Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/task_io_accounting_ops.h>
43 #include <linux/rcupdate.h>
44 #include <linux/ptrace.h>
45 #include <linux/mount.h>
46 #include <linux/audit.h>
47 #include <linux/memcontrol.h>
48 #include <linux/profile.h>
49 #include <linux/rmap.h>
50 #include <linux/acct.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/freezer.h>
54 #include <linux/delayacct.h>
55 #include <linux/taskstats_kern.h>
56 #include <linux/random.h>
57 #include <linux/tty.h>
58 #include <linux/proc_fs.h>
59 #include <linux/blkdev.h>
60
61 #include <asm/pgtable.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/mmu_context.h>
65 #include <asm/cacheflush.h>
66 #include <asm/tlbflush.h>
67
68 /*
69 * Protected counters by write_lock_irq(&tasklist_lock)
70 */
71 unsigned long total_forks; /* Handle normal Linux uptimes. */
72 int nr_threads; /* The idle threads do not count.. */
73
74 int max_threads; /* tunable limit on nr_threads */
75
76 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
77
78 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
79
80 int nr_processes(void)
81 {
82 int cpu;
83 int total = 0;
84
85 for_each_online_cpu(cpu)
86 total += per_cpu(process_counts, cpu);
87
88 return total;
89 }
90
91 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
92 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
93 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
94 static struct kmem_cache *task_struct_cachep;
95 #endif
96
97 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
98 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
99 {
100 #ifdef CONFIG_DEBUG_STACK_USAGE
101 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
102 #else
103 gfp_t mask = GFP_KERNEL;
104 #endif
105 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
106 }
107
108 static inline void free_thread_info(struct thread_info *ti)
109 {
110 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
111 }
112 #endif
113
114 /* SLAB cache for signal_struct structures (tsk->signal) */
115 static struct kmem_cache *signal_cachep;
116
117 /* SLAB cache for sighand_struct structures (tsk->sighand) */
118 struct kmem_cache *sighand_cachep;
119
120 /* SLAB cache for files_struct structures (tsk->files) */
121 struct kmem_cache *files_cachep;
122
123 /* SLAB cache for fs_struct structures (tsk->fs) */
124 struct kmem_cache *fs_cachep;
125
126 /* SLAB cache for vm_area_struct structures */
127 struct kmem_cache *vm_area_cachep;
128
129 /* SLAB cache for mm_struct structures (tsk->mm) */
130 static struct kmem_cache *mm_cachep;
131
132 void free_task(struct task_struct *tsk)
133 {
134 prop_local_destroy_single(&tsk->dirties);
135 free_thread_info(tsk->stack);
136 rt_mutex_debug_task_free(tsk);
137 free_task_struct(tsk);
138 }
139 EXPORT_SYMBOL(free_task);
140
141 void __put_task_struct(struct task_struct *tsk)
142 {
143 WARN_ON(!tsk->exit_state);
144 WARN_ON(atomic_read(&tsk->usage));
145 WARN_ON(tsk == current);
146
147 security_task_free(tsk);
148 free_uid(tsk->user);
149 put_group_info(tsk->group_info);
150 delayacct_tsk_free(tsk);
151
152 if (!profile_handoff_task(tsk))
153 free_task(tsk);
154 }
155
156 /*
157 * macro override instead of weak attribute alias, to workaround
158 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
159 */
160 #ifndef arch_task_cache_init
161 #define arch_task_cache_init()
162 #endif
163
164 void __init fork_init(unsigned long mempages)
165 {
166 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
167 #ifndef ARCH_MIN_TASKALIGN
168 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
169 #endif
170 /* create a slab on which task_structs can be allocated */
171 task_struct_cachep =
172 kmem_cache_create("task_struct", sizeof(struct task_struct),
173 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
174 #endif
175
176 /* do the arch specific task caches init */
177 arch_task_cache_init();
178
179 /*
180 * The default maximum number of threads is set to a safe
181 * value: the thread structures can take up at most half
182 * of memory.
183 */
184 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
185
186 /*
187 * we need to allow at least 20 threads to boot a system
188 */
189 if(max_threads < 20)
190 max_threads = 20;
191
192 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
193 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
194 init_task.signal->rlim[RLIMIT_SIGPENDING] =
195 init_task.signal->rlim[RLIMIT_NPROC];
196 }
197
198 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
199 struct task_struct *src)
200 {
201 *dst = *src;
202 return 0;
203 }
204
205 static struct task_struct *dup_task_struct(struct task_struct *orig)
206 {
207 struct task_struct *tsk;
208 struct thread_info *ti;
209 int err;
210
211 prepare_to_copy(orig);
212
213 tsk = alloc_task_struct();
214 if (!tsk)
215 return NULL;
216
217 ti = alloc_thread_info(tsk);
218 if (!ti) {
219 free_task_struct(tsk);
220 return NULL;
221 }
222
223 err = arch_dup_task_struct(tsk, orig);
224 if (err)
225 goto out;
226
227 tsk->stack = ti;
228
229 err = prop_local_init_single(&tsk->dirties);
230 if (err)
231 goto out;
232
233 setup_thread_stack(tsk, orig);
234
235 #ifdef CONFIG_CC_STACKPROTECTOR
236 tsk->stack_canary = get_random_int();
237 #endif
238
239 /* One for us, one for whoever does the "release_task()" (usually parent) */
240 atomic_set(&tsk->usage,2);
241 atomic_set(&tsk->fs_excl, 0);
242 #ifdef CONFIG_BLK_DEV_IO_TRACE
243 tsk->btrace_seq = 0;
244 #endif
245 tsk->splice_pipe = NULL;
246 return tsk;
247
248 out:
249 free_thread_info(ti);
250 free_task_struct(tsk);
251 return NULL;
252 }
253
254 #ifdef CONFIG_MMU
255 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
256 {
257 struct vm_area_struct *mpnt, *tmp, **pprev;
258 struct rb_node **rb_link, *rb_parent;
259 int retval;
260 unsigned long charge;
