mm: memcontrol: use page lists for uncharge batching
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77
78 #include <asm/pgtable.h>
79 #include <asm/pgalloc.h>
80 #include <asm/uaccess.h>
81 #include <asm/mmu_context.h>
82 #include <asm/cacheflush.h>
83 #include <asm/tlbflush.h>
84
85 #include <trace/events/sched.h>
86
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/task.h>
89
90 /*
91 * Protected counters by write_lock_irq(&tasklist_lock)
92 */
93 unsigned long total_forks; /* Handle normal Linux uptimes. */
94 int nr_threads; /* The idle threads do not count.. */
95
96 int max_threads; /* tunable limit on nr_threads */
97
98 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
99
100 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
101
102 #ifdef CONFIG_PROVE_RCU
103 int lockdep_tasklist_lock_is_held(void)
104 {
105 return lockdep_is_held(&tasklist_lock);
106 }
107 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
108 #endif /* #ifdef CONFIG_PROVE_RCU */
109
110 int nr_processes(void)
111 {
112 int cpu;
113 int total = 0;
114
115 for_each_possible_cpu(cpu)
116 total += per_cpu(process_counts, cpu);
117
118 return total;
119 }
120
121 void __weak arch_release_task_struct(struct task_struct *tsk)
122 {
123 }
124
125 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
126 static struct kmem_cache *task_struct_cachep;
127
128 static inline struct task_struct *alloc_task_struct_node(int node)
129 {
130 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
131 }
132
133 static inline void free_task_struct(struct task_struct *tsk)
134 {
135 kmem_cache_free(task_struct_cachep, tsk);
136 }
137 #endif
138
139 void __weak arch_release_thread_info(struct thread_info *ti)
140 {
141 }
142
143 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
144
145 /*
146 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
147 * kmemcache based allocator.
148 */
149 # if THREAD_SIZE >= PAGE_SIZE
150 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
151 int node)
152 {
153 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
154 THREAD_SIZE_ORDER);
155
156 return page ? page_address(page) : NULL;
157 }
158
159 static inline void free_thread_info(struct thread_info *ti)
160 {
161 free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
162 }
163 # else
164 static struct kmem_cache *thread_info_cache;
165
166 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
167 int node)
168 {
169 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
170 }
171
172 static void free_thread_info(struct thread_info *ti)
173 {
174 kmem_cache_free(thread_info_cache, ti);
175 }
176
177 void thread_info_cache_init(void)
178 {
179 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
180 THREAD_SIZE, 0, NULL);
181 BUG_ON(thread_info_cache == NULL);
182 }
183 # endif
184 #endif
185
186 /* SLAB cache for signal_struct structures (tsk->signal) */
187 static struct kmem_cache *signal_cachep;
188
189 /* SLAB cache for sighand_struct structures (tsk->sighand) */
190 struct kmem_cache *sighand_cachep;
191
192 /* SLAB cache for files_struct structures (tsk->files) */
193 struct kmem_cache *files_cachep;
194
195 /* SLAB cache for fs_struct structures (tsk->fs) */
196 struct kmem_cache *fs_cachep;
197
198 /* SLAB cache for vm_area_struct structures */
199 struct kmem_cache *vm_area_cachep;
200
201 /* SLAB cache for mm_struct structures (tsk->mm) */
202 static struct kmem_cache *mm_cachep;
203
204 static void account_kernel_stack(struct thread_info *ti, int account)
205 {
206 struct zone *zone = page_zone(virt_to_page(ti));
207
208 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
209 }
210
211 void free_task(struct task_struct *tsk)
212 {
213 account_kernel_stack(tsk->stack, -1);
214 arch_release_thread_info(tsk->stack);
215 free_thread_info(tsk->stack);
216 rt_mutex_debug_task_free(tsk);
217 ftrace_graph_exit_task(tsk);
218 put_seccomp_filter(tsk);
219 arch_release_task_struct(tsk);
220 free_task_struct(tsk);
221 }
222 EXPORT_SYMBOL(free_task);
223
224 static inline void free_signal_struct(struct signal_struct *sig)
225 {
226 taskstats_tgid_free(sig);
227 sched_autogroup_exit(sig);
228 kmem_cache_free(signal_cachep, sig);
229 }
230
231 static inline void put_signal_struct(struct signal_struct *sig)
232 {
233 if (atomic_dec_and_test(&sig->sigcnt))
234 free_signal_struct(sig);
235 }
236
237 void __put_task_struct(struct task_struct *tsk)
238 {
239 WARN_ON(!tsk->exit_state);
240 WARN_ON(atomic_read(&tsk->usage));
241 WARN_ON(tsk == current);
242
243 task_numa_free(tsk);
244 security_task_free(tsk);
245 exit_creds(tsk);
246 delayacct_tsk_free(tsk);
247 put_signal_struct(tsk->signal);
248
249 if (!profile_handoff_task(tsk))
250 free_task(tsk);
251 }
252 EXPORT_SYMBOL_GPL(__put_task_struct);
253
254 void __init __weak arch_task_cache_init(void) { }
255
256 void __init fork_init(unsigned long mempages)
257 {
258 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
259 #ifndef ARCH_MIN_TASKALIGN
260 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
261 #endif
262 /* create a slab on which task_structs can be allocated */
263 task_struct_cachep =
264 kmem_cache_create("task_struct", sizeof(struct task_struct),
265 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
266 #endif
267
268 /* do the arch specific task caches init */
269 arch_task_cache_init();
270
271 /*
272 * The default maximum number of threads is set to a safe
273 * value: the thread structures can take up at most half
274 * of memory.
275 */
276 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
277
278 /*
279 * we need to allow at least 20 threads to boot a system
280 */
281 if (max_threads < 20)
282 max_threads = 20;
283
284 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
285 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
286 init_task.signal->rlim[RLIMIT_SIGPENDING] =
287 init_task.signal->rlim[RLIMIT_NPROC];
288 }
289
290 int __weak arch_dup_task_struct(struct task_struct *dst,
291 struct task_struct *src)
292 {
293 *dst = *src;
294 return 0;
295 }
296
297 static struct task_struct *dup_task_struct(struct task_struct *orig)
298 {
299 struct task_struct *tsk;
300 struct thread_info *ti;
301 unsigned long *stackend;
302 int node = tsk_fork_get_node(orig);
303 int err;
304
305 tsk = alloc_task_struct_node(node);
306 if (!tsk)
307 return NULL;
308
309 ti = alloc_thread_info_node(tsk, node);
310 if (!ti)
311 goto free_tsk;
312
313 err = arch_dup_task_struct(tsk, orig);
314 if (err)
315 goto free_ti;
316
317 tsk->stack = ti;
318 #ifdef CONFIG_SECCOMP
319 /*
320 * We must handle setting up seccomp filters once we're under
321 * the sighand lock in case orig has changed between now and
322 * then. Until then, filter must be NULL to avoid messing up
323 * the usage counts on the error path calling free_task.
