[PATCH] files: break up files struct
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/ptrace.h>
39 #include <linux/mount.h>
40 #include <linux/audit.h>
41 #include <linux/profile.h>
42 #include <linux/rmap.h>
43 #include <linux/acct.h>
44
45 #include <asm/pgtable.h>
46 #include <asm/pgalloc.h>
47 #include <asm/uaccess.h>
48 #include <asm/mmu_context.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlbflush.h>
51
52 /*
53 * Protected counters by write_lock_irq(&tasklist_lock)
54 */
55 unsigned long total_forks; /* Handle normal Linux uptimes. */
56 int nr_threads; /* The idle threads do not count.. */
57
58 int max_threads; /* tunable limit on nr_threads */
59
60 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
61
62 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
63
64 EXPORT_SYMBOL(tasklist_lock);
65
66 int nr_processes(void)
67 {
68 int cpu;
69 int total = 0;
70
71 for_each_online_cpu(cpu)
72 total += per_cpu(process_counts, cpu);
73
74 return total;
75 }
76
77 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
78 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
79 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
80 static kmem_cache_t *task_struct_cachep;
81 #endif
82
83 /* SLAB cache for signal_struct structures (tsk->signal) */
84 kmem_cache_t *signal_cachep;
85
86 /* SLAB cache for sighand_struct structures (tsk->sighand) */
87 kmem_cache_t *sighand_cachep;
88
89 /* SLAB cache for files_struct structures (tsk->files) */
90 kmem_cache_t *files_cachep;
91
92 /* SLAB cache for fs_struct structures (tsk->fs) */
93 kmem_cache_t *fs_cachep;
94
95 /* SLAB cache for vm_area_struct structures */
96 kmem_cache_t *vm_area_cachep;
97
98 /* SLAB cache for mm_struct structures (tsk->mm) */
99 static kmem_cache_t *mm_cachep;
100
101 void free_task(struct task_struct *tsk)
102 {
103 free_thread_info(tsk->thread_info);
104 free_task_struct(tsk);
105 }
106 EXPORT_SYMBOL(free_task);
107
108 void __put_task_struct(struct task_struct *tsk)
109 {
110 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
111 WARN_ON(atomic_read(&tsk->usage));
112 WARN_ON(tsk == current);
113
114 if (unlikely(tsk->audit_context))
115 audit_free(tsk);
116 security_task_free(tsk);
117 free_uid(tsk->user);
118 put_group_info(tsk->group_info);
119
120 if (!profile_handoff_task(tsk))
121 free_task(tsk);
122 }
123
124 void __init fork_init(unsigned long mempages)
125 {
126 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
127 #ifndef ARCH_MIN_TASKALIGN
128 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
129 #endif
130 /* create a slab on which task_structs can be allocated */
131 task_struct_cachep =
132 kmem_cache_create("task_struct", sizeof(struct task_struct),
133 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
134 #endif
135
136 /*
137 * The default maximum number of threads is set to a safe
138 * value: the thread structures can take up at most half
139 * of memory.
140 */
141 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
142
143 /*
144 * we need to allow at least 20 threads to boot a system
145 */
146 if(max_threads < 20)
147 max_threads = 20;
148
149 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
150 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
151 init_task.signal->rlim[RLIMIT_SIGPENDING] =
152 init_task.signal->rlim[RLIMIT_NPROC];
153 }
154
155 static struct task_struct *dup_task_struct(struct task_struct *orig)
156 {
157 struct task_struct *tsk;
158 struct thread_info *ti;
159
160 prepare_to_copy(orig);
161
162 tsk = alloc_task_struct();
163 if (!tsk)
164 return NULL;
165
166 ti = alloc_thread_info(tsk);
167 if (!ti) {
168 free_task_struct(tsk);
169 return NULL;
170 }
171
172 *ti = *orig->thread_info;
173 *tsk = *orig;
174 tsk->thread_info = ti;
175 ti->task = tsk;
176
177 /* One for us, one for whoever does the "release_task()" (usually parent) */
178 atomic_set(&tsk->usage,2);
179 atomic_set(&tsk->fs_excl, 0);
180 return tsk;
181 }
182
183 #ifdef CONFIG_MMU
184 static inline int dup_mmap(struct mm_struct * mm, struct mm_struct * oldmm)
185 {
186 struct vm_area_struct * mpnt, *tmp, **pprev;
187 struct rb_node **rb_link, *rb_parent;
188 int retval;
189 unsigned long charge;
190 struct mempolicy *pol;
191
192 down_write(&oldmm->mmap_sem);
193 flush_cache_mm(current->mm);
194 mm->locked_vm = 0;