261 struct mempolicy *pol;
262
263 down_write(&oldmm->mmap_sem);
264 flush_cache_dup_mm(oldmm);
265 /*
266 * Not linked in yet - no deadlock potential:
267 */
268 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
269
270 mm->locked_vm = 0;
271 mm->mmap = NULL;
272 mm->mmap_cache = NULL;
273 mm->free_area_cache = oldmm->mmap_base;
274 mm->cached_hole_size = ~0UL;
275 mm->map_count = 0;
276 cpus_clear(mm->cpu_vm_mask);
277 mm->mm_rb = RB_ROOT;
278 rb_link = &mm->mm_rb.rb_node;
279 rb_parent = NULL;
280 pprev = &mm->mmap;
281
282 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
283 struct file *file;
284
285 if (mpnt->vm_flags & VM_DONTCOPY) {
286 long pages = vma_pages(mpnt);
287 mm->total_vm -= pages;
288 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
289 -pages);
290 continue;
291 }
292 charge = 0;
293 if (mpnt->vm_flags & VM_ACCOUNT) {
294 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
295 if (security_vm_enough_memory(len))
296 goto fail_nomem;
297 charge = len;
298 }
299 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
300 if (!tmp)
301 goto fail_nomem;
302 *tmp = *mpnt;
303 pol = mpol_dup(vma_policy(mpnt));
304 retval = PTR_ERR(pol);
305 if (IS_ERR(pol))
306 goto fail_nomem_policy;
307 vma_set_policy(tmp, pol);
308 tmp->vm_flags &= ~VM_LOCKED;
309 tmp->vm_mm = mm;
310 tmp->vm_next = NULL;
311 anon_vma_link(tmp);
312 file = tmp->vm_file;
313 if (file) {
314 struct inode *inode = file->f_path.dentry->d_inode;
315 get_file(file);
316 if (tmp->vm_flags & VM_DENYWRITE)
317 atomic_dec(&inode->i_writecount);
318
319 /* insert tmp into the share list, just after mpnt */
320 spin_lock(&file->f_mapping->i_mmap_lock);
321 tmp->vm_truncate_count = mpnt->vm_truncate_count;
322 flush_dcache_mmap_lock(file->f_mapping);
323 vma_prio_tree_add(tmp, mpnt);
324 flush_dcache_mmap_unlock(file->f_mapping);
325 spin_unlock(&file->f_mapping->i_mmap_lock);
326 }
327
328 /*
329 * Clear hugetlb-related page reserves for children. This only
330 * affects MAP_PRIVATE mappings. Faults generated by the child
331 * are not guaranteed to succeed, even if read-only
332 */
333 if (is_vm_hugetlb_page(tmp))
334 reset_vma_resv_huge_pages(tmp);
335
336 /*
337 * Link in the new vma and copy the page table entries.
338 */
339 *pprev = tmp;
340 pprev = &tmp->vm_next;
341
342 __vma_link_rb(mm, tmp, rb_link, rb_parent);
343 rb_link = &tmp->vm_rb.rb_right;
344 rb_parent = &tmp->vm_rb;
345
346 mm->map_count++;
347 retval = copy_page_range(mm, oldmm, mpnt);
348
349 if (tmp->vm_ops && tmp->vm_ops->open)
350 tmp->vm_ops->open(tmp);
351
352 if (retval)
353 goto out;
354 }
355 /* a new mm has just been created */
356 arch_dup_mmap(oldmm, mm);
357 retval = 0;
358 out:
359 up_write(&mm->mmap_sem);
360 flush_tlb_mm(oldmm);
361 up_write(&oldmm->mmap_sem);
362 return retval;
363 fail_nomem_policy:
364 kmem_cache_free(vm_area_cachep, tmp);
365 fail_nomem:
366 retval = -ENOMEM;
367 vm_unacct_memory(charge);
368 goto out;
369 }
370
371 static inline int mm_alloc_pgd(struct mm_struct * mm)
372 {
373 mm->pgd = pgd_alloc(mm);
374 if (unlikely(!mm->pgd))
375 return -ENOMEM;
376 return 0;
377 }
378
379 static inline void mm_free_pgd(struct mm_struct * mm)
380 {
381 pgd_free(mm, mm->pgd);
382 }
383 #else
384 #define dup_mmap(mm, oldmm) (0)
385 #define mm_alloc_pgd(mm) (0)
386 #define mm_free_pgd(mm)
387 #endif /* CONFIG_MMU */
388
389 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
390
391 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
392 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
393
394 #include <linux/init_task.h>
395
396 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
397 {
398 atomic_set(&mm->mm_users, 1);
399 atomic_set(&mm->mm_count, 1);
400 init_rwsem(&mm->mmap_sem);
401 INIT_LIST_HEAD(&mm->mmlist);
402 mm->flags = (current->mm) ? current->mm->flags
403 : MMF_DUMP_FILTER_DEFAULT;
404 mm->core_state = NULL;
405 mm->nr_ptes = 0;
406 set_mm_counter(mm, file_rss, 0);
407 set_mm_counter(mm, anon_rss, 0);
408 spin_lock_init(&mm->page_table_lock);
409 rwlock_init(&mm->ioctx_list_lock);
410 mm->ioctx_list = NULL;
411 mm->free_area_cache = TASK_UNMAPPED_BASE;
412 mm->cached_hole_size = ~0UL;
413 mm_init_owner(mm, p);
414
415 if (likely(!mm_alloc_pgd(mm))) {
416 mm->def_flags = 0;
417 return mm;
418 }
419
420 free_mm(mm);
421 return NULL;
422 }
423
424 /*
425 * Allocate and initialize an mm_struct.
426 */
427 struct mm_struct * mm_alloc(void)
428 {
429 struct mm_struct * mm;
430
431 mm = allocate_mm();
432 if (mm) {
433 memset(mm, 0, sizeof(*mm));
434 mm = mm_init(mm, current);
435 }
436 return mm;
437 }
438
439 /*
440 * Called when the last reference to the mm
441 * is dropped: either by a lazy thread or by
442 * mmput. Free the page directory and the mm.
443 */
444 void __mmdrop(struct mm_struct *mm)
445 {
446 BUG_ON(mm == &init_mm);
447 mm_free_pgd(mm);
448 destroy_context(mm);
449 free_mm(mm);
450 }
451 EXPORT_SYMBOL_GPL(__mmdrop);
452
453 /*
454 * Decrement the use count and release all resources for an mm.
455 */
456 void mmput(struct mm_struct *mm)
457 {
458 might_sleep();
459
460 if (atomic_dec_and_test(&mm->mm_users)) {
461 exit_aio(mm);
462 exit_mmap(mm);
463 set_mm_exe_file(mm, NULL);
464 if (!list_empty(&mm->mmlist)) {
465 spin_lock(&mmlist_lock);
466 list_del(&mm->mmlist);
467 spin_unlock(&mmlist_lock);
468 }
469 put_swap_token(mm);
470 mmdrop(mm);
471 }
472 }
473 EXPORT_SYMBOL_GPL(mmput);
474
475 /**
476 * get_task_mm - acquire a reference to the task's mm
477 *
478 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
479 * this kernel workthread has transiently adopted a user mm with use_mm,
480 * to do its AIO) is not set and if so returns a reference to it, after
481 * bumping up the use count. User must release the mm via mmput()
482 * after use. Typically used by /proc and ptrace.