324 */
325 tsk->seccomp.filter = NULL;
326 #endif
327
328 setup_thread_stack(tsk, orig);
329 clear_user_return_notifier(tsk);
330 clear_tsk_need_resched(tsk);
331 stackend = end_of_stack(tsk);
332 *stackend = STACK_END_MAGIC; /* for overflow detection */
333
334 #ifdef CONFIG_CC_STACKPROTECTOR
335 tsk->stack_canary = get_random_int();
336 #endif
337
338 /*
339 * One for us, one for whoever does the "release_task()" (usually
340 * parent)
341 */
342 atomic_set(&tsk->usage, 2);
343 #ifdef CONFIG_BLK_DEV_IO_TRACE
344 tsk->btrace_seq = 0;
345 #endif
346 tsk->splice_pipe = NULL;
347 tsk->task_frag.page = NULL;
348
349 account_kernel_stack(ti, 1);
350
351 return tsk;
352
353 free_ti:
354 free_thread_info(ti);
355 free_tsk:
356 free_task_struct(tsk);
357 return NULL;
358 }
359
360 #ifdef CONFIG_MMU
361 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
362 {
363 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
364 struct rb_node **rb_link, *rb_parent;
365 int retval;
366 unsigned long charge;
367
368 uprobe_start_dup_mmap();
369 down_write(&oldmm->mmap_sem);
370 flush_cache_dup_mm(oldmm);
371 uprobe_dup_mmap(oldmm, mm);
372 /*
373 * Not linked in yet - no deadlock potential:
374 */
375 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
376
377 mm->locked_vm = 0;
378 mm->mmap = NULL;
379 mm->vmacache_seqnum = 0;
380 mm->map_count = 0;
381 cpumask_clear(mm_cpumask(mm));
382 mm->mm_rb = RB_ROOT;
383 rb_link = &mm->mm_rb.rb_node;
384 rb_parent = NULL;
385 pprev = &mm->mmap;
386 retval = ksm_fork(mm, oldmm);
387 if (retval)
388 goto out;
389 retval = khugepaged_fork(mm, oldmm);
390 if (retval)
391 goto out;
392
393 prev = NULL;
394 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
395 struct file *file;
396
397 if (mpnt->vm_flags & VM_DONTCOPY) {
398 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
399 -vma_pages(mpnt));
400 continue;
401 }
402 charge = 0;
403 if (mpnt->vm_flags & VM_ACCOUNT) {
404 unsigned long len = vma_pages(mpnt);
405
406 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
407 goto fail_nomem;
408 charge = len;
409 }
410 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
411 if (!tmp)
412 goto fail_nomem;
413 *tmp = *mpnt;
414 INIT_LIST_HEAD(&tmp->anon_vma_chain);
415 retval = vma_dup_policy(mpnt, tmp);
416 if (retval)
417 goto fail_nomem_policy;
418 tmp->vm_mm = mm;
419 if (anon_vma_fork(tmp, mpnt))
420 goto fail_nomem_anon_vma_fork;
421 tmp->vm_flags &= ~VM_LOCKED;
422 tmp->vm_next = tmp->vm_prev = NULL;
423 file = tmp->vm_file;
424 if (file) {
425 struct inode *inode = file_inode(file);
426 struct address_space *mapping = file->f_mapping;
427
428 get_file(file);
429 if (tmp->vm_flags & VM_DENYWRITE)
430 atomic_dec(&inode->i_writecount);
431 mutex_lock(&mapping->i_mmap_mutex);
432 if (tmp->vm_flags & VM_SHARED)
433 mapping->i_mmap_writable++;
434 flush_dcache_mmap_lock(mapping);
435 /* insert tmp into the share list, just after mpnt */
436 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
437 vma_nonlinear_insert(tmp,
438 &mapping->i_mmap_nonlinear);
439 else
440 vma_interval_tree_insert_after(tmp, mpnt,
441 &mapping->i_mmap);
442 flush_dcache_mmap_unlock(mapping);
443 mutex_unlock(&mapping->i_mmap_mutex);
444 }
445
446 /*
447 * Clear hugetlb-related page reserves for children. This only
448 * affects MAP_PRIVATE mappings. Faults generated by the child
449 * are not guaranteed to succeed, even if read-only
450 */
451 if (is_vm_hugetlb_page(tmp))
452 reset_vma_resv_huge_pages(tmp);
453
454 /*
455 * Link in the new vma and copy the page table entries.
456 */
457 *pprev = tmp;
458 pprev = &tmp->vm_next;
459 tmp->vm_prev = prev;
460 prev = tmp;
461
462 __vma_link_rb(mm, tmp, rb_link, rb_parent);
463 rb_link = &tmp->vm_rb.rb_right;
464 rb_parent = &tmp->vm_rb;
465
466 mm->map_count++;
467 retval = copy_page_range(mm, oldmm, mpnt);
468
469 if (tmp->vm_ops && tmp->vm_ops->open)
470 tmp->vm_ops->open(tmp);
471
472 if (retval)
473 goto out;
474 }
475 /* a new mm has just been created */
476 arch_dup_mmap(oldmm, mm);
477 retval = 0;
478 out:
479 up_write(&mm->mmap_sem);
480 flush_tlb_mm(oldmm);
481 up_write(&oldmm->mmap_sem);
482 uprobe_end_dup_mmap();
483 return retval;
484 fail_nomem_anon_vma_fork:
485 mpol_put(vma_policy(tmp));
486 fail_nomem_policy:
487 kmem_cache_free(vm_area_cachep, tmp);
488 fail_nomem:
489 retval = -ENOMEM;
490 vm_unacct_memory(charge);
491 goto out;
492 }
493
494 static inline int mm_alloc_pgd(struct mm_struct *mm)
495 {
496 mm->pgd = pgd_alloc(mm);
497 if (unlikely(!mm->pgd))
498 return -ENOMEM;
499 return 0;
500 }
501
502 static inline void mm_free_pgd(struct mm_struct *mm)
503 {
504 pgd_free(mm, mm->pgd);
505 }
506 #else
507 #define dup_mmap(mm, oldmm) (0)
508 #define mm_alloc_pgd(mm) (0)
509 #define mm_free_pgd(mm)
510 #endif /* CONFIG_MMU */
511
512 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
513
514 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
515 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
516
517 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
518
519 static int __init coredump_filter_setup(char *s)
520 {
521 default_dump_filter =
522 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
523 MMF_DUMP_FILTER_MASK;
524 return 1;
525 }
526
527 __setup("coredump_filter=", coredump_filter_setup);
528
529 #include <linux/init_task.h>
530
531 static void mm_init_aio(struct mm_struct *mm)
532 {
533 #ifdef CONFIG_AIO
534 spin_lock_init(&mm->ioctx_lock);
535 mm->ioctx_table = NULL;
536 #endif
537 }
538
539 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
540 {
541 atomic_set(&mm->mm_users, 1);
542 atomic_set(&mm->mm_count, 1);
543 init_rwsem(&mm->mmap_sem);
544 INIT_LIST_HEAD(&mm->mmlist);
545 mm->core_state = NULL;
546 atomic_long_set(&mm->nr_ptes, 0);
547 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
548 spin_lock_init(&mm->page_table_lock);
549 mm_init_aio(mm);
550 mm_init_owner(mm, p);
551 clear_tlb_flush_pending(mm);
552
553 if (current->mm) {
554 mm->flags = current->mm->flags & MMF_INIT_MASK;
555 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
556 } else {
557 mm->flags = default_dump_filter;
558 mm->def_flags = 0;
559 }
560
561 if (likely(!mm_alloc_pgd(mm))) {
562 mmu_notifier_mm_init(mm);
563 return mm;
564 }
565
566 free_mm(mm);
567 return NULL;
568 }
569
570 static void check_mm(struct mm_struct *mm)
571 {
572 int i;
573
574 for (i = 0; i < NR_MM_COUNTERS; i++) {
575 long x = atomic_long_read(&mm->rss_stat.count[i]);
576
577 if (unlikely(x))
578 printk(KERN_ALERT "BUG: Bad rss-counter state "
579 "mm:%p idx:%d val:%ld\n", mm, i, x);
580 }
581
582 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
583 VM_BUG_ON(mm->pmd_huge_pte);
584 #endif
585 }
586
587 /*
588 * Allocate and initialize an mm_struct.
