Merge branch 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jdelv...
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67
68 #include <asm/pgtable.h>
69 #include <asm/pgalloc.h>
70 #include <asm/uaccess.h>
71 #include <asm/mmu_context.h>
72 #include <asm/cacheflush.h>
73 #include <asm/tlbflush.h>
74
75 #include <trace/events/sched.h>
76
77 /*
78 * Protected counters by write_lock_irq(&tasklist_lock)
79 */
80 unsigned long total_forks; /* Handle normal Linux uptimes. */
81 int nr_threads; /* The idle threads do not count.. */
82
83 int max_threads; /* tunable limit on nr_threads */
84
85 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
86
87 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
88
89 int nr_processes(void)
90 {
91 int cpu;
92 int total = 0;
93
94 for_each_online_cpu(cpu)
95 total += per_cpu(process_counts, cpu);
96
97 return total;
98 }
99
100 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
101 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
102 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
103 static struct kmem_cache *task_struct_cachep;
104 #endif
105
106 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
107 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
108 {
109 #ifdef CONFIG_DEBUG_STACK_USAGE
110 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
111 #else
112 gfp_t mask = GFP_KERNEL;
113 #endif
114 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
115 }
116
117 static inline void free_thread_info(struct thread_info *ti)
118 {
119 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
120 }
121 #endif
122
123 /* SLAB cache for signal_struct structures (tsk->signal) */
124 static struct kmem_cache *signal_cachep;
125
126 /* SLAB cache for sighand_struct structures (tsk->sighand) */
127 struct kmem_cache *sighand_cachep;
128
129 /* SLAB cache for files_struct structures (tsk->files) */
130 struct kmem_cache *files_cachep;
131
132 /* SLAB cache for fs_struct structures (tsk->fs) */
133 struct kmem_cache *fs_cachep;
134
135 /* SLAB cache for vm_area_struct structures */
136 struct kmem_cache *vm_area_cachep;
137
138 /* SLAB cache for mm_struct structures (tsk->mm) */
139 static struct kmem_cache *mm_cachep;
140
141 static void account_kernel_stack(struct thread_info *ti, int account)
142 {
143 struct zone *zone = page_zone(virt_to_page(ti));
144
145 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
146 }
147
148 void free_task(struct task_struct *tsk)
149 {
150 prop_local_destroy_single(&tsk->dirties);
151 account_kernel_stack(tsk->stack, -1);
152 free_thread_info(tsk->stack);
153 rt_mutex_debug_task_free(tsk);
154 ftrace_graph_exit_task(tsk);
155 free_task_struct(tsk);
156 }
157 EXPORT_SYMBOL(free_task);
158
159 void __put_task_struct(struct task_struct *tsk)
160 {
161 WARN_ON(!tsk->exit_state);
162 WARN_ON(atomic_read(&tsk->usage));
163 WARN_ON(tsk == current);
164
165 exit_creds(tsk);
166 delayacct_tsk_free(tsk);
167
168 if (!profile_handoff_task(tsk))
169 free_task(tsk);
170 }
171
172 /*
173 * macro override instead of weak attribute alias, to workaround
174 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
175 */
176 #ifndef arch_task_cache_init
177 #define arch_task_cache_init()
178 #endif
179
180 void __init fork_init(unsigned long mempages)
181 {
182 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
183 #ifndef ARCH_MIN_TASKALIGN
184 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
185 #endif
186 /* create a slab on which task_structs can be allocated */
187 task_struct_cachep =
188 kmem_cache_create("task_struct", sizeof(struct task_struct),
189 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
190 #endif
191
192 /* do the arch specific task caches init */
193 arch_task_cache_init();
194
195 /*
196 * The default maximum number of threads is set to a safe
197 * value: the thread structures can take up at most half
198 * of memory.
199 */
200 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
201
202 /*
203 * we need to allow at least 20 threads to boot a system
204 */
205 if(max_threads < 20)
206 max_threads = 20;
207
208 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
209 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
210 init_task.signal->rlim[RLIMIT_SIGPENDING] =
211 init_task.signal->rlim[RLIMIT_NPROC];
212 }
213
214 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
215 struct task_struct *src)
216 {
217 *dst = *src;
218 return 0;
219 }
220
221 static struct task_struct *dup_task_struct(struct task_struct *orig)
222 {
223 struct task_struct *tsk;
224 struct thread_info *ti;
225 unsigned long *stackend;
226
227 int err;
228
229 prepare_to_copy(orig);
230
231 tsk = alloc_task_struct();
232 if (!tsk)
233 return NULL;
234
235 ti = alloc_thread_info(tsk);
236 if (!ti) {
237 free_task_struct(tsk);
238 return NULL;
239 }
240
241 err = arch_dup_task_struct(tsk, orig);
242 if (err)
243 goto out;
244
245 tsk->stack = ti;
246
247 err = prop_local_init_single(&tsk->dirties);
248 if (err)
249 goto out;
250
251 setup_thread_stack(tsk, orig);
252 stackend = end_of_stack(tsk);
253 *stackend = STACK_END_MAGIC; /* for overflow detection */
254
255 #ifdef CONFIG_CC_STACKPROTECTOR
256 tsk->stack_canary = get_random_int();
257 #endif
258
259 /* One for us, one for whoever does the "release_task()" (usually parent) */
260 atomic_set(&tsk->usage,2);
261 atomic_set(&tsk->fs_excl, 0);
262 #ifdef CONFIG_BLK_DEV_IO_TRACE
263 tsk->btrace_seq = 0;
264 #endif
265 tsk->splice_pipe = NULL;
266
267 account_kernel_stack(ti, 1);
268
269 return tsk;
270
271 out:
272 free_thread_info(ti);
273 free_task_struct(tsk);
274 return NULL;
275 }
276
277 #ifdef CONFIG_MMU
278 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