483 */
484 struct mm_struct *get_task_mm(struct task_struct *task)
485 {
486 struct mm_struct *mm;
487
488 task_lock(task);
489 mm = task->mm;
490 if (mm) {
491 if (task->flags & PF_KTHREAD)
492 mm = NULL;
493 else
494 atomic_inc(&mm->mm_users);
495 }
496 task_unlock(task);
497 return mm;
498 }
499 EXPORT_SYMBOL_GPL(get_task_mm);
500
501 /* Please note the differences between mmput and mm_release.
502 * mmput is called whenever we stop holding onto a mm_struct,
503 * error success whatever.
504 *
505 * mm_release is called after a mm_struct has been removed
506 * from the current process.
507 *
508 * This difference is important for error handling, when we
509 * only half set up a mm_struct for a new process and need to restore
510 * the old one. Because we mmput the new mm_struct before
511 * restoring the old one. . .
512 * Eric Biederman 10 January 1998
513 */
514 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
515 {
516 struct completion *vfork_done = tsk->vfork_done;
517
518 /* Get rid of any cached register state */
519 deactivate_mm(tsk, mm);
520
521 /* notify parent sleeping on vfork() */
522 if (vfork_done) {
523 tsk->vfork_done = NULL;
524 complete(vfork_done);
525 }
526
527 /*
528 * If we're exiting normally, clear a user-space tid field if
529 * requested. We leave this alone when dying by signal, to leave
530 * the value intact in a core dump, and to save the unnecessary
531 * trouble otherwise. Userland only wants this done for a sys_exit.
532 */
533 if (tsk->clear_child_tid
534 && !(tsk->flags & PF_SIGNALED)
535 && atomic_read(&mm->mm_users) > 1) {
536 u32 __user * tidptr = tsk->clear_child_tid;
537 tsk->clear_child_tid = NULL;
538
539 /*
540 * We don't check the error code - if userspace has
541 * not set up a proper pointer then tough luck.
542 */
543 put_user(0, tidptr);
544 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
545 }
546 }
547
548 /*
549 * Allocate a new mm structure and copy contents from the
550 * mm structure of the passed in task structure.
551 */
552 struct mm_struct *dup_mm(struct task_struct *tsk)
553 {
554 struct mm_struct *mm, *oldmm = current->mm;
555 int err;
556
557 if (!oldmm)
558 return NULL;
559
560 mm = allocate_mm();
561 if (!mm)
562 goto fail_nomem;
563
564 memcpy(mm, oldmm, sizeof(*mm));
565
566 /* Initializing for Swap token stuff */
567 mm->token_priority = 0;
568 mm->last_interval = 0;
569
570 if (!mm_init(mm, tsk))
571 goto fail_nomem;
572
573 if (init_new_context(tsk, mm))
574 goto fail_nocontext;
575
576 dup_mm_exe_file(oldmm, mm);
577
578 err = dup_mmap(mm, oldmm);
579 if (err)
580 goto free_pt;
581
582 mm->hiwater_rss = get_mm_rss(mm);
583 mm->hiwater_vm = mm->total_vm;
584
585 return mm;
586
587 free_pt:
588 mmput(mm);
589
590 fail_nomem:
591 return NULL;
592
593 fail_nocontext:
594 /*
595 * If init_new_context() failed, we cannot use mmput() to free the mm
596 * because it calls destroy_context()
597 */
598 mm_free_pgd(mm);
599 free_mm(mm);
600 return NULL;
601 }
602
603 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
604 {
605 struct mm_struct * mm, *oldmm;
606 int retval;
607
608 tsk->min_flt = tsk->maj_flt = 0;
609 tsk->nvcsw = tsk->nivcsw = 0;
610
611 tsk->mm = NULL;
612 tsk->active_mm = NULL;
613
614 /*
615 * Are we cloning a kernel thread?
616 *
617 * We need to steal a active VM for that..
618 */
619 oldmm = current->mm;
620 if (!oldmm)
621 return 0;
622
623 if (clone_flags & CLONE_VM) {
624 atomic_inc(&oldmm->mm_users);
625 mm = oldmm;
626 goto good_mm;
627 }
628
629 retval = -ENOMEM;
630 mm = dup_mm(tsk);
631 if (!mm)
632 goto fail_nomem;
633
634 good_mm:
635 /* Initializing for Swap token stuff */
636 mm->token_priority = 0;
637 mm->last_interval = 0;
638
639 tsk->mm = mm;
640 tsk->active_mm = mm;
641 return 0;
642
643 fail_nomem:
644 return retval;
645 }
646
647 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
648 {
649 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
650 /* We don't need to lock fs - think why ;-) */
651 if (fs) {
652 atomic_set(&fs->count, 1);
653 rwlock_init(&fs->lock);
654 fs->umask = old->umask;
655 read_lock(&old->lock);
656 fs->root = old->root;
657 path_get(&old->root);
658 fs->pwd = old->pwd;
659 path_get(&old->pwd);
660 read_unlock(&old->lock);
661 }
662 return fs;
663 }
664
665 struct fs_struct *copy_fs_struct(struct fs_struct *old)
666 {
667 return __copy_fs_struct(old);
668 }
669
670 EXPORT_SYMBOL_GPL(copy_fs_struct);
671
672 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
673 {
674 if (clone_flags & CLONE_FS) {
675 atomic_inc(&current->fs->count);
676 return 0;
677 }
678 tsk->fs = __copy_fs_struct(current->fs);
679 if (!tsk->fs)
680 return -ENOMEM;
681 return 0;
682 }
683
684 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
685 {
686 struct files_struct *oldf, *newf;
687 int error = 0;
688
689 /*
690 * A background process may not have any files ...
