[PATCH] unshare system call -v5: unshare vm
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/cn_proc.h>
47
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/uaccess.h>
51 #include <asm/mmu_context.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
54
55 /*
56 * Protected counters by write_lock_irq(&tasklist_lock)
57 */
58 unsigned long total_forks; /* Handle normal Linux uptimes. */
59 int nr_threads; /* The idle threads do not count.. */
60
61 int max_threads; /* tunable limit on nr_threads */
62
63 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
64
65 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
66
67 EXPORT_SYMBOL(tasklist_lock);
68
69 int nr_processes(void)
70 {
71 int cpu;
72 int total = 0;
73
74 for_each_online_cpu(cpu)
75 total += per_cpu(process_counts, cpu);
76
77 return total;
78 }
79
80 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
81 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
82 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
83 static kmem_cache_t *task_struct_cachep;
84 #endif
85
86 /* SLAB cache for signal_struct structures (tsk->signal) */
87 kmem_cache_t *signal_cachep;
88
89 /* SLAB cache for sighand_struct structures (tsk->sighand) */
90 kmem_cache_t *sighand_cachep;
91
92 /* SLAB cache for files_struct structures (tsk->files) */
93 kmem_cache_t *files_cachep;
94
95 /* SLAB cache for fs_struct structures (tsk->fs) */
96 kmem_cache_t *fs_cachep;
97
98 /* SLAB cache for vm_area_struct structures */
99 kmem_cache_t *vm_area_cachep;
100
101 /* SLAB cache for mm_struct structures (tsk->mm) */
102 static kmem_cache_t *mm_cachep;
103
104 void free_task(struct task_struct *tsk)
105 {
106 free_thread_info(tsk->thread_info);
107 free_task_struct(tsk);
108 }
109 EXPORT_SYMBOL(free_task);
110
111 void __put_task_struct(struct task_struct *tsk)
112 {
113 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
114 WARN_ON(atomic_read(&tsk->usage));
115 WARN_ON(tsk == current);
116
117 if (unlikely(tsk->audit_context))
118 audit_free(tsk);
119 security_task_free(tsk);
120 free_uid(tsk->user);
121 put_group_info(tsk->group_info);
122
123 if (!profile_handoff_task(tsk))
124 free_task(tsk);
125 }
126
127 void __init fork_init(unsigned long mempages)
128 {
129 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
130 #ifndef ARCH_MIN_TASKALIGN
131 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
132 #endif
133 /* create a slab on which task_structs can be allocated */
134 task_struct_cachep =
135 kmem_cache_create("task_struct", sizeof(struct task_struct),
136 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
137 #endif
138
139 /*
140 * The default maximum number of threads is set to a safe
141 * value: the thread structures can take up at most half
142 * of memory.
143 */
144 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
145
146 /*
147 * we need to allow at least 20 threads to boot a system
148 */
149 if(max_threads < 20)
150 max_threads = 20;
151
152 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
153 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
154 init_task.signal->rlim[RLIMIT_SIGPENDING] =
155 init_task.signal->rlim[RLIMIT_NPROC];
156 }
157
158 static struct task_struct *dup_task_struct(struct task_struct *orig)
159 {
160 struct task_struct *tsk;
161 struct thread_info *ti;
162
163 prepare_to_copy(orig);
164
165 tsk = alloc_task_struct();
166 if (!tsk)
167 return NULL;
168
169 ti = alloc_thread_info(tsk);
170 if (!ti) {
171 free_task_struct(tsk);
172 return NULL;
173 }
174
175 *tsk = *orig;
176 tsk->thread_info = ti;
177 setup_thread_stack(tsk, orig);
178
179 /* One for us, one for whoever does the "release_task()" (usually parent) */
180 atomic_set(&tsk->usage,2);
181 atomic_set(&tsk->fs_excl, 0);
182 return tsk;
183 }
184
185 #ifdef CONFIG_MMU
186 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
187 {
188 struct vm_area_struct *mpnt, *tmp, **pprev;
