tracing/function-return-tracer: free the return stack on free_task()
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <trace/sched.h>
64
65 #include <asm/pgtable.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/mmu_context.h>
69 #include <asm/cacheflush.h>
70 #include <asm/tlbflush.h>
71
72 /*
73 * Protected counters by write_lock_irq(&tasklist_lock)
74 */
75 unsigned long total_forks; /* Handle normal Linux uptimes. */
76 int nr_threads; /* The idle threads do not count.. */
77
78 int max_threads; /* tunable limit on nr_threads */
79
80 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
81
82 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
83
84 DEFINE_TRACE(sched_process_fork);
85
86 int nr_processes(void)
87 {
88 int cpu;
89 int total = 0;
90
91 for_each_online_cpu(cpu)
92 total += per_cpu(process_counts, cpu);
93
94 return total;
95 }
96
97 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
98 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
99 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
100 static struct kmem_cache *task_struct_cachep;
101 #endif
102
103 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
104 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
105 {
106 #ifdef CONFIG_DEBUG_STACK_USAGE
107 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
108 #else
109 gfp_t mask = GFP_KERNEL;
110 #endif
111 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
112 }
113
114 static inline void free_thread_info(struct thread_info *ti)
115 {
116 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
117 }
118 #endif
119
120 /* SLAB cache for signal_struct structures (tsk->signal) */
121 static struct kmem_cache *signal_cachep;
122
123 /* SLAB cache for sighand_struct structures (tsk->sighand) */
124 struct kmem_cache *sighand_cachep;
125
126 /* SLAB cache for files_struct structures (tsk->files) */
127 struct kmem_cache *files_cachep;
128
129 /* SLAB cache for fs_struct structures (tsk->fs) */
130 struct kmem_cache *fs_cachep;
131
132 /* SLAB cache for vm_area_struct structures */
133 struct kmem_cache *vm_area_cachep;
134
135 /* SLAB cache for mm_struct structures (tsk->mm) */
136 static struct kmem_cache *mm_cachep;
137
138 void free_task(struct task_struct *tsk)
139 {
140 prop_local_destroy_single(&tsk->dirties);
141 free_thread_info(tsk->stack);
142 rt_mutex_debug_task_free(tsk);
143 ftrace_retfunc_exit_task(tsk);
144 free_task_struct(tsk);
145 }
146 EXPORT_SYMBOL(free_task);
147
148 void __put_task_struct(struct task_struct *tsk)
149 {
150 WARN_ON(!tsk->exit_state);
151 WARN_ON(atomic_read(&tsk->usage));
152 WARN_ON(tsk == current);
153
154 security_task_free(tsk);
155 free_uid(tsk->user);
156 put_group_info(tsk->group_info);
157 delayacct_tsk_free(tsk);
158
159 if (!profile_handoff_task(tsk))
160 free_task(tsk);
161 }
162
163 /*
164 * macro override instead of weak attribute alias, to workaround
165 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
166 */
167 #ifndef arch_task_cache_init
168 #define arch_task_cache_init()
169 #endif
170
171 void __init fork_init(unsigned long mempages)
172 {
173 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
174 #ifndef ARCH_MIN_TASKALIGN
175 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
176 #endif
177 /* create a slab on which task_structs can be allocated */
178 task_struct_cachep =
179 kmem_cache_create("task_struct", sizeof(struct task_struct),
180 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
181 #endif
182
183 /* do the arch specific task caches init */
184 arch_task_cache_init();
185
186 /*
187 * The default maximum number of threads is set to a safe
188 * value: the thread structures can take up at most half
189 * of memory.
190 */
191 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
192
193 /*
194 * we need to allow at least 20 threads to boot a system
195 */
196 if(max_threads < 20)
197 max_threads = 20;
198
199 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
200 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
201 init_task.signal->rlim[RLIMIT_SIGPENDING] =
202 init_task.signal->rlim[RLIMIT_NPROC];
203 }
204
205 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
206 struct task_struct *src)
207 {
208 *dst = *src;
209 return 0;
210 }
211
212 static struct task_struct *dup_task_struct(struct task_struct *orig)
213 {
214 struct task_struct *tsk;
215 struct thread_info *ti;
216 int err;
217
218 prepare_to_copy(orig);
219
220 tsk = alloc_task_struct();
221 if (!tsk)
222 return NULL;
223
224 ti = alloc_thread_info(tsk);
225 if (!ti) {
226 free_task_struct(tsk);
227 return NULL;
228 }
229
230 err = arch_dup_task_struct(tsk, orig);
231 if (err)
232 goto out;
233
234 tsk->stack = ti;
235
236 err = prop_local_init_single(&tsk->dirties);
237 if (err)
238 goto out;
239
240 setup_thread_stack(tsk, orig);
241
242 #ifdef CONFIG_CC_STACKPROTECTOR
243 tsk->stack_canary = get_random_int();
244 #endif
245
246 /* One for us, one for whoever does the "release_task()" (usually parent) */
247 atomic_set(&tsk->usage,2);
248 atomic_set(&tsk->fs_excl, 0);
249 #ifdef CONFIG_BLK_DEV_IO_TRACE
250 tsk->btrace_seq = 0;
251 #endif
252 tsk->splice_pipe = NULL;
253 return tsk;
254
255 out:
256 free_thread_info(ti);
257 free_task_struct(tsk);
258 return NULL;
259 }
260
261 #ifdef CONFIG_MMU
262 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
263 {
264 struct vm_area_struct *mpnt, *tmp, **pprev;
265 struct rb_node **rb_link, *rb_parent;
266 int retval;
267 unsigned long charge;
268 struct mempolicy *pol;
269
270 down_write(&oldmm->mmap_sem);
271 flush_cache_dup_mm(oldmm);
272 /*
273 * Not linked in yet - no deadlock potential:
274 */
275 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
276
277 mm->locked_vm = 0;
278 mm->mmap = NULL;
279 mm->mmap_cache = NULL;
280 mm->free_area_cache = oldmm->mmap_base;
281 mm->cached_hole_size = ~0UL;
282 mm->map_count = 0;
283 cpus_clear(mm->cpu_vm_mask);
284 mm->mm_rb = RB_ROOT;
285 rb_link = &mm->mm_rb.rb_node;
286 rb_parent = NULL;
287 pprev = &mm->mmap;
288
289 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
290 struct file *file;
291
292 if (mpnt->vm_flags & VM_DONTCOPY) {
293 long pages = vma_pages(mpnt);
294 mm->total_vm -= pages;
295 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
296 -pages);
297 continue;
298 }
299 charge = 0;
300 if (mpnt->vm_flags & VM_ACCOUNT) {
301 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
302 if (security_vm_enough_memory(len))
303 goto fail_nomem;
304 charge = len;
305 }
306 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
307 if (!tmp)
308 goto fail_nomem;
309 *tmp = *mpnt;
310 pol = mpol_dup(vma_policy(mpnt));
311 retval = PTR_ERR(pol);
312 if (IS_ERR(pol))
313 goto fail_nomem_policy;
314 vma_set_policy(tmp, pol);
315 tmp->vm_flags &= ~VM_LOCKED;
316 tmp->vm_mm = mm;
317 tmp->vm_next = NULL;
318 anon_vma_link(tmp);
319 file = tmp->vm_file;
320 if (file) {
321 struct inode *inode = file->f_path.dentry->d_inode;
322 get_file(file);
323 if (tmp->vm_flags & VM_DENYWRITE)
324 atomic_dec(&inode->i_writecount);
325
326 /* insert tmp into the share list, just after mpnt */
327 spin_lock(&file->f_mapping->i_mmap_lock);
328 tmp->vm_truncate_count = mpnt->vm_truncate_count;
329 flush_dcache_mmap_lock(file->f_mapping);
330 vma_prio_tree_add(tmp, mpnt);
331 flush_dcache_mmap_unlock(file->f_mapping);
332 spin_unlock(&file->f_mapping->i_mmap_lock);
333 }
334
335 /*
336 * Clear hugetlb-related page reserves for children. This only
337 * affects MAP_PRIVATE mappings. Faults generated by the child
338 * are not guaranteed to succeed, even if read-only
339 */
340 if (is_vm_hugetlb_page(tmp))
341 reset_vma_resv_huge_pages(tmp);
342
343 /*
344 * Link in the new vma and copy the page table entries.