589 */
590 struct mm_struct *mm_alloc(void)
591 {
592 struct mm_struct *mm;
593
594 mm = allocate_mm();
595 if (!mm)
596 return NULL;
597
598 memset(mm, 0, sizeof(*mm));
599 mm_init_cpumask(mm);
600 return mm_init(mm, current);
601 }
602
603 /*
604 * Called when the last reference to the mm
605 * is dropped: either by a lazy thread or by
606 * mmput. Free the page directory and the mm.
607 */
608 void __mmdrop(struct mm_struct *mm)
609 {
610 BUG_ON(mm == &init_mm);
611 mm_free_pgd(mm);
612 destroy_context(mm);
613 mmu_notifier_mm_destroy(mm);
614 check_mm(mm);
615 free_mm(mm);
616 }
617 EXPORT_SYMBOL_GPL(__mmdrop);
618
619 /*
620 * Decrement the use count and release all resources for an mm.
621 */
622 void mmput(struct mm_struct *mm)
623 {
624 might_sleep();
625
626 if (atomic_dec_and_test(&mm->mm_users)) {
627 uprobe_clear_state(mm);
628 exit_aio(mm);
629 ksm_exit(mm);
630 khugepaged_exit(mm); /* must run before exit_mmap */
631 exit_mmap(mm);
632 set_mm_exe_file(mm, NULL);
633 if (!list_empty(&mm->mmlist)) {
634 spin_lock(&mmlist_lock);
635 list_del(&mm->mmlist);
636 spin_unlock(&mmlist_lock);
637 }
638 if (mm->binfmt)
639 module_put(mm->binfmt->module);
640 mmdrop(mm);
641 }
642 }
643 EXPORT_SYMBOL_GPL(mmput);
644
645 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
646 {
647 if (new_exe_file)
648 get_file(new_exe_file);
649 if (mm->exe_file)
650 fput(mm->exe_file);
651 mm->exe_file = new_exe_file;
652 }
653
654 struct file *get_mm_exe_file(struct mm_struct *mm)
655 {
656 struct file *exe_file;
657
658 /* We need mmap_sem to protect against races with removal of exe_file */
659 down_read(&mm->mmap_sem);
660 exe_file = mm->exe_file;
661 if (exe_file)
662 get_file(exe_file);
663 up_read(&mm->mmap_sem);
664 return exe_file;
665 }
666
667 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
668 {
669 /* It's safe to write the exe_file pointer without exe_file_lock because
670 * this is called during fork when the task is not yet in /proc */
671 newmm->exe_file = get_mm_exe_file(oldmm);
672 }
673
674 /**
675 * get_task_mm - acquire a reference to the task's mm
676 *
677 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
678 * this kernel workthread has transiently adopted a user mm with use_mm,
679 * to do its AIO) is not set and if so returns a reference to it, after
680 * bumping up the use count. User must release the mm via mmput()
681 * after use. Typically used by /proc and ptrace.
682 */
683 struct mm_struct *get_task_mm(struct task_struct *task)
684 {
685 struct mm_struct *mm;
686
687 task_lock(task);
688 mm = task->mm;
689 if (mm) {
690 if (task->flags & PF_KTHREAD)
691 mm = NULL;
692 else
693 atomic_inc(&mm->mm_users);
694 }
695 task_unlock(task);
696 return mm;
697 }
698 EXPORT_SYMBOL_GPL(get_task_mm);
699
700 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
701 {
702 struct mm_struct *mm;
703 int err;
704
705 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
706 if (err)
707 return ERR_PTR(err);
708
709 mm = get_task_mm(task);
710 if (mm && mm != current->mm &&
711 !ptrace_may_access(task, mode)) {
712 mmput(mm);
713 mm = ERR_PTR(-EACCES);
714 }
715 mutex_unlock(&task->signal->cred_guard_mutex);
716
717 return mm;
718 }
719
720 static void complete_vfork_done(struct task_struct *tsk)
721 {
722 struct completion *vfork;
723
724 task_lock(tsk);
725 vfork = tsk->vfork_done;
726 if (likely(vfork)) {
727 tsk->vfork_done = NULL;
728 complete(vfork);
729 }
730 task_unlock(tsk);
731 }
732
733 static int wait_for_vfork_done(struct task_struct *child,
734 struct completion *vfork)
735 {
736 int killed;
737
738 freezer_do_not_count();
739 killed = wait_for_completion_killable(vfork);
740 freezer_count();
741
742 if (killed) {
743 task_lock(child);
744 child->vfork_done = NULL;
745 task_unlock(child);
746 }
747
748 put_task_struct(child);
749 return killed;
750 }
751
752 /* Please note the differences between mmput and mm_release.
753 * mmput is called whenever we stop holding onto a mm_struct,
754 * error success whatever.
755 *
756 * mm_release is called after a mm_struct has been removed
757 * from the current process.
758 *
759 * This difference is important for error handling, when we
760 * only half set up a mm_struct for a new process and need to restore
761 * the old one. Because we mmput the new mm_struct before
762 * restoring the old one. . .
763 * Eric Biederman 10 January 1998
764 */
765 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
766 {
767 /* Get rid of any futexes when releasing the mm */
768 #ifdef CONFIG_FUTEX
769 if (unlikely(tsk->robust_list)) {
770 exit_robust_list(tsk);
771 tsk->robust_list = NULL;
772 }
773 #ifdef CONFIG_COMPAT
774 if (unlikely(tsk->compat_robust_list)) {
775 compat_exit_robust_list(tsk);
776 tsk->compat_robust_list = NULL;
777 }
778 #endif
779 if (unlikely(!list_empty(&tsk->pi_state_list)))
780 exit_pi_state_list(tsk);
781 #endif
782
783 uprobe_free_utask(tsk);
784
785 /* Get rid of any cached register state */
786 deactivate_mm(tsk, mm);
787
788 /*
789 * If we're exiting normally, clear a user-space tid field if
790 * requested. We leave this alone when dying by signal, to leave
791 * the value intact in a core dump, and to save the unnecessary
792 * trouble, say, a killed vfork parent shouldn't touch this mm.
793 * Userland only wants this done for a sys_exit.
794 */
795 if (tsk->clear_child_tid) {
796 if (!(tsk->flags & PF_SIGNALED) &&
797 atomic_read(&mm->mm_users) > 1) {
798 /*
799 * We don't check the error code - if userspace has
800 * not set up a proper pointer then tough luck.
801 */
802 put_user(0, tsk->clear_child_tid);
803 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
804 1, NULL, NULL, 0);
805 }
806 tsk->clear_child_tid = NULL;
807 }
808
809 /*
810 * All done, finally we can wake up parent and return this mm to him.
811 * Also kthread_stop() uses this completion for synchronization.