691 */
692 oldf = current->files;
693 if (!oldf)
694 goto out;
695
696 if (clone_flags & CLONE_FILES) {
697 atomic_inc(&oldf->count);
698 goto out;
699 }
700
701 newf = dup_fd(oldf, &error);
702 if (!newf)
703 goto out;
704
705 tsk->files = newf;
706 error = 0;
707 out:
708 return error;
709 }
710
711 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
712 {
713 #ifdef CONFIG_BLOCK
714 struct io_context *ioc = current->io_context;
715
716 if (!ioc)
717 return 0;
718 /*
719 * Share io context with parent, if CLONE_IO is set
720 */
721 if (clone_flags & CLONE_IO) {
722 tsk->io_context = ioc_task_link(ioc);
723 if (unlikely(!tsk->io_context))
724 return -ENOMEM;
725 } else if (ioprio_valid(ioc->ioprio)) {
726 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
727 if (unlikely(!tsk->io_context))
728 return -ENOMEM;
729
730 tsk->io_context->ioprio = ioc->ioprio;
731 }
732 #endif
733 return 0;
734 }
735
736 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
737 {
738 struct sighand_struct *sig;
739
740 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
741 atomic_inc(&current->sighand->count);
742 return 0;
743 }
744 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
745 rcu_assign_pointer(tsk->sighand, sig);
746 if (!sig)
747 return -ENOMEM;
748 atomic_set(&sig->count, 1);
749 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
750 return 0;
751 }
752
753 void __cleanup_sighand(struct sighand_struct *sighand)
754 {
755 if (atomic_dec_and_test(&sighand->count))
756 kmem_cache_free(sighand_cachep, sighand);
757 }
758
759 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
760 {
761 struct signal_struct *sig;
762 int ret;
763
764 if (clone_flags & CLONE_THREAD) {
765 atomic_inc(&current->signal->count);
766 atomic_inc(&current->signal->live);
767 return 0;
768 }
769 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
770 tsk->signal = sig;
771 if (!sig)
772 return -ENOMEM;
773
774 ret = copy_thread_group_keys(tsk);
775 if (ret < 0) {
776 kmem_cache_free(signal_cachep, sig);
777 return ret;
778 }
779
780 atomic_set(&sig->count, 1);
781 atomic_set(&sig->live, 1);
782 init_waitqueue_head(&sig->wait_chldexit);
783 sig->flags = 0;
784 sig->group_exit_code = 0;
785 sig->group_exit_task = NULL;
786 sig->group_stop_count = 0;
787 sig->curr_target = tsk;
788 init_sigpending(&sig->shared_pending);
789 INIT_LIST_HEAD(&sig->posix_timers);
790
791 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
792 sig->it_real_incr.tv64 = 0;
793 sig->real_timer.function = it_real_fn;
794
795 sig->it_virt_expires = cputime_zero;
796 sig->it_virt_incr = cputime_zero;
797 sig->it_prof_expires = cputime_zero;
798 sig->it_prof_incr = cputime_zero;
799
800 sig->leader = 0; /* session leadership doesn't inherit */
801 sig->tty_old_pgrp = NULL;
802
803 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
804 sig->gtime = cputime_zero;
805 sig->cgtime = cputime_zero;
806 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
807 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
808 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
809 #ifdef CONFIG_TASK_XACCT
810 sig->rchar = sig->wchar = sig->syscr = sig->syscw = 0;
811 #endif
812 #ifdef CONFIG_TASK_IO_ACCOUNTING
813 memset(&sig->ioac, 0, sizeof(sig->ioac));
814 #endif
815 sig->sum_sched_runtime = 0;
816 INIT_LIST_HEAD(&sig->cpu_timers[0]);
817 INIT_LIST_HEAD(&sig->cpu_timers[1]);
818 INIT_LIST_HEAD(&sig->cpu_timers[2]);
819 taskstats_tgid_init(sig);
820
821 task_lock(current->group_leader);
822 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
823 task_unlock(current->group_leader);
824
825 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
826 /*
827 * New sole thread in the process gets an expiry time
828 * of the whole CPU time limit.
829 */
830 tsk->it_prof_expires =
831 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
832 }
833 acct_init_pacct(&sig->pacct);
834
835 tty_audit_fork(sig);
836
837 return 0;
838 }
839
840 void __cleanup_signal(struct signal_struct *sig)
841 {
842 exit_thread_group_keys(sig);
843 kmem_cache_free(signal_cachep, sig);
844 }
845
846 static void cleanup_signal(struct task_struct *tsk)
847 {
848 struct signal_struct *sig = tsk->signal;
849
850 atomic_dec(&sig->live);
851
852 if (atomic_dec_and_test(&sig->count))
853 __cleanup_signal(sig);
854 }
855
856 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
857 {
858 unsigned long new_flags = p->flags;
859
860 new_flags &= ~PF_SUPERPRIV;
861 new_flags |= PF_FORKNOEXEC;
862 new_flags |= PF_STARTING;
863 p->flags = new_flags;
864 clear_freeze_flag(p);
865 }
866
867 asmlinkage long sys_set_tid_address(int __user *tidptr)
868 {
869 current->clear_child_tid = tidptr;
870
871 return task_pid_vnr(current);
872 }
873
874 static void rt_mutex_init_task(struct task_struct *p)
875 {
876 spin_lock_init(&p->pi_lock);
877 #ifdef CONFIG_RT_MUTEXES
878 plist_head_init(&p->pi_waiters, &p->pi_lock);
879 p->pi_blocked_on = NULL;
880 #endif
881 }
882
883 #ifdef CONFIG_MM_OWNER
884 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
885 {
886 mm->owner = p;
887 }
888 #endif /* CONFIG_MM_OWNER */
889
890 /*
891 * This creates a new process as a copy of the old one,
892 * but does not actually start it yet.
893 *
894 * It copies the registers, and all the appropriate
895 * parts of the process environment (as per the clone
896 * flags). The actual kick-off is left to the caller.
897 */
898 static struct task_struct *copy_process(unsigned long clone_flags,
899 unsigned long stack_start,
900 struct pt_regs *regs,
901 unsigned long stack_size,
902 int __user *child_tidptr,
903 struct pid *pid,
904 int trace)
905 {
906 int retval;
907 struct task_struct *p;
908 int cgroup_callbacks_done = 0;
909
910 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
911 return ERR_PTR(-EINVAL);
912
913 /*
914 * Thread groups must share signals as well, and detached threads
915 * can only be started up within the thread group.
916 */
917 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
918 return ERR_PTR(-EINVAL);
919
920 /*
921 * Shared signal handlers imply shared VM. By way of the above,
922 * thread groups also imply shared VM. Blocking this case allows
923 * for various simplifications in other code.
924 */
925 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
926 return ERR_PTR(-EINVAL);
927
928 retval = security_task_create(clone_flags);
929 if (retval)
930 goto fork_out;
931
932 retval = -ENOMEM;
933 p = dup_task_struct(current);
934 if (!p)
935 goto fork_out;
936
937 rt_mutex_init_task(p);
938
939 #ifdef CONFIG_PROVE_LOCKING
940 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
941 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
942 #endif
943 retval = -EAGAIN;
944 if (atomic_read(&p->user->processes) >=
945 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
946 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
947 p->user != current->nsproxy->user_ns->root_user)
948 goto bad_fork_free;
949 }
950
951 atomic_inc(&p->user->__count);
952 atomic_inc(&p->user->processes);
953 get_group_info(p->group_info);
954
955 /*
956 * If multiple threads are within copy_process(), then this check
957 * triggers too late. This doesn't hurt, the check is only there
958 * to stop root fork bombs.