189 struct rb_node **rb_link, *rb_parent;
190 int retval;
191 unsigned long charge;
192 struct mempolicy *pol;
193
194 down_write(&oldmm->mmap_sem);
195 flush_cache_mm(oldmm);
196 down_write(&mm->mmap_sem);
197
198 mm->locked_vm = 0;
199 mm->mmap = NULL;
200 mm->mmap_cache = NULL;
201 mm->free_area_cache = oldmm->mmap_base;
202 mm->cached_hole_size = ~0UL;
203 mm->map_count = 0;
204 cpus_clear(mm->cpu_vm_mask);
205 mm->mm_rb = RB_ROOT;
206 rb_link = &mm->mm_rb.rb_node;
207 rb_parent = NULL;
208 pprev = &mm->mmap;
209
210 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
211 struct file *file;
212
213 if (mpnt->vm_flags & VM_DONTCOPY) {
214 long pages = vma_pages(mpnt);
215 mm->total_vm -= pages;
216 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
217 -pages);
218 continue;
219 }
220 charge = 0;
221 if (mpnt->vm_flags & VM_ACCOUNT) {
222 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
223 if (security_vm_enough_memory(len))
224 goto fail_nomem;
225 charge = len;
226 }
227 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
228 if (!tmp)
229 goto fail_nomem;
230 *tmp = *mpnt;
231 pol = mpol_copy(vma_policy(mpnt));
232 retval = PTR_ERR(pol);
233 if (IS_ERR(pol))
234 goto fail_nomem_policy;
235 vma_set_policy(tmp, pol);
236 tmp->vm_flags &= ~VM_LOCKED;
237 tmp->vm_mm = mm;
238 tmp->vm_next = NULL;
239 anon_vma_link(tmp);
240 file = tmp->vm_file;
241 if (file) {
242 struct inode *inode = file->f_dentry->d_inode;
243 get_file(file);
244 if (tmp->vm_flags & VM_DENYWRITE)
245 atomic_dec(&inode->i_writecount);
246
247 /* insert tmp into the share list, just after mpnt */
248 spin_lock(&file->f_mapping->i_mmap_lock);
249 tmp->vm_truncate_count = mpnt->vm_truncate_count;
250 flush_dcache_mmap_lock(file->f_mapping);
251 vma_prio_tree_add(tmp, mpnt);
252 flush_dcache_mmap_unlock(file->f_mapping);
253 spin_unlock(&file->f_mapping->i_mmap_lock);
254 }
255
256 /*
257 * Link in the new vma and copy the page table entries.
258 */
259 *pprev = tmp;
260 pprev = &tmp->vm_next;
261
262 __vma_link_rb(mm, tmp, rb_link, rb_parent);
263 rb_link = &tmp->vm_rb.rb_right;
264 rb_parent = &tmp->vm_rb;
265
266 mm->map_count++;
267 retval = copy_page_range(mm, oldmm, mpnt);
268
269 if (tmp->vm_ops && tmp->vm_ops->open)
270 tmp->vm_ops->open(tmp);
271
272 if (retval)
273 goto out;
274 }
275 retval = 0;
276 out:
277 up_write(&mm->mmap_sem);
278 flush_tlb_mm(oldmm);
279 up_write(&oldmm->mmap_sem);
280 return retval;
281 fail_nomem_policy:
282 kmem_cache_free(vm_area_cachep, tmp);
283 fail_nomem:
284 retval = -ENOMEM;
285 vm_unacct_memory(charge);
286 goto out;
287 }
288
289 static inline int mm_alloc_pgd(struct mm_struct * mm)
290 {
291 mm->pgd = pgd_alloc(mm);
292 if (unlikely(!mm->pgd))
293 return -ENOMEM;
294 return 0;
295 }
296
297 static inline void mm_free_pgd(struct mm_struct * mm)
298 {
299 pgd_free(mm->pgd);
300 }
301 #else
302 #define dup_mmap(mm, oldmm) (0)
303 #define mm_alloc_pgd(mm) (0)
304 #define mm_free_pgd(mm)
305 #endif /* CONFIG_MMU */
306
307 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
308
309 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
310 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
311
312 #include <linux/init_task.h>
313
314 static struct mm_struct * mm_init(struct mm_struct * mm)
315 {
316 atomic_set(&mm->mm_users, 1);
317 atomic_set(&mm->mm_count, 1);
318 init_rwsem(&mm->mmap_sem);
319 INIT_LIST_HEAD(&mm->mmlist);
320 mm->core_waiters = 0;
321 mm->nr_ptes = 0;
322 set_mm_counter(mm, file_rss, 0);
323 set_mm_counter(mm, anon_rss, 0);
324 spin_lock_init(&mm->page_table_lock);
325 rwlock_init(&mm->ioctx_list_lock);
326 mm->ioctx_list = NULL;
327 mm->free_area_cache = TASK_UNMAPPED_BASE;
328 mm->cached_hole_size = ~0UL;
329
330 if (likely(!mm_alloc_pgd(mm))) {
331 mm->def_flags = 0;
332 return mm;
333 }
334 free_mm(mm);
335 return NULL;
336 }
337
338 /*
339 * Allocate and initialize an mm_struct.