279 {
280 struct vm_area_struct *mpnt, *tmp, **pprev;
281 struct rb_node **rb_link, *rb_parent;
282 int retval;
283 unsigned long charge;
284 struct mempolicy *pol;
285
286 down_write(&oldmm->mmap_sem);
287 flush_cache_dup_mm(oldmm);
288 /*
289 * Not linked in yet - no deadlock potential:
290 */
291 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
292
293 mm->locked_vm = 0;
294 mm->mmap = NULL;
295 mm->mmap_cache = NULL;
296 mm->free_area_cache = oldmm->mmap_base;
297 mm->cached_hole_size = ~0UL;
298 mm->map_count = 0;
299 cpumask_clear(mm_cpumask(mm));
300 mm->mm_rb = RB_ROOT;
301 rb_link = &mm->mm_rb.rb_node;
302 rb_parent = NULL;
303 pprev = &mm->mmap;
304 retval = ksm_fork(mm, oldmm);
305 if (retval)
306 goto out;
307
308 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
309 struct file *file;
310
311 if (mpnt->vm_flags & VM_DONTCOPY) {
312 long pages = vma_pages(mpnt);
313 mm->total_vm -= pages;
314 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
315 -pages);
316 continue;
317 }
318 charge = 0;
319 if (mpnt->vm_flags & VM_ACCOUNT) {
320 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
321 if (security_vm_enough_memory(len))
322 goto fail_nomem;
323 charge = len;
324 }
325 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
326 if (!tmp)
327 goto fail_nomem;
328 *tmp = *mpnt;
329 pol = mpol_dup(vma_policy(mpnt));
330 retval = PTR_ERR(pol);
331 if (IS_ERR(pol))
332 goto fail_nomem_policy;
333 vma_set_policy(tmp, pol);
334 tmp->vm_flags &= ~VM_LOCKED;
335 tmp->vm_mm = mm;
336 tmp->vm_next = NULL;
337 anon_vma_link(tmp);
338 file = tmp->vm_file;
339 if (file) {
340 struct inode *inode = file->f_path.dentry->d_inode;
341 struct address_space *mapping = file->f_mapping;
342
343 get_file(file);
344 if (tmp->vm_flags & VM_DENYWRITE)
345 atomic_dec(&inode->i_writecount);
346 spin_lock(&mapping->i_mmap_lock);
347 if (tmp->vm_flags & VM_SHARED)
348 mapping->i_mmap_writable++;
349 tmp->vm_truncate_count = mpnt->vm_truncate_count;
350 flush_dcache_mmap_lock(mapping);
351 /* insert tmp into the share list, just after mpnt */
352 vma_prio_tree_add(tmp, mpnt);
353 flush_dcache_mmap_unlock(mapping);
354 spin_unlock(&mapping->i_mmap_lock);
355 }
356
357 /*
358 * Clear hugetlb-related page reserves for children. This only
359 * affects MAP_PRIVATE mappings. Faults generated by the child
360 * are not guaranteed to succeed, even if read-only
361 */
362 if (is_vm_hugetlb_page(tmp))
363 reset_vma_resv_huge_pages(tmp);
364
365 /*
366 * Link in the new vma and copy the page table entries.
367 */
368 *pprev = tmp;
369 pprev = &tmp->vm_next;
370
371 __vma_link_rb(mm, tmp, rb_link, rb_parent);
372 rb_link = &tmp->vm_rb.rb_right;
373 rb_parent = &tmp->vm_rb;
374
375 mm->map_count++;
376 retval = copy_page_range(mm, oldmm, mpnt);
377
378 if (tmp->vm_ops && tmp->vm_ops->open)
379 tmp->vm_ops->open(tmp);
380
381 if (retval)
382 goto out;
383 }
384 /* a new mm has just been created */
385 arch_dup_mmap(oldmm, mm);
386 retval = 0;
387 out:
388 up_write(&mm->mmap_sem);
389 flush_tlb_mm(oldmm);
390 up_write(&oldmm->mmap_sem);
391 return retval;
392 fail_nomem_policy:
393 kmem_cache_free(vm_area_cachep, tmp);
394 fail_nomem:
395 retval = -ENOMEM;
396 vm_unacct_memory(charge);
397 goto out;
398 }
399
400 static inline int mm_alloc_pgd(struct mm_struct * mm)
401 {
402 mm->pgd = pgd_alloc(mm);
403 if (unlikely(!mm->pgd))
404 return -ENOMEM;
405 return 0;
406 }
407
408 static inline void mm_free_pgd(struct mm_struct * mm)
409 {
410 pgd_free(mm, mm->pgd);
411 }
412 #else
413 #define dup_mmap(mm, oldmm) (0)
414 #define mm_alloc_pgd(mm) (0)
415 #define mm_free_pgd(mm)
416 #endif /* CONFIG_MMU */
417
418 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
419
420 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
421 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
422
423 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
424
425 static int __init coredump_filter_setup(char *s)
426 {
427 default_dump_filter =
428 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
429 MMF_DUMP_FILTER_MASK;
430 return 1;
431 }
432
433 __setup("coredump_filter=", coredump_filter_setup);
434
435 #include <linux/init_task.h>
436
437 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
438 {
439 atomic_set(&mm->mm_users, 1);
440 atomic_set(&mm->mm_count, 1);
441 init_rwsem(&mm->mmap_sem);
442 INIT_LIST_HEAD(&mm->mmlist);
443 mm->flags = (current->mm) ?
444 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
445 mm->core_state = NULL;
446 mm->nr_ptes = 0;
447 set_mm_counter(mm, file_rss, 0);
448 set_mm_counter(mm, anon_rss, 0);
449 spin_lock_init(&mm->page_table_lock);
450 spin_lock_init(&mm->ioctx_lock);
451 INIT_HLIST_HEAD(&mm->ioctx_list);
452 mm->free_area_cache = TASK_UNMAPPED_BASE;
453 mm->cached_hole_size = ~0UL;
454 mm_init_owner(mm, p);
455
456 if (likely(!mm_alloc_pgd(mm))) {
457 mm->def_flags = 0;
458 mmu_notifier_mm_init(mm);
459 return mm;
460 }
461
462 free_mm(mm);
463 return NULL;
464 }
465
466 /*
467 * Allocate and initialize an mm_struct.
468 */
469 struct mm_struct * mm_alloc(void)
470 {
471 struct mm_struct * mm;
472
473 mm = allocate_mm();
474 if (mm) {
475 memset(mm, 0, sizeof(*mm));
476 mm = mm_init(mm, current);
477 }
478 return mm;
479 }
480
481 /*
482 * Called when the last reference to the mm
483 * is dropped: either by a lazy thread or by
484 * mmput. Free the page directory and the mm.
485 */
486 void __mmdrop(struct mm_struct *mm)
487 {
488 BUG_ON(mm == &init_mm);
489 mm_free_pgd(mm);
490 destroy_context(mm);
491 mmu_notifier_mm_destroy(mm);
492 free_mm(mm);
493 }
494 EXPORT_SYMBOL_GPL(__mmdrop);
495
496 /*
497 * Decrement the use count and release all resources for an mm.
