Merge branch 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73
74 #include <asm/pgtable.h>
75 #include <asm/pgalloc.h>
76 #include <asm/uaccess.h>
77 #include <asm/mmu_context.h>
78 #include <asm/cacheflush.h>
79 #include <asm/tlbflush.h>
80
81 #include <trace/events/sched.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/task.h>
85
86 /*
87 * Protected counters by write_lock_irq(&tasklist_lock)
88 */
89 unsigned long total_forks; /* Handle normal Linux uptimes. */
90 int nr_threads; /* The idle threads do not count.. */
91
92 int max_threads; /* tunable limit on nr_threads */
93
94 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
95
96 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
97
98 #ifdef CONFIG_PROVE_RCU
99 int lockdep_tasklist_lock_is_held(void)
100 {
101 return lockdep_is_held(&tasklist_lock);
102 }
103 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
104 #endif /* #ifdef CONFIG_PROVE_RCU */
105
106 int nr_processes(void)
107 {
108 int cpu;
109 int total = 0;
110
111 for_each_possible_cpu(cpu)
112 total += per_cpu(process_counts, cpu);
113
114 return total;
115 }
116
117 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
118 static struct kmem_cache *task_struct_cachep;
119
120 static inline struct task_struct *alloc_task_struct_node(int node)
121 {
122 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
123 }
124
125 void __weak arch_release_task_struct(struct task_struct *tsk) { }
126
127 static inline void free_task_struct(struct task_struct *tsk)
128 {
129 arch_release_task_struct(tsk);
130 kmem_cache_free(task_struct_cachep, tsk);
131 }
132 #endif
133
134 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
135 void __weak arch_release_thread_info(struct thread_info *ti) { }
136
137 /*
138 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
139 * kmemcache based allocator.
140 */
141 # if THREAD_SIZE >= PAGE_SIZE
142 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
143 int node)
144 {
145 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
146 THREAD_SIZE_ORDER);
147
148 return page ? page_address(page) : NULL;
149 }
150
151 static inline void free_thread_info(struct thread_info *ti)
152 {
153 arch_release_thread_info(ti);
154 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
155 }
156 # else
157 static struct kmem_cache *thread_info_cache;
158
159 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
160 int node)
161 {
162 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
163 }
164
165 static void free_thread_info(struct thread_info *ti)
166 {
167 arch_release_thread_info(ti);
168 kmem_cache_free(thread_info_cache, ti);
169 }
170
171 void thread_info_cache_init(void)
172 {
173 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
174 THREAD_SIZE, 0, NULL);
175 BUG_ON(thread_info_cache == NULL);
176 }
177 # endif
178 #endif
179
180 /* SLAB cache for signal_struct structures (tsk->signal) */
181 static struct kmem_cache *signal_cachep;
182
183 /* SLAB cache for sighand_struct structures (tsk->sighand) */
184 struct kmem_cache *sighand_cachep;
185
186 /* SLAB cache for files_struct structures (tsk->files) */
187 struct kmem_cache *files_cachep;
188
189 /* SLAB cache for fs_struct structures (tsk->fs) */
190 struct kmem_cache *fs_cachep;
191
192 /* SLAB cache for vm_area_struct structures */
193 struct kmem_cache *vm_area_cachep;
194
195 /* SLAB cache for mm_struct structures (tsk->mm) */
196 static struct kmem_cache *mm_cachep;
197
198 static void account_kernel_stack(struct thread_info *ti, int account)
199 {
200 struct zone *zone = page_zone(virt_to_page(ti));
201
202 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
203 }
204
205 void free_task(struct task_struct *tsk)
206 {
207 account_kernel_stack(tsk->stack, -1);
208 free_thread_info(tsk->stack);
209 rt_mutex_debug_task_free(tsk);
210 ftrace_graph_exit_task(tsk);
211 put_seccomp_filter(tsk);
212 free_task_struct(tsk);
213 }
214 EXPORT_SYMBOL(free_task);
215
216 static inline void free_signal_struct(struct signal_struct *sig)
217 {
218 taskstats_tgid_free(sig);
219 sched_autogroup_exit(sig);
220 kmem_cache_free(signal_cachep, sig);
221 }
222
223 static inline void put_signal_struct(struct signal_struct *sig)
224 {
225 if (atomic_dec_and_test(&sig->sigcnt))
226 free_signal_struct(sig);
227 }
228
229 void __put_task_struct(struct task_struct *tsk)
230 {
231 WARN_ON(!tsk->exit_state);
232 WARN_ON(atomic_read(&tsk->usage));
233 WARN_ON(tsk == current);
234
235 security_task_free(tsk);
236 exit_creds(tsk);
237 delayacct_tsk_free(tsk);
238 put_signal_struct(tsk->signal);
239
240 if (!profile_handoff_task(tsk))
241 free_task(tsk);
242 }
243 EXPORT_SYMBOL_GPL(__put_task_struct);
244
245 void __init __weak arch_task_cache_init(void) { }
246
247 void __init fork_init(unsigned long mempages)
248 {
249 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
250 #ifndef ARCH_MIN_TASKALIGN
251 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
252 #endif
253 /* create a slab on which task_structs can be allocated */
254 task_struct_cachep =
255 kmem_cache_create("task_struct", sizeof(struct task_struct),
256 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
257 #endif
258
259 /* do the arch specific task caches init */
260 arch_task_cache_init();
261
262 /*
263 * The default maximum number of threads is set to a safe
264 * value: the thread structures can take up at most half
265 * of memory.
266 */
267 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
268
269 /*
270 * we need to allow at least 20 threads to boot a system
271 */
272 if (max_threads < 20)
273 max_threads = 20;
274
275 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
276 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
277 init_task.signal->rlim[RLIMIT_SIGPENDING] =
278 init_task.signal->rlim[RLIMIT_NPROC];
279 }
280
281 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
282 struct task_struct *src)
283 {
284 *dst = *src;
285 return 0;
286 }
287
288 static struct task_struct *dup_task_struct(struct task_struct *orig)
289 {
290 struct task_struct *tsk;
291 struct thread_info *ti;
292 unsigned long *stackend;
293 int node = tsk_fork_get_node(orig);
294 int err;
295
296 tsk = alloc_task_struct_node(node);
297 if (!tsk)
298 return NULL;
299
300 ti = alloc_thread_info_node(tsk, node);
301 if (!ti) {
302 free_task_struct(tsk);
303 return NULL;
304 }
305
306 err = arch_dup_task_struct(tsk, orig);
307
308 /*
309 * We defer looking at err, because we will need this setup
310 * for the clean up path to work correctly.