959 */
960 if (nr_threads >= max_threads)
961 goto bad_fork_cleanup_count;
962
963 if (!try_module_get(task_thread_info(p)->exec_domain->module))
964 goto bad_fork_cleanup_count;
965
966 if (p->binfmt && !try_module_get(p->binfmt->module))
967 goto bad_fork_cleanup_put_domain;
968
969 p->did_exec = 0;
970 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
971 copy_flags(clone_flags, p);
972 INIT_LIST_HEAD(&p->children);
973 INIT_LIST_HEAD(&p->sibling);
974 #ifdef CONFIG_PREEMPT_RCU
975 p->rcu_read_lock_nesting = 0;
976 p->rcu_flipctr_idx = 0;
977 #endif /* #ifdef CONFIG_PREEMPT_RCU */
978 p->vfork_done = NULL;
979 spin_lock_init(&p->alloc_lock);
980
981 clear_tsk_thread_flag(p, TIF_SIGPENDING);
982 init_sigpending(&p->pending);
983
984 p->utime = cputime_zero;
985 p->stime = cputime_zero;
986 p->gtime = cputime_zero;
987 p->utimescaled = cputime_zero;
988 p->stimescaled = cputime_zero;
989 p->prev_utime = cputime_zero;
990 p->prev_stime = cputime_zero;
991
992 #ifdef CONFIG_DETECT_SOFTLOCKUP
993 p->last_switch_count = 0;
994 p->last_switch_timestamp = 0;
995 #endif
996
997 #ifdef CONFIG_TASK_XACCT
998 p->rchar = 0; /* I/O counter: bytes read */
999 p->wchar = 0; /* I/O counter: bytes written */
1000 p->syscr = 0; /* I/O counter: read syscalls */
1001 p->syscw = 0; /* I/O counter: write syscalls */
1002 #endif
1003 task_io_accounting_init(p);
1004 acct_clear_integrals(p);
1005
1006 p->it_virt_expires = cputime_zero;
1007 p->it_prof_expires = cputime_zero;
1008 p->it_sched_expires = 0;
1009 INIT_LIST_HEAD(&p->cpu_timers[0]);
1010 INIT_LIST_HEAD(&p->cpu_timers[1]);
1011 INIT_LIST_HEAD(&p->cpu_timers[2]);
1012
1013 p->lock_depth = -1; /* -1 = no lock */
1014 do_posix_clock_monotonic_gettime(&p->start_time);
1015 p->real_start_time = p->start_time;
1016 monotonic_to_bootbased(&p->real_start_time);
1017 #ifdef CONFIG_SECURITY
1018 p->security = NULL;
1019 #endif
1020 p->cap_bset = current->cap_bset;
1021 p->io_context = NULL;
1022 p->audit_context = NULL;
1023 cgroup_fork(p);
1024 #ifdef CONFIG_NUMA
1025 p->mempolicy = mpol_dup(p->mempolicy);
1026 if (IS_ERR(p->mempolicy)) {
1027 retval = PTR_ERR(p->mempolicy);
1028 p->mempolicy = NULL;
1029 goto bad_fork_cleanup_cgroup;
1030 }
1031 mpol_fix_fork_child_flag(p);
1032 #endif
1033 #ifdef CONFIG_TRACE_IRQFLAGS
1034 p->irq_events = 0;
1035 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1036 p->hardirqs_enabled = 1;
1037 #else
1038 p->hardirqs_enabled = 0;
1039 #endif
1040 p->hardirq_enable_ip = 0;
1041 p->hardirq_enable_event = 0;
1042 p->hardirq_disable_ip = _THIS_IP_;
1043 p->hardirq_disable_event = 0;
1044 p->softirqs_enabled = 1;
1045 p->softirq_enable_ip = _THIS_IP_;
1046 p->softirq_enable_event = 0;
1047 p->softirq_disable_ip = 0;
1048 p->softirq_disable_event = 0;
1049 p->hardirq_context = 0;
1050 p->softirq_context = 0;
1051 #endif
1052 #ifdef CONFIG_LOCKDEP
1053 p->lockdep_depth = 0; /* no locks held yet */
1054 p->curr_chain_key = 0;
1055 p->lockdep_recursion = 0;
1056 #endif
1057
1058 #ifdef CONFIG_DEBUG_MUTEXES
1059 p->blocked_on = NULL; /* not blocked yet */
1060 #endif
1061
1062 /* Perform scheduler related setup. Assign this task to a CPU. */
1063 sched_fork(p, clone_flags);
1064
1065 if ((retval = security_task_alloc(p)))
1066 goto bad_fork_cleanup_policy;
1067 if ((retval = audit_alloc(p)))
1068 goto bad_fork_cleanup_security;
1069 /* copy all the process information */
1070 if ((retval = copy_semundo(clone_flags, p)))
1071 goto bad_fork_cleanup_audit;
1072 if ((retval = copy_files(clone_flags, p)))
1073 goto bad_fork_cleanup_semundo;
1074 if ((retval = copy_fs(clone_flags, p)))
1075 goto bad_fork_cleanup_files;
1076 if ((retval = copy_sighand(clone_flags, p)))
1077 goto bad_fork_cleanup_fs;
1078 if ((retval = copy_signal(clone_flags, p)))
1079 goto bad_fork_cleanup_sighand;
1080 if ((retval = copy_mm(clone_flags, p)))
1081 goto bad_fork_cleanup_signal;
1082 if ((retval = copy_keys(clone_flags, p)))
1083 goto bad_fork_cleanup_mm;
1084 if ((retval = copy_namespaces(clone_flags, p)))
1085 goto bad_fork_cleanup_keys;
1086 if ((retval = copy_io(clone_flags, p)))
1087 goto bad_fork_cleanup_namespaces;
1088 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1089 if (retval)
1090 goto bad_fork_cleanup_io;
1091
1092 if (pid != &init_struct_pid) {
1093 retval = -ENOMEM;
1094 pid = alloc_pid(task_active_pid_ns(p));
1095 if (!pid)
1096 goto bad_fork_cleanup_io;
1097
1098 if (clone_flags & CLONE_NEWPID) {
1099 retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1100 if (retval < 0)
1101 goto bad_fork_free_pid;
1102 }
1103 }
1104
1105 p->pid = pid_nr(pid);
1106 p->tgid = p->pid;
1107 if (clone_flags & CLONE_THREAD)
1108 p->tgid = current->tgid;
1109
1110 if (current->nsproxy != p->nsproxy) {
1111 retval = ns_cgroup_clone(p, pid);
1112 if (retval)
1113 goto bad_fork_free_pid;
1114 }
1115
1116 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1117 /*
1118 * Clear TID on mm_release()?