498 */
499 void mmput(struct mm_struct *mm)
500 {
501 might_sleep();
502
503 if (atomic_dec_and_test(&mm->mm_users)) {
504 exit_aio(mm);
505 ksm_exit(mm);
506 exit_mmap(mm);
507 set_mm_exe_file(mm, NULL);
508 if (!list_empty(&mm->mmlist)) {
509 spin_lock(&mmlist_lock);
510 list_del(&mm->mmlist);
511 spin_unlock(&mmlist_lock);
512 }
513 put_swap_token(mm);
514 mmdrop(mm);
515 }
516 }
517 EXPORT_SYMBOL_GPL(mmput);
518
519 /**
520 * get_task_mm - acquire a reference to the task's mm
521 *
522 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
523 * this kernel workthread has transiently adopted a user mm with use_mm,
524 * to do its AIO) is not set and if so returns a reference to it, after
525 * bumping up the use count. User must release the mm via mmput()
526 * after use. Typically used by /proc and ptrace.
527 */
528 struct mm_struct *get_task_mm(struct task_struct *task)
529 {
530 struct mm_struct *mm;
531
532 task_lock(task);
533 mm = task->mm;
534 if (mm) {
535 if (task->flags & PF_KTHREAD)
536 mm = NULL;
537 else
538 atomic_inc(&mm->mm_users);
539 }
540 task_unlock(task);
541 return mm;
542 }
543 EXPORT_SYMBOL_GPL(get_task_mm);
544
545 /* Please note the differences between mmput and mm_release.
546 * mmput is called whenever we stop holding onto a mm_struct,
547 * error success whatever.
548 *
549 * mm_release is called after a mm_struct has been removed
550 * from the current process.
551 *
552 * This difference is important for error handling, when we
553 * only half set up a mm_struct for a new process and need to restore
554 * the old one. Because we mmput the new mm_struct before
555 * restoring the old one. . .
556 * Eric Biederman 10 January 1998
557 */
558 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
559 {
560 struct completion *vfork_done = tsk->vfork_done;
561
562 /* Get rid of any futexes when releasing the mm */
563 #ifdef CONFIG_FUTEX
564 if (unlikely(tsk->robust_list))
565 exit_robust_list(tsk);
566 #ifdef CONFIG_COMPAT
567 if (unlikely(tsk->compat_robust_list))
568 compat_exit_robust_list(tsk);
569 #endif
570 #endif
571
572 /* Get rid of any cached register state */
573 deactivate_mm(tsk, mm);
574
575 /* notify parent sleeping on vfork() */
576 if (vfork_done) {
577 tsk->vfork_done = NULL;
578 complete(vfork_done);
579 }
580
581 /*
582 * If we're exiting normally, clear a user-space tid field if
583 * requested. We leave this alone when dying by signal, to leave
584 * the value intact in a core dump, and to save the unnecessary
585 * trouble otherwise. Userland only wants this done for a sys_exit.
586 */
587 if (tsk->clear_child_tid) {
588 if (!(tsk->flags & PF_SIGNALED) &&
589 atomic_read(&mm->mm_users) > 1) {
590 /*
591 * We don't check the error code - if userspace has
592 * not set up a proper pointer then tough luck.
593 */
594 put_user(0, tsk->clear_child_tid);
595 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
596 1, NULL, NULL, 0);
597 }
598 tsk->clear_child_tid = NULL;
599 }
600 }
601
602 /*
603 * Allocate a new mm structure and copy contents from the
604 * mm structure of the passed in task structure.
605 */
606 struct mm_struct *dup_mm(struct task_struct *tsk)
607 {
608 struct mm_struct *mm, *oldmm = current->mm;
609 int err;
610
611 if (!oldmm)
612 return NULL;
613
614 mm = allocate_mm();
615 if (!mm)
616 goto fail_nomem;
617
618 memcpy(mm, oldmm, sizeof(*mm));
619
620 /* Initializing for Swap token stuff */
621 mm->token_priority = 0;
622 mm->last_interval = 0;
623
624 if (!mm_init(mm, tsk))
625 goto fail_nomem;
626
627 if (init_new_context(tsk, mm))
628 goto fail_nocontext;
629
630 dup_mm_exe_file(oldmm, mm);
631
632 err = dup_mmap(mm, oldmm);
633 if (err)
634 goto free_pt;
635
636 mm->hiwater_rss = get_mm_rss(mm);
637 mm->hiwater_vm = mm->total_vm;
638
639 return mm;
640
641 free_pt:
642 mmput(mm);
643
644 fail_nomem:
645 return NULL;
646
647 fail_nocontext:
648 /*
649 * If init_new_context() failed, we cannot use mmput() to free the mm
650 * because it calls destroy_context()
651 */
652 mm_free_pgd(mm);
653 free_mm(mm);
654 return NULL;
655 }
656
657 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
658 {
659 struct mm_struct * mm, *oldmm;
660 int retval;
661
662 tsk->min_flt = tsk->maj_flt = 0;
663 tsk->nvcsw = tsk->nivcsw = 0;
664 #ifdef CONFIG_DETECT_HUNG_TASK
665 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
666 #endif
667
668 tsk->mm = NULL;
669 tsk->active_mm = NULL;
670
671 /*
672 * Are we cloning a kernel thread?
673 *
674 * We need to steal a active VM for that..
675 */
676 oldmm = current->mm;
677 if (!oldmm)
678 return 0;
679
680 if (clone_flags & CLONE_VM) {
681 atomic_inc(&oldmm->mm_users);
682 mm = oldmm;
683 goto good_mm;
684 }
685
686 retval = -ENOMEM;
687 mm = dup_mm(tsk);
688 if (!mm)
689 goto fail_nomem;
690
691 good_mm:
692 /* Initializing for Swap token stuff */
693 mm->token_priority = 0;
694 mm->last_interval = 0;
695
696 tsk->mm = mm;
697 tsk->active_mm = mm;
698 return 0;
699
700 fail_nomem:
701 return retval;
702 }
703
704 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
705 {
706 struct fs_struct *fs = current->fs;
707 if (clone_flags & CLONE_FS) {
708 /* tsk->fs is already what we want */
709 write_lock(&fs->lock);
710 if (fs->in_exec) {
711 write_unlock(&fs->lock);
712 return -EAGAIN;
713 }
714 fs->users++;
715 write_unlock(&fs->lock);
716 return 0;
717 }
718 tsk->fs = copy_fs_struct(fs);
719 if (!tsk->fs)
720 return -ENOMEM;
721 return 0;
722 }
723
724 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
725 {
726 struct files_struct *oldf, *newf;
727 int error = 0;
728
729 /*
730 * A background process may not have any files ...