345 */
346 *pprev = tmp;
347 pprev = &tmp->vm_next;
348
349 __vma_link_rb(mm, tmp, rb_link, rb_parent);
350 rb_link = &tmp->vm_rb.rb_right;
351 rb_parent = &tmp->vm_rb;
352
353 mm->map_count++;
354 retval = copy_page_range(mm, oldmm, mpnt);
355
356 if (tmp->vm_ops && tmp->vm_ops->open)
357 tmp->vm_ops->open(tmp);
358
359 if (retval)
360 goto out;
361 }
362 /* a new mm has just been created */
363 arch_dup_mmap(oldmm, mm);
364 retval = 0;
365 out:
366 up_write(&mm->mmap_sem);
367 flush_tlb_mm(oldmm);
368 up_write(&oldmm->mmap_sem);
369 return retval;
370 fail_nomem_policy:
371 kmem_cache_free(vm_area_cachep, tmp);
372 fail_nomem:
373 retval = -ENOMEM;
374 vm_unacct_memory(charge);
375 goto out;
376 }
377
378 static inline int mm_alloc_pgd(struct mm_struct * mm)
379 {
380 mm->pgd = pgd_alloc(mm);
381 if (unlikely(!mm->pgd))
382 return -ENOMEM;
383 return 0;
384 }
385
386 static inline void mm_free_pgd(struct mm_struct * mm)
387 {
388 pgd_free(mm, mm->pgd);
389 }
390 #else
391 #define dup_mmap(mm, oldmm) (0)
392 #define mm_alloc_pgd(mm) (0)
393 #define mm_free_pgd(mm)
394 #endif /* CONFIG_MMU */
395
396 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
397
398 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
399 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
400
401 #include <linux/init_task.h>
402
403 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
404 {
405 atomic_set(&mm->mm_users, 1);
406 atomic_set(&mm->mm_count, 1);
407 init_rwsem(&mm->mmap_sem);
408 INIT_LIST_HEAD(&mm->mmlist);
409 mm->flags = (current->mm) ? current->mm->flags
410 : MMF_DUMP_FILTER_DEFAULT;
411 mm->core_state = NULL;
412 mm->nr_ptes = 0;
413 set_mm_counter(mm, file_rss, 0);
414 set_mm_counter(mm, anon_rss, 0);
415 spin_lock_init(&mm->page_table_lock);
416 rwlock_init(&mm->ioctx_list_lock);
417 mm->ioctx_list = NULL;
418 mm->free_area_cache = TASK_UNMAPPED_BASE;
419 mm->cached_hole_size = ~0UL;
420 mm_init_owner(mm, p);
421
422 if (likely(!mm_alloc_pgd(mm))) {
423 mm->def_flags = 0;
424 mmu_notifier_mm_init(mm);
425 return mm;
426 }
427
428 free_mm(mm);
429 return NULL;
430 }
431
432 /*
433 * Allocate and initialize an mm_struct.
434 */
435 struct mm_struct * mm_alloc(void)
436 {
437 struct mm_struct * mm;
438
439 mm = allocate_mm();
440 if (mm) {
441 memset(mm, 0, sizeof(*mm));
442 mm = mm_init(mm, current);
443 }
444 return mm;
445 }
446
447 /*
448 * Called when the last reference to the mm
449 * is dropped: either by a lazy thread or by
450 * mmput. Free the page directory and the mm.
451 */
452 void __mmdrop(struct mm_struct *mm)
453 {
454 BUG_ON(mm == &init_mm);
455 mm_free_pgd(mm);
456 destroy_context(mm);
457 mmu_notifier_mm_destroy(mm);
458 free_mm(mm);
459 }
460 EXPORT_SYMBOL_GPL(__mmdrop);
461
462 /*
463 * Decrement the use count and release all resources for an mm.
464 */
465 void mmput(struct mm_struct *mm)
466 {
467 might_sleep();
468
469 if (atomic_dec_and_test(&mm->mm_users)) {
470 exit_aio(mm);
471 exit_mmap(mm);
472 set_mm_exe_file(mm, NULL);
473 if (!list_empty(&mm->mmlist)) {
474 spin_lock(&mmlist_lock);
475 list_del(&mm->mmlist);
476 spin_unlock(&mmlist_lock);
477 }
478 put_swap_token(mm);
479 mmdrop(mm);
480 }
481 }
482 EXPORT_SYMBOL_GPL(mmput);
483
484 /**
485 * get_task_mm - acquire a reference to the task's mm
486 *
487 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
488 * this kernel workthread has transiently adopted a user mm with use_mm,
489 * to do its AIO) is not set and if so returns a reference to it, after
490 * bumping up the use count. User must release the mm via mmput()
491 * after use. Typically used by /proc and ptrace.