1119 */
1120 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1121 #ifdef CONFIG_FUTEX
1122 p->robust_list = NULL;
1123 #ifdef CONFIG_COMPAT
1124 p->compat_robust_list = NULL;
1125 #endif
1126 INIT_LIST_HEAD(&p->pi_state_list);
1127 p->pi_state_cache = NULL;
1128 #endif
1129 /*
1130 * sigaltstack should be cleared when sharing the same VM
1131 */
1132 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1133 p->sas_ss_sp = p->sas_ss_size = 0;
1134
1135 /*
1136 * Syscall tracing should be turned off in the child regardless
1137 * of CLONE_PTRACE.
1138 */
1139 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1140 #ifdef TIF_SYSCALL_EMU
1141 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1142 #endif
1143 clear_all_latency_tracing(p);
1144
1145 /* Our parent execution domain becomes current domain
1146 These must match for thread signalling to apply */
1147 p->parent_exec_id = p->self_exec_id;
1148
1149 /* ok, now we should be set up.. */
1150 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1151 p->pdeath_signal = 0;
1152 p->exit_state = 0;
1153
1154 /*
1155 * Ok, make it visible to the rest of the system.
1156 * We dont wake it up yet.
1157 */
1158 p->group_leader = p;
1159 INIT_LIST_HEAD(&p->thread_group);
1160
1161 /* Now that the task is set up, run cgroup callbacks if
1162 * necessary. We need to run them before the task is visible
1163 * on the tasklist. */
1164 cgroup_fork_callbacks(p);
1165 cgroup_callbacks_done = 1;
1166
1167 /* Need tasklist lock for parent etc handling! */
1168 write_lock_irq(&tasklist_lock);
1169
1170 /*
1171 * The task hasn't been attached yet, so its cpus_allowed mask will
1172 * not be changed, nor will its assigned CPU.
1173 *
1174 * The cpus_allowed mask of the parent may have changed after it was
1175 * copied first time - so re-copy it here, then check the child's CPU
1176 * to ensure it is on a valid CPU (and if not, just force it back to
1177 * parent's CPU). This avoids alot of nasty races.
1178 */
1179 p->cpus_allowed = current->cpus_allowed;
1180 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1181 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1182 !cpu_online(task_cpu(p))))
1183 set_task_cpu(p, smp_processor_id());
1184
1185 /* CLONE_PARENT re-uses the old parent */
1186 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1187 p->real_parent = current->real_parent;
1188 else
1189 p->real_parent = current;
1190
1191 spin_lock(&current->sighand->siglock);
1192
1193 /*
1194 * Process group and session signals need to be delivered to just the
1195 * parent before the fork or both the parent and the child after the
1196 * fork. Restart if a signal comes in before we add the new process to
1197 * it's process group.
1198 * A fatal signal pending means that current will exit, so the new
1199 * thread can't slip out of an OOM kill (or normal SIGKILL).
1200 */
1201 recalc_sigpending();
1202 if (signal_pending(current)) {
1203 spin_unlock(&current->sighand->siglock);
1204 write_unlock_irq(&tasklist_lock);
1205 retval = -ERESTARTNOINTR;
1206 goto bad_fork_free_pid;
1207 }
1208
1209 if (clone_flags & CLONE_THREAD) {
1210 p->group_leader = current->group_leader;
1211 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1212
1213 if (!cputime_eq(current->signal->it_virt_expires,
1214 cputime_zero) ||
1215 !cputime_eq(current->signal->it_prof_expires,
1216 cputime_zero) ||
1217 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1218 !list_empty(&current->signal->cpu_timers[0]) ||
1219 !list_empty(&current->signal->cpu_timers[1]) ||
1220 !list_empty(&current->signal->cpu_timers[2])) {
1221 /*
1222 * Have child wake up on its first tick to check
1223 * for process CPU timers.
1224 */
1225 p->it_prof_expires = jiffies_to_cputime(1);
1226 }
1227 }
1228
1229 if (likely(p->pid)) {
1230 list_add_tail(&p->sibling, &p->real_parent->children);
1231 tracehook_finish_clone(p, clone_flags, trace);
1232
1233 if (thread_group_leader(p)) {
1234 if (clone_flags & CLONE_NEWPID)
1235 p->nsproxy->pid_ns->child_reaper = p;
1236
1237 p->signal->leader_pid = pid;
1238 p->signal->tty = current->signal->tty;
1239 set_task_pgrp(p, task_pgrp_nr(current));
1240 set_task_session(p, task_session_nr(current));
1241 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1242 attach_pid(p, PIDTYPE_SID, task_session(current));
1243 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1244 __get_cpu_var(process_counts)++;
1245 }
1246 attach_pid(p, PIDTYPE_PID, pid);
1247 nr_threads++;
1248 }
1249
1250 total_forks++;
1251 spin_unlock(&current->sighand->siglock);
1252 write_unlock_irq(&tasklist_lock);
1253 proc_fork_connector(p);
1254 cgroup_post_fork(p);
1255 return p;
1256
1257 bad_fork_free_pid:
1258 if (pid != &init_struct_pid)
1259 free_pid(pid);
1260 bad_fork_cleanup_io:
1261 put_io_context(p->io_context);
1262 bad_fork_cleanup_namespaces:
1263 exit_task_namespaces(p);
1264 bad_fork_cleanup_keys:
1265 exit_keys(p);
1266 bad_fork_cleanup_mm:
1267 if (p->mm)
1268 mmput(p->mm);
1269 bad_fork_cleanup_signal:
1270 cleanup_signal(p);
1271 bad_fork_cleanup_sighand:
1272 __cleanup_sighand(p->sighand);
1273 bad_fork_cleanup_fs:
1274 exit_fs(p); /* blocking */
1275 bad_fork_cleanup_files:
1276 exit_files(p); /* blocking */
1277 bad_fork_cleanup_semundo:
1278 exit_sem(p);
1279 bad_fork_cleanup_audit:
1280 audit_free(p);
1281 bad_fork_cleanup_security:
1282 security_task_free(p);
1283 bad_fork_cleanup_policy:
1284 #ifdef CONFIG_NUMA
1285 mpol_put(p->mempolicy);
1286 bad_fork_cleanup_cgroup:
1287 #endif
1288 cgroup_exit(p, cgroup_callbacks_done);
1289 delayacct_tsk_free(p);
1290 if (p->binfmt)
1291 module_put(p->binfmt->module);
1292 bad_fork_cleanup_put_domain:
1293 module_put(task_thread_info(p)->exec_domain->module);
1294 bad_fork_cleanup_count:
1295 put_group_info(p->group_info);
1296 atomic_dec(&p->user->processes);
1297 free_uid(p->user);
1298 bad_fork_free:
1299 free_task(p);
1300 fork_out:
1301 return ERR_PTR(retval);
1302 }
1303
1304 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1305 {
1306 memset(regs, 0, sizeof(struct pt_regs));
1307 return regs;
1308 }
1309
1310 struct task_struct * __cpuinit fork_idle(int cpu)
1311 {
1312 struct task_struct *task;
1313 struct pt_regs regs;
1314
1315 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1316 &init_struct_pid, 0);
1317 if (!IS_ERR(task))
1318 init_idle(task, cpu);
1319
1320 return task;
1321 }
1322
1323 /*
1324 * Ok, this is the main fork-routine.
