[PATCH] m68k: introduce setup_thread_stack() and end_of_stack()
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/rcupdate.h>
39 #include <linux/ptrace.h>
40 #include <linux/mount.h>
41 #include <linux/audit.h>
42 #include <linux/profile.h>
43 #include <linux/rmap.h>
44 #include <linux/acct.h>
45 #include <linux/cn_proc.h>
46
47 #include <asm/pgtable.h>
48 #include <asm/pgalloc.h>
49 #include <asm/uaccess.h>
50 #include <asm/mmu_context.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53
54 /*
55 * Protected counters by write_lock_irq(&tasklist_lock)
56 */
57 unsigned long total_forks; /* Handle normal Linux uptimes. */
58 int nr_threads; /* The idle threads do not count.. */
59
60 int max_threads; /* tunable limit on nr_threads */
61
62 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
63
64 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
65
66 EXPORT_SYMBOL(tasklist_lock);
67
68 int nr_processes(void)
69 {
70 int cpu;
71 int total = 0;
72
73 for_each_online_cpu(cpu)
74 total += per_cpu(process_counts, cpu);
75
76 return total;
77 }
78
79 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
80 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
81 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
82 static kmem_cache_t *task_struct_cachep;
83 #endif
84
85 /* SLAB cache for signal_struct structures (tsk->signal) */
86 kmem_cache_t *signal_cachep;
87
88 /* SLAB cache for sighand_struct structures (tsk->sighand) */
89 kmem_cache_t *sighand_cachep;
90
91 /* SLAB cache for files_struct structures (tsk->files) */
92 kmem_cache_t *files_cachep;
93
94 /* SLAB cache for fs_struct structures (tsk->fs) */
95 kmem_cache_t *fs_cachep;
96
97 /* SLAB cache for vm_area_struct structures */
98 kmem_cache_t *vm_area_cachep;
99
100 /* SLAB cache for mm_struct structures (tsk->mm) */
101 static kmem_cache_t *mm_cachep;
102
103 void free_task(struct task_struct *tsk)
104 {
105 free_thread_info(tsk->thread_info);
106 free_task_struct(tsk);
107 }
108 EXPORT_SYMBOL(free_task);
109
110 void __put_task_struct(struct task_struct *tsk)
111 {
112 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
113 WARN_ON(atomic_read(&tsk->usage));
114 WARN_ON(tsk == current);
115
116 if (unlikely(tsk->audit_context))
117 audit_free(tsk);
118 security_task_free(tsk);
119 free_uid(tsk->user);
120 put_group_info(tsk->group_info);
121
122 if (!profile_handoff_task(tsk))
123 free_task(tsk);
124 }
125
126 void __init fork_init(unsigned long mempages)
127 {
128 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
129 #ifndef ARCH_MIN_TASKALIGN
130 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
131 #endif
132 /* create a slab on which task_structs can be allocated */
133 task_struct_cachep =
134 kmem_cache_create("task_struct", sizeof(struct task_struct),
135 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
136 #endif
137
138 /*
139 * The default maximum number of threads is set to a safe
140 * value: the thread structures can take up at most half
141 * of memory.
142 */
143 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
144
145 /*
146 * we need to allow at least 20 threads to boot a system
147 */
148 if(max_threads < 20)
149 max_threads = 20;
150
151 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
152 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
153 init_task.signal->rlim[RLIMIT_SIGPENDING] =
154 init_task.signal->rlim[RLIMIT_NPROC];
155 }
156
157 static struct task_struct *dup_task_struct(struct task_struct *orig)
158 {
159 struct task_struct *tsk;
160 struct thread_info *ti;
161
162 prepare_to_copy(orig);
163
164 tsk = alloc_task_struct();
165 if (!tsk)
166 return NULL;
167
168 ti = alloc_thread_info(tsk);
169 if (!ti) {
170 free_task_struct(tsk);
171 return NULL;
172 }
173
174 *tsk = *orig;
175 tsk->thread_info = ti;
176 setup_thread_stack(tsk, orig);
177
178 /* One for us, one for whoever does the "release_task()" (usually parent) */
179 atomic_set(&tsk->usage,2);
180 atomic_set(&tsk->fs_excl, 0);
181 return tsk;
182 }
183
184 #ifdef CONFIG_MMU
185 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
186 {
187 struct vm_area_struct *mpnt, *tmp, **pprev;
188 struct rb_node **rb_link, *rb_parent;
189 int retval;
190 unsigned long charge;