812 */
813 if (tsk->vfork_done)
814 complete_vfork_done(tsk);
815 }
816
817 /*
818 * Allocate a new mm structure and copy contents from the
819 * mm structure of the passed in task structure.
820 */
821 static struct mm_struct *dup_mm(struct task_struct *tsk)
822 {
823 struct mm_struct *mm, *oldmm = current->mm;
824 int err;
825
826 mm = allocate_mm();
827 if (!mm)
828 goto fail_nomem;
829
830 memcpy(mm, oldmm, sizeof(*mm));
831 mm_init_cpumask(mm);
832
833 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
834 mm->pmd_huge_pte = NULL;
835 #endif
836 if (!mm_init(mm, tsk))
837 goto fail_nomem;
838
839 if (init_new_context(tsk, mm))
840 goto fail_nocontext;
841
842 dup_mm_exe_file(oldmm, mm);
843
844 err = dup_mmap(mm, oldmm);
845 if (err)
846 goto free_pt;
847
848 mm->hiwater_rss = get_mm_rss(mm);
849 mm->hiwater_vm = mm->total_vm;
850
851 if (mm->binfmt && !try_module_get(mm->binfmt->module))
852 goto free_pt;
853
854 return mm;
855
856 free_pt:
857 /* don't put binfmt in mmput, we haven't got module yet */
858 mm->binfmt = NULL;
859 mmput(mm);
860
861 fail_nomem:
862 return NULL;
863
864 fail_nocontext:
865 /*
866 * If init_new_context() failed, we cannot use mmput() to free the mm
867 * because it calls destroy_context()
868 */
869 mm_free_pgd(mm);
870 free_mm(mm);
871 return NULL;
872 }
873
874 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
875 {
876 struct mm_struct *mm, *oldmm;
877 int retval;
878
879 tsk->min_flt = tsk->maj_flt = 0;
880 tsk->nvcsw = tsk->nivcsw = 0;
881 #ifdef CONFIG_DETECT_HUNG_TASK
882 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
883 #endif
884
885 tsk->mm = NULL;
886 tsk->active_mm = NULL;
887
888 /*
889 * Are we cloning a kernel thread?
890 *
891 * We need to steal a active VM for that..
892 */
893 oldmm = current->mm;
894 if (!oldmm)
895 return 0;
896
897 /* initialize the new vmacache entries */
898 vmacache_flush(tsk);
899
900 if (clone_flags & CLONE_VM) {
901 atomic_inc(&oldmm->mm_users);
902 mm = oldmm;
903 goto good_mm;
904 }
905
906 retval = -ENOMEM;
907 mm = dup_mm(tsk);
908 if (!mm)
909 goto fail_nomem;
910
911 good_mm:
912 tsk->mm = mm;
913 tsk->active_mm = mm;
914 return 0;
915
916 fail_nomem:
917 return retval;
918 }
919
920 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
921 {
922 struct fs_struct *fs = current->fs;
923 if (clone_flags & CLONE_FS) {
924 /* tsk->fs is already what we want */
925 spin_lock(&fs->lock);
926 if (fs->in_exec) {
927 spin_unlock(&fs->lock);
928 return -EAGAIN;
929 }
930 fs->users++;
931 spin_unlock(&fs->lock);
932 return 0;
933 }
934 tsk->fs = copy_fs_struct(fs);
935 if (!tsk->fs)
936 return -ENOMEM;
937 return 0;
938 }
939
940 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
941 {
942 struct files_struct *oldf, *newf;
943 int error = 0;
944
945 /*
946 * A background process may not have any files ...
947 */
948 oldf = current->files;
949 if (!oldf)
950 goto out;
951
952 if (clone_flags & CLONE_FILES) {
953 atomic_inc(&oldf->count);
954 goto out;
955 }
956
957 newf = dup_fd(oldf, &error);
958 if (!newf)
959 goto out;
960
961 tsk->files = newf;
962 error = 0;
963 out:
964 return error;
965 }
966
967 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
968 {
969 #ifdef CONFIG_BLOCK
970 struct io_context *ioc = current->io_context;
971 struct io_context *new_ioc;
972
973 if (!ioc)
974 return 0;
975 /*
976 * Share io context with parent, if CLONE_IO is set
977 */
978 if (clone_flags & CLONE_IO) {
979 ioc_task_link(ioc);
980 tsk->io_context = ioc;
981 } else if (ioprio_valid(ioc->ioprio)) {
982 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
983 if (unlikely(!new_ioc))
984 return -ENOMEM;
985
986 new_ioc->ioprio = ioc->ioprio;
987 put_io_context(new_ioc);
988 }
989 #endif
990 return 0;
991 }
992
993 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
994 {
995 struct sighand_struct *sig;
996
997 if (clone_flags & CLONE_SIGHAND) {
998 atomic_inc(&current->sighand->count);
999 return 0;
1000 }
1001 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1002 rcu_assign_pointer(tsk->sighand, sig);
1003 if (!sig)
1004 return -ENOMEM;
1005 atomic_set(&sig->count, 1);
1006 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1007 return 0;
1008 }
1009
1010 void __cleanup_sighand(struct sighand_struct *sighand)
1011 {
1012 if (atomic_dec_and_test(&sighand->count)) {
1013 signalfd_cleanup(sighand);
1014 kmem_cache_free(sighand_cachep, sighand);
1015 }
1016 }
1017
1018
1019 /*
1020 * Initialize POSIX timer handling for a thread group.
1021 */
1022 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1023 {
1024 unsigned long cpu_limit;
1025
1026 /* Thread group counters. */
1027 thread_group_cputime_init(sig);
1028
1029 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1030 if (cpu_limit != RLIM_INFINITY) {
1031 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1032 sig->cputimer.running = 1;
1033 }
1034
1035 /* The timer lists. */
1036 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1037 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1038 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1039 }
1040
1041 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1042 {
1043 struct signal_struct *sig;
1044
1045 if (clone_flags & CLONE_THREAD)
1046 return 0;
1047
1048 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1049 tsk->signal = sig;
1050 if (!sig)
1051 return -ENOMEM;
1052
1053 sig->nr_threads = 1;
1054 atomic_set(&sig->live, 1);
1055 atomic_set(&sig->sigcnt, 1);
1056
1057 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1058 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1059 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1060
1061 init_waitqueue_head(&sig->wait_chldexit);
1062 sig->curr_target = tsk;
1063 init_sigpending(&sig->shared_pending);
1064 INIT_LIST_HEAD(&sig->posix_timers);
1065
1066 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1067 sig->real_timer.function = it_real_fn;
1068
1069 task_lock(current->group_leader);
1070 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1071 task_unlock(current->group_leader);
1072
1073 posix_cpu_timers_init_group(sig);
1074
1075 tty_audit_fork(sig);
1076 sched_autogroup_fork(sig);
1077
1078 #ifdef CONFIG_CGROUPS
1079 init_rwsem(&sig->group_rwsem);
1080 #endif
1081
1082 sig->oom_score_adj = current->signal->oom_score_adj;
1083 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1084
1085 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1086 current->signal->is_child_subreaper;
1087
1088 mutex_init(&sig->cred_guard_mutex);
1089
1090 return 0;
1091 }
1092
1093 static void copy_seccomp(struct task_struct *p)
1094 {
1095 #ifdef CONFIG_SECCOMP
1096 /*
1097 * Must be called with sighand->lock held, which is common to
1098 * all threads in the group. Holding cred_guard_mutex is not
1099 * needed because this new task is not yet running and cannot
1100 * be racing exec.