195 mm->mmap = NULL;
196 mm->mmap_cache = NULL;
197 mm->free_area_cache = oldmm->mmap_base;
198 mm->cached_hole_size = ~0UL;
199 mm->map_count = 0;
200 set_mm_counter(mm, rss, 0);
201 set_mm_counter(mm, anon_rss, 0);
202 cpus_clear(mm->cpu_vm_mask);
203 mm->mm_rb = RB_ROOT;
204 rb_link = &mm->mm_rb.rb_node;
205 rb_parent = NULL;
206 pprev = &mm->mmap;
207
208 for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {
209 struct file *file;
210
211 if (mpnt->vm_flags & VM_DONTCOPY) {
212 long pages = vma_pages(mpnt);
213 mm->total_vm -= pages;
214 __vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
215 -pages);
216 continue;
217 }
218 charge = 0;
219 if (mpnt->vm_flags & VM_ACCOUNT) {
220 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
221 if (security_vm_enough_memory(len))
222 goto fail_nomem;
223 charge = len;
224 }
225 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
226 if (!tmp)
227 goto fail_nomem;
228 *tmp = *mpnt;
229 pol = mpol_copy(vma_policy(mpnt));
230 retval = PTR_ERR(pol);
231 if (IS_ERR(pol))
232 goto fail_nomem_policy;
233 vma_set_policy(tmp, pol);
234 tmp->vm_flags &= ~VM_LOCKED;
235 tmp->vm_mm = mm;
236 tmp->vm_next = NULL;
237 anon_vma_link(tmp);
238 file = tmp->vm_file;
239 if (file) {
240 struct inode *inode = file->f_dentry->d_inode;
241 get_file(file);
242 if (tmp->vm_flags & VM_DENYWRITE)
243 atomic_dec(&inode->i_writecount);
244
245 /* insert tmp into the share list, just after mpnt */
246 spin_lock(&file->f_mapping->i_mmap_lock);
247 tmp->vm_truncate_count = mpnt->vm_truncate_count;
248 flush_dcache_mmap_lock(file->f_mapping);
249 vma_prio_tree_add(tmp, mpnt);
250 flush_dcache_mmap_unlock(file->f_mapping);
251 spin_unlock(&file->f_mapping->i_mmap_lock);
252 }
253
254 /*
255 * Link in the new vma and copy the page table entries:
256 * link in first so that swapoff can see swap entries.
257 * Note that, exceptionally, here the vma is inserted
258 * without holding mm->mmap_sem.
259 */
260 spin_lock(&mm->page_table_lock);
261 *pprev = tmp;
262 pprev = &tmp->vm_next;
263
264 __vma_link_rb(mm, tmp, rb_link, rb_parent);
265 rb_link = &tmp->vm_rb.rb_right;
266 rb_parent = &tmp->vm_rb;
267
268 mm->map_count++;
269 retval = copy_page_range(mm, current->mm, tmp);
270 spin_unlock(&mm->page_table_lock);
271
272 if (tmp->vm_ops && tmp->vm_ops->open)
273 tmp->vm_ops->open(tmp);
274
275 if (retval)
276 goto out;
277 }
278 retval = 0;
279
280 out:
281 flush_tlb_mm(current->mm);
282 up_write(&oldmm->mmap_sem);
283 return retval;
284 fail_nomem_policy:
285 kmem_cache_free(vm_area_cachep, tmp);
286 fail_nomem:
287 retval = -ENOMEM;
288 vm_unacct_memory(charge);
289 goto out;
290 }
291
292 static inline int mm_alloc_pgd(struct mm_struct * mm)
293 {
294 mm->pgd = pgd_alloc(mm);
295 if (unlikely(!mm->pgd))
296 return -ENOMEM;
297 return 0;
298 }
299
300 static inline void mm_free_pgd(struct mm_struct * mm)
301 {
302 pgd_free(mm->pgd);
303 }
304 #else
305 #define dup_mmap(mm, oldmm) (0)
306 #define mm_alloc_pgd(mm) (0)
307 #define mm_free_pgd(mm)
308 #endif /* CONFIG_MMU */
309
310 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
311
312 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
313 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
314
315 #include <linux/init_task.h>
316
317 static struct mm_struct * mm_init(struct mm_struct * mm)
318 {
319 atomic_set(&mm->mm_users, 1);
320 atomic_set(&mm->mm_count, 1);
321 init_rwsem(&mm->mmap_sem);
322 INIT_LIST_HEAD(&mm->mmlist);
323 mm->core_waiters = 0;
324 mm->nr_ptes = 0;
325 spin_lock_init(&mm->page_table_lock);
326 rwlock_init(&mm->ioctx_list_lock);
327 mm->ioctx_list = NULL;
328 mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
329 mm->free_area_cache = TASK_UNMAPPED_BASE;
330 mm->cached_hole_size = ~0UL;
331
332 if (likely(!mm_alloc_pgd(mm))) {
333 mm->def_flags = 0;
334 return mm;
335 }
336 free_mm(mm);
337 return NULL;
338 }
339
340 /*
341 * Allocate and initialize an mm_struct.
342 */
343 struct mm_struct * mm_alloc(void)
344 {
345 struct mm_struct * mm;
346
347 mm = allocate_mm();
348 if (mm) {
349 memset(mm, 0, sizeof(*mm));
350 mm = mm_init(mm);
351 }
352 return mm;
353 }
354
355 /*
356 * Called when the last reference to the mm
357 * is dropped: either by a lazy thread or by
358 * mmput. Free the page directory and the mm.