191 struct mempolicy *pol;
192
193 down_write(&oldmm->mmap_sem);
194 flush_cache_mm(oldmm);
195 down_write(&mm->mmap_sem);
196
197 mm->locked_vm = 0;
198 mm->mmap = NULL;
199 mm->mmap_cache = NULL;
200 mm->free_area_cache = oldmm->mmap_base;
201 mm->cached_hole_size = ~0UL;
202 mm->map_count = 0;
203 cpus_clear(mm->cpu_vm_mask);
204 mm->mm_rb = RB_ROOT;
205 rb_link = &mm->mm_rb.rb_node;
206 rb_parent = NULL;
207 pprev = &mm->mmap;
208
209 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
210 struct file *file;
211
212 if (mpnt->vm_flags & VM_DONTCOPY) {
213 long pages = vma_pages(mpnt);
214 mm->total_vm -= pages;
215 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
216 -pages);
217 continue;
218 }
219 charge = 0;
220 if (mpnt->vm_flags & VM_ACCOUNT) {
221 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
222 if (security_vm_enough_memory(len))
223 goto fail_nomem;
224 charge = len;
225 }
226 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
227 if (!tmp)
228 goto fail_nomem;
229 *tmp = *mpnt;
230 pol = mpol_copy(vma_policy(mpnt));
231 retval = PTR_ERR(pol);
232 if (IS_ERR(pol))
233 goto fail_nomem_policy;
234 vma_set_policy(tmp, pol);
235 tmp->vm_flags &= ~VM_LOCKED;
236 tmp->vm_mm = mm;
237 tmp->vm_next = NULL;
238 anon_vma_link(tmp);
239 file = tmp->vm_file;
240 if (file) {
241 struct inode *inode = file->f_dentry->d_inode;
242 get_file(file);
243 if (tmp->vm_flags & VM_DENYWRITE)
244 atomic_dec(&inode->i_writecount);
245
246 /* insert tmp into the share list, just after mpnt */
247 spin_lock(&file->f_mapping->i_mmap_lock);
248 tmp->vm_truncate_count = mpnt->vm_truncate_count;
249 flush_dcache_mmap_lock(file->f_mapping);
250 vma_prio_tree_add(tmp, mpnt);
251 flush_dcache_mmap_unlock(file->f_mapping);
252 spin_unlock(&file->f_mapping->i_mmap_lock);
253 }
254
255 /*
256 * Link in the new vma and copy the page table entries.
257 */
258 *pprev = tmp;
259 pprev = &tmp->vm_next;
260
261 __vma_link_rb(mm, tmp, rb_link, rb_parent);
262 rb_link = &tmp->vm_rb.rb_right;
263 rb_parent = &tmp->vm_rb;
264
265 mm->map_count++;
266 retval = copy_page_range(mm, oldmm, tmp);
267
268 if (tmp->vm_ops && tmp->vm_ops->open)
269 tmp->vm_ops->open(tmp);
270
271 if (retval)
272 goto out;
273 }
274 retval = 0;
275 out:
276 up_write(&mm->mmap_sem);
277 flush_tlb_mm(oldmm);
278 up_write(&oldmm->mmap_sem);
279 return retval;
280 fail_nomem_policy:
281 kmem_cache_free(vm_area_cachep, tmp);
282 fail_nomem:
283 retval = -ENOMEM;
284 vm_unacct_memory(charge);
285 goto out;
286 }
287
288 static inline int mm_alloc_pgd(struct mm_struct * mm)
289 {
290 mm->pgd = pgd_alloc(mm);
291 if (unlikely(!mm->pgd))
292 return -ENOMEM;
293 return 0;
294 }
295
296 static inline void mm_free_pgd(struct mm_struct * mm)
297 {
298 pgd_free(mm->pgd);
299 }
300 #else
301 #define dup_mmap(mm, oldmm) (0)
302 #define mm_alloc_pgd(mm) (0)
303 #define mm_free_pgd(mm)
304 #endif /* CONFIG_MMU */
305
306 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
307
308 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
309 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
310
311 #include <linux/init_task.h>
312
313 static struct mm_struct * mm_init(struct mm_struct * mm)
314 {
315 atomic_set(&mm->mm_users, 1);
316 atomic_set(&mm->mm_count, 1);
317 init_rwsem(&mm->mmap_sem);
318 INIT_LIST_HEAD(&mm->mmlist);
319 mm->core_waiters = 0;
320 mm->nr_ptes = 0;
321 set_mm_counter(mm, file_rss, 0);
322 set_mm_counter(mm, anon_rss, 0);
323 spin_lock_init(&mm->page_table_lock);
324 rwlock_init(&mm->ioctx_list_lock);
325 mm->ioctx_list = NULL;
326 mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
327 mm->free_area_cache = TASK_UNMAPPED_BASE;
328 mm->cached_hole_size = ~0UL;
329
330 if (likely(!mm_alloc_pgd(mm))) {
331 mm->def_flags = 0;
332 return mm;
333 }
334 free_mm(mm);
335 return NULL;
336 }
337
338 /*
339 * Allocate and initialize an mm_struct.
340 */
341 struct mm_struct * mm_alloc(void)
342 {
343 struct mm_struct * mm;
344
345 mm = allocate_mm();
346 if (mm) {
347 memset(mm, 0, sizeof(*mm));
348 mm = mm_init(mm);
349 }
350 return mm;
351 }
352
353 /*
354 * Called when the last reference to the mm
355 * is dropped: either by a lazy thread or by
356 * mmput. Free the page directory and the mm.