340 */
341 struct mm_struct * mm_alloc(void)
342 {
343 struct mm_struct * mm;
344
345 mm = allocate_mm();
346 if (mm) {
347 memset(mm, 0, sizeof(*mm));
348 mm = mm_init(mm);
349 }
350 return mm;
351 }
352
353 /*
354 * Called when the last reference to the mm
355 * is dropped: either by a lazy thread or by
356 * mmput. Free the page directory and the mm.
357 */
358 void fastcall __mmdrop(struct mm_struct *mm)
359 {
360 BUG_ON(mm == &init_mm);
361 mm_free_pgd(mm);
362 destroy_context(mm);
363 free_mm(mm);
364 }
365
366 /*
367 * Decrement the use count and release all resources for an mm.
368 */
369 void mmput(struct mm_struct *mm)
370 {
371 if (atomic_dec_and_test(&mm->mm_users)) {
372 exit_aio(mm);
373 exit_mmap(mm);
374 if (!list_empty(&mm->mmlist)) {
375 spin_lock(&mmlist_lock);
376 list_del(&mm->mmlist);
377 spin_unlock(&mmlist_lock);
378 }
379 put_swap_token(mm);
380 mmdrop(mm);
381 }
382 }
383 EXPORT_SYMBOL_GPL(mmput);
384
385 /**
386 * get_task_mm - acquire a reference to the task's mm
387 *
388 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
389 * this kernel workthread has transiently adopted a user mm with use_mm,
390 * to do its AIO) is not set and if so returns a reference to it, after
391 * bumping up the use count. User must release the mm via mmput()
392 * after use. Typically used by /proc and ptrace.
393 */
394 struct mm_struct *get_task_mm(struct task_struct *task)
395 {
396 struct mm_struct *mm;
397
398 task_lock(task);
399 mm = task->mm;
400 if (mm) {
401 if (task->flags & PF_BORROWED_MM)
402 mm = NULL;
403 else
404 atomic_inc(&mm->mm_users);
405 }
406 task_unlock(task);
407 return mm;
408 }
409 EXPORT_SYMBOL_GPL(get_task_mm);
410
411 /* Please note the differences between mmput and mm_release.
412 * mmput is called whenever we stop holding onto a mm_struct,
413 * error success whatever.
414 *
415 * mm_release is called after a mm_struct has been removed
416 * from the current process.
417 *
418 * This difference is important for error handling, when we
419 * only half set up a mm_struct for a new process and need to restore
420 * the old one. Because we mmput the new mm_struct before
421 * restoring the old one. . .
422 * Eric Biederman 10 January 1998
423 */
424 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
425 {
426 struct completion *vfork_done = tsk->vfork_done;
427
428 /* Get rid of any cached register state */
429 deactivate_mm(tsk, mm);
430
431 /* notify parent sleeping on vfork() */
432 if (vfork_done) {
433 tsk->vfork_done = NULL;
434 complete(vfork_done);
435 }
436 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
437 u32 __user * tidptr = tsk->clear_child_tid;
438 tsk->clear_child_tid = NULL;
439
440 /*
441 * We don't check the error code - if userspace has
442 * not set up a proper pointer then tough luck.
443 */
444 put_user(0, tidptr);
445 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
446 }
447 }
448
449 /*
450 * Allocate a new mm structure and copy contents from the
451 * mm structure of the passed in task structure.