359 */
360 void fastcall __mmdrop(struct mm_struct *mm)
361 {
362 BUG_ON(mm == &init_mm);
363 mm_free_pgd(mm);
364 destroy_context(mm);
365 free_mm(mm);
366 }
367
368 /*
369 * Decrement the use count and release all resources for an mm.
370 */
371 void mmput(struct mm_struct *mm)
372 {
373 if (atomic_dec_and_test(&mm->mm_users)) {
374 exit_aio(mm);
375 exit_mmap(mm);
376 if (!list_empty(&mm->mmlist)) {
377 spin_lock(&mmlist_lock);
378 list_del(&mm->mmlist);
379 spin_unlock(&mmlist_lock);
380 }
381 put_swap_token(mm);
382 mmdrop(mm);
383 }
384 }
385 EXPORT_SYMBOL_GPL(mmput);
386
387 /**
388 * get_task_mm - acquire a reference to the task's mm
389 *
390 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
391 * this kernel workthread has transiently adopted a user mm with use_mm,
392 * to do its AIO) is not set and if so returns a reference to it, after
393 * bumping up the use count. User must release the mm via mmput()
394 * after use. Typically used by /proc and ptrace.
395 */
396 struct mm_struct *get_task_mm(struct task_struct *task)
397 {
398 struct mm_struct *mm;
399
400 task_lock(task);
401 mm = task->mm;
402 if (mm) {
403 if (task->flags & PF_BORROWED_MM)
404 mm = NULL;
405 else
406 atomic_inc(&mm->mm_users);
407 }
408 task_unlock(task);
409 return mm;
410 }
411 EXPORT_SYMBOL_GPL(get_task_mm);
412
413 /* Please note the differences between mmput and mm_release.
414 * mmput is called whenever we stop holding onto a mm_struct,
415 * error success whatever.
416 *
417 * mm_release is called after a mm_struct has been removed
418 * from the current process.
419 *
420 * This difference is important for error handling, when we
421 * only half set up a mm_struct for a new process and need to restore
422 * the old one. Because we mmput the new mm_struct before
423 * restoring the old one. . .
424 * Eric Biederman 10 January 1998
425 */
426 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
427 {
428 struct completion *vfork_done = tsk->vfork_done;
429
430 /* Get rid of any cached register state */
431 deactivate_mm(tsk, mm);
432
433 /* notify parent sleeping on vfork() */
434 if (vfork_done) {
435 tsk->vfork_done = NULL;
436 complete(vfork_done);
437 }
438 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
439 u32 __user * tidptr = tsk->clear_child_tid;
440 tsk->clear_child_tid = NULL;
441
442 /*
443 * We don't check the error code - if userspace has
444 * not set up a proper pointer then tough luck.
445 */
446 put_user(0, tidptr);
447 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
448 }
449 }
450
451 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
452 {
453 struct mm_struct * mm, *oldmm;
454 int retval;
455
456 tsk->min_flt = tsk->maj_flt = 0;
457 tsk->nvcsw = tsk->nivcsw = 0;
458
459 tsk->mm = NULL;
460 tsk->active_mm = NULL;
461
462 /*
463 * Are we cloning a kernel thread?
464 *
465 * We need to steal a active VM for that..
466 */
467 oldmm = current->mm;
468 if (!oldmm)
469 return 0;
470
471 if (clone_flags & CLONE_VM) {
472 atomic_inc(&oldmm->mm_users);
473 mm = oldmm;
474 /*
475 * There are cases where the PTL is held to ensure no
476 * new threads start up in user mode using an mm, which
477 * allows optimizing out ipis; the tlb_gather_mmu code
478 * is an example.