357 */
358 void fastcall __mmdrop(struct mm_struct *mm)
359 {
360 BUG_ON(mm == &init_mm);
361 mm_free_pgd(mm);
362 destroy_context(mm);
363 free_mm(mm);
364 }
365
366 /*
367 * Decrement the use count and release all resources for an mm.
368 */
369 void mmput(struct mm_struct *mm)
370 {
371 if (atomic_dec_and_test(&mm->mm_users)) {
372 exit_aio(mm);
373 exit_mmap(mm);
374 if (!list_empty(&mm->mmlist)) {
375 spin_lock(&mmlist_lock);
376 list_del(&mm->mmlist);
377 spin_unlock(&mmlist_lock);
378 }
379 put_swap_token(mm);
380 mmdrop(mm);
381 }
382 }
383 EXPORT_SYMBOL_GPL(mmput);
384
385 /**
386 * get_task_mm - acquire a reference to the task's mm
387 *
388 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
389 * this kernel workthread has transiently adopted a user mm with use_mm,
390 * to do its AIO) is not set and if so returns a reference to it, after
391 * bumping up the use count. User must release the mm via mmput()
392 * after use. Typically used by /proc and ptrace.
393 */
394 struct mm_struct *get_task_mm(struct task_struct *task)
395 {
396 struct mm_struct *mm;
397
398 task_lock(task);
399 mm = task->mm;
400 if (mm) {
401 if (task->flags & PF_BORROWED_MM)
402 mm = NULL;
403 else
404 atomic_inc(&mm->mm_users);
405 }
406 task_unlock(task);
407 return mm;
408 }
409 EXPORT_SYMBOL_GPL(get_task_mm);
410
411 /* Please note the differences between mmput and mm_release.
412 * mmput is called whenever we stop holding onto a mm_struct,
413 * error success whatever.
414 *
415 * mm_release is called after a mm_struct has been removed
416 * from the current process.
417 *
418 * This difference is important for error handling, when we
419 * only half set up a mm_struct for a new process and need to restore
420 * the old one. Because we mmput the new mm_struct before
421 * restoring the old one. . .
422 * Eric Biederman 10 January 1998
423 */
424 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
425 {
426 struct completion *vfork_done = tsk->vfork_done;
427
428 /* Get rid of any cached register state */
429 deactivate_mm(tsk, mm);
430
431 /* notify parent sleeping on vfork() */
432 if (vfork_done) {
433 tsk->vfork_done = NULL;
434 complete(vfork_done);
435 }
436 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
437 u32 __user * tidptr = tsk->clear_child_tid;
438 tsk->clear_child_tid = NULL;
439
440 /*
441 * We don't check the error code - if userspace has
442 * not set up a proper pointer then tough luck.
443 */
444 put_user(0, tidptr);
445 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
446 }
447 }
448
449 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
450 {
451 struct mm_struct * mm, *oldmm;
452 int retval;
453
454 tsk->min_flt = tsk->maj_flt = 0;
455 tsk->nvcsw = tsk->nivcsw = 0;
456
457 tsk->mm = NULL;
458 tsk->active_mm = NULL;
459
460 /*
461 * Are we cloning a kernel thread?
462 *
463 * We need to steal a active VM for that..
464 */
465 oldmm = current->mm;
466 if (!oldmm)
467 return 0;
468
469 if (clone_flags & CLONE_VM) {
470 atomic_inc(&oldmm->mm_users);
471 mm = oldmm;
472 goto good_mm;
473 }
474
475 retval = -ENOMEM;
476 mm = allocate_mm();
477 if (!mm)
478 goto fail_nomem;
479
480 /* Copy the current MM stuff.. */
481 memcpy(mm, oldmm, sizeof(*mm));
482 if (!mm_init(mm))
483 goto fail_nomem;
484
485 if (init_new_context(tsk,mm))
486 goto fail_nocontext;
487
488 retval = dup_mmap(mm, oldmm);
489 if (retval)
490 goto free_pt;
491
492 mm->hiwater_rss = get_mm_rss(mm);
493 mm->hiwater_vm = mm->total_vm;
494
495 good_mm:
496 tsk->mm = mm;
497 tsk->active_mm = mm;
498 return 0;
499
500 free_pt:
501 mmput(mm);
502 fail_nomem:
503 return retval;
504
505 fail_nocontext:
506 /*
507 * If init_new_context() failed, we cannot use mmput() to free the mm
508 * because it calls destroy_context()
509 */
510 mm_free_pgd(mm);
511 free_mm(mm);
512 return retval;
513 }
514
515 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
516 {
517 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
518 /* We don't need to lock fs - think why ;-) */
519 if (fs) {
520 atomic_set(&fs->count, 1);
521 rwlock_init(&fs->lock);
522 fs->umask = old->umask;
523 read_lock(&old->lock);
524 fs->rootmnt = mntget(old->rootmnt);
525 fs->root = dget(old->root);
526 fs->pwdmnt = mntget(old->pwdmnt);
527 fs->pwd = dget(old->pwd);
528 if (old->altroot) {
529 fs->altrootmnt = mntget(old->altrootmnt);
530 fs->altroot = dget(old->altroot);
531 } else {
532 fs->altrootmnt = NULL;
533 fs->altroot = NULL;
534 }
535 read_unlock(&old->lock);
536 }
537 return fs;
538 }
539
540 struct fs_struct *copy_fs_struct(struct fs_struct *old)
541 {
542 return __copy_fs_struct(old);
543 }