452 */
453 static struct mm_struct *dup_mm(struct task_struct *tsk)
454 {
455 struct mm_struct *mm, *oldmm = current->mm;
456 int err;
457
458 if (!oldmm)
459 return NULL;
460
461 mm = allocate_mm();
462 if (!mm)
463 goto fail_nomem;
464
465 memcpy(mm, oldmm, sizeof(*mm));
466
467 if (!mm_init(mm))
468 goto fail_nomem;
469
470 if (init_new_context(tsk, mm))
471 goto fail_nocontext;
472
473 err = dup_mmap(mm, oldmm);
474 if (err)
475 goto free_pt;
476
477 mm->hiwater_rss = get_mm_rss(mm);
478 mm->hiwater_vm = mm->total_vm;
479
480 return mm;
481
482 free_pt:
483 mmput(mm);
484
485 fail_nomem:
486 return NULL;
487
488 fail_nocontext:
489 /*
490 * If init_new_context() failed, we cannot use mmput() to free the mm
491 * because it calls destroy_context()
492 */
493 mm_free_pgd(mm);
494 free_mm(mm);
495 return NULL;
496 }
497
498 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
499 {
500 struct mm_struct * mm, *oldmm;
501 int retval;
502
503 tsk->min_flt = tsk->maj_flt = 0;
504 tsk->nvcsw = tsk->nivcsw = 0;
505
506 tsk->mm = NULL;
507 tsk->active_mm = NULL;
508
509 /*
510 * Are we cloning a kernel thread?
511 *
512 * We need to steal a active VM for that..
513 */
514 oldmm = current->mm;
515 if (!oldmm)
516 return 0;
517
518 if (clone_flags & CLONE_VM) {
519 atomic_inc(&oldmm->mm_users);
520 mm = oldmm;
521 goto good_mm;
522 }
523
524 retval = -ENOMEM;
525 mm = dup_mm(tsk);
526 if (!mm)
527 goto fail_nomem;
528
529 good_mm:
530 tsk->mm = mm;
531 tsk->active_mm = mm;
532 return 0;
533
534 fail_nomem:
535 return retval;
536 }
537
538 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
539 {
540 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
541 /* We don't need to lock fs - think why ;-) */
542 if (fs) {
543 atomic_set(&fs->count, 1);
544 rwlock_init(&fs->lock);
545 fs->umask = old->umask;
546 read_lock(&old->lock);
547 fs->rootmnt = mntget(old->rootmnt);
548 fs->root = dget(old->root);
549 fs->pwdmnt = mntget(old->pwdmnt);
550 fs->pwd = dget(old->pwd);
551 if (old->altroot) {
552 fs->altrootmnt = mntget(old->altrootmnt);
553 fs->altroot = dget(old->altroot);
554 } else {
555 fs->altrootmnt = NULL;
556 fs->altroot = NULL;
557 }
558 read_unlock(&old->lock);
559 }
560 return fs;
561 }
562
563 struct fs_struct *copy_fs_struct(struct fs_struct *old)
564 {
565 return __copy_fs_struct(old);
566 }
567
568 EXPORT_SYMBOL_GPL(copy_fs_struct);
569
570 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
571 {
572 if (clone_flags & CLONE_FS) {
573 atomic_inc(&current->fs->count);
574 return 0;
575 }
576 tsk->fs = __copy_fs_struct(current->fs);
577 if (!tsk->fs)
578 return -ENOMEM;
579 return 0;
580 }
581
582 static int count_open_files(struct fdtable *fdt)
583 {
584 int size = fdt->max_fdset;
585 int i;
586
587 /* Find the last open fd */
588 for (i = size/(8*sizeof(long)); i > 0; ) {
589 if (fdt->open_fds->fds_bits[--i])
590 break;
591 }
592 i = (i+1) * 8 * sizeof(long);
593 return i;
594 }
595
596 static struct files_struct *alloc_files(void)
597 {
598 struct files_struct *newf;
599 struct fdtable *fdt;
600
601 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
602 if (!newf)
603 goto out;
604
605 atomic_set(&newf->count, 1);
606
607 spin_lock_init(&newf->file_lock);
608 fdt = &newf->fdtab;
609 fdt->next_fd = 0;
610 fdt->max_fds = NR_OPEN_DEFAULT;
611 fdt->max_fdset = __FD_SETSIZE;
612 fdt->close_on_exec = &newf->close_on_exec_init;
613 fdt->open_fds = &newf->open_fds_init;
614 fdt->fd = &newf->fd_array[0];
615 INIT_RCU_HEAD(&fdt->rcu);
616 fdt->free_files = NULL;
617 fdt->next = NULL;
618 rcu_assign_pointer(newf->fdt, fdt);
619 out:
620 return newf;
621 }
622
623 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
624 {
625 struct files_struct *oldf, *newf;
626 struct file **old_fds, **new_fds;
627 int open_files, size, i, error = 0, expand;
628 struct fdtable *old_fdt, *new_fdt;
629
630 /*
631 * A background process may not have any files ...
