;
478 mmu_notifier_mm_init(mm);
479 return mm;
480 }
481
482 free_mm(mm);
483 return NULL;
484 }
485
486 /*
487 * Allocate and initialize an mm_struct.
488 */
489 struct mm_struct * mm_alloc(void)
490 {
491 struct mm_struct * mm;
492
493 mm = allocate_mm();
494 if (mm) {
495 memset(mm, 0, sizeof(*mm));
496 mm = mm_init(mm, current);
497 }
498 return mm;
499 }
500
501 /*
502 * Called when the last reference to the mm
503 * is dropped: either by a lazy thread or by
504 * mmput. Free the page directory and the mm.
505 */
506 void __mmdrop(struct mm_struct *mm)
507 {
508 BUG_ON(mm == &init_mm);
509 mm_free_pgd(mm);
510 destroy_context(mm);
511 mmu_notifier_mm_destroy(mm);
512 free_mm(mm);
513 }
514 EXPORT_SYMBOL_GPL(__mmdrop);
515
516 /*
517 * Decrement the use count and release all resources for an mm.
518 */
519 void mmput(struct mm_struct *mm)
520 {
521 might_sleep();
522
523 if (atomic_dec_and_test(&mm->mm_users)) {
524 exit_aio(mm);
525 ksm_exit(mm);
526 exit_mmap(mm);
527 set_mm_exe_file(mm, NULL);
528 if (!list_empty(&mm->mmlist)) {
529 spin_lock(&mmlist_lock);
530 list_del(&mm->mmlist);
531 spin_unlock(&mmlist_lock);
532 }
533 put_swap_token(mm);
534 if (mm->binfmt)
535 module_put(mm->binfmt->module);
536 mmdrop(mm);
537 }
538 }
539 EXPORT_SYMBOL_GPL(mmput);
540
541 /**
542 * get_task_mm - acquire a reference to the task's mm
543 *
544 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
545 * this kernel workthread has transiently adopted a user mm with use_mm,
546 * to do its AIO) is not set and if so returns a reference to it, after
547 * bumping up the use count. User must release the mm via mmput()
548 * after use. Typically used by /proc and ptrace.
549 */
550 struct mm_struct *get_task_mm(struct task_struct *task)
551 {
552 struct mm_struct *mm;
553
554 task_lock(task);
555 mm = task->mm;
556 if (mm) {
557 if (task->flags & PF_KTHREAD)
558 mm = NULL;
559 else
560 atomic_inc(&mm->mm_users);
561 }
562 task_unlock(task);
563 return mm;
564 }
565 EXPORT_SYMBOL_GPL(get_task_mm);
566
567 /* Please note the differences between mmput and mm_release.
568 * mmput is called whenever we stop holding onto a mm_struct,
569 * error success whatever.
570 *
571 * mm_release is called after a mm_struct has been removed
572 * from the current process.
573 *
574 * This difference is important for error handling, when we
575 * only half set up a mm_struct for a new process and need to restore
576 * the old one. Because we mmput the new mm_struct before
577 * restoring the old one. . .
578 * Eric Biederman 10 January 1998
579 */
580 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
581 {
582 struct completion *vfork_done = tsk->vfork_done;
583
584 /* Get rid of any futexes when releasing the mm */
585 #ifdef CONFIG_FUTEX
586 if (unlikely(tsk->robust_list)) {
587 exit_robust_list(tsk);
588 tsk->robust_list = NULL;
589 }
590 #ifdef CONFIG_COMPAT
591 if (unlikely(tsk->compat_robust_list)) {
592 compat_exit_robust_list(tsk);
593 tsk->compat_robust_list = NULL;
594 }
595 #endif
596 if (unlikely(!list_empty(&tsk->pi_state_list)))
597 exit_pi_state_list(tsk);
598 #endif
599
600 /* Get rid of any cached register state */
601 deactivate_mm(tsk, mm);
602
603 /* notify parent sleeping on vfork() */
604 if (vfork_done) {
605 tsk->vfork_done = NULL;
606 complete(vfork_done);
607 }
608
609 /*
610 * If we're exiting normally, clear a user-space tid field if
611 * requested. We leave this alone when dying by signal, to leave
612 * the value intact in a core dump, and to save the unnecessary
613 * trouble otherwise. Userland only wants this done for a sys_exit.
614 */
615 if (tsk->clear_child_tid) {
616 if (!(tsk->flags & PF_SIGNALED) &&
617 atomic_read(&mm->mm_users) > 1) {
618 /*
619 * We don't check the error code - if userspace has
620 * not set up a proper pointer then tough luck.
621 */
622 put_user(0, tsk->clear_child_tid);
623 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
624 1, NULL, NULL, 0);
625 }
626 tsk->clear_child_tid = NULL;
627 }
628 }
629
630 /*
631 * Allocate a new mm structure and copy contents from the
632 * mm structure of the passed in task structure.