544
545 EXPORT_SYMBOL_GPL(copy_fs_struct);
546
547 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
548 {
549 if (clone_flags & CLONE_FS) {
550 atomic_inc(&current->fs->count);
551 return 0;
552 }
553 tsk->fs = __copy_fs_struct(current->fs);
554 if (!tsk->fs)
555 return -ENOMEM;
556 return 0;
557 }
558
559 static int count_open_files(struct fdtable *fdt)
560 {
561 int size = fdt->max_fdset;
562 int i;
563
564 /* Find the last open fd */
565 for (i = size/(8*sizeof(long)); i > 0; ) {
566 if (fdt->open_fds->fds_bits[--i])
567 break;
568 }
569 i = (i+1) * 8 * sizeof(long);
570 return i;
571 }
572
573 static struct files_struct *alloc_files(void)
574 {
575 struct files_struct *newf;
576 struct fdtable *fdt;
577
578 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
579 if (!newf)
580 goto out;
581
582 atomic_set(&newf->count, 1);
583
584 spin_lock_init(&newf->file_lock);
585 fdt = &newf->fdtab;
586 fdt->next_fd = 0;
587 fdt->max_fds = NR_OPEN_DEFAULT;
588 fdt->max_fdset = __FD_SETSIZE;
589 fdt->close_on_exec = &newf->close_on_exec_init;
590 fdt->open_fds = &newf->open_fds_init;
591 fdt->fd = &newf->fd_array[0];
592 INIT_RCU_HEAD(&fdt->rcu);
593 fdt->free_files = NULL;
594 fdt->next = NULL;
595 rcu_assign_pointer(newf->fdt, fdt);
596 out:
597 return newf;
598 }
599
600 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
601 {
602 struct files_struct *oldf, *newf;
603 struct file **old_fds, **new_fds;
604 int open_files, size, i, error = 0, expand;
605 struct fdtable *old_fdt, *new_fdt;
606
607 /*
608 * A background process may not have any files ...
609 */
610 oldf = current->files;
611 if (!oldf)
612 goto out;
613
614 if (clone_flags & CLONE_FILES) {
615 atomic_inc(&oldf->count);
616 goto out;
617 }
618
619 /*
620 * Note: we may be using current for both targets (See exec.c)
621 * This works because we cache current->files (old) as oldf. Don't
622 * break this.
623 */
624 tsk->files = NULL;
625 error = -ENOMEM;
626 newf = alloc_files();
627 if (!newf)
628 goto out;
629
630 spin_lock(&oldf->file_lock);
631 old_fdt = files_fdtable(oldf);
632 new_fdt = files_fdtable(newf);
633 size = old_fdt->max_fdset;
634 open_files = count_open_files(old_fdt);
635 expand = 0;
636
637 /*
638 * Check whether we need to allocate a larger fd array or fd set.
639 * Note: we're not a clone task, so the open count won't change.
640 */
641 if (open_files > new_fdt->max_fdset) {
642 new_fdt->max_fdset = 0;
643 expand = 1;
644 }
645 if (open_files > new_fdt->max_fds) {
646 new_fdt->max_fds = 0;
647 expand = 1;
648 }
649
650 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
651 if (expand) {
652 spin_unlock(&oldf->file_lock);
653 spin_lock(&newf->file_lock);
654 error = expand_files(newf, open_files-1);
655 spin_unlock(&newf->file_lock);
656 if (error < 0)
657 goto out_release;
658 new_fdt = files_fdtable(newf);
659 /*
660 * Reacquire the oldf lock and a pointer to its fd table
661 * who knows it may have a new bigger fd table. We need
662 * the latest pointer.
663 */
664 spin_lock(&oldf->file_lock);
665 old_fdt = files_fdtable(oldf);
666 }
667
668 old_fds = old_fdt->fd;
669 new_fds = new_fdt->fd;
670
671 memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
672 memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
673
674 for (i = open_files; i != 0; i--) {
675 struct file *f = *old_fds++;
676 if (f) {
677 get_file(f);
678 } else {
679 /*
680 * The fd may be claimed in the fd bitmap but not yet
681 * instantiated in the files array if a sibling thread
682 * is partway through open(). So make sure that this
683 * fd is available to the new process.
684 */
685 FD_CLR(open_files - i, new_fdt->open_fds);
686 }
687 rcu_assign_pointer(*new_fds++, f);
688 }
689 spin_unlock(&oldf->file_lock);
690
691 /* compute the remainder to be cleared */
692 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
693
694 /* This is long word aligned thus could use a optimized version */
695 memset(new_fds, 0, size);
696
697 if (new_fdt->max_fdset > open_files) {
698 int left = (new_fdt->max_fdset-open_files)/8;
699 int start = open_files / (8 * sizeof(unsigned long));
700
701 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
702 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
703 }
704
705 tsk->files = newf;
706 error = 0;
707 out:
708 return error;
709
710 out_release:
711 free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
712 free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
713 free_fd_array(new_fdt->fd, new_fdt->max_fds);
714 kmem_cache_free(files_cachep, newf);
715 goto out;
716 }
717
718 /*
719 * Helper to unshare the files of the current task.