479 */
480 spin_unlock_wait(&oldmm->page_table_lock);
481 goto good_mm;
482 }
483
484 retval = -ENOMEM;
485 mm = allocate_mm();
486 if (!mm)
487 goto fail_nomem;
488
489 /* Copy the current MM stuff.. */
490 memcpy(mm, oldmm, sizeof(*mm));
491 if (!mm_init(mm))
492 goto fail_nomem;
493
494 if (init_new_context(tsk,mm))
495 goto fail_nocontext;
496
497 retval = dup_mmap(mm, oldmm);
498 if (retval)
499 goto free_pt;
500
501 mm->hiwater_rss = get_mm_counter(mm,rss);
502 mm->hiwater_vm = mm->total_vm;
503
504 good_mm:
505 tsk->mm = mm;
506 tsk->active_mm = mm;
507 return 0;
508
509 free_pt:
510 mmput(mm);
511 fail_nomem:
512 return retval;
513
514 fail_nocontext:
515 /*
516 * If init_new_context() failed, we cannot use mmput() to free the mm
517 * because it calls destroy_context()
518 */
519 mm_free_pgd(mm);
520 free_mm(mm);
521 return retval;
522 }
523
524 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
525 {
526 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
527 /* We don't need to lock fs - think why ;-) */
528 if (fs) {
529 atomic_set(&fs->count, 1);
530 rwlock_init(&fs->lock);
531 fs->umask = old->umask;
532 read_lock(&old->lock);
533 fs->rootmnt = mntget(old->rootmnt);
534 fs->root = dget(old->root);
535 fs->pwdmnt = mntget(old->pwdmnt);
536 fs->pwd = dget(old->pwd);
537 if (old->altroot) {
538 fs->altrootmnt = mntget(old->altrootmnt);
539 fs->altroot = dget(old->altroot);
540 } else {
541 fs->altrootmnt = NULL;
542 fs->altroot = NULL;
543 }
544 read_unlock(&old->lock);
545 }
546 return fs;
547 }
548
549 struct fs_struct *copy_fs_struct(struct fs_struct *old)
550 {
551 return __copy_fs_struct(old);
552 }
553
554 EXPORT_SYMBOL_GPL(copy_fs_struct);
555
556 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
557 {
558 if (clone_flags & CLONE_FS) {
559 atomic_inc(&current->fs->count);
560 return 0;
561 }
562 tsk->fs = __copy_fs_struct(current->fs);
563 if (!tsk->fs)
564 return -ENOMEM;
565 return 0;
566 }
567
568 static int count_open_files(struct files_struct *files, int size)
569 {
570 int i;
571 struct fdtable *fdt;
572
573 /* Find the last open fd */
574 fdt = files_fdtable(files);
575 for (i = size/(8*sizeof(long)); i > 0; ) {
576 if (fdt->open_fds->fds_bits[--i])
577 break;
578 }
579 i = (i+1) * 8 * sizeof(long);
580 return i;
581 }
582
583 static struct files_struct *alloc_files(void)
584 {
585 struct files_struct *newf;
586 struct fdtable *fdt;
587
588 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
589 if (!newf)
590 goto out;
591
592 atomic_set(&newf->count, 1);
593
594 spin_lock_init(&newf->file_lock);
595 fdt = files_fdtable(newf);
596 fdt->next_fd = 0;
597 fdt->max_fds = NR_OPEN_DEFAULT;
598 fdt->max_fdset = __FD_SETSIZE;
599 fdt->close_on_exec = &newf->close_on_exec_init;
600 fdt->open_fds = &newf->open_fds_init;
601 fdt->fd = &newf->fd_array[0];
602 out:
603 return newf;
604 }
605
606 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
607 {
608 struct files_struct *oldf, *newf;
609 struct file **old_fds, **new_fds;
610 int open_files, size, i, error = 0, expand;
611 struct fdtable *old_fdt, *new_fdt;
612
613 /*
614 * A background process may not have any files ...
615 */
616 oldf = current->files;
617 if (!oldf)
618 goto out;
619
620 if (clone_flags & CLONE_FILES) {
621 atomic_inc(&oldf->count);
622 goto out;
623 }
624
625 /*
626 * Note: we may be using current for both targets (See exec.c)
627 * This works because we cache current->files (old) as oldf. Don't
628 * break this.
629 */
630 tsk->files = NULL;
631 error = -ENOMEM;
632 newf = alloc_files();
633 if (!newf)
634 goto out;
635
636 spin_lock(&oldf->file_lock);
637 old_fdt = files_fdtable(oldf);
638 new_fdt = files_fdtable(newf);
639 size = old_fdt->max_fdset;
640 open_files = count_open_files(oldf, old_fdt->max_fdset);
641 expand = 0;
642
643 /*
644 * Check whether we need to allocate a larger fd array or fd set.
645 * Note: we're not a clone task, so the open count won't change.
646 */
647 if (open_files > new_fdt->max_fdset) {
648 new_fdt->max_fdset = 0;
649 expand = 1;
650 }
651 if (open_files > new_fdt->max_fds) {
652 new_fdt->max_fds = 0;
653 expand = 1;
654 }
655
656 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
657 if (expand) {
658 spin_unlock(&oldf->file_lock);
659 spin_lock(&newf->file_lock);
660 error = expand_files(newf, open_files-1);
661 spin_unlock(&newf->file_lock);
662 if (error < 0)
663 goto out_release;
664 spin_lock(&oldf->file_lock);
665 }
666
667 old_fds = old_fdt->fd;
668 new_fds = new_fdt->fd;
669
670 memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
671 memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
672
673 for (i = open_files; i != 0; i--) {
674 struct file *f = *old_fds++;
675 if (f) {
676 get_file(f);
677 } else {
678 /*
679 * The fd may be claimed in the fd bitmap but not yet
680 * instantiated in the files array if a sibling thread
681 * is partway through open(). So make sure that this
682 * fd is available to the new process.
683 */
684 FD_CLR(open_files - i, new_fdt->open_fds);
685 }
686 *new_fds++ = f;
687 }
688 spin_unlock(&oldf->file_lock);
689
690 /* compute the remainder to be cleared */
691 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
692
693 /* This is long word aligned thus could use a optimized version */
694 memset(new_fds, 0, size);
695
696 if (new_fdt->max_fdset > open_files) {
697 int left = (new_fdt->max_fdset-open_files)/8;
698 int start = open_files / (8 * sizeof(unsigned long));
699
700 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
701 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
702 }
703
704 tsk->files = newf;
705 error = 0;
706 out:
707 return error;
708
709 out_release:
710 free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
711 free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
712 free_fd_array(new_fdt->fd, new_fdt->max_fds);
713 kmem_cache_free(files_cachep, newf);
714 goto out;
715 }
716
717 /*
718 * Helper to unshare the files of the current task.