492 */
493 struct mm_struct *get_task_mm(struct task_struct *task)
494 {
495 struct mm_struct *mm;
496
497 task_lock(task);
498 mm = task->mm;
499 if (mm) {
500 if (task->flags & PF_KTHREAD)
501 mm = NULL;
502 else
503 atomic_inc(&mm->mm_users);
504 }
505 task_unlock(task);
506 return mm;
507 }
508 EXPORT_SYMBOL_GPL(get_task_mm);
509
510 /* Please note the differences between mmput and mm_release.
511 * mmput is called whenever we stop holding onto a mm_struct,
512 * error success whatever.
513 *
514 * mm_release is called after a mm_struct has been removed
515 * from the current process.
516 *
517 * This difference is important for error handling, when we
518 * only half set up a mm_struct for a new process and need to restore
519 * the old one. Because we mmput the new mm_struct before
520 * restoring the old one. . .
521 * Eric Biederman 10 January 1998
522 */
523 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
524 {
525 struct completion *vfork_done = tsk->vfork_done;
526
527 /* Get rid of any futexes when releasing the mm */
528 #ifdef CONFIG_FUTEX
529 if (unlikely(tsk->robust_list))
530 exit_robust_list(tsk);
531 #ifdef CONFIG_COMPAT
532 if (unlikely(tsk->compat_robust_list))
533 compat_exit_robust_list(tsk);
534 #endif
535 #endif
536
537 /* Get rid of any cached register state */
538 deactivate_mm(tsk, mm);
539
540 /* notify parent sleeping on vfork() */
541 if (vfork_done) {
542 tsk->vfork_done = NULL;
543 complete(vfork_done);
544 }
545
546 /*
547 * If we're exiting normally, clear a user-space tid field if
548 * requested. We leave this alone when dying by signal, to leave
549 * the value intact in a core dump, and to save the unnecessary
550 * trouble otherwise. Userland only wants this done for a sys_exit.
551 */
552 if (tsk->clear_child_tid
553 && !(tsk->flags & PF_SIGNALED)
554 && atomic_read(&mm->mm_users) > 1) {
555 u32 __user * tidptr = tsk->clear_child_tid;
556 tsk->clear_child_tid = NULL;
557
558 /*
559 * We don't check the error code - if userspace has
560 * not set up a proper pointer then tough luck.
561 */
562 put_user(0, tidptr);
563 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
564 }
565 }
566
567 /*
568 * Allocate a new mm structure and copy contents from the
569 * mm structure of the passed in task structure.
570 */
571 struct mm_struct *dup_mm(struct task_struct *tsk)
572 {
573 struct mm_struct *mm, *oldmm = current->mm;
574 int err;
575
576 if (!oldmm)
577 return NULL;
578
579 mm = allocate_mm();
580 if (!mm)
581 goto fail_nomem;
582
583 memcpy(mm, oldmm, sizeof(*mm));
584
585 /* Initializing for Swap token stuff */
586 mm->token_priority = 0;
587 mm->last_interval = 0;
588
589 if (!mm_init(mm, tsk))
590 goto fail_nomem;
591
592 if (init_new_context(tsk, mm))
593 goto fail_nocontext;
594
595 dup_mm_exe_file(oldmm, mm);
596
597 err = dup_mmap(mm, oldmm);
598 if (err)
599 goto free_pt;
600
601 mm->hiwater_rss = get_mm_rss(mm);
602 mm->hiwater_vm = mm->total_vm;
603
604 return mm;
605
606 free_pt:
607 mmput(mm);
608
609 fail_nomem:
610 return NULL;
611
612 fail_nocontext:
613 /*
614 * If init_new_context() failed, we cannot use mmput() to free the mm
615 * because it calls destroy_context()
616 */
617 mm_free_pgd(mm);
618 free_mm(mm);
619 return NULL;
620 }
621
622 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
623 {
624 struct mm_struct * mm, *oldmm;
625 int retval;
626
627 tsk->min_flt = tsk->maj_flt = 0;
628 tsk->nvcsw = tsk->nivcsw = 0;
629
630 tsk->mm = NULL;
631 tsk->active_mm = NULL;
632
633 /*
634 * Are we cloning a kernel thread?
635 *
636 * We need to steal a active VM for that..
637 */
638 oldmm = current->mm;
639 if (!oldmm)
640 return 0;
641
642 if (clone_flags & CLONE_VM) {
643 atomic_inc(&oldmm->mm_users);
644 mm = oldmm;
645 goto good_mm;
646 }
647
648 retval = -ENOMEM;
649 mm = dup_mm(tsk);
650 if (!mm)
651 goto fail_nomem;
652
653 good_mm:
654 /* Initializing for Swap token stuff */
655 mm->token_priority = 0;
656 mm->last_interval = 0;
657
658 tsk->mm = mm;
659 tsk->active_mm = mm;
660 return 0;
661
662 fail_nomem:
663 return retval;
664 }
665
666 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
667 {
668 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
669 /* We don't need to lock fs - think why ;-) */
670 if (fs) {
671 atomic_set(&fs->count, 1);
672 rwlock_init(&fs->lock);
673 fs->umask = old->umask;
674 read_lock(&old->lock);
675 fs->root = old->root;
676 path_get(&old->root);
677 fs->pwd = old->pwd;
678 path_get(&old->pwd);
679 read_unlock(&old->lock);
680 }
681 return fs;
682 }
683
684 struct fs_struct *copy_fs_struct(struct fs_struct *old)
685 {
686 return __copy_fs_struct(old);
687 }
688
689 EXPORT_SYMBOL_GPL(copy_fs_struct);
690
691 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
692 {
693 if (clone_flags & CLONE_FS) {
694 atomic_inc(&current->fs->count);
695 return 0;
696 }
697 tsk->fs = __copy_fs_struct(current->fs);
698 if (!tsk->fs)
699 return -ENOMEM;
700 return 0;
701 }
702
703 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
704 {
705 struct files_struct *oldf, *newf;
706 int error = 0;
707
708 /*
709 * A background process may not have any files ...