731 */
732 oldf = current->files;
733 if (!oldf)
734 goto out;
735
736 if (clone_flags & CLONE_FILES) {
737 atomic_inc(&oldf->count);
738 goto out;
739 }
740
741 newf = dup_fd(oldf, &error);
742 if (!newf)
743 goto out;
744
745 tsk->files = newf;
746 error = 0;
747 out:
748 return error;
749 }
750
751 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
752 {
753 #ifdef CONFIG_BLOCK
754 struct io_context *ioc = current->io_context;
755
756 if (!ioc)
757 return 0;
758 /*
759 * Share io context with parent, if CLONE_IO is set
760 */
761 if (clone_flags & CLONE_IO) {
762 tsk->io_context = ioc_task_link(ioc);
763 if (unlikely(!tsk->io_context))
764 return -ENOMEM;
765 } else if (ioprio_valid(ioc->ioprio)) {
766 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
767 if (unlikely(!tsk->io_context))
768 return -ENOMEM;
769
770 tsk->io_context->ioprio = ioc->ioprio;
771 }
772 #endif
773 return 0;
774 }
775
776 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
777 {
778 struct sighand_struct *sig;
779
780 if (clone_flags & CLONE_SIGHAND) {
781 atomic_inc(&current->sighand->count);
782 return 0;
783 }
784 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
785 rcu_assign_pointer(tsk->sighand, sig);
786 if (!sig)
787 return -ENOMEM;
788 atomic_set(&sig->count, 1);
789 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
790 return 0;
791 }
792
793 void __cleanup_sighand(struct sighand_struct *sighand)
794 {
795 if (atomic_dec_and_test(&sighand->count))
796 kmem_cache_free(sighand_cachep, sighand);
797 }
798
799
800 /*
801 * Initialize POSIX timer handling for a thread group.
802 */
803 static void posix_cpu_timers_init_group(struct signal_struct *sig)
804 {
805 /* Thread group counters. */
806 thread_group_cputime_init(sig);
807
808 /* Expiration times and increments. */
809 sig->it[CPUCLOCK_PROF].expires = cputime_zero;
810 sig->it[CPUCLOCK_PROF].incr = cputime_zero;
811 sig->it[CPUCLOCK_VIRT].expires = cputime_zero;
812 sig->it[CPUCLOCK_VIRT].incr = cputime_zero;
813
814 /* Cached expiration times. */
815 sig->cputime_expires.prof_exp = cputime_zero;
816 sig->cputime_expires.virt_exp = cputime_zero;
817 sig->cputime_expires.sched_exp = 0;
818
819 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
820 sig->cputime_expires.prof_exp =
821 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
822 sig->cputimer.running = 1;
823 }
824
825 /* The timer lists. */
826 INIT_LIST_HEAD(&sig->cpu_timers[0]);
827 INIT_LIST_HEAD(&sig->cpu_timers[1]);
828 INIT_LIST_HEAD(&sig->cpu_timers[2]);
829 }
830
831 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
832 {
833 struct signal_struct *sig;
834
835 if (clone_flags & CLONE_THREAD)
836 return 0;
837
838 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
839 tsk->signal = sig;
840 if (!sig)
841 return -ENOMEM;
842
843 atomic_set(&sig->count, 1);
844 atomic_set(&sig->live, 1);
845 init_waitqueue_head(&sig->wait_chldexit);
846 sig->flags = 0;
847 if (clone_flags & CLONE_NEWPID)
848 sig->flags |= SIGNAL_UNKILLABLE;
849 sig->group_exit_code = 0;
850 sig->group_exit_task = NULL;
851 sig->group_stop_count = 0;
852 sig->curr_target = tsk;
853 init_sigpending(&sig->shared_pending);
854 INIT_LIST_HEAD(&sig->posix_timers);
855
856 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
857 sig->it_real_incr.tv64 = 0;
858 sig->real_timer.function = it_real_fn;
859
860 sig->leader = 0; /* session leadership doesn't inherit */
861 sig->tty_old_pgrp = NULL;
862 sig->tty = NULL;
863
864 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
865 sig->gtime = cputime_zero;
866 sig->cgtime = cputime_zero;
867 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
868 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
869 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
870 sig->maxrss = sig->cmaxrss = 0;
871 task_io_accounting_init(&sig->ioac);
872 sig->sum_sched_runtime = 0;
873 taskstats_tgid_init(sig);
874
875 task_lock(current->group_leader);
876 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
877 task_unlock(current->group_leader);
878
879 posix_cpu_timers_init_group(sig);
880
881 acct_init_pacct(&sig->pacct);
882
883 tty_audit_fork(sig);
884
885 sig->oom_adj = current->signal->oom_adj;
886
887 return 0;
888 }
889
890 void __cleanup_signal(struct signal_struct *sig)
891 {
892 thread_group_cputime_free(sig);
893 tty_kref_put(sig->tty);
894 kmem_cache_free(signal_cachep, sig);
895 }
896
897 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
898 {
899 unsigned long new_flags = p->flags;
900
901 new_flags &= ~PF_SUPERPRIV;
902 new_flags |= PF_FORKNOEXEC;
903 new_flags |= PF_STARTING;
904 p->flags = new_flags;
905 clear_freeze_flag(p);
906 }
907
908 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
909 {
910 current->clear_child_tid = tidptr;
911
912 return task_pid_vnr(current);
913 }
914
915 static void rt_mutex_init_task(struct task_struct *p)
916 {
917 spin_lock_init(&p->pi_lock);
918 #ifdef CONFIG_RT_MUTEXES
919 plist_head_init(&p->pi_waiters, &p->pi_lock);
920 p->pi_blocked_on = NULL;
921 #endif
922 }
923
924 #ifdef CONFIG_MM_OWNER
925 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
926 {
927 mm->owner = p;
928 }
929 #endif /* CONFIG_MM_OWNER */
930
931 /*
932 * Initialize POSIX timer handling for a single task.
933 */
934 static void posix_cpu_timers_init(struct task_struct *tsk)
935 {
936 tsk->cputime_expires.prof_exp = cputime_zero;
937 tsk->cputime_expires.virt_exp = cputime_zero;
938 tsk->cputime_expires.sched_exp = 0;
939 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
940 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
941 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
942 }
943
944 /*
945 * This creates a new process as a copy of the old one,
946 * but does not actually start it yet.
947 *
948 * It copies the registers, and all the appropriate
949 * parts of the process environment (as per the clone
950 * flags). The actual kick-off is left to the caller.