719 * We don't want to expose copy_files internals to
720 * the exec layer of the kernel.
721 */
722
723 int unshare_files(void)
724 {
725 struct files_struct *files = current->files;
726 int rc;
727
728 if(!files)
729 BUG();
730
731 /* This can race but the race causes us to copy when we don't
732 need to and drop the copy */
733 if(atomic_read(&files->count) == 1)
734 {
735 atomic_inc(&files->count);
736 return 0;
737 }
738 rc = copy_files(0, current);
739 if(rc)
740 current->files = files;
741 return rc;
742 }
743
744 EXPORT_SYMBOL(unshare_files);
745
746 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
747 {
748 struct sighand_struct *sig;
749
750 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
751 atomic_inc(&current->sighand->count);
752 return 0;
753 }
754 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
755 tsk->sighand = sig;
756 if (!sig)
757 return -ENOMEM;
758 spin_lock_init(&sig->siglock);
759 atomic_set(&sig->count, 1);
760 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
761 return 0;
762 }
763
764 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
765 {
766 struct signal_struct *sig;
767 int ret;
768
769 if (clone_flags & CLONE_THREAD) {
770 atomic_inc(&current->signal->count);
771 atomic_inc(&current->signal->live);
772 return 0;
773 }
774 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
775 tsk->signal = sig;
776 if (!sig)
777 return -ENOMEM;
778
779 ret = copy_thread_group_keys(tsk);
780 if (ret < 0) {
781 kmem_cache_free(signal_cachep, sig);
782 return ret;
783 }
784
785 atomic_set(&sig->count, 1);
786 atomic_set(&sig->live, 1);
787 init_waitqueue_head(&sig->wait_chldexit);
788 sig->flags = 0;
789 sig->group_exit_code = 0;
790 sig->group_exit_task = NULL;
791 sig->group_stop_count = 0;
792 sig->curr_target = NULL;
793 init_sigpending(&sig->shared_pending);
794 INIT_LIST_HEAD(&sig->posix_timers);
795
796 sig->it_real_value = sig->it_real_incr = 0;
797 sig->real_timer.function = it_real_fn;
798 sig->real_timer.data = (unsigned long) tsk;
799 init_timer(&sig->real_timer);
800
801 sig->it_virt_expires = cputime_zero;
802 sig->it_virt_incr = cputime_zero;
803 sig->it_prof_expires = cputime_zero;
804 sig->it_prof_incr = cputime_zero;
805
806 sig->tty = current->signal->tty;
807 sig->pgrp = process_group(current);
808 sig->session = current->signal->session;
809 sig->leader = 0; /* session leadership doesn't inherit */
810 sig->tty_old_pgrp = 0;
811
812 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
813 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
814 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
815 sig->sched_time = 0;
816 INIT_LIST_HEAD(&sig->cpu_timers[0]);
817 INIT_LIST_HEAD(&sig->cpu_timers[1]);
818 INIT_LIST_HEAD(&sig->cpu_timers[2]);
819
820 task_lock(current->group_leader);
821 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
822 task_unlock(current->group_leader);
823
824 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
825 /*
826 * New sole thread in the process gets an expiry time
827 * of the whole CPU time limit.
828 */
829 tsk->it_prof_expires =
830 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
831 }
832
833 return 0;
834 }
835
836 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
837 {
838 unsigned long new_flags = p->flags;
839
840 new_flags &= ~PF_SUPERPRIV;
841 new_flags |= PF_FORKNOEXEC;
842 if (!(clone_flags & CLONE_PTRACE))
843 p->ptrace = 0;
844 p->flags = new_flags;
845 }
846
847 asmlinkage long sys_set_tid_address(int __user *tidptr)
848 {
849 current->clear_child_tid = tidptr;
850
851 return current->pid;
852 }
853
854 /*
855 * This creates a new process as a copy of the old one,
856 * but does not actually start it yet.
857 *
858 * It copies the registers, and all the appropriate
859 * parts of the process environment (as per the clone
860 * flags). The actual kick-off is left to the caller.
861 */
862 static task_t *copy_process(unsigned long clone_flags,
863 unsigned long stack_start,
864 struct pt_regs *regs,
865 unsigned long stack_size,
866 int __user *parent_tidptr,
867 int __user *child_tidptr,
868 int pid)
869 {
870 int retval;
871 struct task_struct *p = NULL;
872
873 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
874 return ERR_PTR(-EINVAL);
875
876 /*
877 * Thread groups must share signals as well, and detached threads
878 * can only be started up within the thread group.
879 */
880 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
881 return ERR_PTR(-EINVAL);
882
883 /*
884 * Shared signal handlers imply shared VM. By way of the above,
885 * thread groups also imply shared VM. Blocking this case allows
886 * for various simplifications in other code.