632 */
633 oldf = current->files;
634 if (!oldf)
635 goto out;
636
637 if (clone_flags & CLONE_FILES) {
638 atomic_inc(&oldf->count);
639 goto out;
640 }
641
642 /*
643 * Note: we may be using current for both targets (See exec.c)
644 * This works because we cache current->files (old) as oldf. Don't
645 * break this.
646 */
647 tsk->files = NULL;
648 error = -ENOMEM;
649 newf = alloc_files();
650 if (!newf)
651 goto out;
652
653 spin_lock(&oldf->file_lock);
654 old_fdt = files_fdtable(oldf);
655 new_fdt = files_fdtable(newf);
656 size = old_fdt->max_fdset;
657 open_files = count_open_files(old_fdt);
658 expand = 0;
659
660 /*
661 * Check whether we need to allocate a larger fd array or fd set.
662 * Note: we're not a clone task, so the open count won't change.
663 */
664 if (open_files > new_fdt->max_fdset) {
665 new_fdt->max_fdset = 0;
666 expand = 1;
667 }
668 if (open_files > new_fdt->max_fds) {
669 new_fdt->max_fds = 0;
670 expand = 1;
671 }
672
673 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
674 if (expand) {
675 spin_unlock(&oldf->file_lock);
676 spin_lock(&newf->file_lock);
677 error = expand_files(newf, open_files-1);
678 spin_unlock(&newf->file_lock);
679 if (error < 0)
680 goto out_release;
681 new_fdt = files_fdtable(newf);
682 /*
683 * Reacquire the oldf lock and a pointer to its fd table
684 * who knows it may have a new bigger fd table. We need
685 * the latest pointer.
686 */
687 spin_lock(&oldf->file_lock);
688 old_fdt = files_fdtable(oldf);
689 }
690
691 old_fds = old_fdt->fd;
692 new_fds = new_fdt->fd;
693
694 memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
695 memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
696
697 for (i = open_files; i != 0; i--) {
698 struct file *f = *old_fds++;
699 if (f) {
700 get_file(f);
701 } else {
702 /*
703 * The fd may be claimed in the fd bitmap but not yet
704 * instantiated in the files array if a sibling thread
705 * is partway through open(). So make sure that this
706 * fd is available to the new process.
707 */
708 FD_CLR(open_files - i, new_fdt->open_fds);
709 }
710 rcu_assign_pointer(*new_fds++, f);
711 }
712 spin_unlock(&oldf->file_lock);
713
714 /* compute the remainder to be cleared */
715 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
716
717 /* This is long word aligned thus could use a optimized version */
718 memset(new_fds, 0, size);
719
720 if (new_fdt->max_fdset > open_files) {
721 int left = (new_fdt->max_fdset-open_files)/8;
722 int start = open_files / (8 * sizeof(unsigned long));
723
724 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
725 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
726 }
727
728 tsk->files = newf;
729 error = 0;
730 out:
731 return error;
732
733 out_release:
734 free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
735 free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
736 free_fd_array(new_fdt->fd, new_fdt->max_fds);
737 kmem_cache_free(files_cachep, newf);
738 goto out;
739 }
740
741 /*
742 * Helper to unshare the files of the current task.
743 * We don't want to expose copy_files internals to
744 * the exec layer of the kernel.