710 */
711 oldf = current->files;
712 if (!oldf)
713 goto out;
714
715 if (clone_flags & CLONE_FILES) {
716 atomic_inc(&oldf->count);
717 goto out;
718 }
719
720 newf = dup_fd(oldf, &error);
721 if (!newf)
722 goto out;
723
724 tsk->files = newf;
725 error = 0;
726 out:
727 return error;
728 }
729
730 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
731 {
732 #ifdef CONFIG_BLOCK
733 struct io_context *ioc = current->io_context;
734
735 if (!ioc)
736 return 0;
737 /*
738 * Share io context with parent, if CLONE_IO is set
739 */
740 if (clone_flags & CLONE_IO) {
741 tsk->io_context = ioc_task_link(ioc);
742 if (unlikely(!tsk->io_context))
743 return -ENOMEM;
744 } else if (ioprio_valid(ioc->ioprio)) {
745 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
746 if (unlikely(!tsk->io_context))
747 return -ENOMEM;
748
749 tsk->io_context->ioprio = ioc->ioprio;
750 }
751 #endif
752 return 0;
753 }
754
755 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
756 {
757 struct sighand_struct *sig;
758
759 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
760 atomic_inc(&current->sighand->count);
761 return 0;
762 }
763 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
764 rcu_assign_pointer(tsk->sighand, sig);
765 if (!sig)
766 return -ENOMEM;
767 atomic_set(&sig->count, 1);
768 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
769 return 0;
770 }
771
772 void __cleanup_sighand(struct sighand_struct *sighand)
773 {
774 if (atomic_dec_and_test(&sighand->count))
775 kmem_cache_free(sighand_cachep, sighand);
776 }
777
778
779 /*
780 * Initialize POSIX timer handling for a thread group.
781 */
782 static void posix_cpu_timers_init_group(struct signal_struct *sig)
783 {
784 /* Thread group counters. */
785 thread_group_cputime_init(sig);
786
787 /* Expiration times and increments. */
788 sig->it_virt_expires = cputime_zero;
789 sig->it_virt_incr = cputime_zero;
790 sig->it_prof_expires = cputime_zero;
791 sig->it_prof_incr = cputime_zero;
792
793 /* Cached expiration times. */
794 sig->cputime_expires.prof_exp = cputime_zero;
795 sig->cputime_expires.virt_exp = cputime_zero;
796 sig->cputime_expires.sched_exp = 0;
797
798 /* The timer lists. */
799 INIT_LIST_HEAD(&sig->cpu_timers[0]);
800 INIT_LIST_HEAD(&sig->cpu_timers[1]);
801 INIT_LIST_HEAD(&sig->cpu_timers[2]);
802 }
803
804 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
805 {
806 struct signal_struct *sig;
807 int ret;
808
809 if (clone_flags & CLONE_THREAD) {
810 ret = thread_group_cputime_clone_thread(current);
811 if (likely(!ret)) {
812 atomic_inc(&current->signal->count);
813 atomic_inc(&current->signal->live);
814 }
815 return ret;
816 }
817 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
818 tsk->signal = sig;
819 if (!sig)
820 return -ENOMEM;
821
822 ret = copy_thread_group_keys(tsk);
823 if (ret < 0) {
824 kmem_cache_free(signal_cachep, sig);
825 return ret;
826 }
827
828 atomic_set(&sig->count, 1);
829 atomic_set(&sig->live, 1);
830 init_waitqueue_head(&sig->wait_chldexit);
831 sig->flags = 0;
832 sig->group_exit_code = 0;
833 sig->group_exit_task = NULL;
834 sig->group_stop_count = 0;
835 sig->curr_target = tsk;
836 init_sigpending(&sig->shared_pending);
837 INIT_LIST_HEAD(&sig->posix_timers);
838
839 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
840 sig->it_real_incr.tv64 = 0;
841 sig->real_timer.function = it_real_fn;
842
843 sig->leader = 0; /* session leadership doesn't inherit */
844 sig->tty_old_pgrp = NULL;
845 sig->tty = NULL;
846
847 sig->cutime = sig->cstime = cputime_zero;
848 sig->gtime = cputime_zero;
849 sig->cgtime = cputime_zero;
850 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
851 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
852 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
853 task_io_accounting_init(&sig->ioac);
854 taskstats_tgid_init(sig);
855
856 task_lock(current->group_leader);
857 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
858 task_unlock(current->group_leader);
859
860 posix_cpu_timers_init_group(sig);
861
862 acct_init_pacct(&sig->pacct);
863
864 tty_audit_fork(sig);
865
866 return 0;
867 }
868
869 void __cleanup_signal(struct signal_struct *sig)
870 {
871 thread_group_cputime_free(sig);
872 exit_thread_group_keys(sig);
873 tty_kref_put(sig->tty);
874 kmem_cache_free(signal_cachep, sig);
875 }
876
877 static void cleanup_signal(struct task_struct *tsk)
878 {
879 struct signal_struct *sig = tsk->signal;
880
881 atomic_dec(&sig->live);
882
883 if (atomic_dec_and_test(&sig->count))
884 __cleanup_signal(sig);
885 }
886
887 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
888 {
889 unsigned long new_flags = p->flags;
890
891 new_flags &= ~PF_SUPERPRIV;
892 new_flags |= PF_FORKNOEXEC;
893 new_flags |= PF_STARTING;
894 p->flags = new_flags;
895 clear_freeze_flag(p);
896 }
897
898 asmlinkage long sys_set_tid_address(int __user *tidptr)
899 {
900 current->clear_child_tid = tidptr;
901
902 return task_pid_vnr(current);
903 }
904
905 static void rt_mutex_init_task(struct task_struct *p)
906 {
907 spin_lock_init(&p->pi_lock);
908 #ifdef CONFIG_RT_MUTEXES
909 plist_head_init(&p->pi_waiters, &p->pi_lock);
910 p->pi_blocked_on = NULL;
911 #endif
912 }
913
914 #ifdef CONFIG_MM_OWNER
915 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
916 {
917 mm->owner = p;
918 }
919 #endif /* CONFIG_MM_OWNER */
920
921 /*
922 * Initialize POSIX timer handling for a single task.
923 */
924 static void posix_cpu_timers_init(struct task_struct *tsk)
925 {
926 tsk->cputime_expires.prof_exp = cputime_zero;
927 tsk->cputime_expires.virt_exp = cputime_zero;
928 tsk->cputime_expires.sched_exp = 0;
929 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
930 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
931 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
932 }
933
934 /*
935 * This creates a new process as a copy of the old one,
936 * but does not actually start it yet.
937 *
938 * It copies the registers, and all the appropriate
939 * parts of the process environment (as per the clone
940 * flags). The actual kick-off is left to the caller.
941 */
942 static struct task_struct *copy_process(unsigned long clone_flags,
943 unsigned long stack_start,
944 struct pt_regs *regs,
945 unsigned long stack_size,
946 int __user *child_tidptr,
947 struct pid *pid,
948 int trace)
949 {
950 int retval;
951 struct task_struct *p;
952 int cgroup_callbacks_done = 0;
953
954 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
955 return ERR_PTR(-EINVAL);
956
957 /*
958 * Thread groups must share signals as well, and detached threads
959 * can only be started up within the thread group.