1101 */
1102 BUG_ON(!spin_is_locked(&current->sighand->siglock));
1103
1104 /* Ref-count the new filter user, and assign it. */
1105 get_seccomp_filter(current);
1106 p->seccomp = current->seccomp;
1107
1108 /*
1109 * Explicitly enable no_new_privs here in case it got set
1110 * between the task_struct being duplicated and holding the
1111 * sighand lock. The seccomp state and nnp must be in sync.
1112 */
1113 if (task_no_new_privs(current))
1114 task_set_no_new_privs(p);
1115
1116 /*
1117 * If the parent gained a seccomp mode after copying thread
1118 * flags and between before we held the sighand lock, we have
1119 * to manually enable the seccomp thread flag here.
1120 */
1121 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1122 set_tsk_thread_flag(p, TIF_SECCOMP);
1123 #endif
1124 }
1125
1126 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1127 {
1128 current->clear_child_tid = tidptr;
1129
1130 return task_pid_vnr(current);
1131 }
1132
1133 static void rt_mutex_init_task(struct task_struct *p)
1134 {
1135 raw_spin_lock_init(&p->pi_lock);
1136 #ifdef CONFIG_RT_MUTEXES
1137 p->pi_waiters = RB_ROOT;
1138 p->pi_waiters_leftmost = NULL;
1139 p->pi_blocked_on = NULL;
1140 #endif
1141 }
1142
1143 #ifdef CONFIG_MEMCG
1144 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1145 {
1146 mm->owner = p;
1147 }
1148 #endif /* CONFIG_MEMCG */
1149
1150 /*
1151 * Initialize POSIX timer handling for a single task.
1152 */
1153 static void posix_cpu_timers_init(struct task_struct *tsk)
1154 {
1155 tsk->cputime_expires.prof_exp = 0;
1156 tsk->cputime_expires.virt_exp = 0;
1157 tsk->cputime_expires.sched_exp = 0;
1158 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1159 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1160 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1161 }
1162
1163 static inline void
1164 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1165 {
1166 task->pids[type].pid = pid;
1167 }
1168
1169 /*
1170 * This creates a new process as a copy of the old one,
1171 * but does not actually start it yet.
1172 *
1173 * It copies the registers, and all the appropriate
1174 * parts of the process environment (as per the clone
1175 * flags). The actual kick-off is left to the caller.
1176 */
1177 static struct task_struct *copy_process(unsigned long clone_flags,
1178 unsigned long stack_start,
1179 unsigned long stack_size,
1180 int __user *child_tidptr,
1181 struct pid *pid,
1182 int trace)
1183 {
1184 int retval;
1185 struct task_struct *p;
1186
1187 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1188 return ERR_PTR(-EINVAL);
1189
1190 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1191 return ERR_PTR(-EINVAL);
1192
1193 /*
1194 * Thread groups must share signals as well, and detached threads
1195 * can only be started up within the thread group.
1196 */
1197 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1198 return ERR_PTR(-EINVAL);
1199
1200 /*
1201 * Shared signal handlers imply shared VM. By way of the above,
1202 * thread groups also imply shared VM. Blocking this case allows
1203 * for various simplifications in other code.
1204 */
1205 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1206 return ERR_PTR(-EINVAL);
1207
1208 /*
1209 * Siblings of global init remain as zombies on exit since they are
1210 * not reaped by their parent (swapper). To solve this and to avoid
1211 * multi-rooted process trees, prevent global and container-inits
1212 * from creating siblings.
1213 */
1214 if ((clone_flags & CLONE_PARENT) &&
1215 current->signal->flags & SIGNAL_UNKILLABLE)
1216 return ERR_PTR(-EINVAL);
1217
1218 /*
1219 * If the new process will be in a different pid or user namespace
1220 * do not allow it to share a thread group or signal handlers or
1221 * parent with the forking task.
1222 */
1223 if (clone_flags & CLONE_SIGHAND) {
1224 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1225 (task_active_pid_ns(current) !=
1226 current->nsproxy->pid_ns_for_children))
1227 return ERR_PTR(-EINVAL);
1228 }
1229
1230 retval = security_task_create(clone_flags);
1231 if (retval)
1232 goto fork_out;
1233
1234 retval = -ENOMEM;
1235 p = dup_task_struct(current);
1236 if (!p)
1237 goto fork_out;
1238
1239 ftrace_graph_init_task(p);
1240
1241 rt_mutex_init_task(p);
1242
1243 #ifdef CONFIG_PROVE_LOCKING
1244 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1245 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1246 #endif
1247 retval = -EAGAIN;
1248 if (atomic_read(&p->real_cred->user->processes) >=
1249 task_rlimit(p, RLIMIT_NPROC)) {
1250 if (p->real_cred->user != INIT_USER &&
1251 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1252 goto bad_fork_free;
1253 }
1254 current->flags &= ~PF_NPROC_EXCEEDED;
1255
1256 retval = copy_creds(p, clone_flags);
1257 if (retval < 0)
1258 goto bad_fork_free;
1259
1260 /*
1261 * If multiple threads are within copy_process(), then this check
1262 * triggers too late. This doesn't hurt, the check is only there
1263 * to stop root fork bombs.