311 */
312 tsk->stack = ti;
313 setup_thread_stack(tsk, orig);
314
315 if (err)
316 goto out;
317
318 clear_user_return_notifier(tsk);
319 clear_tsk_need_resched(tsk);
320 stackend = end_of_stack(tsk);
321 *stackend = STACK_END_MAGIC; /* for overflow detection */
322
323 #ifdef CONFIG_CC_STACKPROTECTOR
324 tsk->stack_canary = get_random_int();
325 #endif
326
327 /*
328 * One for us, one for whoever does the "release_task()" (usually
329 * parent)
330 */
331 atomic_set(&tsk->usage, 2);
332 #ifdef CONFIG_BLK_DEV_IO_TRACE
333 tsk->btrace_seq = 0;
334 #endif
335 tsk->splice_pipe = NULL;
336
337 account_kernel_stack(ti, 1);
338
339 return tsk;
340
341 out:
342 free_thread_info(ti);
343 free_task_struct(tsk);
344 return NULL;
345 }
346
347 #ifdef CONFIG_MMU
348 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
349 {
350 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
351 struct rb_node **rb_link, *rb_parent;
352 int retval;
353 unsigned long charge;
354 struct mempolicy *pol;
355
356 down_write(&oldmm->mmap_sem);
357 flush_cache_dup_mm(oldmm);
358 /*
359 * Not linked in yet - no deadlock potential:
360 */
361 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
362
363 mm->locked_vm = 0;
364 mm->mmap = NULL;
365 mm->mmap_cache = NULL;
366 mm->free_area_cache = oldmm->mmap_base;
367 mm->cached_hole_size = ~0UL;
368 mm->map_count = 0;
369 cpumask_clear(mm_cpumask(mm));
370 mm->mm_rb = RB_ROOT;
371 rb_link = &mm->mm_rb.rb_node;
372 rb_parent = NULL;
373 pprev = &mm->mmap;
374 retval = ksm_fork(mm, oldmm);
375 if (retval)
376 goto out;
377 retval = khugepaged_fork(mm, oldmm);
378 if (retval)
379 goto out;
380
381 prev = NULL;
382 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
383 struct file *file;
384
385 if (mpnt->vm_flags & VM_DONTCOPY) {
386 long pages = vma_pages(mpnt);
387 mm->total_vm -= pages;
388 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
389 -pages);
390 continue;
391 }
392 charge = 0;
393 if (mpnt->vm_flags & VM_ACCOUNT) {
394 unsigned long len;
395 len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
396 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
397 goto fail_nomem;
398 charge = len;
399 }
400 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
401 if (!tmp)
402 goto fail_nomem;
403 *tmp = *mpnt;
404 INIT_LIST_HEAD(&tmp->anon_vma_chain);
405 pol = mpol_dup(vma_policy(mpnt));
406 retval = PTR_ERR(pol);
407 if (IS_ERR(pol))
408 goto fail_nomem_policy;
409 vma_set_policy(tmp, pol);
410 tmp->vm_mm = mm;
411 if (anon_vma_fork(tmp, mpnt))
412 goto fail_nomem_anon_vma_fork;
413 tmp->vm_flags &= ~VM_LOCKED;
414 tmp->vm_next = tmp->vm_prev = NULL;
415 file = tmp->vm_file;
416 if (file) {
417 struct inode *inode = file->f_path.dentry->d_inode;
418 struct address_space *mapping = file->f_mapping;
419
420 get_file(file);
421 if (tmp->vm_flags & VM_DENYWRITE)
422 atomic_dec(&inode->i_writecount);
423 mutex_lock(&mapping->i_mmap_mutex);
424 if (tmp->vm_flags & VM_SHARED)
425 mapping->i_mmap_writable++;
426 flush_dcache_mmap_lock(mapping);
427 /* insert tmp into the share list, just after mpnt */
428 vma_prio_tree_add(tmp, mpnt);
429 flush_dcache_mmap_unlock(mapping);
430 mutex_unlock(&mapping->i_mmap_mutex);
431 }
432
433 /*
434 * Clear hugetlb-related page reserves for children. This only
435 * affects MAP_PRIVATE mappings. Faults generated by the child
436 * are not guaranteed to succeed, even if read-only
437 */
438 if (is_vm_hugetlb_page(tmp))
439 reset_vma_resv_huge_pages(tmp);
440
441 /*
442 * Link in the new vma and copy the page table entries.
443 */
444 *pprev = tmp;
445 pprev = &tmp->vm_next;
446 tmp->vm_prev = prev;
447 prev = tmp;
448
449 __vma_link_rb(mm, tmp, rb_link, rb_parent);
450 rb_link = &tmp->vm_rb.rb_right;
451 rb_parent = &tmp->vm_rb;
452
453 mm->map_count++;
454 retval = copy_page_range(mm, oldmm, mpnt);
455
456 if (tmp->vm_ops && tmp->vm_ops->open)
457 tmp->vm_ops->open(tmp);
458
459 if (retval)
460 goto out;
461
462 if (file && uprobe_mmap(tmp))
463 goto out;
464 }
465 /* a new mm has just been created */
466 arch_dup_mmap(oldmm, mm);
467 retval = 0;
468 out:
469 up_write(&mm->mmap_sem);
470 flush_tlb_mm(oldmm);
471 up_write(&oldmm->mmap_sem);
472 return retval;
473 fail_nomem_anon_vma_fork:
474 mpol_put(pol);
475 fail_nomem_policy:
476 kmem_cache_free(vm_area_cachep, tmp);
477 fail_nomem:
478 retval = -ENOMEM;
479 vm_unacct_memory(charge);
480 goto out;
481 }
482
483 static inline int mm_alloc_pgd(struct mm_struct *mm)
484 {
485 mm->pgd = pgd_alloc(mm);
486 if (unlikely(!mm->pgd))
487 return -ENOMEM;
488 return 0;
489 }
490
491 static inline void mm_free_pgd(struct mm_struct *mm)
492 {
493 pgd_free(mm, mm->pgd);
494 }
495 #else
496 #define dup_mmap(mm, oldmm) (0)
497 #define mm_alloc_pgd(mm) (0)
498 #define mm_free_pgd(mm)
499 #endif /* CONFIG_MMU */
500
501 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
502
503 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
504 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
505
506 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
507
508 static int __init coredump_filter_setup(char *s)
509 {
510 default_dump_filter =
511 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
512 MMF_DUMP_FILTER_MASK;
513 return 1;
514 }
515
516 __setup("coredump_filter=", coredump_filter_setup);
517
518 #include <linux/init_task.h>
519
520 static void mm_init_aio(struct mm_struct *mm)
521 {
522 #ifdef CONFIG_AIO
523 spin_lock_init(&mm->ioctx_lock);
524 INIT_HLIST_HEAD(&mm->ioctx_list);
525 #endif
526 }
527
528 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
529 {
530 atomic_set(&mm->mm_users, 1);
531 atomic_set(&mm->mm_count, 1);
532 init_rwsem(&mm->mmap_sem);
533 INIT_LIST_HEAD(&mm->mmlist);
534 mm->flags = (current->mm) ?