633 */
634 struct mm_struct *dup_mm(struct task_struct *tsk)
635 {
636 struct mm_struct *mm, *oldmm = current->mm;
637 int err;
638
639 if (!oldmm)
640 return NULL;
641
642 mm = allocate_mm();
643 if (!mm)
644 goto fail_nomem;
645
646 memcpy(mm, oldmm, sizeof(*mm));
647
648 /* Initializing for Swap token stuff */
649 mm->token_priority = 0;
650 mm->last_interval = 0;
651
652 if (!mm_init(mm, tsk))
653 goto fail_nomem;
654
655 if (init_new_context(tsk, mm))
656 goto fail_nocontext;
657
658 dup_mm_exe_file(oldmm, mm);
659
660 err = dup_mmap(mm, oldmm);
661 if (err)
662 goto free_pt;
663
664 mm->hiwater_rss = get_mm_rss(mm);
665 mm->hiwater_vm = mm->total_vm;
666
667 if (mm->binfmt && !try_module_get(mm->binfmt->module))
668 goto free_pt;
669
670 return mm;
671
672 free_pt:
673 /* don't put binfmt in mmput, we haven't got module yet */
674 mm->binfmt = NULL;
675 mmput(mm);
676
677 fail_nomem:
678 return NULL;
679
680 fail_nocontext:
681 /*
682 * If init_new_context() failed, we cannot use mmput() to free the mm
683 * because it calls destroy_context()
684 */
685 mm_free_pgd(mm);
686 free_mm(mm);
687 return NULL;
688 }
689
690 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
691 {
692 struct mm_struct * mm, *oldmm;
693 int retval;
694
695 tsk->min_flt = tsk->maj_flt = 0;
696 tsk->nvcsw = tsk->nivcsw = 0;
697 #ifdef CONFIG_DETECT_HUNG_TASK
698 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
699 #endif
700
701 tsk->mm = NULL;
702 tsk->active_mm = NULL;
703
704 /*
705 * Are we cloning a kernel thread?
706 *
707 * We need to steal a active VM for that..
708 */
709 oldmm = current->mm;
710 if (!oldmm)
711 return 0;
712
713 if (clone_flags & CLONE_VM) {
714 atomic_inc(&oldmm->mm_users);
715 mm = oldmm;
716 goto good_mm;
717 }
718
719 retval = -ENOMEM;
720 mm = dup_mm(tsk);
721 if (!mm)
722 goto fail_nomem;
723
724 good_mm:
725 /* Initializing for Swap token stuff */
726 mm->token_priority = 0;
727 mm->last_interval = 0;
728
729 tsk->mm = mm;
730 tsk->active_mm = mm;
731 return 0;
732
733 fail_nomem:
734 return retval;
735 }
736
737 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
738 {
739 struct fs_struct *fs = current->fs;
740 if (clone_flags & CLONE_FS) {
741 /* tsk->fs is already what we want */
742 write_lock(&fs->lock);
743 if (fs->in_exec) {
744 write_unlock(&fs->lock);
745 return -EAGAIN;
746 }
747 fs->users++;
748 write_unlock(&fs->lock);
749 return 0;
750 }
751 tsk->fs = copy_fs_struct(fs);
752 if (!tsk->fs)
753 return -ENOMEM;
754 return 0;
755 }
756
757 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
758 {
759 struct files_struct *oldf, *newf;
760 int error = 0;
761
762 /*
763 * A background process may not have any files ...
764 */
765 oldf = current->files;
766 if (!oldf)
767 goto out;
768
769 if (clone_flags & CLONE_FILES) {
770 atomic_inc(&oldf->count);
771 goto out;
772 }
773
774 newf = dup_fd(oldf, &error);
775 if (!newf)
776 goto out;
777
778 tsk->files = newf;
779 error = 0;
780 out:
781 return error;
782 }
783
784 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
785 {
786 #ifdef CONFIG_BLOCK
787 struct io_context *ioc = current->io_context;
788
789 if (!ioc)
790 return 0;
791 /*
792 * Share io context with parent, if CLONE_IO is set
793 */
794 if (clone_flags & CLONE_IO) {
795 tsk->io_context = ioc_task_link(ioc);
796 if (unlikely(!tsk->io_context))
797 return -ENOMEM;
798 } else if (ioprio_valid(ioc->ioprio)) {
799 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
800 if (unlikely(!tsk->io_context))
801 return -ENOMEM;
802
803 tsk->io_context->ioprio = ioc->ioprio;
804 }
805 #endif
806 return 0;
807 }
808
809 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
810 {
811 struct sighand_struct *sig;
812
813 if (clone_flags & CLONE_SIGHAND) {
814 atomic_inc(&current->sighand->count);
815 return 0;
816 }
817 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
818 rcu_assign_pointer(tsk->sighand, sig);
819 if (!sig)
820 return -ENOMEM;
821 atomic_set(&sig->count, 1);
822 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
823 return 0;
824 }
825
826 void __cleanup_sighand(struct sighand_struct *sighand)
827 {
828 if (atomic_dec_and_test(&sighand->count))
829 kmem_cache_free(sighand_cachep, sighand);
830 }
831
832
833 /*
834 * Initialize POSIX timer handling for a thread group.