960 */
961 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
962 return ERR_PTR(-EINVAL);
963
964 /*
965 * Shared signal handlers imply shared VM. By way of the above,
966 * thread groups also imply shared VM. Blocking this case allows
967 * for various simplifications in other code.
968 */
969 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
970 return ERR_PTR(-EINVAL);
971
972 retval = security_task_create(clone_flags);
973 if (retval)
974 goto fork_out;
975
976 retval = -ENOMEM;
977 p = dup_task_struct(current);
978 if (!p)
979 goto fork_out;
980
981 rt_mutex_init_task(p);
982
983 #ifdef CONFIG_PROVE_LOCKING
984 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
985 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
986 #endif
987 retval = -EAGAIN;
988 if (atomic_read(&p->user->processes) >=
989 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
990 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
991 p->user != current->nsproxy->user_ns->root_user)
992 goto bad_fork_free;
993 }
994
995 atomic_inc(&p->user->__count);
996 atomic_inc(&p->user->processes);
997 get_group_info(p->group_info);
998
999 /*
1000 * If multiple threads are within copy_process(), then this check
1001 * triggers too late. This doesn't hurt, the check is only there
1002 * to stop root fork bombs.
1003 */
1004 if (nr_threads >= max_threads)
1005 goto bad_fork_cleanup_count;
1006
1007 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1008 goto bad_fork_cleanup_count;
1009
1010 if (p->binfmt && !try_module_get(p->binfmt->module))
1011 goto bad_fork_cleanup_put_domain;
1012
1013 p->did_exec = 0;
1014 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1015 copy_flags(clone_flags, p);
1016 INIT_LIST_HEAD(&p->children);
1017 INIT_LIST_HEAD(&p->sibling);
1018 #ifdef CONFIG_PREEMPT_RCU
1019 p->rcu_read_lock_nesting = 0;
1020 p->rcu_flipctr_idx = 0;
1021 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1022 p->vfork_done = NULL;
1023 spin_lock_init(&p->alloc_lock);
1024
1025 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1026 init_sigpending(&p->pending);
1027
1028 p->utime = cputime_zero;
1029 p->stime = cputime_zero;
1030 p->gtime = cputime_zero;
1031 p->utimescaled = cputime_zero;
1032 p->stimescaled = cputime_zero;
1033 p->prev_utime = cputime_zero;
1034 p->prev_stime = cputime_zero;
1035
1036 p->default_timer_slack_ns = current->timer_slack_ns;
1037
1038 #ifdef CONFIG_DETECT_SOFTLOCKUP
1039 p->last_switch_count = 0;
1040 p->last_switch_timestamp = 0;
1041 #endif
1042
1043 task_io_accounting_init(&p->ioac);
1044 acct_clear_integrals(p);
1045
1046 posix_cpu_timers_init(p);
1047
1048 p->lock_depth = -1; /* -1 = no lock */
1049 do_posix_clock_monotonic_gettime(&p->start_time);
1050 p->real_start_time = p->start_time;
1051 monotonic_to_bootbased(&p->real_start_time);
1052 #ifdef CONFIG_SECURITY
1053 p->security = NULL;
1054 #endif
1055 p->cap_bset = current->cap_bset;
1056 p->io_context = NULL;
1057 p->audit_context = NULL;
1058 cgroup_fork(p);
1059 #ifdef CONFIG_NUMA
1060 p->mempolicy = mpol_dup(p->mempolicy);
1061 if (IS_ERR(p->mempolicy)) {
1062 retval = PTR_ERR(p->mempolicy);
1063 p->mempolicy = NULL;
1064 goto bad_fork_cleanup_cgroup;
1065 }
1066 mpol_fix_fork_child_flag(p);
1067 #endif
1068 #ifdef CONFIG_TRACE_IRQFLAGS
1069 p->irq_events = 0;
1070 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1071 p->hardirqs_enabled = 1;
1072 #else
1073 p->hardirqs_enabled = 0;
1074 #endif
1075 p->hardirq_enable_ip = 0;
1076 p->hardirq_enable_event = 0;
1077 p->hardirq_disable_ip = _THIS_IP_;
1078 p->hardirq_disable_event = 0;
1079 p->softirqs_enabled = 1;
1080 p->softirq_enable_ip = _THIS_IP_;
1081 p->softirq_enable_event = 0;
1082 p->softirq_disable_ip = 0;
1083 p->softirq_disable_event = 0;
1084 p->hardirq_context = 0;
1085 p->softirq_context = 0;
1086 #endif
1087 #ifdef CONFIG_LOCKDEP
1088 p->lockdep_depth = 0; /* no locks held yet */
1089 p->curr_chain_key = 0;
1090 p->lockdep_recursion = 0;
1091 #endif
1092
1093 #ifdef CONFIG_DEBUG_MUTEXES
1094 p->blocked_on = NULL; /* not blocked yet */
1095 #endif
1096
1097 /* Perform scheduler related setup. Assign this task to a CPU. */
1098 sched_fork(p, clone_flags);
1099
1100 if ((retval = security_task_alloc(p)))
1101 goto bad_fork_cleanup_policy;
1102 if ((retval = audit_alloc(p)))
1103 goto bad_fork_cleanup_security;
1104 /* copy all the process information */
1105 if ((retval = copy_semundo(clone_flags, p)))
1106 goto bad_fork_cleanup_audit;
1107 if ((retval = copy_files(clone_flags, p)))
1108 goto bad_fork_cleanup_semundo;
1109 if ((retval = copy_fs(clone_flags, p)))
1110 goto bad_fork_cleanup_files;
1111 if ((retval = copy_sighand(clone_flags, p)))
1112 goto bad_fork_cleanup_fs;
1113 if ((retval = copy_signal(clone_flags, p)))
1114 goto bad_fork_cleanup_sighand;
1115 if ((retval = copy_mm(clone_flags, p)))
1116 goto bad_fork_cleanup_signal;
1117 if ((retval = copy_keys(clone_flags, p)))
1118 goto bad_fork_cleanup_mm;
1119 if ((retval = copy_namespaces(clone_flags, p)))
1120 goto bad_fork_cleanup_keys;
1121 if ((retval = copy_io(clone_flags, p)))
1122 goto bad_fork_cleanup_namespaces;
1123 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1124 if (retval)
1125 goto bad_fork_cleanup_io;
1126
1127 if (pid != &init_struct_pid) {
1128 retval = -ENOMEM;
1129 pid = alloc_pid(task_active_pid_ns(p));
1130 if (!pid)
1131 goto bad_fork_cleanup_io;
1132
1133 if (clone_flags & CLONE_NEWPID) {
1134 retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1135 if (retval < 0)
1136 goto bad_fork_free_pid;
1137 }
1138 }
1139
1140 p->pid = pid_nr(pid);
1141 p->tgid = p->pid;
1142 if (clone_flags & CLONE_THREAD)
1143 p->tgid = current->tgid;
1144
1145 if (current->nsproxy != p->nsproxy) {
1146 retval = ns_cgroup_clone(p, pid);
1147 if (retval)
1148 goto bad_fork_free_pid;
1149 }
1150
1151 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1152 /*
1153 * Clear TID on mm_release()?