535 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
536 mm->core_state = NULL;
537 mm->nr_ptes = 0;
538 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
539 spin_lock_init(&mm->page_table_lock);
540 mm->free_area_cache = TASK_UNMAPPED_BASE;
541 mm->cached_hole_size = ~0UL;
542 mm_init_aio(mm);
543 mm_init_owner(mm, p);
544
545 if (likely(!mm_alloc_pgd(mm))) {
546 mm->def_flags = 0;
547 mmu_notifier_mm_init(mm);
548 return mm;
549 }
550
551 free_mm(mm);
552 return NULL;
553 }
554
555 static void check_mm(struct mm_struct *mm)
556 {
557 int i;
558
559 for (i = 0; i < NR_MM_COUNTERS; i++) {
560 long x = atomic_long_read(&mm->rss_stat.count[i]);
561
562 if (unlikely(x))
563 printk(KERN_ALERT "BUG: Bad rss-counter state "
564 "mm:%p idx:%d val:%ld\n", mm, i, x);
565 }
566
567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
568 VM_BUG_ON(mm->pmd_huge_pte);
569 #endif
570 }
571
572 /*
573 * Allocate and initialize an mm_struct.
574 */
575 struct mm_struct *mm_alloc(void)
576 {
577 struct mm_struct *mm;
578
579 mm = allocate_mm();
580 if (!mm)
581 return NULL;
582
583 memset(mm, 0, sizeof(*mm));
584 mm_init_cpumask(mm);
585 return mm_init(mm, current);
586 }
587
588 /*
589 * Called when the last reference to the mm
590 * is dropped: either by a lazy thread or by
591 * mmput. Free the page directory and the mm.
592 */
593 void __mmdrop(struct mm_struct *mm)
594 {
595 BUG_ON(mm == &init_mm);
596 mm_free_pgd(mm);
597 destroy_context(mm);
598 mmu_notifier_mm_destroy(mm);
599 check_mm(mm);
600 free_mm(mm);
601 }
602 EXPORT_SYMBOL_GPL(__mmdrop);
603
604 /*
605 * Decrement the use count and release all resources for an mm.
606 */
607 void mmput(struct mm_struct *mm)
608 {
609 might_sleep();
610
611 if (atomic_dec_and_test(&mm->mm_users)) {
612 uprobe_clear_state(mm);
613 exit_aio(mm);
614 ksm_exit(mm);
615 khugepaged_exit(mm); /* must run before exit_mmap */
616 exit_mmap(mm);
617 set_mm_exe_file(mm, NULL);
618 if (!list_empty(&mm->mmlist)) {
619 spin_lock(&mmlist_lock);
620 list_del(&mm->mmlist);
621 spin_unlock(&mmlist_lock);
622 }
623 if (mm->binfmt)
624 module_put(mm->binfmt->module);
625 mmdrop(mm);
626 }
627 }
628 EXPORT_SYMBOL_GPL(mmput);
629
630 /*
631 * We added or removed a vma mapping the executable. The vmas are only mapped
632 * during exec and are not mapped with the mmap system call.
633 * Callers must hold down_write() on the mm's mmap_sem for these
634 */
635 void added_exe_file_vma(struct mm_struct *mm)
636 {
637 mm->num_exe_file_vmas++;
638 }
639
640 void removed_exe_file_vma(struct mm_struct *mm)
641 {
642 mm->num_exe_file_vmas--;
643 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
644 fput(mm->exe_file);
645 mm->exe_file = NULL;
646 }
647
648 }
649
650 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
651 {
652 if (new_exe_file)
653 get_file(new_exe_file);
654 if (mm->exe_file)
655 fput(mm->exe_file);
656 mm->exe_file = new_exe_file;
657 mm->num_exe_file_vmas = 0;
658 }
659
660 struct file *get_mm_exe_file(struct mm_struct *mm)
661 {
662 struct file *exe_file;
663
664 /* We need mmap_sem to protect against races with removal of
665 * VM_EXECUTABLE vmas */
666 down_read(&mm->mmap_sem);
667 exe_file = mm->exe_file;
668 if (exe_file)
669 get_file(exe_file);
670 up_read(&mm->mmap_sem);
671 return exe_file;
672 }
673
674 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
675 {
676 /* It's safe to write the exe_file pointer without exe_file_lock because
677 * this is called during fork when the task is not yet in /proc */
678 newmm->exe_file = get_mm_exe_file(oldmm);
679 }
680
681 /**
682 * get_task_mm - acquire a reference to the task's mm
683 *
684 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
685 * this kernel workthread has transiently adopted a user mm with use_mm,
686 * to do its AIO) is not set and if so returns a reference to it, after
687 * bumping up the use count. User must release the mm via mmput()
688 * after use. Typically used by /proc and ptrace.
689 */
690 struct mm_struct *get_task_mm(struct task_struct *task)
691 {
692 struct mm_struct *mm;
693
694 task_lock(task);
695 mm = task->mm;
696 if (mm) {
697 if (task->flags & PF_KTHREAD)
698 mm = NULL;
699 else
700 atomic_inc(&mm->mm_users);
701 }
702 task_unlock(task);
703 return mm;
704 }
705 EXPORT_SYMBOL_GPL(get_task_mm);
706
707 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
708 {
709 struct mm_struct *mm;
710 int err;
711
712 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
713 if (err)
714 return ERR_PTR(err);
715
716 mm = get_task_mm(task);
717 if (mm && mm != current->mm &&
718 !ptrace_may_access(task, mode)) {
719 mmput(mm);
720 mm = ERR_PTR(-EACCES);
721 }
722 mutex_unlock(&task->signal->cred_guard_mutex);
723
724 return mm;
725 }
726
727 static void complete_vfork_done(struct task_struct *tsk)
728 {
729 struct completion *vfork;
730
731 task_lock(tsk);
732 vfork = tsk->vfork_done;
733 if (likely(vfork)) {
734 tsk->vfork_done = NULL;
735 complete(vfork);
736 }
737 task_unlock(tsk);
738 }
739
740 static int wait_for_vfork_done(struct task_struct *child,
741 struct completion *vfork)
742 {
743 int killed;
744
745 freezer_do_not_count();
746 killed = wait_for_completion_killable(vfork);
747 freezer_count();
748
749 if (killed) {
750 task_lock(child);
751 child->vfork_done = NULL;
752 task_unlock(child);
753 }
754
755 put_task_struct(child);
756 return killed;
757 }
758
759 /* Please note the differences between mmput and mm_release.
760 * mmput is called whenever we stop holding onto a mm_struct,
761 * error success whatever.
762 *
763 * mm_release is called after a mm_struct has been removed
764 * from the current process.
765 *
766 * This difference is important for error handling, when we
767 * only half set up a mm_struct for a new process and need to restore
768 * the old one. Because we mmput the new mm_struct before
769 * restoring the old one. . .