835 */
836 static void posix_cpu_timers_init_group(struct signal_struct *sig)
837 {
838 unsigned long cpu_limit;
839
840 /* Thread group counters. */
841 thread_group_cputime_init(sig);
842
843 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
844 if (cpu_limit != RLIM_INFINITY) {
845 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
846 sig->cputimer.running = 1;
847 }
848
849 /* The timer lists. */
850 INIT_LIST_HEAD(&sig->cpu_timers[0]);
851 INIT_LIST_HEAD(&sig->cpu_timers[1]);
852 INIT_LIST_HEAD(&sig->cpu_timers[2]);
853 }
854
855 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
856 {
857 struct signal_struct *sig;
858
859 if (clone_flags & CLONE_THREAD)
860 return 0;
861
862 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
863 tsk->signal = sig;
864 if (!sig)
865 return -ENOMEM;
866
867 atomic_set(&sig->count, 1);
868 atomic_set(&sig->live, 1);
869 init_waitqueue_head(&sig->wait_chldexit);
870 if (clone_flags & CLONE_NEWPID)
871 sig->flags |= SIGNAL_UNKILLABLE;
872 sig->curr_target = tsk;
873 init_sigpending(&sig->shared_pending);
874 INIT_LIST_HEAD(&sig->posix_timers);
875
876 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
877 sig->real_timer.function = it_real_fn;
878
879 task_lock(current->group_leader);
880 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
881 task_unlock(current->group_leader);
882
883 posix_cpu_timers_init_group(sig);
884
885 tty_audit_fork(sig);
886
887 sig->oom_adj = current->signal->oom_adj;
888
889 return 0;
890 }
891
892 void __cleanup_signal(struct signal_struct *sig)
893 {
894 thread_group_cputime_free(sig);
895 tty_kref_put(sig->tty);
896 kmem_cache_free(signal_cachep, sig);
897 }
898
899 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
900 {
901 unsigned long new_flags = p->flags;
902
903 new_flags &= ~PF_SUPERPRIV;
904 new_flags |= PF_FORKNOEXEC;
905 new_flags |= PF_STARTING;
906 p->flags = new_flags;
907 clear_freeze_flag(p);
908 }
909
910 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
911 {
912 current->clear_child_tid = tidptr;
913
914 return task_pid_vnr(current);
915 }
916
917 static void rt_mutex_init_task(struct task_struct *p)
918 {
919 raw_spin_lock_init(&p->pi_lock);
920 #ifdef CONFIG_RT_MUTEXES
921 plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
922 p->pi_blocked_on = NULL;
923 #endif
924 }
925
926 #ifdef CONFIG_MM_OWNER
927 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
928 {
929 mm->owner = p;
930 }
931 #endif /* CONFIG_MM_OWNER */
932
933 /*
934 * Initialize POSIX timer handling for a single task.
935 */
936 static void posix_cpu_timers_init(struct task_struct *tsk)
937 {
938 tsk->cputime_expires.prof_exp = cputime_zero;
939 tsk->cputime_expires.virt_exp = cputime_zero;
940 tsk->cputime_expires.sched_exp = 0;
941 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
942 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
943 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
944 }
945
946 /*
947 * This creates a new process as a copy of the old one,
948 * but does not actually start it yet.
949 *
950 * It copies the registers, and all the appropriate
951 * parts of the process environment (as per the clone
952 * flags). The actual kick-off is left to the caller.
953 */
954 static struct task_struct *copy_process(unsigned long clone_flags,
955 unsigned long stack_start,
956 struct pt_regs *regs,
957 unsigned long stack_size,
958 int __user *child_tidptr,
959 struct pid *pid,
960 int trace)
961 {
962 int retval;
963 struct task_struct *p;
964 int cgroup_callbacks_done = 0;
965
966 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
967 return ERR_PTR(-EINVAL);
968
969 /*
970 * Thread groups must share signals as well, and detached threads
971 * can only be started up within the thread group.
972 */
973 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
974 return ERR_PTR(-EINVAL);
975
976 /*
977 * Shared signal handlers imply shared VM. By way of the above,
978 * thread groups also imply shared VM. Blocking this case allows
979 * for various simplifications in other code.
980 */
981 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
982 return ERR_PTR(-EINVAL);
983
984 /*
985 * Siblings of global init remain as zombies on exit since they are
986 * not reaped by their parent (swapper). To solve this and to avoid
987 * multi-rooted process trees, prevent global and container-inits
988 * from creating siblings.