1154 */
1155 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1156 #ifdef CONFIG_FUTEX
1157 p->robust_list = NULL;
1158 #ifdef CONFIG_COMPAT
1159 p->compat_robust_list = NULL;
1160 #endif
1161 INIT_LIST_HEAD(&p->pi_state_list);
1162 p->pi_state_cache = NULL;
1163 #endif
1164 /*
1165 * sigaltstack should be cleared when sharing the same VM
1166 */
1167 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1168 p->sas_ss_sp = p->sas_ss_size = 0;
1169
1170 /*
1171 * Syscall tracing should be turned off in the child regardless
1172 * of CLONE_PTRACE.
1173 */
1174 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1175 #ifdef TIF_SYSCALL_EMU
1176 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1177 #endif
1178 clear_all_latency_tracing(p);
1179
1180 /* Our parent execution domain becomes current domain
1181 These must match for thread signalling to apply */
1182 p->parent_exec_id = p->self_exec_id;
1183
1184 /* ok, now we should be set up.. */
1185 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1186 p->pdeath_signal = 0;
1187 p->exit_state = 0;
1188
1189 /*
1190 * Ok, make it visible to the rest of the system.
1191 * We dont wake it up yet.
1192 */
1193 p->group_leader = p;
1194 INIT_LIST_HEAD(&p->thread_group);
1195
1196 /* Now that the task is set up, run cgroup callbacks if
1197 * necessary. We need to run them before the task is visible
1198 * on the tasklist. */
1199 cgroup_fork_callbacks(p);
1200 cgroup_callbacks_done = 1;
1201
1202 /* Need tasklist lock for parent etc handling! */
1203 write_lock_irq(&tasklist_lock);
1204
1205 /*
1206 * The task hasn't been attached yet, so its cpus_allowed mask will
1207 * not be changed, nor will its assigned CPU.
1208 *
1209 * The cpus_allowed mask of the parent may have changed after it was
1210 * copied first time - so re-copy it here, then check the child's CPU
1211 * to ensure it is on a valid CPU (and if not, just force it back to
1212 * parent's CPU). This avoids alot of nasty races.
1213 */
1214 p->cpus_allowed = current->cpus_allowed;
1215 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1216 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1217 !cpu_online(task_cpu(p))))
1218 set_task_cpu(p, smp_processor_id());
1219
1220 /* CLONE_PARENT re-uses the old parent */
1221 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1222 p->real_parent = current->real_parent;
1223 else
1224 p->real_parent = current;
1225
1226 spin_lock(&current->sighand->siglock);
1227
1228 /*
1229 * Process group and session signals need to be delivered to just the
1230 * parent before the fork or both the parent and the child after the
1231 * fork. Restart if a signal comes in before we add the new process to
1232 * it's process group.
1233 * A fatal signal pending means that current will exit, so the new
1234 * thread can't slip out of an OOM kill (or normal SIGKILL).
1235 */
1236 recalc_sigpending();
1237 if (signal_pending(current)) {
1238 spin_unlock(&current->sighand->siglock);
1239 write_unlock_irq(&tasklist_lock);
1240 retval = -ERESTARTNOINTR;
1241 goto bad_fork_free_pid;
1242 }
1243
1244 if (clone_flags & CLONE_THREAD) {
1245 p->group_leader = current->group_leader;
1246 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1247 }
1248
1249 if (likely(p->pid)) {
1250 list_add_tail(&p->sibling, &p->real_parent->children);
1251 tracehook_finish_clone(p, clone_flags, trace);
1252
1253 if (thread_group_leader(p)) {
1254 if (clone_flags & CLONE_NEWPID)
1255 p->nsproxy->pid_ns->child_reaper = p;
1256
1257 p->signal->leader_pid = pid;
1258 tty_kref_put(p->signal->tty);
1259 p->signal->tty = tty_kref_get(current->signal->tty);
1260 set_task_pgrp(p, task_pgrp_nr(current));
1261 set_task_session(p, task_session_nr(current));
1262 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1263 attach_pid(p, PIDTYPE_SID, task_session(current));
1264 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1265 __get_cpu_var(process_counts)++;
1266 }
1267 attach_pid(p, PIDTYPE_PID, pid);
1268 nr_threads++;
1269 }
1270
1271 total_forks++;
1272 spin_unlock(&current->sighand->siglock);
1273 write_unlock_irq(&tasklist_lock);
1274 ftrace_retfunc_init_task(p);
1275 proc_fork_connector(p);
1276 cgroup_post_fork(p);
1277 return p;
1278
1279 bad_fork_free_pid:
1280 if (pid != &init_struct_pid)
1281 free_pid(pid);
1282 bad_fork_cleanup_io:
1283 put_io_context(p->io_context);
1284 bad_fork_cleanup_namespaces:
1285 exit_task_namespaces(p);
1286 bad_fork_cleanup_keys:
1287 exit_keys(p);
1288 bad_fork_cleanup_mm:
1289 if (p->mm)
1290 mmput(p->mm);
1291 bad_fork_cleanup_signal:
1292 cleanup_signal(p);
1293 bad_fork_cleanup_sighand:
1294 __cleanup_sighand(p->sighand);
1295 bad_fork_cleanup_fs:
1296 exit_fs(p); /* blocking */
1297 bad_fork_cleanup_files:
1298 exit_files(p); /* blocking */
1299 bad_fork_cleanup_semundo:
1300 exit_sem(p);
1301 bad_fork_cleanup_audit:
1302 audit_free(p);
1303 bad_fork_cleanup_security:
1304 security_task_free(p);
1305 bad_fork_cleanup_policy:
1306 #ifdef CONFIG_NUMA
1307 mpol_put(p->mempolicy);
1308 bad_fork_cleanup_cgroup:
1309 #endif
1310 cgroup_exit(p, cgroup_callbacks_done);
1311 delayacct_tsk_free(p);
1312 if (p->binfmt)
1313 module_put(p->binfmt->module);
1314 bad_fork_cleanup_put_domain:
1315 module_put(task_thread_info(p)->exec_domain->module);
1316 bad_fork_cleanup_count:
1317 put_group_info(p->group_info);
1318 atomic_dec(&p->user->processes);
1319 free_uid(p->user);
1320 bad_fork_free:
1321 free_task(p);
1322 fork_out:
1323 return ERR_PTR(retval);
1324 }
1325
1326 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1327 {
1328 memset(regs, 0, sizeof(struct pt_regs));
1329 return regs;
1330 }
1331
1332 struct task_struct * __cpuinit fork_idle(int cpu)
1333 {
1334 struct task_struct *task;
1335 struct pt_regs regs;
1336
1337 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1338 &init_struct_pid, 0);
1339 if (!IS_ERR(task))
1340 init_idle(task, cpu);
1341
1342 return task;
1343 }
1344
1345 /*
1346 * Ok, this is the main fork-routine.