1325 *
1326 * It copies the process, and if successful kick-starts
1327 * it and waits for it to finish using the VM if required.
1328 */
1329 long do_fork(unsigned long clone_flags,
1330 unsigned long stack_start,
1331 struct pt_regs *regs,
1332 unsigned long stack_size,
1333 int __user *parent_tidptr,
1334 int __user *child_tidptr)
1335 {
1336 struct task_struct *p;
1337 int trace = 0;
1338 long nr;
1339
1340 /*
1341 * We hope to recycle these flags after 2.6.26
1342 */
1343 if (unlikely(clone_flags & CLONE_STOPPED)) {
1344 static int __read_mostly count = 100;
1345
1346 if (count > 0 && printk_ratelimit()) {
1347 char comm[TASK_COMM_LEN];
1348
1349 count--;
1350 printk(KERN_INFO "fork(): process `%s' used deprecated "
1351 "clone flags 0x%lx\n",
1352 get_task_comm(comm, current),
1353 clone_flags & CLONE_STOPPED);
1354 }
1355 }
1356
1357 /*
1358 * When called from kernel_thread, don't do user tracing stuff.
1359 */
1360 if (likely(user_mode(regs)))
1361 trace = tracehook_prepare_clone(clone_flags);
1362
1363 p = copy_process(clone_flags, stack_start, regs, stack_size,
1364 child_tidptr, NULL, trace);
1365 /*
1366 * Do this prior waking up the new thread - the thread pointer
1367 * might get invalid after that point, if the thread exits quickly.
1368 */
1369 if (!IS_ERR(p)) {
1370 struct completion vfork;
1371
1372 nr = task_pid_vnr(p);
1373
1374 if (clone_flags & CLONE_PARENT_SETTID)
1375 put_user(nr, parent_tidptr);
1376
1377 if (clone_flags & CLONE_VFORK) {
1378 p->vfork_done = &vfork;
1379 init_completion(&vfork);
1380 }
1381
1382 tracehook_report_clone(trace, regs, clone_flags, nr, p);
1383
1384 /*
1385 * We set PF_STARTING at creation in case tracing wants to
1386 * use this to distinguish a fully live task from one that
1387 * hasn't gotten to tracehook_report_clone() yet. Now we
1388 * clear it and set the child going.
1389 */
1390 p->flags &= ~PF_STARTING;
1391
1392 if (unlikely(clone_flags & CLONE_STOPPED)) {
1393 /*
1394 * We'll start up with an immediate SIGSTOP.
1395 */
1396 sigaddset(&p->pending.signal, SIGSTOP);
1397 set_tsk_thread_flag(p, TIF_SIGPENDING);
1398 __set_task_state(p, TASK_STOPPED);
1399 } else {
1400 wake_up_new_task(p, clone_flags);
1401 }
1402
1403 tracehook_report_clone_complete(trace, regs,
1404 clone_flags, nr, p);
1405
1406 if (clone_flags & CLONE_VFORK) {
1407 freezer_do_not_count();
1408 wait_for_completion(&vfork);
1409 freezer_count();
1410 tracehook_report_vfork_done(p, nr);
1411 }
1412 } else {
1413 nr = PTR_ERR(p);
1414 }
1415 return nr;
1416 }
1417
1418 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1419 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1420 #endif
1421
1422 static void sighand_ctor(void *data)
1423 {
1424 struct sighand_struct *sighand = data;
1425
1426 spin_lock_init(&sighand->siglock);
1427 init_waitqueue_head(&sighand->signalfd_wqh);
1428 }
1429
1430 void __init proc_caches_init(void)
1431 {
1432 sighand_cachep = kmem_cache_create("sighand_cache",
1433 sizeof(struct sighand_struct), 0,
1434 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1435 sighand_ctor);
1436 signal_cachep = kmem_cache_create("signal_cache",
1437 sizeof(struct signal_struct), 0,
1438 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1439 files_cachep = kmem_cache_create("files_cache",
1440 sizeof(struct files_struct), 0,
1441 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1442 fs_cachep = kmem_cache_create("fs_cache",
1443 sizeof(struct fs_struct), 0,
1444 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1445 vm_area_cachep = kmem_cache_create("vm_area_struct",
1446 sizeof(struct vm_area_struct), 0,
1447 SLAB_PANIC, NULL);
1448 mm_cachep = kmem_cache_create("mm_struct",
1449 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1450 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1451 }
1452
1453 /*
1454 * Check constraints on flags passed to the unshare system call and
1455 * force unsharing of additional process context as appropriate.
1456 */
1457 static void check_unshare_flags(unsigned long *flags_ptr)
1458 {
1459 /*
1460 * If unsharing a thread from a thread group, must also
1461 * unshare vm.
1462 */
1463 if (*flags_ptr & CLONE_THREAD)
1464 *flags_ptr |= CLONE_VM;
1465
1466 /*
1467 * If unsharing vm, must also unshare signal handlers.
1468 */
1469 if (*flags_ptr & CLONE_VM)
1470 *flags_ptr |= CLONE_SIGHAND;
1471
1472 /*
1473 * If unsharing signal handlers and the task was created
1474 * using CLONE_THREAD, then must unshare the thread
1475 */
1476 if ((*flags_ptr & CLONE_SIGHAND) &&
1477 (atomic_read(&current->signal->count) > 1))
1478 *flags_ptr |= CLONE_THREAD;
1479
1480 /*
1481 * If unsharing namespace, must also unshare filesystem information.