989 */
990 if ((clone_flags & CLONE_PARENT) &&
991 current->signal->flags & SIGNAL_UNKILLABLE)
992 return ERR_PTR(-EINVAL);
993
994 retval = security_task_create(clone_flags);
995 if (retval)
996 goto fork_out;
997
998 retval = -ENOMEM;
999 p = dup_task_struct(current);
1000 if (!p)
1001 goto fork_out;
1002
1003 ftrace_graph_init_task(p);
1004
1005 rt_mutex_init_task(p);
1006
1007 #ifdef CONFIG_PROVE_LOCKING
1008 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1009 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1010 #endif
1011 retval = -EAGAIN;
1012 if (atomic_read(&p->real_cred->user->processes) >=
1013 task_rlimit(p, RLIMIT_NPROC)) {
1014 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1015 p->real_cred->user != INIT_USER)
1016 goto bad_fork_free;
1017 }
1018
1019 retval = copy_creds(p, clone_flags);
1020 if (retval < 0)
1021 goto bad_fork_free;
1022
1023 /*
1024 * If multiple threads are within copy_process(), then this check
1025 * triggers too late. This doesn't hurt, the check is only there
1026 * to stop root fork bombs.
1027 */
1028 retval = -EAGAIN;
1029 if (nr_threads >= max_threads)
1030 goto bad_fork_cleanup_count;
1031
1032 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1033 goto bad_fork_cleanup_count;
1034
1035 p->did_exec = 0;
1036 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1037 copy_flags(clone_flags, p);
1038 INIT_LIST_HEAD(&p->children);
1039 INIT_LIST_HEAD(&p->sibling);
1040 rcu_copy_process(p);
1041 p->vfork_done = NULL;
1042 spin_lock_init(&p->alloc_lock);
1043
1044 init_sigpending(&p->pending);
1045
1046 p->utime = cputime_zero;
1047 p->stime = cputime_zero;
1048 p->gtime = cputime_zero;
1049 p->utimescaled = cputime_zero;
1050 p->stimescaled = cputime_zero;
1051 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1052 p->prev_utime = cputime_zero;
1053 p->prev_stime = cputime_zero;
1054 #endif
1055
1056 p->default_timer_slack_ns = current->timer_slack_ns;
1057
1058 task_io_accounting_init(&p->ioac);
1059 acct_clear_integrals(p);
1060
1061 posix_cpu_timers_init(p);
1062
1063 p->lock_depth = -1; /* -1 = no lock */
1064 do_posix_clock_monotonic_gettime(&p->start_time);
1065 p->real_start_time = p->start_time;
1066 monotonic_to_bootbased(&p->real_start_time);
1067 p->io_context = NULL;
1068 p->audit_context = NULL;
1069 cgroup_fork(p);
1070 #ifdef CONFIG_NUMA
1071 p->mempolicy = mpol_dup(p->mempolicy);
1072 if (IS_ERR(p->mempolicy)) {
1073 retval = PTR_ERR(p->mempolicy);
1074 p->mempolicy = NULL;
1075 goto bad_fork_cleanup_cgroup;
1076 }
1077 mpol_fix_fork_child_flag(p);
1078 #endif
1079 #ifdef CONFIG_TRACE_IRQFLAGS
1080 p->irq_events = 0;
1081 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1082 p->hardirqs_enabled = 1;
1083 #else
1084 p->hardirqs_enabled = 0;
1085 #endif
1086 p->hardirq_enable_ip = 0;
1087 p->hardirq_enable_event = 0;
1088 p->hardirq_disable_ip = _THIS_IP_;
1089 p->hardirq_disable_event = 0;
1090 p->softirqs_enabled = 1;
1091 p->softirq_enable_ip = _THIS_IP_;
1092 p->softirq_enable_event = 0;
1093 p->softirq_disable_ip = 0;
1094 p->softirq_disable_event = 0;
1095 p->hardirq_context = 0;
1096 p->softirq_context = 0;
1097 #endif
1098 #ifdef CONFIG_LOCKDEP
1099 p->lockdep_depth = 0; /* no locks held yet */
1100 p->curr_chain_key = 0;
1101 p->lockdep_recursion = 0;
1102 #endif
1103
1104 #ifdef CONFIG_DEBUG_MUTEXES
1105 p->blocked_on = NULL; /* not blocked yet */
1106 #endif
1107 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1108 p->memcg_batch.do_batch = 0;
1109 p->memcg_batch.memcg = NULL;
1110 #endif
1111 p->stack_start = stack_start;
1112
1113 /* Perform scheduler related setup. Assign this task to a CPU. */
1114 sched_fork(p, clone_flags);
1115
1116 retval = perf_event_init_task(p);
1117 if (retval)
1118 goto bad_fork_cleanup_policy;
1119
1120 if ((retval = audit_alloc(p)))
1121 goto bad_fork_cleanup_policy;
1122 /* copy all the process information */
1123 if ((retval = copy_semundo(clone_flags, p)))
1124 goto bad_fork_cleanup_audit;
1125 if ((retval = copy_files(clone_flags, p)))
1126 goto bad_fork_cleanup_semundo;
1127 if ((retval = copy_fs(clone_flags, p)))
1128 goto bad_fork_cleanup_files;
1129 if ((retval = copy_sighand(clone_flags, p)))
1130 goto bad_fork_cleanup_fs;
1131 if ((retval = copy_signal(clone_flags, p)))
1132 goto bad_fork_cleanup_sighand;
1133 if ((retval = copy_mm(clone_flags, p)))
1134 goto bad_fork_cleanup_signal;
1135 if ((retval = copy_namespaces(clone_flags, p)))
1136 goto bad_fork_cleanup_mm;
1137 if ((retval = copy_io(clone_flags, p)))
1138 goto bad_fork_cleanup_namespaces;
1139 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1140 if (retval)
1141 goto bad_fork_cleanup_io;
1142
1143 if (pid != &init_struct_pid) {
1144 retval = -ENOMEM;
1145 pid = alloc_pid(p->nsproxy->pid_ns);
1146 if (!pid)
1147 goto bad_fork_cleanup_io;
1148
1149 if (clone_flags & CLONE_NEWPID) {
1150 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1151 if (retval < 0)
1152 goto bad_fork_free_pid;
1153 }
1154 }
1155
1156 p->pid = pid_nr(pid);
1157 p->tgid = p->pid;
1158 if (clone_flags & CLONE_THREAD)
1159 p->tgid = current->tgid;
1160
1161 if (current->nsproxy != p->nsproxy) {
1162 retval = ns_cgroup_clone(p, pid);
1163 if (retval)
1164 goto bad_fork_free_pid;
1165 }
1166
1167 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1168 /*
1169 * Clear TID on mm_release()?