745 */
746
747 int unshare_files(void)
748 {
749 struct files_struct *files = current->files;
750 int rc;
751
752 if(!files)
753 BUG();
754
755 /* This can race but the race causes us to copy when we don't
756 need to and drop the copy */
757 if(atomic_read(&files->count) == 1)
758 {
759 atomic_inc(&files->count);
760 return 0;
761 }
762 rc = copy_files(0, current);
763 if(rc)
764 current->files = files;
765 return rc;
766 }
767
768 EXPORT_SYMBOL(unshare_files);
769
770 void sighand_free_cb(struct rcu_head *rhp)
771 {
772 struct sighand_struct *sp;
773
774 sp = container_of(rhp, struct sighand_struct, rcu);
775 kmem_cache_free(sighand_cachep, sp);
776 }
777
778 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
779 {
780 struct sighand_struct *sig;
781
782 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
783 atomic_inc(&current->sighand->count);
784 return 0;
785 }
786 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
787 rcu_assign_pointer(tsk->sighand, sig);
788 if (!sig)
789 return -ENOMEM;
790 spin_lock_init(&sig->siglock);
791 atomic_set(&sig->count, 1);
792 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
793 return 0;
794 }
795
796 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
797 {
798 struct signal_struct *sig;
799 int ret;
800
801 if (clone_flags & CLONE_THREAD) {
802 atomic_inc(&current->signal->count);
803 atomic_inc(&current->signal->live);
804 return 0;
805 }
806 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
807 tsk->signal = sig;
808 if (!sig)
809 return -ENOMEM;
810
811 ret = copy_thread_group_keys(tsk);
812 if (ret < 0) {
813 kmem_cache_free(signal_cachep, sig);
814 return ret;
815 }
816
817 atomic_set(&sig->count, 1);
818 atomic_set(&sig->live, 1);
819 init_waitqueue_head(&sig->wait_chldexit);
820 sig->flags = 0;
821 sig->group_exit_code = 0;
822 sig->group_exit_task = NULL;
823 sig->group_stop_count = 0;
824 sig->curr_target = NULL;
825 init_sigpending(&sig->shared_pending);
826 INIT_LIST_HEAD(&sig->posix_timers);
827
828 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
829 sig->it_real_incr.tv64 = 0;
830 sig->real_timer.function = it_real_fn;
831 sig->real_timer.data = tsk;
832
833 sig->it_virt_expires = cputime_zero;
834 sig->it_virt_incr = cputime_zero;
835 sig->it_prof_expires = cputime_zero;
836 sig->it_prof_incr = cputime_zero;
837
838 sig->leader = 0; /* session leadership doesn't inherit */
839 sig->tty_old_pgrp = 0;
840
841 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
842 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
843 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
844 sig->sched_time = 0;
845 INIT_LIST_HEAD(&sig->cpu_timers[0]);
846 INIT_LIST_HEAD(&sig->cpu_timers[1]);
847 INIT_LIST_HEAD(&sig->cpu_timers[2]);
848
849 task_lock(current->group_leader);
850 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
851 task_unlock(current->group_leader);
852
853 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
854 /*
855 * New sole thread in the process gets an expiry time
856 * of the whole CPU time limit.
857 */
858 tsk->it_prof_expires =
859 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
860 }
861
862 return 0;
863 }
864
865 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
866 {
867 unsigned long new_flags = p->flags;
868
869 new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
870 new_flags |= PF_FORKNOEXEC;
871 if (!(clone_flags & CLONE_PTRACE))
872 p->ptrace = 0;
873 p->flags = new_flags;
874 }
875
876 asmlinkage long sys_set_tid_address(int __user *tidptr)
877 {
878 current->clear_child_tid = tidptr;
879
880 return current->pid;
881 }
882
883 /*
884 * This creates a new process as a copy of the old one,
885 * but does not actually start it yet.
886 *
887 * It copies the registers, and all the appropriate
888 * parts of the process environment (as per the clone
889 * flags). The actual kick-off is left to the caller.
890 */
891 static task_t *copy_process(unsigned long clone_flags,
892 unsigned long stack_start,
893 struct pt_regs *regs,
894 unsigned long stack_size,
895 int __user *parent_tidptr,
896 int __user *child_tidptr,
897 int pid)
898 {
899 int retval;
900 struct task_struct *p = NULL;
901
902 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
903 return ERR_PTR(-EINVAL);
904
905 /*
906 * Thread groups must share signals as well, and detached threads
907 * can only be started up within the thread group.
908 */
909 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
910 return ERR_PTR(-EINVAL);
911
912 /*
913 * Shared signal handlers imply shared VM. By way of the above,
914 * thread groups also imply shared VM. Blocking this case allows
915 * for various simplifications in other code.