720 * We don't want to expose copy_files internals to
721 * the exec layer of the kernel.
722 */
723
724 int unshare_files(void)
725 {
726 struct files_struct *files = current->files;
727 int rc;
728
729 if(!files)
730 BUG();
731
732 /* This can race but the race causes us to copy when we don't
733 need to and drop the copy */
734 if(atomic_read(&files->count) == 1)
735 {
736 atomic_inc(&files->count);
737 return 0;
738 }
739 rc = copy_files(0, current);
740 if(rc)
741 current->files = files;
742 return rc;
743 }
744
745 EXPORT_SYMBOL(unshare_files);
746
747 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
748 {
749 struct sighand_struct *sig;
750
751 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
752 atomic_inc(&current->sighand->count);
753 return 0;
754 }
755 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
756 tsk->sighand = sig;
757 if (!sig)
758 return -ENOMEM;
759 spin_lock_init(&sig->siglock);
760 atomic_set(&sig->count, 1);
761 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
762 return 0;
763 }
764
765 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
766 {
767 struct signal_struct *sig;
768 int ret;
769
770 if (clone_flags & CLONE_THREAD) {
771 atomic_inc(&current->signal->count);
772 atomic_inc(&current->signal->live);
773 return 0;
774 }
775 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
776 tsk->signal = sig;
777 if (!sig)
778 return -ENOMEM;
779
780 ret = copy_thread_group_keys(tsk);
781 if (ret < 0) {
782 kmem_cache_free(signal_cachep, sig);
783 return ret;
784 }
785
786 atomic_set(&sig->count, 1);
787 atomic_set(&sig->live, 1);
788 init_waitqueue_head(&sig->wait_chldexit);
789 sig->flags = 0;
790 sig->group_exit_code = 0;
791 sig->group_exit_task = NULL;
792 sig->group_stop_count = 0;
793 sig->curr_target = NULL;
794 init_sigpending(&sig->shared_pending);
795 INIT_LIST_HEAD(&sig->posix_timers);
796
797 sig->it_real_value = sig->it_real_incr = 0;
798 sig->real_timer.function = it_real_fn;
799 sig->real_timer.data = (unsigned long) tsk;
800 init_timer(&sig->real_timer);
801
802 sig->it_virt_expires = cputime_zero;
803 sig->it_virt_incr = cputime_zero;
804 sig->it_prof_expires = cputime_zero;
805 sig->it_prof_incr = cputime_zero;
806
807 sig->tty = current->signal->tty;
808 sig->pgrp = process_group(current);
809 sig->session = current->signal->session;
810 sig->leader = 0; /* session leadership doesn't inherit */
811 sig->tty_old_pgrp = 0;
812
813 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
814 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
815 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
816 sig->sched_time = 0;
817 INIT_LIST_HEAD(&sig->cpu_timers[0]);
818 INIT_LIST_HEAD(&sig->cpu_timers[1]);
819 INIT_LIST_HEAD(&sig->cpu_timers[2]);
820
821 task_lock(current->group_leader);
822 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
823 task_unlock(current->group_leader);
824
825 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
826 /*
827 * New sole thread in the process gets an expiry time
828 * of the whole CPU time limit.
829 */
830 tsk->it_prof_expires =
831 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
832 }
833
834 return 0;
835 }
836
837 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
838 {
839 unsigned long new_flags = p->flags;
840
841 new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
842 new_flags |= PF_FORKNOEXEC;
843 if (!(clone_flags & CLONE_PTRACE))
844 p->ptrace = 0;
845 p->flags = new_flags;
846 }
847
848 asmlinkage long sys_set_tid_address(int __user *tidptr)
849 {
850 current->clear_child_tid = tidptr;
851
852 return current->pid;
853 }
854
855 /*
856 * This creates a new process as a copy of the old one,
857 * but does not actually start it yet.
858 *
859 * It copies the registers, and all the appropriate
860 * parts of the process environment (as per the clone
861 * flags). The actual kick-off is left to the caller.
862 */
863 static task_t *copy_process(unsigned long clone_flags,
864 unsigned long stack_start,
865 struct pt_regs *regs,
866 unsigned long stack_size,
867 int __user *parent_tidptr,
868 int __user *child_tidptr,
869 int pid)
870 {
871 int retval;
872 struct task_struct *p = NULL;
873
874 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
875 return ERR_PTR(-EINVAL);
876
877 /*
878 * Thread groups must share signals as well, and detached threads
879 * can only be started up within the thread group.
880 */
881 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
882 return ERR_PTR(-EINVAL);
883
884 /*
885 * Shared signal handlers imply shared VM. By way of the above,
886 * thread groups also imply shared VM. Blocking this case allows
887 * for various simplifications in other code.