1347 *
1348 * It copies the process, and if successful kick-starts
1349 * it and waits for it to finish using the VM if required.
1350 */
1351 long do_fork(unsigned long clone_flags,
1352 unsigned long stack_start,
1353 struct pt_regs *regs,
1354 unsigned long stack_size,
1355 int __user *parent_tidptr,
1356 int __user *child_tidptr)
1357 {
1358 struct task_struct *p;
1359 int trace = 0;
1360 long nr;
1361
1362 /*
1363 * We hope to recycle these flags after 2.6.26
1364 */
1365 if (unlikely(clone_flags & CLONE_STOPPED)) {
1366 static int __read_mostly count = 100;
1367
1368 if (count > 0 && printk_ratelimit()) {
1369 char comm[TASK_COMM_LEN];
1370
1371 count--;
1372 printk(KERN_INFO "fork(): process `%s' used deprecated "
1373 "clone flags 0x%lx\n",
1374 get_task_comm(comm, current),
1375 clone_flags & CLONE_STOPPED);
1376 }
1377 }
1378
1379 /*
1380 * When called from kernel_thread, don't do user tracing stuff.
1381 */
1382 if (likely(user_mode(regs)))
1383 trace = tracehook_prepare_clone(clone_flags);
1384
1385 p = copy_process(clone_flags, stack_start, regs, stack_size,
1386 child_tidptr, NULL, trace);
1387 /*
1388 * Do this prior waking up the new thread - the thread pointer
1389 * might get invalid after that point, if the thread exits quickly.
1390 */
1391 if (!IS_ERR(p)) {
1392 struct completion vfork;
1393
1394 trace_sched_process_fork(current, p);
1395
1396 nr = task_pid_vnr(p);
1397
1398 if (clone_flags & CLONE_PARENT_SETTID)
1399 put_user(nr, parent_tidptr);
1400
1401 if (clone_flags & CLONE_VFORK) {
1402 p->vfork_done = &vfork;
1403 init_completion(&vfork);
1404 }
1405
1406 tracehook_report_clone(trace, regs, clone_flags, nr, p);
1407
1408 /*
1409 * We set PF_STARTING at creation in case tracing wants to
1410 * use this to distinguish a fully live task from one that
1411 * hasn't gotten to tracehook_report_clone() yet. Now we
1412 * clear it and set the child going.
1413 */
1414 p->flags &= ~PF_STARTING;
1415
1416 if (unlikely(clone_flags & CLONE_STOPPED)) {
1417 /*
1418 * We'll start up with an immediate SIGSTOP.
1419 */
1420 sigaddset(&p->pending.signal, SIGSTOP);
1421 set_tsk_thread_flag(p, TIF_SIGPENDING);
1422 __set_task_state(p, TASK_STOPPED);
1423 } else {
1424 wake_up_new_task(p, clone_flags);
1425 }
1426
1427 tracehook_report_clone_complete(trace, regs,
1428 clone_flags, nr, p);
1429
1430 if (clone_flags & CLONE_VFORK) {
1431 freezer_do_not_count();
1432 wait_for_completion(&vfork);
1433 freezer_count();
1434 tracehook_report_vfork_done(p, nr);
1435 }
1436 } else {
1437 nr = PTR_ERR(p);
1438 }
1439 return nr;
1440 }
1441
1442 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1443 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1444 #endif
1445
1446 static void sighand_ctor(void *data)
1447 {
1448 struct sighand_struct *sighand = data;
1449
1450 spin_lock_init(&sighand->siglock);
1451 init_waitqueue_head(&sighand->signalfd_wqh);
1452 }
1453
1454 void __init proc_caches_init(void)
1455 {
1456 sighand_cachep = kmem_cache_create("sighand_cache",
1457 sizeof(struct sighand_struct), 0,
1458 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1459 sighand_ctor);
1460 signal_cachep = kmem_cache_create("signal_cache",
1461 sizeof(struct signal_struct), 0,
1462 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1463 files_cachep = kmem_cache_create("files_cache",
1464 sizeof(struct files_struct), 0,
1465 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1466 fs_cachep = kmem_cache_create("fs_cache",
1467 sizeof(struct fs_struct), 0,
1468 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1469 vm_area_cachep = kmem_cache_create("vm_area_struct",
1470 sizeof(struct vm_area_struct), 0,
1471 SLAB_PANIC, NULL);
1472 mm_cachep = kmem_cache_create("mm_struct",
1473 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1474 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1475 }
1476
1477 /*
1478 * Check constraints on flags passed to the unshare system call and
1479 * force unsharing of additional process context as appropriate.
1480 */
1481 static void check_unshare_flags(unsigned long *flags_ptr)
1482 {
1483 /*
1484 * If unsharing a thread from a thread group, must also
1485 * unshare vm.
1486 */
1487 if (*flags_ptr & CLONE_THREAD)
1488 *flags_ptr |= CLONE_VM;
1489
1490 /*
1491 * If unsharing vm, must also unshare signal handlers.
1492 */
1493 if (*flags_ptr & CLONE_VM)
1494 *flags_ptr |= CLONE_SIGHAND;
1495
1496 /*
1497 * If unsharing signal handlers and the task was created
1498 * using CLONE_THREAD, then must unshare the thread
1499 */
1500 if ((*flags_ptr & CLONE_SIGHAND) &&
1501 (atomic_read(&current->signal->count) > 1))
1502 *flags_ptr |= CLONE_THREAD;
1503
1504 /*
1505 * If unsharing namespace, must also unshare filesystem information.