951 */
952 static struct task_struct *copy_process(unsigned long clone_flags,
953 unsigned long stack_start,
954 struct pt_regs *regs,
955 unsigned long stack_size,
956 int __user *child_tidptr,
957 struct pid *pid,
958 int trace)
959 {
960 int retval;
961 struct task_struct *p;
962 int cgroup_callbacks_done = 0;
963
964 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
965 return ERR_PTR(-EINVAL);
966
967 /*
968 * Thread groups must share signals as well, and detached threads
969 * can only be started up within the thread group.
970 */
971 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
972 return ERR_PTR(-EINVAL);
973
974 /*
975 * Shared signal handlers imply shared VM. By way of the above,
976 * thread groups also imply shared VM. Blocking this case allows
977 * for various simplifications in other code.
978 */
979 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
980 return ERR_PTR(-EINVAL);
981
982 retval = security_task_create(clone_flags);
983 if (retval)
984 goto fork_out;
985
986 retval = -ENOMEM;
987 p = dup_task_struct(current);
988 if (!p)
989 goto fork_out;
990
991 ftrace_graph_init_task(p);
992
993 rt_mutex_init_task(p);
994
995 #ifdef CONFIG_PROVE_LOCKING
996 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
997 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
998 #endif
999 retval = -EAGAIN;
1000 if (atomic_read(&p->real_cred->user->processes) >=
1001 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1002 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1003 p->real_cred->user != INIT_USER)
1004 goto bad_fork_free;
1005 }
1006
1007 retval = copy_creds(p, clone_flags);
1008 if (retval < 0)
1009 goto bad_fork_free;
1010
1011 /*
1012 * If multiple threads are within copy_process(), then this check
1013 * triggers too late. This doesn't hurt, the check is only there
1014 * to stop root fork bombs.
1015 */
1016 retval = -EAGAIN;
1017 if (nr_threads >= max_threads)
1018 goto bad_fork_cleanup_count;
1019
1020 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1021 goto bad_fork_cleanup_count;
1022
1023 if (p->binfmt && !try_module_get(p->binfmt->module))
1024 goto bad_fork_cleanup_put_domain;
1025
1026 p->did_exec = 0;
1027 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1028 copy_flags(clone_flags, p);
1029 INIT_LIST_HEAD(&p->children);
1030 INIT_LIST_HEAD(&p->sibling);
1031 rcu_copy_process(p);
1032 p->vfork_done = NULL;
1033 spin_lock_init(&p->alloc_lock);
1034
1035 init_sigpending(&p->pending);
1036
1037 p->utime = cputime_zero;
1038 p->stime = cputime_zero;
1039 p->gtime = cputime_zero;
1040 p->utimescaled = cputime_zero;
1041 p->stimescaled = cputime_zero;
1042 p->prev_utime = cputime_zero;
1043 p->prev_stime = cputime_zero;
1044
1045 p->default_timer_slack_ns = current->timer_slack_ns;
1046
1047 task_io_accounting_init(&p->ioac);
1048 acct_clear_integrals(p);
1049
1050 posix_cpu_timers_init(p);
1051
1052 p->lock_depth = -1; /* -1 = no lock */
1053 do_posix_clock_monotonic_gettime(&p->start_time);
1054 p->real_start_time = p->start_time;
1055 monotonic_to_bootbased(&p->real_start_time);
1056 p->io_context = NULL;
1057 p->audit_context = NULL;
1058 cgroup_fork(p);
1059 #ifdef CONFIG_NUMA
1060 p->mempolicy = mpol_dup(p->mempolicy);
1061 if (IS_ERR(p->mempolicy)) {
1062 retval = PTR_ERR(p->mempolicy);
1063 p->mempolicy = NULL;
1064 goto bad_fork_cleanup_cgroup;
1065 }
1066 mpol_fix_fork_child_flag(p);
1067 #endif
1068 #ifdef CONFIG_TRACE_IRQFLAGS
1069 p->irq_events = 0;
1070 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1071 p->hardirqs_enabled = 1;
1072 #else
1073 p->hardirqs_enabled = 0;
1074 #endif
1075 p->hardirq_enable_ip = 0;
1076 p->hardirq_enable_event = 0;
1077 p->hardirq_disable_ip = _THIS_IP_;
1078 p->hardirq_disable_event = 0;
1079 p->softirqs_enabled = 1;
1080 p->softirq_enable_ip = _THIS_IP_;
1081 p->softirq_enable_event = 0;
1082 p->softirq_disable_ip = 0;
1083 p->softirq_disable_event = 0;
1084 p->hardirq_context = 0;
1085 p->softirq_context = 0;
1086 #endif
1087 #ifdef CONFIG_LOCKDEP
1088 p->lockdep_depth = 0; /* no locks held yet */
1089 p->curr_chain_key = 0;
1090 p->lockdep_recursion = 0;
1091 #endif
1092
1093 #ifdef CONFIG_DEBUG_MUTEXES
1094 p->blocked_on = NULL; /* not blocked yet */
1095 #endif
1096
1097 p->bts = NULL;
1098
1099 p->stack_start = stack_start;
1100
1101 /* Perform scheduler related setup. Assign this task to a CPU. */
1102 sched_fork(p, clone_flags);
1103
1104 retval = perf_event_init_task(p);
1105 if (retval)
1106 goto bad_fork_cleanup_policy;
1107
1108 if ((retval = audit_alloc(p)))
1109 goto bad_fork_cleanup_policy;
1110 /* copy all the process information */
1111 if ((retval = copy_semundo(clone_flags, p)))
1112 goto bad_fork_cleanup_audit;
1113 if ((retval = copy_files(clone_flags, p)))
1114 goto bad_fork_cleanup_semundo;
1115 if ((retval = copy_fs(clone_flags, p)))
1116 goto bad_fork_cleanup_files;
1117 if ((retval = copy_sighand(clone_flags, p)))
1118 goto bad_fork_cleanup_fs;
1119 if ((retval = copy_signal(clone_flags, p)))
1120 goto bad_fork_cleanup_sighand;
1121 if ((retval = copy_mm(clone_flags, p)))
1122 goto bad_fork_cleanup_signal;
1123 if ((retval = copy_namespaces(clone_flags, p)))
1124 goto bad_fork_cleanup_mm;
1125 if ((retval = copy_io(clone_flags, p)))
1126 goto bad_fork_cleanup_namespaces;
1127 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1128 if (retval)
1129 goto bad_fork_cleanup_io;
1130
1131 if (pid != &init_struct_pid) {
1132 retval = -ENOMEM;
1133 pid = alloc_pid(p->nsproxy->pid_ns);
1134 if (!pid)
1135 goto bad_fork_cleanup_io;
1136
1137 if (clone_flags & CLONE_NEWPID) {
1138 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1139 if (retval < 0)
1140 goto bad_fork_free_pid;
1141 }
1142 }
1143
1144 p->pid = pid_nr(pid);
1145 p->tgid = p->pid;
1146 if (clone_flags & CLONE_THREAD)
1147 p->tgid = current->tgid;
1148
1149 if (current->nsproxy != p->nsproxy) {
1150 retval = ns_cgroup_clone(p, pid);
1151 if (retval)
1152 goto bad_fork_free_pid;
1153 }
1154
1155 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1156 /*
1157 * Clear TID on mm_release()?