888 */
889 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
890 return ERR_PTR(-EINVAL);
891
892 retval = security_task_create(clone_flags);
893 if (retval)
894 goto fork_out;
895
896 retval = -ENOMEM;
897 p = dup_task_struct(current);
898 if (!p)
899 goto fork_out;
900
901 retval = -EAGAIN;
902 if (atomic_read(&p->user->processes) >=
903 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
904 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
905 p->user != &root_user)
906 goto bad_fork_free;
907 }
908
909 atomic_inc(&p->user->__count);
910 atomic_inc(&p->user->processes);
911 get_group_info(p->group_info);
912
913 /*
914 * If multiple threads are within copy_process(), then this check
915 * triggers too late. This doesn't hurt, the check is only there
916 * to stop root fork bombs.
917 */
918 if (nr_threads >= max_threads)
919 goto bad_fork_cleanup_count;
920
921 if (!try_module_get(task_thread_info(p)->exec_domain->module))
922 goto bad_fork_cleanup_count;
923
924 if (p->binfmt && !try_module_get(p->binfmt->module))
925 goto bad_fork_cleanup_put_domain;
926
927 p->did_exec = 0;
928 copy_flags(clone_flags, p);
929 p->pid = pid;
930 retval = -EFAULT;
931 if (clone_flags & CLONE_PARENT_SETTID)
932 if (put_user(p->pid, parent_tidptr))
933 goto bad_fork_cleanup;
934
935 p->proc_dentry = NULL;
936
937 INIT_LIST_HEAD(&p->children);
938 INIT_LIST_HEAD(&p->sibling);
939 p->vfork_done = NULL;
940 spin_lock_init(&p->alloc_lock);
941 spin_lock_init(&p->proc_lock);
942
943 clear_tsk_thread_flag(p, TIF_SIGPENDING);
944 init_sigpending(&p->pending);
945
946 p->utime = cputime_zero;
947 p->stime = cputime_zero;
948 p->sched_time = 0;
949 p->rchar = 0; /* I/O counter: bytes read */
950 p->wchar = 0; /* I/O counter: bytes written */
951 p->syscr = 0; /* I/O counter: read syscalls */
952 p->syscw = 0; /* I/O counter: write syscalls */
953 acct_clear_integrals(p);
954
955 p->it_virt_expires = cputime_zero;
956 p->it_prof_expires = cputime_zero;
957 p->it_sched_expires = 0;
958 INIT_LIST_HEAD(&p->cpu_timers[0]);
959 INIT_LIST_HEAD(&p->cpu_timers[1]);
960 INIT_LIST_HEAD(&p->cpu_timers[2]);
961
962 p->lock_depth = -1; /* -1 = no lock */
963 do_posix_clock_monotonic_gettime(&p->start_time);
964 p->security = NULL;
965 p->io_context = NULL;
966 p->io_wait = NULL;
967 p->audit_context = NULL;
968 #ifdef CONFIG_NUMA
969 p->mempolicy = mpol_copy(p->mempolicy);
970 if (IS_ERR(p->mempolicy)) {
971 retval = PTR_ERR(p->mempolicy);
972 p->mempolicy = NULL;
973 goto bad_fork_cleanup;
974 }
975 #endif
976
977 p->tgid = p->pid;
978 if (clone_flags & CLONE_THREAD)
979 p->tgid = current->tgid;
980
981 if ((retval = security_task_alloc(p)))
982 goto bad_fork_cleanup_policy;
983 if ((retval = audit_alloc(p)))
984 goto bad_fork_cleanup_security;
985 /* copy all the process information */
986 if ((retval = copy_semundo(clone_flags, p)))
987 goto bad_fork_cleanup_audit;
988 if ((retval = copy_files(clone_flags, p)))
989 goto bad_fork_cleanup_semundo;
990 if ((retval = copy_fs(clone_flags, p)))
991 goto bad_fork_cleanup_files;
992 if ((retval = copy_sighand(clone_flags, p)))
993 goto bad_fork_cleanup_fs;
994 if ((retval = copy_signal(clone_flags, p)))
995 goto bad_fork_cleanup_sighand;
996 if ((retval = copy_mm(clone_flags, p)))
997 goto bad_fork_cleanup_signal;
998 if ((retval = copy_keys(clone_flags, p)))
999 goto bad_fork_cleanup_mm;
1000 if ((retval = copy_namespace(clone_flags, p)))
1001 goto bad_fork_cleanup_keys;
1002 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1003 if (retval)
1004 goto bad_fork_cleanup_namespace;
1005
1006 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1007 /*
1008 * Clear TID on mm_release()?
1009 */
1010 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1011
1012 /*
1013 * Syscall tracing should be turned off in the child regardless
1014 * of CLONE_PTRACE.
1015 */
1016 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1017 #ifdef TIF_SYSCALL_EMU
1018 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1019 #endif
1020
1021 /* Our parent execution domain becomes current domain
1022 These must match for thread signalling to apply */
1023
1024 p->parent_exec_id = p->self_exec_id;
1025
1026 /* ok, now we should be set up.. */
1027 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1028 p->pdeath_signal = 0;
1029 p->exit_state = 0;
1030
1031 /*
1032 * Ok, make it visible to the rest of the system.