1506 */
1507 if (*flags_ptr & CLONE_NEWNS)
1508 *flags_ptr |= CLONE_FS;
1509 }
1510
1511 /*
1512 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1513 */
1514 static int unshare_thread(unsigned long unshare_flags)
1515 {
1516 if (unshare_flags & CLONE_THREAD)
1517 return -EINVAL;
1518
1519 return 0;
1520 }
1521
1522 /*
1523 * Unshare the filesystem structure if it is being shared
1524 */
1525 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1526 {
1527 struct fs_struct *fs = current->fs;
1528
1529 if ((unshare_flags & CLONE_FS) &&
1530 (fs && atomic_read(&fs->count) > 1)) {
1531 *new_fsp = __copy_fs_struct(current->fs);
1532 if (!*new_fsp)
1533 return -ENOMEM;
1534 }
1535
1536 return 0;
1537 }
1538
1539 /*
1540 * Unsharing of sighand is not supported yet
1541 */
1542 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1543 {
1544 struct sighand_struct *sigh = current->sighand;
1545
1546 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1547 return -EINVAL;
1548 else
1549 return 0;
1550 }
1551
1552 /*
1553 * Unshare vm if it is being shared
1554 */
1555 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1556 {
1557 struct mm_struct *mm = current->mm;
1558
1559 if ((unshare_flags & CLONE_VM) &&
1560 (mm && atomic_read(&mm->mm_users) > 1)) {
1561 return -EINVAL;
1562 }
1563
1564 return 0;
1565 }
1566
1567 /*
1568 * Unshare file descriptor table if it is being shared
1569 */
1570 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1571 {
1572 struct files_struct *fd = current->files;
1573 int error = 0;
1574
1575 if ((unshare_flags & CLONE_FILES) &&
1576 (fd && atomic_read(&fd->count) > 1)) {
1577 *new_fdp = dup_fd(fd, &error);
1578 if (!*new_fdp)
1579 return error;
1580 }
1581
1582 return 0;
1583 }
1584
1585 /*
1586 * unshare allows a process to 'unshare' part of the process
1587 * context which was originally shared using clone. copy_*
1588 * functions used by do_fork() cannot be used here directly
1589 * because they modify an inactive task_struct that is being
1590 * constructed. Here we are modifying the current, active,
1591 * task_struct.
1592 */
1593 asmlinkage long sys_unshare(unsigned long unshare_flags)
1594 {
1595 int err = 0;
1596 struct fs_struct *fs, *new_fs = NULL;
1597 struct sighand_struct *new_sigh = NULL;
1598 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1599 struct files_struct *fd, *new_fd = NULL;
1600 struct nsproxy *new_nsproxy = NULL;
1601 int do_sysvsem = 0;
1602
1603 check_unshare_flags(&unshare_flags);
1604
1605 /* Return -EINVAL for all unsupported flags */
1606 err = -EINVAL;
1607 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1608 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1609 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1610 CLONE_NEWNET))
1611 goto bad_unshare_out;
1612
1613 /*
1614 * CLONE_NEWIPC must also detach from the undolist: after switching
1615 * to a new ipc namespace, the semaphore arrays from the old
1616 * namespace are unreachable.
1617 */
1618 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1619 do_sysvsem = 1;
1620 if ((err = unshare_thread(unshare_flags)))
1621 goto bad_unshare_out;
1622 if ((err = unshare_fs(unshare_flags, &new_fs)))
1623 goto bad_unshare_cleanup_thread;
1624 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1625 goto bad_unshare_cleanup_fs;
1626 if ((err = unshare_vm(unshare_flags, &new_mm)))
1627 goto bad_unshare_cleanup_sigh;
1628 if ((err = unshare_fd(unshare_flags, &new_fd)))
1629 goto bad_unshare_cleanup_vm;
1630 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1631 new_fs)))
1632 goto bad_unshare_cleanup_fd;
1633
1634 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1635 if (do_sysvsem) {
1636 /*
1637 * CLONE_SYSVSEM is equivalent to sys_exit().
1638 */
1639 exit_sem(current);
1640 }
1641
1642 if (new_nsproxy) {
1643 switch_task_namespaces(current, new_nsproxy);
1644 new_nsproxy = NULL;
1645 }
1646
1647 task_lock(current);
1648
1649 if (new_fs) {
1650 fs = current->fs;
1651 current->fs = new_fs;
1652 new_fs = fs;
1653 }
1654
1655 if (new_mm) {
1656 mm = current->mm;
1657 active_mm = current->active_mm;
1658 current->mm = new_mm;
1659 current->active_mm = new_mm;
1660 activate_mm(active_mm, new_mm);
1661 new_mm = mm;
1662 }
1663
1664 if (new_fd) {
1665 fd = current->files;
1666 current->files = new_fd;
1667 new_fd = fd;
1668 }
1669
1670 task_unlock(current);
1671 }
1672
1673 if (new_nsproxy)
1674 put_nsproxy(new_nsproxy);
1675
1676 bad_unshare_cleanup_fd:
1677 if (new_fd)
1678 put_files_struct(new_fd);
1679
1680 bad_unshare_cleanup_vm:
1681 if (new_mm)
1682 mmput(new_mm);
1683
1684 bad_unshare_cleanup_sigh:
1685 if (new_sigh)
1686 if (atomic_dec_and_test(&new_sigh->count))
1687 kmem_cache_free(sighand_cachep, new_sigh);
1688
1689 bad_unshare_cleanup_fs:
1690 if (new_fs)
1691 put_fs_struct(new_fs);
1692
1693 bad_unshare_cleanup_thread:
1694 bad_unshare_out:
1695 return err;
1696 }
1697
1698 /*
1699 * Helper to unshare the files of the current task.
1700 * We don't want to expose copy_files internals to
1701 * the exec layer of the kernel.
1702 */
1703
1704 int unshare_files(struct files_struct **displaced)
1705 {
1706 struct task_struct *task = current;
1707 struct files_struct *copy = NULL;
1708 int error;
1709
1710 error = unshare_fd(CLONE_FILES, &copy);
1711 if (error || !copy) {
1712 *displaced = NULL;
1713 return error;
1714 }
1715 *displaced = task->files;
1716 task_lock(task);
1717 task->files = copy;
1718 task_unlock(task);
1719 return 0;
1720 }
This page took 0.065857 seconds and 5 git commands to generate.