1264 */
1265 retval = -EAGAIN;
1266 if (nr_threads >= max_threads)
1267 goto bad_fork_cleanup_count;
1268
1269 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1270 goto bad_fork_cleanup_count;
1271
1272 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1273 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1274 p->flags |= PF_FORKNOEXEC;
1275 INIT_LIST_HEAD(&p->children);
1276 INIT_LIST_HEAD(&p->sibling);
1277 rcu_copy_process(p);
1278 p->vfork_done = NULL;
1279 spin_lock_init(&p->alloc_lock);
1280
1281 init_sigpending(&p->pending);
1282
1283 p->utime = p->stime = p->gtime = 0;
1284 p->utimescaled = p->stimescaled = 0;
1285 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1286 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1287 #endif
1288 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1289 seqlock_init(&p->vtime_seqlock);
1290 p->vtime_snap = 0;
1291 p->vtime_snap_whence = VTIME_SLEEPING;
1292 #endif
1293
1294 #if defined(SPLIT_RSS_COUNTING)
1295 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1296 #endif
1297
1298 p->default_timer_slack_ns = current->timer_slack_ns;
1299
1300 task_io_accounting_init(&p->ioac);
1301 acct_clear_integrals(p);
1302
1303 posix_cpu_timers_init(p);
1304
1305 p->start_time = ktime_get_ns();
1306 p->real_start_time = ktime_get_boot_ns();
1307 p->io_context = NULL;
1308 p->audit_context = NULL;
1309 if (clone_flags & CLONE_THREAD)
1310 threadgroup_change_begin(current);
1311 cgroup_fork(p);
1312 #ifdef CONFIG_NUMA
1313 p->mempolicy = mpol_dup(p->mempolicy);
1314 if (IS_ERR(p->mempolicy)) {
1315 retval = PTR_ERR(p->mempolicy);
1316 p->mempolicy = NULL;
1317 goto bad_fork_cleanup_threadgroup_lock;
1318 }
1319 #endif
1320 #ifdef CONFIG_CPUSETS
1321 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1322 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1323 seqcount_init(&p->mems_allowed_seq);
1324 #endif
1325 #ifdef CONFIG_TRACE_IRQFLAGS
1326 p->irq_events = 0;
1327 p->hardirqs_enabled = 0;
1328 p->hardirq_enable_ip = 0;
1329 p->hardirq_enable_event = 0;
1330 p->hardirq_disable_ip = _THIS_IP_;
1331 p->hardirq_disable_event = 0;
1332 p->softirqs_enabled = 1;
1333 p->softirq_enable_ip = _THIS_IP_;
1334 p->softirq_enable_event = 0;
1335 p->softirq_disable_ip = 0;
1336 p->softirq_disable_event = 0;
1337 p->hardirq_context = 0;
1338 p->softirq_context = 0;
1339 #endif
1340 #ifdef CONFIG_LOCKDEP
1341 p->lockdep_depth = 0; /* no locks held yet */
1342 p->curr_chain_key = 0;
1343 p->lockdep_recursion = 0;
1344 #endif
1345
1346 #ifdef CONFIG_DEBUG_MUTEXES
1347 p->blocked_on = NULL; /* not blocked yet */
1348 #endif
1349 #ifdef CONFIG_BCACHE
1350 p->sequential_io = 0;
1351 p->sequential_io_avg = 0;
1352 #endif
1353
1354 /* Perform scheduler related setup. Assign this task to a CPU. */
1355 retval = sched_fork(clone_flags, p);
1356 if (retval)
1357 goto bad_fork_cleanup_policy;
1358
1359 retval = perf_event_init_task(p);
1360 if (retval)
1361 goto bad_fork_cleanup_policy;
1362 retval = audit_alloc(p);
1363 if (retval)
1364 goto bad_fork_cleanup_policy;
1365 /* copy all the process information */
1366 retval = copy_semundo(clone_flags, p);
1367 if (retval)
1368 goto bad_fork_cleanup_audit;
1369 retval = copy_files(clone_flags, p);
1370 if (retval)
1371 goto bad_fork_cleanup_semundo;
1372 retval = copy_fs(clone_flags, p);
1373 if (retval)
1374 goto bad_fork_cleanup_files;
1375 retval = copy_sighand(clone_flags, p);
1376 if (retval)
1377 goto bad_fork_cleanup_fs;
1378 retval = copy_signal(clone_flags, p);
1379 if (retval)
1380 goto bad_fork_cleanup_sighand;
1381 retval = copy_mm(clone_flags, p);
1382 if (retval)
1383 goto bad_fork_cleanup_signal;
1384 retval = copy_namespaces(clone_flags, p);
1385 if (retval)
1386 goto bad_fork_cleanup_mm;
1387 retval = copy_io(clone_flags, p);
1388 if (retval)
1389 goto bad_fork_cleanup_namespaces;
1390 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1391 if (retval)
1392 goto bad_fork_cleanup_io;
1393
1394 if (pid != &init_struct_pid) {
1395 retval = -ENOMEM;
1396 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1397 if (!pid)
1398 goto bad_fork_cleanup_io;
1399 }
1400
1401 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1402 /*
1403 * Clear TID on mm_release()?
1404 */
1405 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1406 #ifdef CONFIG_BLOCK
1407 p->plug = NULL;
1408 #endif
1409 #ifdef CONFIG_FUTEX
1410 p->robust_list = NULL;
1411 #ifdef CONFIG_COMPAT
1412 p->compat_robust_list = NULL;
1413 #endif
1414 INIT_LIST_HEAD(&p->pi_state_list);
1415 p->pi_state_cache = NULL;
1416 #endif
1417 /*
1418 * sigaltstack should be cleared when sharing the same VM
1419 */
1420 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1421 p->sas_ss_sp = p->sas_ss_size = 0;
1422
1423 /*
1424 * Syscall tracing and stepping should be turned off in the
1425 * child regardless of CLONE_PTRACE.
1426 */
1427 user_disable_single_step(p);
1428 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1429 #ifdef TIF_SYSCALL_EMU
1430 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1431 #endif
1432 clear_all_latency_tracing(p);
1433
1434 /* ok, now we should be set up.. */
1435 p->pid = pid_nr(pid);
1436 if (clone_flags & CLONE_THREAD) {
1437 p->exit_signal = -1;
1438 p->group_leader = current->group_leader;
1439 p->tgid = current->tgid;
1440 } else {
1441 if (clone_flags & CLONE_PARENT)
1442 p->exit_signal = current->group_leader->exit_signal;
1443 else
1444 p->exit_signal = (clone_flags & CSIGNAL);
1445 p->group_leader = p;
1446 p->tgid = p->pid;
1447 }
1448
1449 p->nr_dirtied = 0;
1450 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1451 p->dirty_paused_when = 0;
1452
1453 p->pdeath_signal = 0;
1454 INIT_LIST_HEAD(&p->thread_group);
1455 p->task_works = NULL;
1456
1457 /*
1458 * Make it visible to the rest of the system, but dont wake it up yet.
1459 * Need tasklist lock for parent etc handling!
1460 */
1461 write_lock_irq(&tasklist_lock);
1462
1463 /* CLONE_PARENT re-uses the old parent */
1464 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1465 p->real_parent = current->real_parent;
1466 p->parent_exec_id = current->parent_exec_id;
1467 } else {
1468 p->real_parent = current;
1469 p->parent_exec_id = current->self_exec_id;
1470 }
1471
1472 spin_lock(&current->sighand->siglock);
1473
1474 /*
1475 * Copy seccomp details explicitly here, in case they were changed
1476 * before holding sighand lock.
1477 */
1478 copy_seccomp(p);
1479
1480 /*
1481 * Process group and session signals need to be delivered to just the
1482 * parent before the fork or both the parent and the child after the
1483 * fork. Restart if a signal comes in before we add the new process to
1484 * it's process group.
1485 * A fatal signal pending means that current will exit, so the new
1486 * thread can't slip out of an OOM kill (or normal SIGKILL).