770 * Eric Biederman 10 January 1998
771 */
772 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
773 {
774 /* Get rid of any futexes when releasing the mm */
775 #ifdef CONFIG_FUTEX
776 if (unlikely(tsk->robust_list)) {
777 exit_robust_list(tsk);
778 tsk->robust_list = NULL;
779 }
780 #ifdef CONFIG_COMPAT
781 if (unlikely(tsk->compat_robust_list)) {
782 compat_exit_robust_list(tsk);
783 tsk->compat_robust_list = NULL;
784 }
785 #endif
786 if (unlikely(!list_empty(&tsk->pi_state_list)))
787 exit_pi_state_list(tsk);
788 #endif
789
790 uprobe_free_utask(tsk);
791
792 /* Get rid of any cached register state */
793 deactivate_mm(tsk, mm);
794
795 /*
796 * If we're exiting normally, clear a user-space tid field if
797 * requested. We leave this alone when dying by signal, to leave
798 * the value intact in a core dump, and to save the unnecessary
799 * trouble, say, a killed vfork parent shouldn't touch this mm.
800 * Userland only wants this done for a sys_exit.
801 */
802 if (tsk->clear_child_tid) {
803 if (!(tsk->flags & PF_SIGNALED) &&
804 atomic_read(&mm->mm_users) > 1) {
805 /*
806 * We don't check the error code - if userspace has
807 * not set up a proper pointer then tough luck.
808 */
809 put_user(0, tsk->clear_child_tid);
810 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
811 1, NULL, NULL, 0);
812 }
813 tsk->clear_child_tid = NULL;
814 }
815
816 /*
817 * All done, finally we can wake up parent and return this mm to him.
818 * Also kthread_stop() uses this completion for synchronization.
819 */
820 if (tsk->vfork_done)
821 complete_vfork_done(tsk);
822 }
823
824 /*
825 * Allocate a new mm structure and copy contents from the
826 * mm structure of the passed in task structure.
827 */
828 struct mm_struct *dup_mm(struct task_struct *tsk)
829 {
830 struct mm_struct *mm, *oldmm = current->mm;
831 int err;
832
833 if (!oldmm)
834 return NULL;
835
836 mm = allocate_mm();
837 if (!mm)
838 goto fail_nomem;
839
840 memcpy(mm, oldmm, sizeof(*mm));
841 mm_init_cpumask(mm);
842
843 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
844 mm->pmd_huge_pte = NULL;
845 #endif
846 uprobe_reset_state(mm);
847
848 if (!mm_init(mm, tsk))
849 goto fail_nomem;
850
851 if (init_new_context(tsk, mm))
852 goto fail_nocontext;
853
854 dup_mm_exe_file(oldmm, mm);
855
856 err = dup_mmap(mm, oldmm);
857 if (err)
858 goto free_pt;
859
860 mm->hiwater_rss = get_mm_rss(mm);
861 mm->hiwater_vm = mm->total_vm;
862
863 if (mm->binfmt && !try_module_get(mm->binfmt->module))
864 goto free_pt;
865
866 return mm;
867
868 free_pt:
869 /* don't put binfmt in mmput, we haven't got module yet */
870 mm->binfmt = NULL;
871 mmput(mm);
872
873 fail_nomem:
874 return NULL;
875
876 fail_nocontext:
877 /*
878 * If init_new_context() failed, we cannot use mmput() to free the mm
879 * because it calls destroy_context()
880 */
881 mm_free_pgd(mm);
882 free_mm(mm);
883 return NULL;
884 }
885
886 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
887 {
888 struct mm_struct *mm, *oldmm;
889 int retval;
890
891 tsk->min_flt = tsk->maj_flt = 0;
892 tsk->nvcsw = tsk->nivcsw = 0;
893 #ifdef CONFIG_DETECT_HUNG_TASK
894 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
895 #endif
896
897 tsk->mm = NULL;
898 tsk->active_mm = NULL;
899
900 /*
901 * Are we cloning a kernel thread?
902 *
903 * We need to steal a active VM for that..
904 */
905 oldmm = current->mm;
906 if (!oldmm)
907 return 0;
908
909 if (clone_flags & CLONE_VM) {
910 atomic_inc(&oldmm->mm_users);
911 mm = oldmm;
912 goto good_mm;
913 }
914
915 retval = -ENOMEM;
916 mm = dup_mm(tsk);
917 if (!mm)
918 goto fail_nomem;
919
920 good_mm:
921 tsk->mm = mm;
922 tsk->active_mm = mm;
923 return 0;
924
925 fail_nomem:
926 return retval;
927 }
928
929 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
930 {
931 struct fs_struct *fs = current->fs;
932 if (clone_flags & CLONE_FS) {
933 /* tsk->fs is already what we want */
934 spin_lock(&fs->lock);
935 if (fs->in_exec) {
936 spin_unlock(&fs->lock);
937 return -EAGAIN;
938 }
939 fs->users++;
940 spin_unlock(&fs->lock);
941 return 0;
942 }
943 tsk->fs = copy_fs_struct(fs);
944 if (!tsk->fs)
945 return -ENOMEM;
946 return 0;
947 }
948
949 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
950 {
951 struct files_struct *oldf, *newf;
952 int error = 0;
953
954 /*
955 * A background process may not have any files ...
956 */
957 oldf = current->files;
958 if (!oldf)
959 goto out;
960
961 if (clone_flags & CLONE_FILES) {
962 atomic_inc(&oldf->count);
963 goto out;
964 }
965
966 newf = dup_fd(oldf, &error);
967 if (!newf)
968 goto out;
969
970 tsk->files = newf;
971 error = 0;
972 out:
973 return error;
974 }
975
976 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
977 {
978 #ifdef CONFIG_BLOCK
979 struct io_context *ioc = current->io_context;
980 struct io_context *new_ioc;
981
982 if (!ioc)
983 return 0;
984 /*
985 * Share io context with parent, if CLONE_IO is set
986 */
987 if (clone_flags & CLONE_IO) {
988 ioc_task_link(ioc);
989 tsk->io_context = ioc;
990 } else if (ioprio_valid(ioc->ioprio)) {
991 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
992 if (unlikely(!new_ioc))
993 return -ENOMEM;
994
995 new_ioc->ioprio = ioc->ioprio;
996 put_io_context(new_ioc);
997 }
998 #endif
999 return 0;
1000 }
1001
1002 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1003 {
1004 struct sighand_struct *sig;
1005
1006 if (clone_flags & CLONE_SIGHAND) {
1007 atomic_inc(&current->sighand->count);
1008 return 0;
1009 }
1010 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1011 rcu_assign_pointer(tsk->sighand, sig);
1012 if (!sig)
1013 return -ENOMEM;
1014 atomic_set(&sig->count, 1);
1015 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1016 return 0;
1017 }
1018
1019 void __cleanup_sighand(struct sighand_struct *sighand)
1020 {
1021 if (atomic_dec_and_test(&sighand->count)) {
1022 signalfd_cleanup(sighand);
1023 kmem_cache_free(sighand_cachep, sighand);
1024 }
1025 }
1026
1027
1028 /*
1029 * Initialize POSIX timer handling for a thread group.