1170 */
1171 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1172 #ifdef CONFIG_FUTEX
1173 p->robust_list = NULL;
1174 #ifdef CONFIG_COMPAT
1175 p->compat_robust_list = NULL;
1176 #endif
1177 INIT_LIST_HEAD(&p->pi_state_list);
1178 p->pi_state_cache = NULL;
1179 #endif
1180 /*
1181 * sigaltstack should be cleared when sharing the same VM
1182 */
1183 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1184 p->sas_ss_sp = p->sas_ss_size = 0;
1185
1186 /*
1187 * Syscall tracing and stepping should be turned off in the
1188 * child regardless of CLONE_PTRACE.
1189 */
1190 user_disable_single_step(p);
1191 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1192 #ifdef TIF_SYSCALL_EMU
1193 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1194 #endif
1195 clear_all_latency_tracing(p);
1196
1197 /* ok, now we should be set up.. */
1198 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1199 p->pdeath_signal = 0;
1200 p->exit_state = 0;
1201
1202 /*
1203 * Ok, make it visible to the rest of the system.
1204 * We dont wake it up yet.
1205 */
1206 p->group_leader = p;
1207 INIT_LIST_HEAD(&p->thread_group);
1208
1209 /* Now that the task is set up, run cgroup callbacks if
1210 * necessary. We need to run them before the task is visible
1211 * on the tasklist. */
1212 cgroup_fork_callbacks(p);
1213 cgroup_callbacks_done = 1;
1214
1215 /* Need tasklist lock for parent etc handling! */
1216 write_lock_irq(&tasklist_lock);
1217
1218 /* CLONE_PARENT re-uses the old parent */
1219 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1220 p->real_parent = current->real_parent;
1221 p->parent_exec_id = current->parent_exec_id;
1222 } else {
1223 p->real_parent = current;
1224 p->parent_exec_id = current->self_exec_id;
1225 }
1226
1227 spin_lock(&current->sighand->siglock);
1228
1229 /*
1230 * Process group and session signals need to be delivered to just the
1231 * parent before the fork or both the parent and the child after the
1232 * fork. Restart if a signal comes in before we add the new process to
1233 * it's process group.
1234 * A fatal signal pending means that current will exit, so the new
1235 * thread can't slip out of an OOM kill (or normal SIGKILL).