1487 */
1488 recalc_sigpending();
1489 if (signal_pending(current)) {
1490 spin_unlock(&current->sighand->siglock);
1491 write_unlock_irq(&tasklist_lock);
1492 retval = -ERESTARTNOINTR;
1493 goto bad_fork_free_pid;
1494 }
1495
1496 if (likely(p->pid)) {
1497 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1498
1499 init_task_pid(p, PIDTYPE_PID, pid);
1500 if (thread_group_leader(p)) {
1501 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1502 init_task_pid(p, PIDTYPE_SID, task_session(current));
1503
1504 if (is_child_reaper(pid)) {
1505 ns_of_pid(pid)->child_reaper = p;
1506 p->signal->flags |= SIGNAL_UNKILLABLE;
1507 }
1508
1509 p->signal->leader_pid = pid;
1510 p->signal->tty = tty_kref_get(current->signal->tty);
1511 list_add_tail(&p->sibling, &p->real_parent->children);
1512 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1513 attach_pid(p, PIDTYPE_PGID);
1514 attach_pid(p, PIDTYPE_SID);
1515 __this_cpu_inc(process_counts);
1516 } else {
1517 current->signal->nr_threads++;
1518 atomic_inc(&current->signal->live);
1519 atomic_inc(&current->signal->sigcnt);
1520 list_add_tail_rcu(&p->thread_group,
1521 &p->group_leader->thread_group);
1522 list_add_tail_rcu(&p->thread_node,
1523 &p->signal->thread_head);
1524 }
1525 attach_pid(p, PIDTYPE_PID);
1526 nr_threads++;
1527 }
1528
1529 total_forks++;
1530 spin_unlock(&current->sighand->siglock);
1531 syscall_tracepoint_update(p);
1532 write_unlock_irq(&tasklist_lock);
1533
1534 proc_fork_connector(p);
1535 cgroup_post_fork(p);
1536 if (clone_flags & CLONE_THREAD)
1537 threadgroup_change_end(current);
1538 perf_event_fork(p);
1539
1540 trace_task_newtask(p, clone_flags);
1541 uprobe_copy_process(p, clone_flags);
1542
1543 return p;
1544
1545 bad_fork_free_pid:
1546 if (pid != &init_struct_pid)
1547 free_pid(pid);
1548 bad_fork_cleanup_io:
1549 if (p->io_context)
1550 exit_io_context(p);
1551 bad_fork_cleanup_namespaces:
1552 exit_task_namespaces(p);
1553 bad_fork_cleanup_mm:
1554 if (p->mm)
1555 mmput(p->mm);
1556 bad_fork_cleanup_signal:
1557 if (!(clone_flags & CLONE_THREAD))
1558 free_signal_struct(p->signal);
1559 bad_fork_cleanup_sighand:
1560 __cleanup_sighand(p->sighand);
1561 bad_fork_cleanup_fs:
1562 exit_fs(p); /* blocking */
1563 bad_fork_cleanup_files:
1564 exit_files(p); /* blocking */
1565 bad_fork_cleanup_semundo:
1566 exit_sem(p);
1567 bad_fork_cleanup_audit:
1568 audit_free(p);
1569 bad_fork_cleanup_policy:
1570 perf_event_free_task(p);
1571 #ifdef CONFIG_NUMA
1572 mpol_put(p->mempolicy);
1573 bad_fork_cleanup_threadgroup_lock:
1574 #endif
1575 if (clone_flags & CLONE_THREAD)
1576 threadgroup_change_end(current);
1577 delayacct_tsk_free(p);
1578 module_put(task_thread_info(p)->exec_domain->module);
1579 bad_fork_cleanup_count:
1580 atomic_dec(&p->cred->user->processes);
1581 exit_creds(p);
1582 bad_fork_free:
1583 free_task(p);
1584 fork_out:
1585 return ERR_PTR(retval);
1586 }
1587
1588 static inline void init_idle_pids(struct pid_link *links)
1589 {
1590 enum pid_type type;
1591
1592 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1593 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1594 links[type].pid = &init_struct_pid;
1595 }
1596 }
1597
1598 struct task_struct *fork_idle(int cpu)
1599 {
1600 struct task_struct *task;
1601 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1602 if (!IS_ERR(task)) {
1603 init_idle_pids(task->pids);
1604 init_idle(task, cpu);
1605 }
1606
1607 return task;
1608 }
1609
1610 /*
1611 * Ok, this is the main fork-routine.
1612 *
1613 * It copies the process, and if successful kick-starts
1614 * it and waits for it to finish using the VM if required.
1615 */
1616 long do_fork(unsigned long clone_flags,
1617 unsigned long stack_start,
1618 unsigned long stack_size,
1619 int __user *parent_tidptr,
1620 int __user *child_tidptr)
1621 {
1622 struct task_struct *p;
1623 int trace = 0;
1624 long nr;
1625
1626 /*
1627 * Determine whether and which event to report to ptracer. When
1628 * called from kernel_thread or CLONE_UNTRACED is explicitly
1629 * requested, no event is reported; otherwise, report if the event
1630 * for the type of forking is enabled.
1631 */
1632 if (!(clone_flags & CLONE_UNTRACED)) {
1633 if (clone_flags & CLONE_VFORK)
1634 trace = PTRACE_EVENT_VFORK;
1635 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1636 trace = PTRACE_EVENT_CLONE;
1637 else
1638 trace = PTRACE_EVENT_FORK;
1639
1640 if (likely(!ptrace_event_enabled(current, trace)))
1641 trace = 0;
1642 }
1643
1644 p = copy_process(clone_flags, stack_start, stack_size,
1645 child_tidptr, NULL, trace);
1646 /*
1647 * Do this prior waking up the new thread - the thread pointer
1648 * might get invalid after that point, if the thread exits quickly.
1649 */
1650 if (!IS_ERR(p)) {
1651 struct completion vfork;
1652 struct pid *pid;
1653
1654 trace_sched_process_fork(current, p);
1655
1656 pid = get_task_pid(p, PIDTYPE_PID);
1657 nr = pid_vnr(pid);
1658
1659 if (clone_flags & CLONE_PARENT_SETTID)
1660 put_user(nr, parent_tidptr);
1661
1662 if (clone_flags & CLONE_VFORK) {
1663 p->vfork_done = &vfork;
1664 init_completion(&vfork);
1665 get_task_struct(p);
1666 }
1667
1668 wake_up_new_task(p);
1669
1670 /* forking complete and child started to run, tell ptracer */
1671 if (unlikely(trace))
1672 ptrace_event_pid(trace, pid);
1673
1674 if (clone_flags & CLONE_VFORK) {
1675 if (!wait_for_vfork_done(p, &vfork))
1676 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1677 }
1678
1679 put_pid(pid);
1680 } else {
1681 nr = PTR_ERR(p);
1682 }
1683 return nr;
1684 }
1685
1686 /*
1687 * Create a kernel thread.
1688 */
1689 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1690 {
1691 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1692 (unsigned long)arg, NULL, NULL);
1693 }
1694
1695 #ifdef __ARCH_WANT_SYS_FORK
1696 SYSCALL_DEFINE0(fork)
1697 {
1698 #ifdef CONFIG_MMU
1699 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1700 #else
1701 /* can not support in nommu mode */
1702 return -EINVAL;
1703 #endif
1704 }
1705 #endif
1706
1707 #ifdef __ARCH_WANT_SYS_VFORK
1708 SYSCALL_DEFINE0(vfork)
1709 {
1710 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1711 0, NULL, NULL);
1712 }
1713 #endif
1714
1715 #ifdef __ARCH_WANT_SYS_CLONE
1716 #ifdef CONFIG_CLONE_BACKWARDS
1717 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1718 int __user *, parent_tidptr,
1719 int, tls_val,
1720 int __user *, child_tidptr)
1721 #elif defined(CONFIG_CLONE_BACKWARDS2)
1722 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1723 int __user *, parent_tidptr,
1724 int __user *, child_tidptr,
1725 int, tls_val)
1726 #elif defined(CONFIG_CLONE_BACKWARDS3)
1727 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1728 int, stack_size,
1729 int __user *, parent_tidptr,
1730 int __user *, child_tidptr,
1731 int, tls_val)
1732 #else
1733 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1734 int __user *, parent_tidptr,
1735 int __user *, child_tidptr,
1736 int, tls_val)
1737 #endif
1738 {
1739 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1740 }
1741 #endif
1742
1743 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1744 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1745 #endif
1746
1747 static void sighand_ctor(void *data)
1748 {
1749 struct sighand_struct *sighand = data;
1750
1751 spin_lock_init(&sighand->siglock);
1752 init_waitqueue_head(&sighand->signalfd_wqh);
1753 }
1754
1755 void __init proc_caches_init(void)
1756 {
1757 sighand_cachep = kmem_cache_create("sighand_cache",
1758 sizeof(struct sighand_struct), 0,
1759 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1760 SLAB_NOTRACK, sighand_ctor);
1761 signal_cachep = kmem_cache_create("signal_cache",
1762 sizeof(struct signal_struct), 0,
1763 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1764 files_cachep = kmem_cache_create("files_cache",
1765 sizeof(struct files_struct), 0,
1766 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1767 fs_cachep = kmem_cache_create("fs_cache",
1768 sizeof(struct fs_struct), 0,
1769 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1770 /*
1771 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1772 * whole struct cpumask for the OFFSTACK case. We could change
1773 * this to *only* allocate as much of it as required by the
1774 * maximum number of CPU's we can ever have. The cpumask_allocation
1775 * is at the end of the structure, exactly for that reason.