1030 */
1031 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1032 {
1033 unsigned long cpu_limit;
1034
1035 /* Thread group counters. */
1036 thread_group_cputime_init(sig);
1037
1038 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1039 if (cpu_limit != RLIM_INFINITY) {
1040 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1041 sig->cputimer.running = 1;
1042 }
1043
1044 /* The timer lists. */
1045 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1046 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1047 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1048 }
1049
1050 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1051 {
1052 struct signal_struct *sig;
1053
1054 if (clone_flags & CLONE_THREAD)
1055 return 0;
1056
1057 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1058 tsk->signal = sig;
1059 if (!sig)
1060 return -ENOMEM;
1061
1062 sig->nr_threads = 1;
1063 atomic_set(&sig->live, 1);
1064 atomic_set(&sig->sigcnt, 1);
1065 init_waitqueue_head(&sig->wait_chldexit);
1066 if (clone_flags & CLONE_NEWPID)
1067 sig->flags |= SIGNAL_UNKILLABLE;
1068 sig->curr_target = tsk;
1069 init_sigpending(&sig->shared_pending);
1070 INIT_LIST_HEAD(&sig->posix_timers);
1071
1072 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1073 sig->real_timer.function = it_real_fn;
1074
1075 task_lock(current->group_leader);
1076 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1077 task_unlock(current->group_leader);
1078
1079 posix_cpu_timers_init_group(sig);
1080
1081 tty_audit_fork(sig);
1082 sched_autogroup_fork(sig);
1083
1084 #ifdef CONFIG_CGROUPS
1085 init_rwsem(&sig->group_rwsem);
1086 #endif
1087
1088 sig->oom_adj = current->signal->oom_adj;
1089 sig->oom_score_adj = current->signal->oom_score_adj;
1090 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1091
1092 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1093 current->signal->is_child_subreaper;
1094
1095 mutex_init(&sig->cred_guard_mutex);
1096
1097 return 0;
1098 }
1099
1100 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1101 {
1102 unsigned long new_flags = p->flags;
1103
1104 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1105 new_flags |= PF_FORKNOEXEC;
1106 p->flags = new_flags;
1107 }
1108
1109 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1110 {
1111 current->clear_child_tid = tidptr;
1112
1113 return task_pid_vnr(current);
1114 }
1115
1116 static void rt_mutex_init_task(struct task_struct *p)
1117 {
1118 raw_spin_lock_init(&p->pi_lock);
1119 #ifdef CONFIG_RT_MUTEXES
1120 plist_head_init(&p->pi_waiters);
1121 p->pi_blocked_on = NULL;
1122 #endif
1123 }
1124
1125 #ifdef CONFIG_MM_OWNER
1126 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1127 {
1128 mm->owner = p;
1129 }
1130 #endif /* CONFIG_MM_OWNER */
1131
1132 /*
1133 * Initialize POSIX timer handling for a single task.
1134 */
1135 static void posix_cpu_timers_init(struct task_struct *tsk)
1136 {
1137 tsk->cputime_expires.prof_exp = 0;
1138 tsk->cputime_expires.virt_exp = 0;
1139 tsk->cputime_expires.sched_exp = 0;
1140 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1141 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1142 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1143 }
1144
1145 /*
1146 * This creates a new process as a copy of the old one,
1147 * but does not actually start it yet.
1148 *
1149 * It copies the registers, and all the appropriate
1150 * parts of the process environment (as per the clone
1151 * flags). The actual kick-off is left to the caller.
1152 */
1153 static struct task_struct *copy_process(unsigned long clone_flags,
1154 unsigned long stack_start,
1155 struct pt_regs *regs,
1156 unsigned long stack_size,
1157 int __user *child_tidptr,
1158 struct pid *pid,
1159 int trace)
1160 {
1161 int retval;
1162 struct task_struct *p;
1163 int cgroup_callbacks_done = 0;
1164
1165 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1166 return ERR_PTR(-EINVAL);
1167
1168 /*
1169 * Thread groups must share signals as well, and detached threads
1170 * can only be started up within the thread group.
1171 */
1172 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1173 return ERR_PTR(-EINVAL);
1174
1175 /*
1176 * Shared signal handlers imply shared VM. By way of the above,
1177 * thread groups also imply shared VM. Blocking this case allows
1178 * for various simplifications in other code.
1179 */
1180 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1181 return ERR_PTR(-EINVAL);
1182
1183 /*
1184 * Siblings of global init remain as zombies on exit since they are
1185 * not reaped by their parent (swapper). To solve this and to avoid
1186 * multi-rooted process trees, prevent global and container-inits
1187 * from creating siblings.
1188 */
1189 if ((clone_flags & CLONE_PARENT) &&
1190 current->signal->flags & SIGNAL_UNKILLABLE)
1191 return ERR_PTR(-EINVAL);
1192
1193 retval = security_task_create(clone_flags);
1194 if (retval)
1195 goto fork_out;
1196
1197 retval = -ENOMEM;
1198 p = dup_task_struct(current);
1199 if (!p)
1200 goto fork_out;
1201
1202 ftrace_graph_init_task(p);
1203 get_seccomp_filter(p);
1204
1205 rt_mutex_init_task(p);
1206
1207 #ifdef CONFIG_PROVE_LOCKING
1208 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1209 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1210 #endif
1211 retval = -EAGAIN;
1212 if (atomic_read(&p->real_cred->user->processes) >=
1213 task_rlimit(p, RLIMIT_NPROC)) {
1214 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1215 p->real_cred->user != INIT_USER)
1216 goto bad_fork_free;
1217 }
1218 current->flags &= ~PF_NPROC_EXCEEDED;
1219
1220 retval = copy_creds(p, clone_flags);
1221 if (retval < 0)
1222 goto bad_fork_free;
1223
1224 /*
1225 * If multiple threads are within copy_process(), then this check
1226 * triggers too late. This doesn't hurt, the check is only there
1227 * to stop root fork bombs.