1236 */
1237 recalc_sigpending();
1238 if (signal_pending(current)) {
1239 spin_unlock(&current->sighand->siglock);
1240 write_unlock_irq(&tasklist_lock);
1241 retval = -ERESTARTNOINTR;
1242 goto bad_fork_free_pid;
1243 }
1244
1245 if (clone_flags & CLONE_THREAD) {
1246 atomic_inc(&current->signal->count);
1247 atomic_inc(&current->signal->live);
1248 p->group_leader = current->group_leader;
1249 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1250 }
1251
1252 if (likely(p->pid)) {
1253 tracehook_finish_clone(p, clone_flags, trace);
1254
1255 if (thread_group_leader(p)) {
1256 if (clone_flags & CLONE_NEWPID)
1257 p->nsproxy->pid_ns->child_reaper = p;
1258
1259 p->signal->leader_pid = pid;
1260 tty_kref_put(p->signal->tty);
1261 p->signal->tty = tty_kref_get(current->signal->tty);
1262 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1263 attach_pid(p, PIDTYPE_SID, task_session(current));
1264 list_add_tail(&p->sibling, &p->real_parent->children);
1265 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1266 __get_cpu_var(process_counts)++;
1267 }
1268 attach_pid(p, PIDTYPE_PID, pid);
1269 nr_threads++;
1270 }
1271
1272 total_forks++;
1273 spin_unlock(&current->sighand->siglock);
1274 write_unlock_irq(&tasklist_lock);
1275 proc_fork_connector(p);
1276 cgroup_post_fork(p);
1277 perf_event_fork(p);
1278 return p;
1279
1280 bad_fork_free_pid:
1281 if (pid != &init_struct_pid)
1282 free_pid(pid);
1283 bad_fork_cleanup_io:
1284 if (p->io_context)
1285 exit_io_context(p);
1286 bad_fork_cleanup_namespaces:
1287 exit_task_namespaces(p);
1288 bad_fork_cleanup_mm:
1289 if (p->mm)
1290 mmput(p->mm);
1291 bad_fork_cleanup_signal:
1292 if (!(clone_flags & CLONE_THREAD))
1293 __cleanup_signal(p->signal);
1294 bad_fork_cleanup_sighand:
1295 __cleanup_sighand(p->sighand);
1296 bad_fork_cleanup_fs:
1297 exit_fs(p); /* blocking */
1298 bad_fork_cleanup_files:
1299 exit_files(p); /* blocking */
1300 bad_fork_cleanup_semundo:
1301 exit_sem(p);
1302 bad_fork_cleanup_audit:
1303 audit_free(p);
1304 bad_fork_cleanup_policy:
1305 perf_event_free_task(p);
1306 #ifdef CONFIG_NUMA
1307 mpol_put(p->mempolicy);
1308 bad_fork_cleanup_cgroup:
1309 #endif
1310 cgroup_exit(p, cgroup_callbacks_done);
1311 delayacct_tsk_free(p);
1312 module_put(task_thread_info(p)->exec_domain->module);
1313 bad_fork_cleanup_count:
1314 atomic_dec(&p->cred->user->processes);
1315 exit_creds(p);
1316 bad_fork_free:
1317 free_task(p);
1318 fork_out:
1319 return ERR_PTR(retval);
1320 }
1321
1322 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1323 {
1324 memset(regs, 0, sizeof(struct pt_regs));
1325 return regs;
1326 }
1327
1328 struct task_struct * __cpuinit fork_idle(int cpu)
1329 {
1330 struct task_struct *task;
1331 struct pt_regs regs;
1332
1333 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1334 &init_struct_pid, 0);
1335 if (!IS_ERR(task))
1336 init_idle(task, cpu);
1337
1338 return task;
1339 }
1340
1341 /*
1342 * Ok, this is the main fork-routine.
1343 *
1344 * It copies the process, and if successful kick-starts
1345 * it and waits for it to finish using the VM if required.
1346 */
1347 long do_fork(unsigned long clone_flags,
1348 unsigned long stack_start,
1349 struct pt_regs *regs,
1350 unsigned long stack_size,
1351 int __user *parent_tidptr,
1352 int __user *child_tidptr)
1353 {
1354 struct task_struct *p;
1355 int trace = 0;
1356 long nr;
1357
1358 /*
1359 * Do some preliminary argument and permissions checking before we
1360 * actually start allocating stuff
1361 */
1362 if (clone_flags & CLONE_NEWUSER) {
1363 if (clone_flags & CLONE_THREAD)
1364 return -EINVAL;
1365 /* hopefully this check will go away when userns support is
1366 * complete
1367 */
1368 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1369 !capable(CAP_SETGID))
1370 return -EPERM;
1371 }
1372
1373 /*
1374 * We hope to recycle these flags after 2.6.26
1375 */
1376 if (unlikely(clone_flags & CLONE_STOPPED)) {
1377 static int __read_mostly count = 100;
1378
1379 if (count > 0 && printk_ratelimit()) {
1380 char comm[TASK_COMM_LEN];
1381
1382 count--;
1383 printk(KERN_INFO "fork(): process `%s' used deprecated "
1384 "clone flags 0x%lx\n",
1385 get_task_comm(comm, current),
1386 clone_flags & CLONE_STOPPED);
1387 }
1388 }
1389
1390 /*
1391 * When called from kernel_thread, don't do user tracing stuff.
1392 */
1393 if (likely(user_mode(regs)))
1394 trace = tracehook_prepare_clone(clone_flags);
1395
1396 p = copy_process(clone_flags, stack_start, regs, stack_size,
1397 child_tidptr, NULL, trace);
1398 /*
1399 * Do this prior waking up the new thread - the thread pointer
1400 * might get invalid after that point, if the thread exits quickly.
1401 */
1402 if (!IS_ERR(p)) {
1403 struct completion vfork;
1404
1405 trace_sched_process_fork(current, p);
1406
1407 nr = task_pid_vnr(p);
1408
1409 if (clone_flags & CLONE_PARENT_SETTID)
1410 put_user(nr, parent_tidptr);
1411
1412 if (clone_flags & CLONE_VFORK) {
1413 p->vfork_done = &vfork;
1414 init_completion(&vfork);
1415 }
1416
1417 audit_finish_fork(p);
1418 tracehook_report_clone(regs, clone_flags, nr, p);
1419
1420 /*
1421 * We set PF_STARTING at creation in case tracing wants to
1422 * use this to distinguish a fully live task from one that
1423 * hasn't gotten to tracehook_report_clone() yet. Now we
1424 * clear it and set the child going.