1158 */
1159 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1160 #ifdef CONFIG_FUTEX
1161 p->robust_list = NULL;
1162 #ifdef CONFIG_COMPAT
1163 p->compat_robust_list = NULL;
1164 #endif
1165 INIT_LIST_HEAD(&p->pi_state_list);
1166 p->pi_state_cache = NULL;
1167 #endif
1168 /*
1169 * sigaltstack should be cleared when sharing the same VM
1170 */
1171 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1172 p->sas_ss_sp = p->sas_ss_size = 0;
1173
1174 /*
1175 * Syscall tracing should be turned off in the child regardless
1176 * of CLONE_PTRACE.
1177 */
1178 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1179 #ifdef TIF_SYSCALL_EMU
1180 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1181 #endif
1182 clear_all_latency_tracing(p);
1183
1184 /* ok, now we should be set up.. */
1185 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1186 p->pdeath_signal = 0;
1187 p->exit_state = 0;
1188
1189 /*
1190 * Ok, make it visible to the rest of the system.
1191 * We dont wake it up yet.
1192 */
1193 p->group_leader = p;
1194 INIT_LIST_HEAD(&p->thread_group);
1195
1196 /* Now that the task is set up, run cgroup callbacks if
1197 * necessary. We need to run them before the task is visible
1198 * on the tasklist. */
1199 cgroup_fork_callbacks(p);
1200 cgroup_callbacks_done = 1;
1201
1202 /* Need tasklist lock for parent etc handling! */
1203 write_lock_irq(&tasklist_lock);
1204
1205 /*
1206 * The task hasn't been attached yet, so its cpus_allowed mask will
1207 * not be changed, nor will its assigned CPU.
1208 *
1209 * The cpus_allowed mask of the parent may have changed after it was
1210 * copied first time - so re-copy it here, then check the child's CPU
1211 * to ensure it is on a valid CPU (and if not, just force it back to
1212 * parent's CPU). This avoids alot of nasty races.
1213 */
1214 p->cpus_allowed = current->cpus_allowed;
1215 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1216 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1217 !cpu_online(task_cpu(p))))
1218 set_task_cpu(p, smp_processor_id());
1219
1220 /* CLONE_PARENT re-uses the old parent */
1221 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1222 p->real_parent = current->real_parent;
1223 p->parent_exec_id = current->parent_exec_id;
1224 } else {
1225 p->real_parent = current;
1226 p->parent_exec_id = current->self_exec_id;
1227 }
1228
1229 spin_lock(&current->sighand->siglock);
1230
1231 /*
1232 * Process group and session signals need to be delivered to just the
1233 * parent before the fork or both the parent and the child after the
1234 * fork. Restart if a signal comes in before we add the new process to
1235 * it's process group.
1236 * A fatal signal pending means that current will exit, so the new
1237 * thread can't slip out of an OOM kill (or normal SIGKILL).
1238 */
1239 recalc_sigpending();
1240 if (signal_pending(current)) {
1241 spin_unlock(&current->sighand->siglock);
1242 write_unlock_irq(&tasklist_lock);
1243 retval = -ERESTARTNOINTR;
1244 goto bad_fork_free_pid;
1245 }
1246
1247 if (clone_flags & CLONE_THREAD) {
1248 atomic_inc(&current->signal->count);
1249 atomic_inc(&current->signal->live);
1250 p->group_leader = current->group_leader;
1251 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1252 }
1253
1254 if (likely(p->pid)) {
1255 list_add_tail(&p->sibling, &p->real_parent->children);
1256 tracehook_finish_clone(p, clone_flags, trace);
1257
1258 if (thread_group_leader(p)) {
1259 if (clone_flags & CLONE_NEWPID)
1260 p->nsproxy->pid_ns->child_reaper = p;
1261
1262 p->signal->leader_pid = pid;
1263 tty_kref_put(p->signal->tty);
1264 p->signal->tty = tty_kref_get(current->signal->tty);
1265 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1266 attach_pid(p, PIDTYPE_SID, task_session(current));
1267 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1268 __get_cpu_var(process_counts)++;
1269 }
1270 attach_pid(p, PIDTYPE_PID, pid);
1271 nr_threads++;
1272 }
1273
1274 total_forks++;
1275 spin_unlock(&current->sighand->siglock);
1276 write_unlock_irq(&tasklist_lock);
1277 proc_fork_connector(p);
1278 cgroup_post_fork(p);
1279 perf_event_fork(p);
1280 return p;
1281
1282 bad_fork_free_pid:
1283 if (pid != &init_struct_pid)
1284 free_pid(pid);
1285 bad_fork_cleanup_io:
1286 put_io_context(p->io_context);
1287 bad_fork_cleanup_namespaces:
1288 exit_task_namespaces(p);
1289 bad_fork_cleanup_mm:
1290 if (p->mm)
1291 mmput(p->mm);
1292 bad_fork_cleanup_signal:
1293 if (!(clone_flags & CLONE_THREAD))
1294 __cleanup_signal(p->signal);
1295 bad_fork_cleanup_sighand:
1296 __cleanup_sighand(p->sighand);
1297 bad_fork_cleanup_fs:
1298 exit_fs(p); /* blocking */
1299 bad_fork_cleanup_files:
1300 exit_files(p); /* blocking */
1301 bad_fork_cleanup_semundo:
1302 exit_sem(p);
1303 bad_fork_cleanup_audit:
1304 audit_free(p);
1305 bad_fork_cleanup_policy:
1306 perf_event_free_task(p);
1307 #ifdef CONFIG_NUMA
1308 mpol_put(p->mempolicy);
1309 bad_fork_cleanup_cgroup:
1310 #endif
1311 cgroup_exit(p, cgroup_callbacks_done);
1312 delayacct_tsk_free(p);
1313 if (p->binfmt)
1314 module_put(p->binfmt->module);
1315 bad_fork_cleanup_put_domain:
1316 module_put(task_thread_info(p)->exec_domain->module);
1317 bad_fork_cleanup_count:
1318 atomic_dec(&p->cred->user->processes);
1319 exit_creds(p);
1320 bad_fork_free:
1321 free_task(p);
1322 fork_out:
1323 return ERR_PTR(retval);
1324 }
1325
1326 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1327 {
1328 memset(regs, 0, sizeof(struct pt_regs));
1329 return regs;
1330 }
1331
1332 struct task_struct * __cpuinit fork_idle(int cpu)
1333 {
1334 struct task_struct *task;
1335 struct pt_regs regs;
1336
1337 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1338 &init_struct_pid, 0);
1339 if (!IS_ERR(task))
1340 init_idle(task, cpu);
1341
1342 return task;
1343 }
1344
1345 /*
1346 * Ok, this is the main fork-routine.