1482 */
1483 if (*flags_ptr & CLONE_NEWNS)
1484 *flags_ptr |= CLONE_FS;
1485 }
1486
1487 /*
1488 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1489 */
1490 static int unshare_thread(unsigned long unshare_flags)
1491 {
1492 if (unshare_flags & CLONE_THREAD)
1493 return -EINVAL;
1494
1495 return 0;
1496 }
1497
1498 /*
1499 * Unshare the filesystem structure if it is being shared
1500 */
1501 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1502 {
1503 struct fs_struct *fs = current->fs;
1504
1505 if ((unshare_flags & CLONE_FS) &&
1506 (fs && atomic_read(&fs->count) > 1)) {
1507 *new_fsp = __copy_fs_struct(current->fs);
1508 if (!*new_fsp)
1509 return -ENOMEM;
1510 }
1511
1512 return 0;
1513 }
1514
1515 /*
1516 * Unsharing of sighand is not supported yet
1517 */
1518 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1519 {
1520 struct sighand_struct *sigh = current->sighand;
1521
1522 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1523 return -EINVAL;
1524 else
1525 return 0;
1526 }
1527
1528 /*
1529 * Unshare vm if it is being shared
1530 */
1531 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1532 {
1533 struct mm_struct *mm = current->mm;
1534
1535 if ((unshare_flags & CLONE_VM) &&
1536 (mm && atomic_read(&mm->mm_users) > 1)) {
1537 return -EINVAL;
1538 }
1539
1540 return 0;
1541 }
1542
1543 /*
1544 * Unshare file descriptor table if it is being shared
1545 */
1546 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1547 {
1548 struct files_struct *fd = current->files;
1549 int error = 0;
1550
1551 if ((unshare_flags & CLONE_FILES) &&
1552 (fd && atomic_read(&fd->count) > 1)) {
1553 *new_fdp = dup_fd(fd, &error);
1554 if (!*new_fdp)
1555 return error;
1556 }
1557
1558 return 0;
1559 }
1560
1561 /*
1562 * unshare allows a process to 'unshare' part of the process
1563 * context which was originally shared using clone. copy_*
1564 * functions used by do_fork() cannot be used here directly
1565 * because they modify an inactive task_struct that is being
1566 * constructed. Here we are modifying the current, active,
1567 * task_struct.
1568 */
1569 asmlinkage long sys_unshare(unsigned long unshare_flags)
1570 {
1571 int err = 0;
1572 struct fs_struct *fs, *new_fs = NULL;
1573 struct sighand_struct *new_sigh = NULL;
1574 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1575 struct files_struct *fd, *new_fd = NULL;
1576 struct nsproxy *new_nsproxy = NULL;
1577 int do_sysvsem = 0;
1578
1579 check_unshare_flags(&unshare_flags);
1580
1581 /* Return -EINVAL for all unsupported flags */
1582 err = -EINVAL;
1583 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1584 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1585 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1586 CLONE_NEWNET))
1587 goto bad_unshare_out;
1588
1589 /*
1590 * CLONE_NEWIPC must also detach from the undolist: after switching
1591 * to a new ipc namespace, the semaphore arrays from the old
1592 * namespace are unreachable.
1593 */
1594 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1595 do_sysvsem = 1;
1596 if ((err = unshare_thread(unshare_flags)))
1597 goto bad_unshare_out;
1598 if ((err = unshare_fs(unshare_flags, &new_fs)))
1599 goto bad_unshare_cleanup_thread;
1600 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1601 goto bad_unshare_cleanup_fs;
1602 if ((err = unshare_vm(unshare_flags, &new_mm)))
1603 goto bad_unshare_cleanup_sigh;
1604 if ((err = unshare_fd(unshare_flags, &new_fd)))
1605 goto bad_unshare_cleanup_vm;
1606 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1607 new_fs)))
1608 goto bad_unshare_cleanup_fd;
1609
1610 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1611 if (do_sysvsem) {
1612 /*
1613 * CLONE_SYSVSEM is equivalent to sys_exit().
1614 */
1615 exit_sem(current);
1616 }
1617
1618 if (new_nsproxy) {
1619 switch_task_namespaces(current, new_nsproxy);
1620 new_nsproxy = NULL;
1621 }
1622
1623 task_lock(current);
1624
1625 if (new_fs) {
1626 fs = current->fs;
1627 current->fs = new_fs;
1628 new_fs = fs;
1629 }
1630
1631 if (new_mm) {
1632 mm = current->mm;
1633 active_mm = current->active_mm;
1634 current->mm = new_mm;
1635 current->active_mm = new_mm;
1636 activate_mm(active_mm, new_mm);
1637 new_mm = mm;
1638 }
1639
1640 if (new_fd) {
1641 fd = current->files;
1642 current->files = new_fd;
1643 new_fd = fd;
1644 }
1645
1646 task_unlock(current);
1647 }
1648
1649 if (new_nsproxy)
1650 put_nsproxy(new_nsproxy);
1651
1652 bad_unshare_cleanup_fd:
1653 if (new_fd)
1654 put_files_struct(new_fd);
1655
1656 bad_unshare_cleanup_vm:
1657 if (new_mm)
1658 mmput(new_mm);
1659
1660 bad_unshare_cleanup_sigh:
1661 if (new_sigh)
1662 if (atomic_dec_and_test(&new_sigh->count))
1663 kmem_cache_free(sighand_cachep, new_sigh);
1664
1665 bad_unshare_cleanup_fs:
1666 if (new_fs)
1667 put_fs_struct(new_fs);
1668
1669 bad_unshare_cleanup_thread:
1670 bad_unshare_out:
1671 return err;
1672 }
1673
1674 /*
1675 * Helper to unshare the files of the current task.
1676 * We don't want to expose copy_files internals to
1677 * the exec layer of the kernel.
1678 */
1679
1680 int unshare_files(struct files_struct **displaced)
1681 {
1682 struct task_struct *task = current;
1683 struct files_struct *copy = NULL;
1684 int error;
1685
1686 error = unshare_fd(CLONE_FILES, &copy);
1687 if (error || !copy) {
1688 *displaced = NULL;
1689 return error;
1690 }
1691 *displaced = task->files;
1692 task_lock(task);
1693 task->files = copy;
1694 task_unlock(task);
1695 return 0;
1696 }
This page took 0.080471 seconds and 6 git commands to generate.