1425 */
1426 p->flags &= ~PF_STARTING;
1427
1428 if (unlikely(clone_flags & CLONE_STOPPED)) {
1429 /*
1430 * We'll start up with an immediate SIGSTOP.
1431 */
1432 sigaddset(&p->pending.signal, SIGSTOP);
1433 set_tsk_thread_flag(p, TIF_SIGPENDING);
1434 __set_task_state(p, TASK_STOPPED);
1435 } else {
1436 wake_up_new_task(p, clone_flags);
1437 }
1438
1439 tracehook_report_clone_complete(trace, regs,
1440 clone_flags, nr, p);
1441
1442 if (clone_flags & CLONE_VFORK) {
1443 freezer_do_not_count();
1444 wait_for_completion(&vfork);
1445 freezer_count();
1446 tracehook_report_vfork_done(p, nr);
1447 }
1448 } else {
1449 nr = PTR_ERR(p);
1450 }
1451 return nr;
1452 }
1453
1454 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1455 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1456 #endif
1457
1458 static void sighand_ctor(void *data)
1459 {
1460 struct sighand_struct *sighand = data;
1461
1462 spin_lock_init(&sighand->siglock);
1463 init_waitqueue_head(&sighand->signalfd_wqh);
1464 }
1465
1466 void __init proc_caches_init(void)
1467 {
1468 sighand_cachep = kmem_cache_create("sighand_cache",
1469 sizeof(struct sighand_struct), 0,
1470 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1471 SLAB_NOTRACK, sighand_ctor);
1472 signal_cachep = kmem_cache_create("signal_cache",
1473 sizeof(struct signal_struct), 0,
1474 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1475 files_cachep = kmem_cache_create("files_cache",
1476 sizeof(struct files_struct), 0,
1477 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1478 fs_cachep = kmem_cache_create("fs_cache",
1479 sizeof(struct fs_struct), 0,
1480 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1481 mm_cachep = kmem_cache_create("mm_struct",
1482 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1483 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1484 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1485 mmap_init();
1486 }
1487
1488 /*
1489 * Check constraints on flags passed to the unshare system call and
1490 * force unsharing of additional process context as appropriate.
1491 */
1492 static void check_unshare_flags(unsigned long *flags_ptr)
1493 {
1494 /*
1495 * If unsharing a thread from a thread group, must also
1496 * unshare vm.
1497 */
1498 if (*flags_ptr & CLONE_THREAD)
1499 *flags_ptr |= CLONE_VM;
1500
1501 /*
1502 * If unsharing vm, must also unshare signal handlers.
1503 */
1504 if (*flags_ptr & CLONE_VM)
1505 *flags_ptr |= CLONE_SIGHAND;
1506
1507 /*
1508 * If unsharing signal handlers and the task was created
1509 * using CLONE_THREAD, then must unshare the thread
1510 */
1511 if ((*flags_ptr & CLONE_SIGHAND) &&
1512 (atomic_read(&current->signal->count) > 1))
1513 *flags_ptr |= CLONE_THREAD;
1514
1515 /*
1516 * If unsharing namespace, must also unshare filesystem information.
1517 */
1518 if (*flags_ptr & CLONE_NEWNS)
1519 *flags_ptr |= CLONE_FS;
1520 }
1521
1522 /*
1523 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1524 */
1525 static int unshare_thread(unsigned long unshare_flags)
1526 {
1527 if (unshare_flags & CLONE_THREAD)
1528 return -EINVAL;
1529
1530 return 0;
1531 }
1532
1533 /*
1534 * Unshare the filesystem structure if it is being shared
1535 */
1536 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1537 {
1538 struct fs_struct *fs = current->fs;
1539
1540 if (!(unshare_flags & CLONE_FS) || !fs)
1541 return 0;
1542
1543 /* don't need lock here; in the worst case we'll do useless copy */
1544 if (fs->users == 1)
1545 return 0;
1546
1547 *new_fsp = copy_fs_struct(fs);
1548 if (!*new_fsp)
1549 return -ENOMEM;
1550
1551 return 0;
1552 }
1553
1554 /*
1555 * Unsharing of sighand is not supported yet
1556 */
1557 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1558 {
1559 struct sighand_struct *sigh = current->sighand;
1560
1561 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1562 return -EINVAL;
1563 else
1564 return 0;
1565 }
1566
1567 /*
1568 * Unshare vm if it is being shared
1569 */
1570 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1571 {
1572 struct mm_struct *mm = current->mm;
1573
1574 if ((unshare_flags & CLONE_VM) &&
1575 (mm && atomic_read(&mm->mm_users) > 1)) {
1576 return -EINVAL;
1577 }
1578
1579 return 0;
1580 }
1581
1582 /*
1583 * Unshare file descriptor table if it is being shared
1584 */
1585 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1586 {
1587 struct files_struct *fd = current->files;
1588 int error = 0;
1589
1590 if ((unshare_flags & CLONE_FILES) &&
1591 (fd && atomic_read(&fd->count) > 1)) {
1592 *new_fdp = dup_fd(fd, &error);
1593 if (!*new_fdp)
1594 return error;
1595 }
1596
1597 return 0;
1598 }
1599
1600 /*
1601 * unshare allows a process to 'unshare' part of the process
1602 * context which was originally shared using clone. copy_*
1603 * functions used by do_fork() cannot be used here directly
1604 * because they modify an inactive task_struct that is being
1605 * constructed. Here we are modifying the current, active,
1606 * task_struct.