1347 *
1348 * It copies the process, and if successful kick-starts
1349 * it and waits for it to finish using the VM if required.
1350 */
1351 long do_fork(unsigned long clone_flags,
1352 unsigned long stack_start,
1353 struct pt_regs *regs,
1354 unsigned long stack_size,
1355 int __user *parent_tidptr,
1356 int __user *child_tidptr)
1357 {
1358 struct task_struct *p;
1359 int trace = 0;
1360 long nr;
1361
1362 /*
1363 * Do some preliminary argument and permissions checking before we
1364 * actually start allocating stuff
1365 */
1366 if (clone_flags & CLONE_NEWUSER) {
1367 if (clone_flags & CLONE_THREAD)
1368 return -EINVAL;
1369 /* hopefully this check will go away when userns support is
1370 * complete
1371 */
1372 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1373 !capable(CAP_SETGID))
1374 return -EPERM;
1375 }
1376
1377 /*
1378 * We hope to recycle these flags after 2.6.26
1379 */
1380 if (unlikely(clone_flags & CLONE_STOPPED)) {
1381 static int __read_mostly count = 100;
1382
1383 if (count > 0 && printk_ratelimit()) {
1384 char comm[TASK_COMM_LEN];
1385
1386 count--;
1387 printk(KERN_INFO "fork(): process `%s' used deprecated "
1388 "clone flags 0x%lx\n",
1389 get_task_comm(comm, current),
1390 clone_flags & CLONE_STOPPED);
1391 }
1392 }
1393
1394 /*
1395 * When called from kernel_thread, don't do user tracing stuff.
1396 */
1397 if (likely(user_mode(regs)))
1398 trace = tracehook_prepare_clone(clone_flags);
1399
1400 p = copy_process(clone_flags, stack_start, regs, stack_size,
1401 child_tidptr, NULL, trace);
1402 /*
1403 * Do this prior waking up the new thread - the thread pointer
1404 * might get invalid after that point, if the thread exits quickly.
1405 */
1406 if (!IS_ERR(p)) {
1407 struct completion vfork;
1408
1409 trace_sched_process_fork(current, p);
1410
1411 nr = task_pid_vnr(p);
1412
1413 if (clone_flags & CLONE_PARENT_SETTID)
1414 put_user(nr, parent_tidptr);
1415
1416 if (clone_flags & CLONE_VFORK) {
1417 p->vfork_done = &vfork;
1418 init_completion(&vfork);
1419 }
1420
1421 audit_finish_fork(p);
1422 tracehook_report_clone(regs, clone_flags, nr, p);
1423
1424 /*
1425 * We set PF_STARTING at creation in case tracing wants to
1426 * use this to distinguish a fully live task from one that
1427 * hasn't gotten to tracehook_report_clone() yet. Now we
1428 * clear it and set the child going.
1429 */
1430 p->flags &= ~PF_STARTING;
1431
1432 if (unlikely(clone_flags & CLONE_STOPPED)) {
1433 /*
1434 * We'll start up with an immediate SIGSTOP.
1435 */
1436 sigaddset(&p->pending.signal, SIGSTOP);
1437 set_tsk_thread_flag(p, TIF_SIGPENDING);
1438 __set_task_state(p, TASK_STOPPED);
1439 } else {
1440 wake_up_new_task(p, clone_flags);
1441 }
1442
1443 tracehook_report_clone_complete(trace, regs,
1444 clone_flags, nr, p);
1445
1446 if (clone_flags & CLONE_VFORK) {
1447 freezer_do_not_count();
1448 wait_for_completion(&vfork);
1449 freezer_count();
1450 tracehook_report_vfork_done(p, nr);
1451 }
1452 } else {
1453 nr = PTR_ERR(p);
1454 }
1455 return nr;
1456 }
1457
1458 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1459 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1460 #endif
1461
1462 static void sighand_ctor(void *data)
1463 {
1464 struct sighand_struct *sighand = data;
1465
1466 spin_lock_init(&sighand->siglock);
1467 init_waitqueue_head(&sighand->signalfd_wqh);
1468 }
1469
1470 void __init proc_caches_init(void)
1471 {
1472 sighand_cachep = kmem_cache_create("sighand_cache",
1473 sizeof(struct sighand_struct), 0,
1474 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1475 SLAB_NOTRACK, sighand_ctor);
1476 signal_cachep = kmem_cache_create("signal_cache",
1477 sizeof(struct signal_struct), 0,
1478 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1479 files_cachep = kmem_cache_create("files_cache",
1480 sizeof(struct files_struct), 0,
1481 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1482 fs_cachep = kmem_cache_create("fs_cache",
1483 sizeof(struct fs_struct), 0,
1484 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1485 mm_cachep = kmem_cache_create("mm_struct",
1486 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1487 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1488 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1489 mmap_init();
1490 }
1491
1492 /*
1493 * Check constraints on flags passed to the unshare system call and
1494 * force unsharing of additional process context as appropriate.
1495 */
1496 static void check_unshare_flags(unsigned long *flags_ptr)
1497 {
1498 /*
1499 * If unsharing a thread from a thread group, must also
1500 * unshare vm.
1501 */
1502 if (*flags_ptr & CLONE_THREAD)
1503 *flags_ptr |= CLONE_VM;
1504
1505 /*
1506 * If unsharing vm, must also unshare signal handlers.
1507 */
1508 if (*flags_ptr & CLONE_VM)
1509 *flags_ptr |= CLONE_SIGHAND;
1510
1511 /*
1512 * If unsharing signal handlers and the task was created
1513 * using CLONE_THREAD, then must unshare the thread
1514 */
1515 if ((*flags_ptr & CLONE_SIGHAND) &&
1516 (atomic_read(&current->signal->count) > 1))
1517 *flags_ptr |= CLONE_THREAD;
1518
1519 /*
1520 * If unsharing namespace, must also unshare filesystem information.