1776 */
1777 mm_cachep = kmem_cache_create("mm_struct",
1778 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1779 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1780 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1781 mmap_init();
1782 nsproxy_cache_init();
1783 }
1784
1785 /*
1786 * Check constraints on flags passed to the unshare system call.
1787 */
1788 static int check_unshare_flags(unsigned long unshare_flags)
1789 {
1790 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1791 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1792 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1793 CLONE_NEWUSER|CLONE_NEWPID))
1794 return -EINVAL;
1795 /*
1796 * Not implemented, but pretend it works if there is nothing to
1797 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1798 * needs to unshare vm.
1799 */
1800 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1801 /* FIXME: get_task_mm() increments ->mm_users */
1802 if (atomic_read(&current->mm->mm_users) > 1)
1803 return -EINVAL;
1804 }
1805
1806 return 0;
1807 }
1808
1809 /*
1810 * Unshare the filesystem structure if it is being shared
1811 */
1812 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1813 {
1814 struct fs_struct *fs = current->fs;
1815
1816 if (!(unshare_flags & CLONE_FS) || !fs)
1817 return 0;
1818
1819 /* don't need lock here; in the worst case we'll do useless copy */
1820 if (fs->users == 1)
1821 return 0;
1822
1823 *new_fsp = copy_fs_struct(fs);
1824 if (!*new_fsp)
1825 return -ENOMEM;
1826
1827 return 0;
1828 }
1829
1830 /*
1831 * Unshare file descriptor table if it is being shared
1832 */
1833 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1834 {
1835 struct files_struct *fd = current->files;
1836 int error = 0;
1837
1838 if ((unshare_flags & CLONE_FILES) &&
1839 (fd && atomic_read(&fd->count) > 1)) {
1840 *new_fdp = dup_fd(fd, &error);
1841 if (!*new_fdp)
1842 return error;
1843 }
1844
1845 return 0;
1846 }
1847
1848 /*
1849 * unshare allows a process to 'unshare' part of the process
1850 * context which was originally shared using clone. copy_*
1851 * functions used by do_fork() cannot be used here directly
1852 * because they modify an inactive task_struct that is being
1853 * constructed. Here we are modifying the current, active,
1854 * task_struct.
1855 */
1856 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1857 {
1858 struct fs_struct *fs, *new_fs = NULL;
1859 struct files_struct *fd, *new_fd = NULL;
1860 struct cred *new_cred = NULL;
1861 struct nsproxy *new_nsproxy = NULL;
1862 int do_sysvsem = 0;
1863 int err;
1864
1865 /*
1866 * If unsharing a user namespace must also unshare the thread.
1867 */
1868 if (unshare_flags & CLONE_NEWUSER)
1869 unshare_flags |= CLONE_THREAD | CLONE_FS;
1870 /*
1871 * If unsharing a thread from a thread group, must also unshare vm.
1872 */
1873 if (unshare_flags & CLONE_THREAD)
1874 unshare_flags |= CLONE_VM;
1875 /*
1876 * If unsharing vm, must also unshare signal handlers.
1877 */
1878 if (unshare_flags & CLONE_VM)
1879 unshare_flags |= CLONE_SIGHAND;
1880 /*
1881 * If unsharing namespace, must also unshare filesystem information.
1882 */
1883 if (unshare_flags & CLONE_NEWNS)
1884 unshare_flags |= CLONE_FS;
1885
1886 err = check_unshare_flags(unshare_flags);
1887 if (err)
1888 goto bad_unshare_out;
1889 /*
1890 * CLONE_NEWIPC must also detach from the undolist: after switching
1891 * to a new ipc namespace, the semaphore arrays from the old
1892 * namespace are unreachable.
1893 */
1894 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1895 do_sysvsem = 1;
1896 err = unshare_fs(unshare_flags, &new_fs);
1897 if (err)
1898 goto bad_unshare_out;
1899 err = unshare_fd(unshare_flags, &new_fd);
1900 if (err)
1901 goto bad_unshare_cleanup_fs;
1902 err = unshare_userns(unshare_flags, &new_cred);
1903 if (err)
1904 goto bad_unshare_cleanup_fd;
1905 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1906 new_cred, new_fs);
1907 if (err)
1908 goto bad_unshare_cleanup_cred;
1909
1910 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1911 if (do_sysvsem) {
1912 /*
1913 * CLONE_SYSVSEM is equivalent to sys_exit().
1914 */
1915 exit_sem(current);
1916 }
1917
1918 if (new_nsproxy)
1919 switch_task_namespaces(current, new_nsproxy);
1920
1921 task_lock(current);
1922
1923 if (new_fs) {
1924 fs = current->fs;
1925 spin_lock(&fs->lock);
1926 current->fs = new_fs;
1927 if (--fs->users)
1928 new_fs = NULL;
1929 else
1930 new_fs = fs;
1931 spin_unlock(&fs->lock);
1932 }
1933
1934 if (new_fd) {
1935 fd = current->files;
1936 current->files = new_fd;
1937 new_fd = fd;
1938 }
1939
1940 task_unlock(current);
1941
1942 if (new_cred) {
1943 /* Install the new user namespace */
1944 commit_creds(new_cred);
1945 new_cred = NULL;
1946 }
1947 }
1948
1949 bad_unshare_cleanup_cred:
1950 if (new_cred)
1951 put_cred(new_cred);
1952 bad_unshare_cleanup_fd:
1953 if (new_fd)
1954 put_files_struct(new_fd);
1955
1956 bad_unshare_cleanup_fs:
1957 if (new_fs)
1958 free_fs_struct(new_fs);
1959
1960 bad_unshare_out:
1961 return err;
1962 }
1963
1964 /*
1965 * Helper to unshare the files of the current task.
1966 * We don't want to expose copy_files internals to
1967 * the exec layer of the kernel.
1968 */
1969
1970 int unshare_files(struct files_struct **displaced)
1971 {
1972 struct task_struct *task = current;
1973 struct files_struct *copy = NULL;
1974 int error;
1975
1976 error = unshare_fd(CLONE_FILES, &copy);
1977 if (error || !copy) {
1978 *displaced = NULL;
1979 return error;
1980 }
1981 *displaced = task->files;
1982 task_lock(task);
1983 task->files = copy;
1984 task_unlock(task);
1985 return 0;
1986 }
This page took 0.100777 seconds and 6 git commands to generate.