887 */
888 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
889 return ERR_PTR(-EINVAL);
890
891 retval = security_task_create(clone_flags);
892 if (retval)
893 goto fork_out;
894
895 retval = -ENOMEM;
896 p = dup_task_struct(current);
897 if (!p)
898 goto fork_out;
899
900 retval = -EAGAIN;
901 if (atomic_read(&p->user->processes) >=
902 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
903 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
904 p->user != &root_user)
905 goto bad_fork_free;
906 }
907
908 atomic_inc(&p->user->__count);
909 atomic_inc(&p->user->processes);
910 get_group_info(p->group_info);
911
912 /*
913 * If multiple threads are within copy_process(), then this check
914 * triggers too late. This doesn't hurt, the check is only there
915 * to stop root fork bombs.
916 */
917 if (nr_threads >= max_threads)
918 goto bad_fork_cleanup_count;
919
920 if (!try_module_get(p->thread_info->exec_domain->module))
921 goto bad_fork_cleanup_count;
922
923 if (p->binfmt && !try_module_get(p->binfmt->module))
924 goto bad_fork_cleanup_put_domain;
925
926 p->did_exec = 0;
927 copy_flags(clone_flags, p);
928 p->pid = pid;
929 retval = -EFAULT;
930 if (clone_flags & CLONE_PARENT_SETTID)
931 if (put_user(p->pid, parent_tidptr))
932 goto bad_fork_cleanup;
933
934 p->proc_dentry = NULL;
935
936 INIT_LIST_HEAD(&p->children);
937 INIT_LIST_HEAD(&p->sibling);
938 p->vfork_done = NULL;
939 spin_lock_init(&p->alloc_lock);
940 spin_lock_init(&p->proc_lock);
941
942 clear_tsk_thread_flag(p, TIF_SIGPENDING);
943 init_sigpending(&p->pending);
944
945 p->utime = cputime_zero;
946 p->stime = cputime_zero;
947 p->sched_time = 0;
948 p->rchar = 0; /* I/O counter: bytes read */
949 p->wchar = 0; /* I/O counter: bytes written */
950 p->syscr = 0; /* I/O counter: read syscalls */
951 p->syscw = 0; /* I/O counter: write syscalls */
952 acct_clear_integrals(p);
953
954 p->it_virt_expires = cputime_zero;
955 p->it_prof_expires = cputime_zero;
956 p->it_sched_expires = 0;
957 INIT_LIST_HEAD(&p->cpu_timers[0]);
958 INIT_LIST_HEAD(&p->cpu_timers[1]);
959 INIT_LIST_HEAD(&p->cpu_timers[2]);
960
961 p->lock_depth = -1; /* -1 = no lock */
962 do_posix_clock_monotonic_gettime(&p->start_time);
963 p->security = NULL;
964 p->io_context = NULL;
965 p->io_wait = NULL;
966 p->audit_context = NULL;
967 #ifdef CONFIG_NUMA
968 p->mempolicy = mpol_copy(p->mempolicy);
969 if (IS_ERR(p->mempolicy)) {
970 retval = PTR_ERR(p->mempolicy);
971 p->mempolicy = NULL;
972 goto bad_fork_cleanup;
973 }
974 #endif
975
976 p->tgid = p->pid;
977 if (clone_flags & CLONE_THREAD)
978 p->tgid = current->tgid;
979
980 if ((retval = security_task_alloc(p)))
981 goto bad_fork_cleanup_policy;
982 if ((retval = audit_alloc(p)))
983 goto bad_fork_cleanup_security;
984 /* copy all the process information */
985 if ((retval = copy_semundo(clone_flags, p)))
986 goto bad_fork_cleanup_audit;
987 if ((retval = copy_files(clone_flags, p)))
988 goto bad_fork_cleanup_semundo;
989 if ((retval = copy_fs(clone_flags, p)))
990 goto bad_fork_cleanup_files;
991 if ((retval = copy_sighand(clone_flags, p)))
992 goto bad_fork_cleanup_fs;
993 if ((retval = copy_signal(clone_flags, p)))
994 goto bad_fork_cleanup_sighand;
995 if ((retval = copy_mm(clone_flags, p)))
996 goto bad_fork_cleanup_signal;
997 if ((retval = copy_keys(clone_flags, p)))
998 goto bad_fork_cleanup_mm;
999 if ((retval = copy_namespace(clone_flags, p)))
1000 goto bad_fork_cleanup_keys;
1001 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1002 if (retval)
1003 goto bad_fork_cleanup_namespace;
1004
1005 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1006 /*
1007 * Clear TID on mm_release()?
1008 */
1009 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1010
1011 /*
1012 * Syscall tracing should be turned off in the child regardless
1013 * of CLONE_PTRACE.
1014 */
1015 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1016 #ifdef TIF_SYSCALL_EMU
1017 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1018 #endif
1019
1020 /* Our parent execution domain becomes current domain
1021 These must match for thread signalling to apply */
1022
1023 p->parent_exec_id = p->self_exec_id;
1024
1025 /* ok, now we should be set up.. */
1026 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1027 p->pdeath_signal = 0;
1028 p->exit_state = 0;
1029
1030 /*
1031 * Ok, make it visible to the rest of the system.