1228 */
1229 retval = -EAGAIN;
1230 if (nr_threads >= max_threads)
1231 goto bad_fork_cleanup_count;
1232
1233 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1234 goto bad_fork_cleanup_count;
1235
1236 p->did_exec = 0;
1237 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1238 copy_flags(clone_flags, p);
1239 INIT_LIST_HEAD(&p->children);
1240 INIT_LIST_HEAD(&p->sibling);
1241 rcu_copy_process(p);
1242 p->vfork_done = NULL;
1243 spin_lock_init(&p->alloc_lock);
1244
1245 init_sigpending(&p->pending);
1246
1247 p->utime = p->stime = p->gtime = 0;
1248 p->utimescaled = p->stimescaled = 0;
1249 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1250 p->prev_utime = p->prev_stime = 0;
1251 #endif
1252 #if defined(SPLIT_RSS_COUNTING)
1253 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1254 #endif
1255
1256 p->default_timer_slack_ns = current->timer_slack_ns;
1257
1258 task_io_accounting_init(&p->ioac);
1259 acct_clear_integrals(p);
1260
1261 posix_cpu_timers_init(p);
1262
1263 do_posix_clock_monotonic_gettime(&p->start_time);
1264 p->real_start_time = p->start_time;
1265 monotonic_to_bootbased(&p->real_start_time);
1266 p->io_context = NULL;
1267 p->audit_context = NULL;
1268 if (clone_flags & CLONE_THREAD)
1269 threadgroup_change_begin(current);
1270 cgroup_fork(p);
1271 #ifdef CONFIG_NUMA
1272 p->mempolicy = mpol_dup(p->mempolicy);
1273 if (IS_ERR(p->mempolicy)) {
1274 retval = PTR_ERR(p->mempolicy);
1275 p->mempolicy = NULL;
1276 goto bad_fork_cleanup_cgroup;
1277 }
1278 mpol_fix_fork_child_flag(p);
1279 #endif
1280 #ifdef CONFIG_CPUSETS
1281 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1282 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1283 seqcount_init(&p->mems_allowed_seq);
1284 #endif
1285 #ifdef CONFIG_TRACE_IRQFLAGS
1286 p->irq_events = 0;
1287 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1288 p->hardirqs_enabled = 1;
1289 #else
1290 p->hardirqs_enabled = 0;
1291 #endif
1292 p->hardirq_enable_ip = 0;
1293 p->hardirq_enable_event = 0;
1294 p->hardirq_disable_ip = _THIS_IP_;
1295 p->hardirq_disable_event = 0;
1296 p->softirqs_enabled = 1;
1297 p->softirq_enable_ip = _THIS_IP_;
1298 p->softirq_enable_event = 0;
1299 p->softirq_disable_ip = 0;
1300 p->softirq_disable_event = 0;
1301 p->hardirq_context = 0;
1302 p->softirq_context = 0;
1303 #endif
1304 #ifdef CONFIG_LOCKDEP
1305 p->lockdep_depth = 0; /* no locks held yet */
1306 p->curr_chain_key = 0;
1307 p->lockdep_recursion = 0;
1308 #endif
1309
1310 #ifdef CONFIG_DEBUG_MUTEXES
1311 p->blocked_on = NULL; /* not blocked yet */
1312 #endif
1313 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1314 p->memcg_batch.do_batch = 0;
1315 p->memcg_batch.memcg = NULL;
1316 #endif
1317
1318 /* Perform scheduler related setup. Assign this task to a CPU. */
1319 sched_fork(p);
1320
1321 retval = perf_event_init_task(p);
1322 if (retval)
1323 goto bad_fork_cleanup_policy;
1324 retval = audit_alloc(p);
1325 if (retval)
1326 goto bad_fork_cleanup_policy;
1327 /* copy all the process information */
1328 retval = copy_semundo(clone_flags, p);
1329 if (retval)
1330 goto bad_fork_cleanup_audit;
1331 retval = copy_files(clone_flags, p);
1332 if (retval)
1333 goto bad_fork_cleanup_semundo;
1334 retval = copy_fs(clone_flags, p);
1335 if (retval)
1336 goto bad_fork_cleanup_files;
1337 retval = copy_sighand(clone_flags, p);
1338 if (retval)
1339 goto bad_fork_cleanup_fs;
1340 retval = copy_signal(clone_flags, p);
1341 if (retval)
1342 goto bad_fork_cleanup_sighand;
1343 retval = copy_mm(clone_flags, p);
1344 if (retval)
1345 goto bad_fork_cleanup_signal;
1346 retval = copy_namespaces(clone_flags, p);
1347 if (retval)
1348 goto bad_fork_cleanup_mm;
1349 retval = copy_io(clone_flags, p);
1350 if (retval)
1351 goto bad_fork_cleanup_namespaces;
1352 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1353 if (retval)
1354 goto bad_fork_cleanup_io;
1355
1356 if (pid != &init_struct_pid) {
1357 retval = -ENOMEM;
1358 pid = alloc_pid(p->nsproxy->pid_ns);
1359 if (!pid)
1360 goto bad_fork_cleanup_io;
1361 }
1362
1363 p->pid = pid_nr(pid);
1364 p->tgid = p->pid;
1365 if (clone_flags & CLONE_THREAD)
1366 p->tgid = current->tgid;
1367
1368 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1369 /*
1370 * Clear TID on mm_release()?
1371 */
1372 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1373 #ifdef CONFIG_BLOCK
1374 p->plug = NULL;
1375 #endif
1376 #ifdef CONFIG_FUTEX
1377 p->robust_list = NULL;
1378 #ifdef CONFIG_COMPAT
1379 p->compat_robust_list = NULL;
1380 #endif
1381 INIT_LIST_HEAD(&p->pi_state_list);
1382 p->pi_state_cache = NULL;
1383 #endif
1384 uprobe_copy_process(p);
1385 /*
1386 * sigaltstack should be cleared when sharing the same VM
1387 */
1388 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1389 p->sas_ss_sp = p->sas_ss_size = 0;
1390
1391 /*
1392 * Syscall tracing and stepping should be turned off in the
1393 * child regardless of CLONE_PTRACE.
1394 */
1395 user_disable_single_step(p);
1396 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1397 #ifdef TIF_SYSCALL_EMU
1398 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1399 #endif
1400 clear_all_latency_tracing(p);
1401
1402 /* ok, now we should be set up.. */
1403 if (clone_flags & CLONE_THREAD)
1404 p->exit_signal = -1;
1405 else if (clone_flags & CLONE_PARENT)
1406 p->exit_signal = current->group_leader->exit_signal;
1407 else
1408 p->exit_signal = (clone_flags & CSIGNAL);
1409
1410 p->pdeath_signal = 0;
1411 p->exit_state = 0;
1412
1413 p->nr_dirtied = 0;
1414 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1415 p->dirty_paused_when = 0;
1416
1417 /*
1418 * Ok, make it visible to the rest of the system.
1419 * We dont wake it up yet.
1420 */
1421 p->group_leader = p;
1422 INIT_LIST_HEAD(&p->thread_group);
1423 INIT_HLIST_HEAD(&p->task_works);
1424
1425 /* Now that the task is set up, run cgroup callbacks if
1426 * necessary. We need to run them before the task is visible
1427 * on the tasklist. */
1428 cgroup_fork_callbacks(p);
1429 cgroup_callbacks_done = 1;
1430
1431 /* Need tasklist lock for parent etc handling! */
1432 write_lock_irq(&tasklist_lock);
1433
1434 /* CLONE_PARENT re-uses the old parent */
1435 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1436 p->real_parent = current->real_parent;
1437 p->parent_exec_id = current->parent_exec_id;
1438 } else {
1439 p->real_parent = current;
1440 p->parent_exec_id = current->self_exec_id;
1441 }
1442
1443 spin_lock(&current->sighand->siglock);
1444
1445 /*
1446 * Process group and session signals need to be delivered to just the
1447 * parent before the fork or both the parent and the child after the
1448 * fork. Restart if a signal comes in before we add the new process to
1449 * it's process group.