1033 * We dont wake it up yet.
1034 */
1035 p->group_leader = p;
1036 INIT_LIST_HEAD(&p->ptrace_children);
1037 INIT_LIST_HEAD(&p->ptrace_list);
1038
1039 /* Perform scheduler related setup. Assign this task to a CPU. */
1040 sched_fork(p, clone_flags);
1041
1042 /* Need tasklist lock for parent etc handling! */
1043 write_lock_irq(&tasklist_lock);
1044
1045 /*
1046 * The task hasn't been attached yet, so its cpus_allowed mask will
1047 * not be changed, nor will its assigned CPU.
1048 *
1049 * The cpus_allowed mask of the parent may have changed after it was
1050 * copied first time - so re-copy it here, then check the child's CPU
1051 * to ensure it is on a valid CPU (and if not, just force it back to
1052 * parent's CPU). This avoids alot of nasty races.
1053 */
1054 p->cpus_allowed = current->cpus_allowed;
1055 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1056 !cpu_online(task_cpu(p))))
1057 set_task_cpu(p, smp_processor_id());
1058
1059 /*
1060 * Check for pending SIGKILL! The new thread should not be allowed
1061 * to slip out of an OOM kill. (or normal SIGKILL.)
1062 */
1063 if (sigismember(&current->pending.signal, SIGKILL)) {
1064 write_unlock_irq(&tasklist_lock);
1065 retval = -EINTR;
1066 goto bad_fork_cleanup_namespace;
1067 }
1068
1069 /* CLONE_PARENT re-uses the old parent */
1070 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1071 p->real_parent = current->real_parent;
1072 else
1073 p->real_parent = current;
1074 p->parent = p->real_parent;
1075
1076 if (clone_flags & CLONE_THREAD) {
1077 spin_lock(&current->sighand->siglock);
1078 /*
1079 * Important: if an exit-all has been started then
1080 * do not create this new thread - the whole thread
1081 * group is supposed to exit anyway.
1082 */
1083 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1084 spin_unlock(&current->sighand->siglock);
1085 write_unlock_irq(&tasklist_lock);
1086 retval = -EAGAIN;
1087 goto bad_fork_cleanup_namespace;
1088 }
1089 p->group_leader = current->group_leader;
1090
1091 if (current->signal->group_stop_count > 0) {
1092 /*
1093 * There is an all-stop in progress for the group.
1094 * We ourselves will stop as soon as we check signals.
1095 * Make the new thread part of that group stop too.
1096 */
1097 current->signal->group_stop_count++;
1098 set_tsk_thread_flag(p, TIF_SIGPENDING);
1099 }
1100
1101 if (!cputime_eq(current->signal->it_virt_expires,
1102 cputime_zero) ||
1103 !cputime_eq(current->signal->it_prof_expires,
1104 cputime_zero) ||
1105 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1106 !list_empty(&current->signal->cpu_timers[0]) ||
1107 !list_empty(&current->signal->cpu_timers[1]) ||
1108 !list_empty(&current->signal->cpu_timers[2])) {
1109 /*
1110 * Have child wake up on its first tick to check
1111 * for process CPU timers.
1112 */
1113 p->it_prof_expires = jiffies_to_cputime(1);
1114 }
1115
1116 spin_unlock(&current->sighand->siglock);
1117 }
1118
1119 /*
1120 * inherit ioprio
1121 */
1122 p->ioprio = current->ioprio;
1123
1124 SET_LINKS(p);
1125 if (unlikely(p->ptrace & PT_PTRACED))
1126 __ptrace_link(p, current->parent);
1127
1128 cpuset_fork(p);
1129
1130 attach_pid(p, PIDTYPE_PID, p->pid);
1131 attach_pid(p, PIDTYPE_TGID, p->tgid);
1132 if (thread_group_leader(p)) {
1133 attach_pid(p, PIDTYPE_PGID, process_group(p));
1134 attach_pid(p, PIDTYPE_SID, p->signal->session);
1135 if (p->pid)
1136 __get_cpu_var(process_counts)++;
1137 }
1138
1139 proc_fork_connector(p);
1140 if (!current->signal->tty && p->signal->tty)
1141 p->signal->tty = NULL;
1142
1143 nr_threads++;
1144 total_forks++;
1145 write_unlock_irq(&tasklist_lock);
1146 retval = 0;
1147
1148 fork_out:
1149 if (retval)
1150 return ERR_PTR(retval);
1151 return p;
1152
1153 bad_fork_cleanup_namespace:
1154 exit_namespace(p);
1155 bad_fork_cleanup_keys:
1156 exit_keys(p);
1157 bad_fork_cleanup_mm:
1158 if (p->mm)
1159 mmput(p->mm);
1160 bad_fork_cleanup_signal:
1161 exit_signal(p);
1162 bad_fork_cleanup_sighand:
1163 exit_sighand(p);
1164 bad_fork_cleanup_fs:
1165 exit_fs(p); /* blocking */
1166 bad_fork_cleanup_files:
1167 exit_files(p); /* blocking */
1168 bad_fork_cleanup_semundo:
1169 exit_sem(p);
1170 bad_fork_cleanup_audit:
1171 audit_free(p);