1521 */
1522 if (*flags_ptr & CLONE_NEWNS)
1523 *flags_ptr |= CLONE_FS;
1524 }
1525
1526 /*
1527 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1528 */
1529 static int unshare_thread(unsigned long unshare_flags)
1530 {
1531 if (unshare_flags & CLONE_THREAD)
1532 return -EINVAL;
1533
1534 return 0;
1535 }
1536
1537 /*
1538 * Unshare the filesystem structure if it is being shared
1539 */
1540 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1541 {
1542 struct fs_struct *fs = current->fs;
1543
1544 if (!(unshare_flags & CLONE_FS) || !fs)
1545 return 0;
1546
1547 /* don't need lock here; in the worst case we'll do useless copy */
1548 if (fs->users == 1)
1549 return 0;
1550
1551 *new_fsp = copy_fs_struct(fs);
1552 if (!*new_fsp)
1553 return -ENOMEM;
1554
1555 return 0;
1556 }
1557
1558 /*
1559 * Unsharing of sighand is not supported yet
1560 */
1561 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1562 {
1563 struct sighand_struct *sigh = current->sighand;
1564
1565 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1566 return -EINVAL;
1567 else
1568 return 0;
1569 }
1570
1571 /*
1572 * Unshare vm if it is being shared
1573 */
1574 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1575 {
1576 struct mm_struct *mm = current->mm;
1577
1578 if ((unshare_flags & CLONE_VM) &&
1579 (mm && atomic_read(&mm->mm_users) > 1)) {
1580 return -EINVAL;
1581 }
1582
1583 return 0;
1584 }
1585
1586 /*
1587 * Unshare file descriptor table if it is being shared
1588 */
1589 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1590 {
1591 struct files_struct *fd = current->files;
1592 int error = 0;
1593
1594 if ((unshare_flags & CLONE_FILES) &&
1595 (fd && atomic_read(&fd->count) > 1)) {
1596 *new_fdp = dup_fd(fd, &error);
1597 if (!*new_fdp)
1598 return error;
1599 }
1600
1601 return 0;
1602 }
1603
1604 /*
1605 * unshare allows a process to 'unshare' part of the process
1606 * context which was originally shared using clone. copy_*
1607 * functions used by do_fork() cannot be used here directly
1608 * because they modify an inactive task_struct that is being
1609 * constructed. Here we are modifying the current, active,
1610 * task_struct.
1611 */
1612 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1613 {
1614 int err = 0;
1615 struct fs_struct *fs, *new_fs = NULL;
1616 struct sighand_struct *new_sigh = NULL;
1617 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1618 struct files_struct *fd, *new_fd = NULL;
1619 struct nsproxy *new_nsproxy = NULL;
1620 int do_sysvsem = 0;
1621
1622 check_unshare_flags(&unshare_flags);
1623
1624 /* Return -EINVAL for all unsupported flags */
1625 err = -EINVAL;
1626 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1627 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1628 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1629 goto bad_unshare_out;
1630
1631 /*
1632 * CLONE_NEWIPC must also detach from the undolist: after switching
1633 * to a new ipc namespace, the semaphore arrays from the old
1634 * namespace are unreachable.
1635 */
1636 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1637 do_sysvsem = 1;
1638 if ((err = unshare_thread(unshare_flags)))
1639 goto bad_unshare_out;
1640 if ((err = unshare_fs(unshare_flags, &new_fs)))
1641 goto bad_unshare_cleanup_thread;
1642 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1643 goto bad_unshare_cleanup_fs;
1644 if ((err = unshare_vm(unshare_flags, &new_mm)))
1645 goto bad_unshare_cleanup_sigh;
1646 if ((err = unshare_fd(unshare_flags, &new_fd)))
1647 goto bad_unshare_cleanup_vm;
1648 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1649 new_fs)))
1650 goto bad_unshare_cleanup_fd;
1651
1652 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1653 if (do_sysvsem) {
1654 /*
1655 * CLONE_SYSVSEM is equivalent to sys_exit().
1656 */
1657 exit_sem(current);
1658 }
1659
1660 if (new_nsproxy) {
1661 switch_task_namespaces(current, new_nsproxy);
1662 new_nsproxy = NULL;
1663 }
1664
1665 task_lock(current);
1666
1667 if (new_fs) {
1668 fs = current->fs;
1669 write_lock(&fs->lock);
1670 current->fs = new_fs;
1671 if (--fs->users)
1672 new_fs = NULL;
1673 else
1674 new_fs = fs;
1675 write_unlock(&fs->lock);
1676 }
1677
1678 if (new_mm) {
1679 mm = current->mm;
1680 active_mm = current->active_mm;
1681 current->mm = new_mm;
1682 current->active_mm = new_mm;
1683 activate_mm(active_mm, new_mm);
1684 new_mm = mm;
1685 }
1686
1687 if (new_fd) {
1688 fd = current->files;
1689 current->files = new_fd;
1690 new_fd = fd;
1691 }
1692
1693 task_unlock(current);
1694 }
1695
1696 if (new_nsproxy)
1697 put_nsproxy(new_nsproxy);
1698
1699 bad_unshare_cleanup_fd:
1700 if (new_fd)
1701 put_files_struct(new_fd);
1702
1703 bad_unshare_cleanup_vm:
1704 if (new_mm)
1705 mmput(new_mm);
1706
1707 bad_unshare_cleanup_sigh:
1708 if (new_sigh)
1709 if (atomic_dec_and_test(&new_sigh->count))
1710 kmem_cache_free(sighand_cachep, new_sigh);
1711
1712 bad_unshare_cleanup_fs:
1713 if (new_fs)
1714 free_fs_struct(new_fs);
1715
1716 bad_unshare_cleanup_thread:
1717 bad_unshare_out:
1718 return err;
1719 }
1720
1721 /*
1722 * Helper to unshare the files of the current task.
1723 * We don't want to expose copy_files internals to
1724 * the exec layer of the kernel.
1725 */
1726
1727 int unshare_files(struct files_struct **displaced)
1728 {
1729 struct task_struct *task = current;
1730 struct files_struct *copy = NULL;
1731 int error;
1732
1733 error = unshare_fd(CLONE_FILES, &copy);
1734 if (error || !copy) {
1735 *displaced = NULL;
1736 return error;
1737 }
1738 *displaced = task->files;
1739 task_lock(task);
1740 task->files = copy;
1741 task_unlock(task);
1742 return 0;
1743 }
This page took 0.069344 seconds and 6 git commands to generate.