1032 * We dont wake it up yet.
1033 */
1034 p->group_leader = p;
1035 INIT_LIST_HEAD(&p->ptrace_children);
1036 INIT_LIST_HEAD(&p->ptrace_list);
1037
1038 /* Perform scheduler related setup. Assign this task to a CPU. */
1039 sched_fork(p, clone_flags);
1040
1041 /* Need tasklist lock for parent etc handling! */
1042 write_lock_irq(&tasklist_lock);
1043
1044 /*
1045 * The task hasn't been attached yet, so its cpus_allowed mask will
1046 * not be changed, nor will its assigned CPU.
1047 *
1048 * The cpus_allowed mask of the parent may have changed after it was
1049 * copied first time - so re-copy it here, then check the child's CPU
1050 * to ensure it is on a valid CPU (and if not, just force it back to
1051 * parent's CPU). This avoids alot of nasty races.
1052 */
1053 p->cpus_allowed = current->cpus_allowed;
1054 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed)))
1055 set_task_cpu(p, smp_processor_id());
1056
1057 /*
1058 * Check for pending SIGKILL! The new thread should not be allowed
1059 * to slip out of an OOM kill. (or normal SIGKILL.)
1060 */
1061 if (sigismember(&current->pending.signal, SIGKILL)) {
1062 write_unlock_irq(&tasklist_lock);
1063 retval = -EINTR;
1064 goto bad_fork_cleanup_namespace;
1065 }
1066
1067 /* CLONE_PARENT re-uses the old parent */
1068 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1069 p->real_parent = current->real_parent;
1070 else
1071 p->real_parent = current;
1072 p->parent = p->real_parent;
1073
1074 if (clone_flags & CLONE_THREAD) {
1075 spin_lock(&current->sighand->siglock);
1076 /*
1077 * Important: if an exit-all has been started then
1078 * do not create this new thread - the whole thread
1079 * group is supposed to exit anyway.
1080 */
1081 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1082 spin_unlock(&current->sighand->siglock);
1083 write_unlock_irq(&tasklist_lock);
1084 retval = -EAGAIN;
1085 goto bad_fork_cleanup_namespace;
1086 }
1087 p->group_leader = current->group_leader;
1088
1089 if (current->signal->group_stop_count > 0) {
1090 /*
1091 * There is an all-stop in progress for the group.
1092 * We ourselves will stop as soon as we check signals.
1093 * Make the new thread part of that group stop too.
1094 */
1095 current->signal->group_stop_count++;
1096 set_tsk_thread_flag(p, TIF_SIGPENDING);
1097 }
1098
1099 if (!cputime_eq(current->signal->it_virt_expires,
1100 cputime_zero) ||
1101 !cputime_eq(current->signal->it_prof_expires,
1102 cputime_zero) ||
1103 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1104 !list_empty(&current->signal->cpu_timers[0]) ||
1105 !list_empty(&current->signal->cpu_timers[1]) ||
1106 !list_empty(&current->signal->cpu_timers[2])) {
1107 /*
1108 * Have child wake up on its first tick to check
1109 * for process CPU timers.
1110 */
1111 p->it_prof_expires = jiffies_to_cputime(1);
1112 }
1113
1114 spin_unlock(&current->sighand->siglock);
1115 }
1116
1117 /*
1118 * inherit ioprio
1119 */
1120 p->ioprio = current->ioprio;
1121
1122 SET_LINKS(p);
1123 if (unlikely(p->ptrace & PT_PTRACED))
1124 __ptrace_link(p, current->parent);
1125
1126 cpuset_fork(p);
1127
1128 attach_pid(p, PIDTYPE_PID, p->pid);
1129 attach_pid(p, PIDTYPE_TGID, p->tgid);
1130 if (thread_group_leader(p)) {
1131 attach_pid(p, PIDTYPE_PGID, process_group(p));
1132 attach_pid(p, PIDTYPE_SID, p->signal->session);
1133 if (p->pid)
1134 __get_cpu_var(process_counts)++;
1135 }
1136
1137 if (!current->signal->tty && p->signal->tty)
1138 p->signal->tty = NULL;
1139
1140 nr_threads++;
1141 total_forks++;
1142 write_unlock_irq(&tasklist_lock);
1143 retval = 0;
1144
1145 fork_out:
1146 if (retval)
1147 return ERR_PTR(retval);
1148 return p;
1149
1150 bad_fork_cleanup_namespace:
1151 exit_namespace(p);
1152 bad_fork_cleanup_keys:
1153 exit_keys(p);
1154 bad_fork_cleanup_mm:
1155 if (p->mm)
1156 mmput(p->mm);
1157 bad_fork_cleanup_signal:
1158 exit_signal(p);
1159 bad_fork_cleanup_sighand:
1160 exit_sighand(p);
1161 bad_fork_cleanup_fs:
1162 exit_fs(p); /* blocking */
1163 bad_fork_cleanup_files:
1164 exit_files(p); /* blocking */
1165 bad_fork_cleanup_semundo:
1166 exit_sem(p);
1167 bad_fork_cleanup_audit:
1168 audit_free(p);
1169 bad_fork_cleanup_security:
1170 security_task_free(p);
1171 bad_fork_cleanup_policy:
1172 #ifdef CONFIG_NUMA
1173 mpol_free(p->mempolicy);
1174 #endif
1175 bad_fork_cleanup:
1176 if (p->binfmt)
1177 module_put(p->binfmt->module);
1178 bad_fork_cleanup_put_domain:
1179 module_put(p->thread_info->exec_domain->module);
1180 bad_fork_cleanup_count:
1181 put_group_info(p->group_info);
1182 atomic_dec(&p->user->processes);
1183 free_uid(p->user);
1184 bad_fork_free:
1185 free_task(p);
1186 goto fork_out;
1187 }
1188
1189 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1190 {
1191 memset(regs, 0, sizeof(struct pt_regs));
1192 return regs;
1193 }
1194
1195 task_t * __devinit fork_idle(int cpu)
1196 {
1197 task_t *task;
1198 struct pt_regs regs;
1199
1200 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1201 if (!task)
1202 return ERR_PTR(-ENOMEM);
1203 init_idle(task, cpu);
1204 unhash_process(task);
1205 return task;
1206 }
1207
1208 static inline int fork_traceflag (unsigned clone_flags)
1209 {
1210 if (clone_flags & CLONE_UNTRACED)
1211 return 0;
1212 else if (clone_flags & CLONE_VFORK) {
1213 if (current->ptrace & PT_TRACE_VFORK)
1214 return PTRACE_EVENT_VFORK;
1215 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1216 if (current->ptrace & PT_TRACE_CLONE)
1217 return PTRACE_EVENT_CLONE;
1218 } else if (current->ptrace & PT_TRACE_FORK)
1219 return PTRACE_EVENT_FORK;
1220
1221 return 0;
1222 }
1223
1224 /*
1225 * Ok, this is the main fork-routine.
1226 *
1227 * It copies the process, and if successful kick-starts
1228 * it and waits for it to finish using the VM if required.
1229 */
1230 long do_fork(unsigned long clone_flags,
1231 unsigned long stack_start,
1232 struct pt_regs *regs,
1233 unsigned long stack_size,
1234 int __user *parent_tidptr,
1235 int __user *child_tidptr)
1236 {
1237 struct task_struct *p;
1238 int trace = 0;
1239 long pid = alloc_pidmap();
1240
1241 if (pid < 0)
1242 return -EAGAIN;
1243 if (unlikely(current->ptrace)) {
1244 trace = fork_traceflag (clone_flags);
1245 if (trace)
1246 clone_flags |= CLONE_PTRACE;
1247 }
1248
1249 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1250 /*
1251 * Do this prior waking up the new thread - the thread pointer
1252 * might get invalid after that point, if the thread exits quickly.
1253 */
1254 if (!IS_ERR(p)) {
1255 struct completion vfork;
1256
1257 if (clone_flags & CLONE_VFORK) {
1258 p->vfork_done = &vfork;
1259 init_completion(&vfork);
1260 }
1261
1262 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1263 /*
1264 * We'll start up with an immediate SIGSTOP.
1265 */
1266 sigaddset(&p->pending.signal, SIGSTOP);
1267 set_tsk_thread_flag(p, TIF_SIGPENDING);
1268 }
1269
1270 if (!(clone_flags & CLONE_STOPPED))
1271 wake_up_new_task(p, clone_flags);
1272 else
1273 p->state = TASK_STOPPED;
1274
1275 if (unlikely (trace)) {
1276 current->ptrace_message = pid;
1277 ptrace_notify ((trace << 8) | SIGTRAP);
1278 }
1279
1280 if (clone_flags & CLONE_VFORK) {
1281 wait_for_completion(&vfork);
1282 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1283 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1284 }
1285 } else {
1286 free_pidmap(pid);
1287 pid = PTR_ERR(p);
1288 }
1289 return pid;
1290 }
1291
1292 void __init proc_caches_init(void)
1293 {
1294 sighand_cachep = kmem_cache_create("sighand_cache",
1295 sizeof(struct sighand_struct), 0,
1296 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1297 signal_cachep = kmem_cache_create("signal_cache",
1298 sizeof(struct signal_struct), 0,
1299 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1300 files_cachep = kmem_cache_create("files_cache",
1301 sizeof(struct files_struct), 0,
1302 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1303 fs_cachep = kmem_cache_create("fs_cache",
1304 sizeof(struct fs_struct), 0,
1305 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1306 vm_area_cachep = kmem_cache_create("vm_area_struct",
1307 sizeof(struct vm_area_struct), 0,
1308 SLAB_PANIC, NULL, NULL);
1309 mm_cachep = kmem_cache_create("mm_struct",
1310 sizeof(struct mm_struct), 0,
1311 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1312 }
This page took 0.077658 seconds and 5 git commands to generate.