1172 bad_fork_cleanup_security:
1173 security_task_free(p);
1174 bad_fork_cleanup_policy:
1175 #ifdef CONFIG_NUMA
1176 mpol_free(p->mempolicy);
1177 #endif
1178 bad_fork_cleanup:
1179 if (p->binfmt)
1180 module_put(p->binfmt->module);
1181 bad_fork_cleanup_put_domain:
1182 module_put(task_thread_info(p)->exec_domain->module);
1183 bad_fork_cleanup_count:
1184 put_group_info(p->group_info);
1185 atomic_dec(&p->user->processes);
1186 free_uid(p->user);
1187 bad_fork_free:
1188 free_task(p);
1189 goto fork_out;
1190 }
1191
1192 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1193 {
1194 memset(regs, 0, sizeof(struct pt_regs));
1195 return regs;
1196 }
1197
1198 task_t * __devinit fork_idle(int cpu)
1199 {
1200 task_t *task;
1201 struct pt_regs regs;
1202
1203 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1204 if (!task)
1205 return ERR_PTR(-ENOMEM);
1206 init_idle(task, cpu);
1207 unhash_process(task);
1208 return task;
1209 }
1210
1211 static inline int fork_traceflag (unsigned clone_flags)
1212 {
1213 if (clone_flags & CLONE_UNTRACED)
1214 return 0;
1215 else if (clone_flags & CLONE_VFORK) {
1216 if (current->ptrace & PT_TRACE_VFORK)
1217 return PTRACE_EVENT_VFORK;
1218 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1219 if (current->ptrace & PT_TRACE_CLONE)
1220 return PTRACE_EVENT_CLONE;
1221 } else if (current->ptrace & PT_TRACE_FORK)
1222 return PTRACE_EVENT_FORK;
1223
1224 return 0;
1225 }
1226
1227 /*
1228 * Ok, this is the main fork-routine.
1229 *
1230 * It copies the process, and if successful kick-starts
1231 * it and waits for it to finish using the VM if required.
1232 */
1233 long do_fork(unsigned long clone_flags,
1234 unsigned long stack_start,
1235 struct pt_regs *regs,
1236 unsigned long stack_size,
1237 int __user *parent_tidptr,
1238 int __user *child_tidptr)
1239 {
1240 struct task_struct *p;
1241 int trace = 0;
1242 long pid = alloc_pidmap();
1243
1244 if (pid < 0)
1245 return -EAGAIN;
1246 if (unlikely(current->ptrace)) {
1247 trace = fork_traceflag (clone_flags);
1248 if (trace)
1249 clone_flags |= CLONE_PTRACE;
1250 }
1251
1252 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1253 /*
1254 * Do this prior waking up the new thread - the thread pointer
1255 * might get invalid after that point, if the thread exits quickly.
1256 */
1257 if (!IS_ERR(p)) {
1258 struct completion vfork;
1259
1260 if (clone_flags & CLONE_VFORK) {
1261 p->vfork_done = &vfork;
1262 init_completion(&vfork);
1263 }
1264
1265 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1266 /*
1267 * We'll start up with an immediate SIGSTOP.
1268 */
1269 sigaddset(&p->pending.signal, SIGSTOP);
1270 set_tsk_thread_flag(p, TIF_SIGPENDING);
1271 }
1272
1273 if (!(clone_flags & CLONE_STOPPED))
1274 wake_up_new_task(p, clone_flags);
1275 else
1276 p->state = TASK_STOPPED;
1277
1278 if (unlikely (trace)) {
1279 current->ptrace_message = pid;
1280 ptrace_notify ((trace << 8) | SIGTRAP);
1281 }
1282
1283 if (clone_flags & CLONE_VFORK) {
1284 wait_for_completion(&vfork);
1285 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1286 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1287 }
1288 } else {
1289 free_pidmap(pid);
1290 pid = PTR_ERR(p);
1291 }
1292 return pid;
1293 }
1294
1295 void __init proc_caches_init(void)
1296 {
1297 sighand_cachep = kmem_cache_create("sighand_cache",
1298 sizeof(struct sighand_struct), 0,
1299 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1300 signal_cachep = kmem_cache_create("signal_cache",
1301 sizeof(struct signal_struct), 0,
1302 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1303 files_cachep = kmem_cache_create("files_cache",
1304 sizeof(struct files_struct), 0,
1305 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1306 fs_cachep = kmem_cache_create("fs_cache",
1307 sizeof(struct fs_struct), 0,
1308 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1309 vm_area_cachep = kmem_cache_create("vm_area_struct",
1310 sizeof(struct vm_area_struct), 0,
1311 SLAB_PANIC, NULL, NULL);
1312 mm_cachep = kmem_cache_create("mm_struct",
1313 sizeof(struct mm_struct), 0,
1314 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1315 }
This page took 0.059752 seconds and 6 git commands to generate.