1450 * A fatal signal pending means that current will exit, so the new
1451 * thread can't slip out of an OOM kill (or normal SIGKILL).
1452 */
1453 recalc_sigpending();
1454 if (signal_pending(current)) {
1455 spin_unlock(&current->sighand->siglock);
1456 write_unlock_irq(&tasklist_lock);
1457 retval = -ERESTARTNOINTR;
1458 goto bad_fork_free_pid;
1459 }
1460
1461 if (clone_flags & CLONE_THREAD) {
1462 current->signal->nr_threads++;
1463 atomic_inc(&current->signal->live);
1464 atomic_inc(&current->signal->sigcnt);
1465 p->group_leader = current->group_leader;
1466 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1467 }
1468
1469 if (likely(p->pid)) {
1470 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1471
1472 if (thread_group_leader(p)) {
1473 if (is_child_reaper(pid))
1474 p->nsproxy->pid_ns->child_reaper = p;
1475
1476 p->signal->leader_pid = pid;
1477 p->signal->tty = tty_kref_get(current->signal->tty);
1478 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1479 attach_pid(p, PIDTYPE_SID, task_session(current));
1480 list_add_tail(&p->sibling, &p->real_parent->children);
1481 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1482 __this_cpu_inc(process_counts);
1483 }
1484 attach_pid(p, PIDTYPE_PID, pid);
1485 nr_threads++;
1486 }
1487
1488 total_forks++;
1489 spin_unlock(&current->sighand->siglock);
1490 write_unlock_irq(&tasklist_lock);
1491 proc_fork_connector(p);
1492 cgroup_post_fork(p);
1493 if (clone_flags & CLONE_THREAD)
1494 threadgroup_change_end(current);
1495 perf_event_fork(p);
1496
1497 trace_task_newtask(p, clone_flags);
1498
1499 return p;
1500
1501 bad_fork_free_pid:
1502 if (pid != &init_struct_pid)
1503 free_pid(pid);
1504 bad_fork_cleanup_io:
1505 if (p->io_context)
1506 exit_io_context(p);
1507 bad_fork_cleanup_namespaces:
1508 if (unlikely(clone_flags & CLONE_NEWPID))
1509 pid_ns_release_proc(p->nsproxy->pid_ns);
1510 exit_task_namespaces(p);
1511 bad_fork_cleanup_mm:
1512 if (p->mm)
1513 mmput(p->mm);
1514 bad_fork_cleanup_signal:
1515 if (!(clone_flags & CLONE_THREAD))
1516 free_signal_struct(p->signal);
1517 bad_fork_cleanup_sighand:
1518 __cleanup_sighand(p->sighand);
1519 bad_fork_cleanup_fs:
1520 exit_fs(p); /* blocking */
1521 bad_fork_cleanup_files:
1522 exit_files(p); /* blocking */
1523 bad_fork_cleanup_semundo:
1524 exit_sem(p);
1525 bad_fork_cleanup_audit:
1526 audit_free(p);
1527 bad_fork_cleanup_policy:
1528 perf_event_free_task(p);
1529 #ifdef CONFIG_NUMA
1530 mpol_put(p->mempolicy);
1531 bad_fork_cleanup_cgroup:
1532 #endif
1533 if (clone_flags & CLONE_THREAD)
1534 threadgroup_change_end(current);
1535 cgroup_exit(p, cgroup_callbacks_done);
1536 delayacct_tsk_free(p);
1537 module_put(task_thread_info(p)->exec_domain->module);
1538 bad_fork_cleanup_count:
1539 atomic_dec(&p->cred->user->processes);
1540 exit_creds(p);
1541 bad_fork_free:
1542 free_task(p);
1543 fork_out:
1544 return ERR_PTR(retval);
1545 }
1546
1547 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1548 {
1549 memset(regs, 0, sizeof(struct pt_regs));
1550 return regs;
1551 }
1552
1553 static inline void init_idle_pids(struct pid_link *links)
1554 {
1555 enum pid_type type;
1556
1557 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1558 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1559 links[type].pid = &init_struct_pid;
1560 }
1561 }
1562
1563 struct task_struct * __cpuinit fork_idle(int cpu)
1564 {
1565 struct task_struct *task;
1566 struct pt_regs regs;
1567
1568 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1569 &init_struct_pid, 0);
1570 if (!IS_ERR(task)) {
1571 init_idle_pids(task->pids);
1572 init_idle(task, cpu);
1573 }
1574
1575 return task;
1576 }
1577
1578 /*
1579 * Ok, this is the main fork-routine.
1580 *
1581 * It copies the process, and if successful kick-starts
1582 * it and waits for it to finish using the VM if required.
1583 */
1584 long do_fork(unsigned long clone_flags,
1585 unsigned long stack_start,
1586 struct pt_regs *regs,
1587 unsigned long stack_size,
1588 int __user *parent_tidptr,
1589 int __user *child_tidptr)
1590 {
1591 struct task_struct *p;
1592 int trace = 0;
1593 long nr;
1594
1595 /*
1596 * Do some preliminary argument and permissions checking before we
1597 * actually start allocating stuff
1598 */
1599 if (clone_flags & CLONE_NEWUSER) {
1600 if (clone_flags & CLONE_THREAD)
1601 return -EINVAL;
1602 /* hopefully this check will go away when userns support is
1603 * complete
1604 */
1605 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1606 !capable(CAP_SETGID))
1607 return -EPERM;
1608 }
1609
1610 /*
1611 * Determine whether and which event to report to ptracer. When
1612 * called from kernel_thread or CLONE_UNTRACED is explicitly
1613 * requested, no event is reported; otherwise, report if the event
1614 * for the type of forking is enabled.
1615 */
1616 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1617 if (clone_flags & CLONE_VFORK)
1618 trace = PTRACE_EVENT_VFORK;
1619 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1620 trace = PTRACE_EVENT_CLONE;
1621 else
1622 trace = PTRACE_EVENT_FORK;
1623
1624 if (likely(!ptrace_event_enabled(current, trace)))
1625 trace = 0;
1626 }
1627
1628 p = copy_process(clone_flags, stack_start, regs, stack_size,
1629 child_tidptr, NULL, trace);
1630 /*
1631 * Do this prior waking up the new thread - the thread pointer
1632 * might get invalid after that point, if the thread exits quickly.