1607 */
1608 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1609 {
1610 int err = 0;
1611 struct fs_struct *fs, *new_fs = NULL;
1612 struct sighand_struct *new_sigh = NULL;
1613 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1614 struct files_struct *fd, *new_fd = NULL;
1615 struct nsproxy *new_nsproxy = NULL;
1616 int do_sysvsem = 0;
1617
1618 check_unshare_flags(&unshare_flags);
1619
1620 /* Return -EINVAL for all unsupported flags */
1621 err = -EINVAL;
1622 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1623 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1624 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1625 goto bad_unshare_out;
1626
1627 /*
1628 * CLONE_NEWIPC must also detach from the undolist: after switching
1629 * to a new ipc namespace, the semaphore arrays from the old
1630 * namespace are unreachable.
1631 */
1632 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1633 do_sysvsem = 1;
1634 if ((err = unshare_thread(unshare_flags)))
1635 goto bad_unshare_out;
1636 if ((err = unshare_fs(unshare_flags, &new_fs)))
1637 goto bad_unshare_cleanup_thread;
1638 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1639 goto bad_unshare_cleanup_fs;
1640 if ((err = unshare_vm(unshare_flags, &new_mm)))
1641 goto bad_unshare_cleanup_sigh;
1642 if ((err = unshare_fd(unshare_flags, &new_fd)))
1643 goto bad_unshare_cleanup_vm;
1644 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1645 new_fs)))
1646 goto bad_unshare_cleanup_fd;
1647
1648 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1649 if (do_sysvsem) {
1650 /*
1651 * CLONE_SYSVSEM is equivalent to sys_exit().
1652 */
1653 exit_sem(current);
1654 }
1655
1656 if (new_nsproxy) {
1657 switch_task_namespaces(current, new_nsproxy);
1658 new_nsproxy = NULL;
1659 }
1660
1661 task_lock(current);
1662
1663 if (new_fs) {
1664 fs = current->fs;
1665 write_lock(&fs->lock);
1666 current->fs = new_fs;
1667 if (--fs->users)
1668 new_fs = NULL;
1669 else
1670 new_fs = fs;
1671 write_unlock(&fs->lock);
1672 }
1673
1674 if (new_mm) {
1675 mm = current->mm;
1676 active_mm = current->active_mm;
1677 current->mm = new_mm;
1678 current->active_mm = new_mm;
1679 activate_mm(active_mm, new_mm);
1680 new_mm = mm;
1681 }
1682
1683 if (new_fd) {
1684 fd = current->files;
1685 current->files = new_fd;
1686 new_fd = fd;
1687 }
1688
1689 task_unlock(current);
1690 }
1691
1692 if (new_nsproxy)
1693 put_nsproxy(new_nsproxy);
1694
1695 bad_unshare_cleanup_fd:
1696 if (new_fd)
1697 put_files_struct(new_fd);
1698
1699 bad_unshare_cleanup_vm:
1700 if (new_mm)
1701 mmput(new_mm);
1702
1703 bad_unshare_cleanup_sigh:
1704 if (new_sigh)
1705 if (atomic_dec_and_test(&new_sigh->count))
1706 kmem_cache_free(sighand_cachep, new_sigh);
1707
1708 bad_unshare_cleanup_fs:
1709 if (new_fs)
1710 free_fs_struct(new_fs);
1711
1712 bad_unshare_cleanup_thread:
1713 bad_unshare_out:
1714 return err;
1715 }
1716
1717 /*
1718 * Helper to unshare the files of the current task.
1719 * We don't want to expose copy_files internals to
1720 * the exec layer of the kernel.
1721 */
1722
1723 int unshare_files(struct files_struct **displaced)
1724 {
1725 struct task_struct *task = current;
1726 struct files_struct *copy = NULL;
1727 int error;
1728
1729 error = unshare_fd(CLONE_FILES, &copy);
1730 if (error || !copy) {
1731 *displaced = NULL;
1732 return error;
1733 }
1734 *displaced = task->files;
1735 task_lock(task);
1736 task->files = copy;
1737 task_unlock(task);
1738 return 0;
1739 }
This page took 0.103044 seconds and 5 git commands to generate.