1633 */
1634 if (!IS_ERR(p)) {
1635 struct completion vfork;
1636
1637 trace_sched_process_fork(current, p);
1638
1639 nr = task_pid_vnr(p);
1640
1641 if (clone_flags & CLONE_PARENT_SETTID)
1642 put_user(nr, parent_tidptr);
1643
1644 if (clone_flags & CLONE_VFORK) {
1645 p->vfork_done = &vfork;
1646 init_completion(&vfork);
1647 get_task_struct(p);
1648 }
1649
1650 wake_up_new_task(p);
1651
1652 /* forking complete and child started to run, tell ptracer */
1653 if (unlikely(trace))
1654 ptrace_event(trace, nr);
1655
1656 if (clone_flags & CLONE_VFORK) {
1657 if (!wait_for_vfork_done(p, &vfork))
1658 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1659 }
1660 } else {
1661 nr = PTR_ERR(p);
1662 }
1663 return nr;
1664 }
1665
1666 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1667 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1668 #endif
1669
1670 static void sighand_ctor(void *data)
1671 {
1672 struct sighand_struct *sighand = data;
1673
1674 spin_lock_init(&sighand->siglock);
1675 init_waitqueue_head(&sighand->signalfd_wqh);
1676 }
1677
1678 void __init proc_caches_init(void)
1679 {
1680 sighand_cachep = kmem_cache_create("sighand_cache",
1681 sizeof(struct sighand_struct), 0,
1682 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1683 SLAB_NOTRACK, sighand_ctor);
1684 signal_cachep = kmem_cache_create("signal_cache",
1685 sizeof(struct signal_struct), 0,
1686 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1687 files_cachep = kmem_cache_create("files_cache",
1688 sizeof(struct files_struct), 0,
1689 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1690 fs_cachep = kmem_cache_create("fs_cache",
1691 sizeof(struct fs_struct), 0,
1692 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1693 /*
1694 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1695 * whole struct cpumask for the OFFSTACK case. We could change
1696 * this to *only* allocate as much of it as required by the
1697 * maximum number of CPU's we can ever have. The cpumask_allocation
1698 * is at the end of the structure, exactly for that reason.
1699 */
1700 mm_cachep = kmem_cache_create("mm_struct",
1701 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1702 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1703 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1704 mmap_init();
1705 nsproxy_cache_init();
1706 }
1707
1708 /*
1709 * Check constraints on flags passed to the unshare system call.
1710 */
1711 static int check_unshare_flags(unsigned long unshare_flags)
1712 {
1713 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1714 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1715 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1716 return -EINVAL;
1717 /*
1718 * Not implemented, but pretend it works if there is nothing to
1719 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1720 * needs to unshare vm.
1721 */
1722 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1723 /* FIXME: get_task_mm() increments ->mm_users */
1724 if (atomic_read(&current->mm->mm_users) > 1)
1725 return -EINVAL;
1726 }
1727
1728 return 0;
1729 }
1730
1731 /*
1732 * Unshare the filesystem structure if it is being shared
1733 */
1734 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1735 {
1736 struct fs_struct *fs = current->fs;
1737
1738 if (!(unshare_flags & CLONE_FS) || !fs)
1739 return 0;
1740
1741 /* don't need lock here; in the worst case we'll do useless copy */
1742 if (fs->users == 1)
1743 return 0;
1744
1745 *new_fsp = copy_fs_struct(fs);
1746 if (!*new_fsp)
1747 return -ENOMEM;
1748
1749 return 0;
1750 }
1751
1752 /*
1753 * Unshare file descriptor table if it is being shared
1754 */
1755 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1756 {
1757 struct files_struct *fd = current->files;
1758 int error = 0;
1759
1760 if ((unshare_flags & CLONE_FILES) &&
1761 (fd && atomic_read(&fd->count) > 1)) {
1762 *new_fdp = dup_fd(fd, &error);
1763 if (!*new_fdp)
1764 return error;
1765 }
1766
1767 return 0;
1768 }
1769
1770 /*
1771 * unshare allows a process to 'unshare' part of the process
1772 * context which was originally shared using clone. copy_*
1773 * functions used by do_fork() cannot be used here directly
1774 * because they modify an inactive task_struct that is being
1775 * constructed. Here we are modifying the current, active,
1776 * task_struct.
1777 */
1778 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1779 {
1780 struct fs_struct *fs, *new_fs = NULL;
1781 struct files_struct *fd, *new_fd = NULL;
1782 struct nsproxy *new_nsproxy = NULL;
1783 int do_sysvsem = 0;
1784 int err;
1785
1786 err = check_unshare_flags(unshare_flags);
1787 if (err)
1788 goto bad_unshare_out;
1789
1790 /*
1791 * If unsharing namespace, must also unshare filesystem information.
1792 */
1793 if (unshare_flags & CLONE_NEWNS)
1794 unshare_flags |= CLONE_FS;
1795 /*
1796 * CLONE_NEWIPC must also detach from the undolist: after switching
1797 * to a new ipc namespace, the semaphore arrays from the old
1798 * namespace are unreachable.
1799 */
1800 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1801 do_sysvsem = 1;
1802 err = unshare_fs(unshare_flags, &new_fs);
1803 if (err)
1804 goto bad_unshare_out;
1805 err = unshare_fd(unshare_flags, &new_fd);
1806 if (err)
1807 goto bad_unshare_cleanup_fs;
1808 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1809 if (err)
1810 goto bad_unshare_cleanup_fd;
1811
1812 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1813 if (do_sysvsem) {
1814 /*
1815 * CLONE_SYSVSEM is equivalent to sys_exit().
1816 */
1817 exit_sem(current);
1818 }
1819
1820 if (new_nsproxy) {
1821 switch_task_namespaces(current, new_nsproxy);
1822 new_nsproxy = NULL;
1823 }
1824
1825 task_lock(current);
1826
1827 if (new_fs) {
1828 fs = current->fs;
1829 spin_lock(&fs->lock);
1830 current->fs = new_fs;
1831 if (--fs->users)
1832 new_fs = NULL;
1833 else
1834 new_fs = fs;
1835 spin_unlock(&fs->lock);
1836 }
1837
1838 if (new_fd) {
1839 fd = current->files;
1840 current->files = new_fd;
1841 new_fd = fd;
1842 }
1843
1844 task_unlock(current);
1845 }
1846
1847 if (new_nsproxy)
1848 put_nsproxy(new_nsproxy);
1849
1850 bad_unshare_cleanup_fd:
1851 if (new_fd)
1852 put_files_struct(new_fd);
1853
1854 bad_unshare_cleanup_fs:
1855 if (new_fs)
1856 free_fs_struct(new_fs);
1857
1858 bad_unshare_out:
1859 return err;
1860 }
1861
1862 /*
1863 * Helper to unshare the files of the current task.
1864 * We don't want to expose copy_files internals to
1865 * the exec layer of the kernel.
1866 */
1867
1868 int unshare_files(struct files_struct **displaced)
1869 {
1870 struct task_struct *task = current;
1871 struct files_struct *copy = NULL;
1872 int error;
1873
1874 error = unshare_fd(CLONE_FILES, &copy);
1875 if (error || !copy) {
1876 *displaced = NULL;
1877 return error;
1878 }
1879 *displaced = task->files;
1880 task_lock(task);
1881 task->files = copy;
1882 task_unlock(task);
1883 return 0;
1884 }
This page took 0.109911 seconds and 5 git commands to generate.