916 */
917 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
918 return ERR_PTR(-EINVAL);
919
920 retval = security_task_create(clone_flags);
921 if (retval)
922 goto fork_out;
923
924 retval = -ENOMEM;
925 p = dup_task_struct(current);
926 if (!p)
927 goto fork_out;
928
929 retval = -EAGAIN;
930 if (atomic_read(&p->user->processes) >=
931 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
932 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
933 p->user != &root_user)
934 goto bad_fork_free;
935 }
936
937 atomic_inc(&p->user->__count);
938 atomic_inc(&p->user->processes);
939 get_group_info(p->group_info);
940
941 /*
942 * If multiple threads are within copy_process(), then this check
943 * triggers too late. This doesn't hurt, the check is only there
944 * to stop root fork bombs.
945 */
946 if (nr_threads >= max_threads)
947 goto bad_fork_cleanup_count;
948
949 if (!try_module_get(task_thread_info(p)->exec_domain->module))
950 goto bad_fork_cleanup_count;
951
952 if (p->binfmt && !try_module_get(p->binfmt->module))
953 goto bad_fork_cleanup_put_domain;
954
955 p->did_exec = 0;
956 copy_flags(clone_flags, p);
957 p->pid = pid;
958 retval = -EFAULT;
959 if (clone_flags & CLONE_PARENT_SETTID)
960 if (put_user(p->pid, parent_tidptr))
961 goto bad_fork_cleanup;
962
963 p->proc_dentry = NULL;
964
965 INIT_LIST_HEAD(&p->children);
966 INIT_LIST_HEAD(&p->sibling);
967 p->vfork_done = NULL;
968 spin_lock_init(&p->alloc_lock);
969 spin_lock_init(&p->proc_lock);
970
971 clear_tsk_thread_flag(p, TIF_SIGPENDING);
972 init_sigpending(&p->pending);
973
974 p->utime = cputime_zero;
975 p->stime = cputime_zero;
976 p->sched_time = 0;
977 p->rchar = 0; /* I/O counter: bytes read */
978 p->wchar = 0; /* I/O counter: bytes written */
979 p->syscr = 0; /* I/O counter: read syscalls */
980 p->syscw = 0; /* I/O counter: write syscalls */
981 acct_clear_integrals(p);
982
983 p->it_virt_expires = cputime_zero;
984 p->it_prof_expires = cputime_zero;
985 p->it_sched_expires = 0;
986 INIT_LIST_HEAD(&p->cpu_timers[0]);
987 INIT_LIST_HEAD(&p->cpu_timers[1]);
988 INIT_LIST_HEAD(&p->cpu_timers[2]);
989
990 p->lock_depth = -1; /* -1 = no lock */
991 do_posix_clock_monotonic_gettime(&p->start_time);
992 p->security = NULL;
993 p->io_context = NULL;
994 p->io_wait = NULL;
995 p->audit_context = NULL;
996 cpuset_fork(p);
997 #ifdef CONFIG_NUMA
998 p->mempolicy = mpol_copy(p->mempolicy);
999 if (IS_ERR(p->mempolicy)) {
1000 retval = PTR_ERR(p->mempolicy);
1001 p->mempolicy = NULL;
1002 goto bad_fork_cleanup_cpuset;
1003 }
1004 #endif
1005
1006 #ifdef CONFIG_DEBUG_MUTEXES
1007 p->blocked_on = NULL; /* not blocked yet */
1008 #endif
1009
1010 p->tgid = p->pid;
1011 if (clone_flags & CLONE_THREAD)
1012 p->tgid = current->tgid;
1013
1014 if ((retval = security_task_alloc(p)))
1015 goto bad_fork_cleanup_policy;
1016 if ((retval = audit_alloc(p)))
1017 goto bad_fork_cleanup_security;
1018 /* copy all the process information */
1019 if ((retval = copy_semundo(clone_flags, p)))
1020 goto bad_fork_cleanup_audit;
1021 if ((retval = copy_files(clone_flags, p)))
1022 goto bad_fork_cleanup_semundo;
1023 if ((retval = copy_fs(clone_flags, p)))
1024 goto bad_fork_cleanup_files;
1025 if ((retval = copy_sighand(clone_flags, p)))
1026 goto bad_fork_cleanup_fs;
1027 if ((retval = copy_signal(clone_flags, p)))
1028 goto bad_fork_cleanup_sighand;
1029 if ((retval = copy_mm(clone_flags, p)))
1030 goto bad_fork_cleanup_signal;
1031 if ((retval = copy_keys(clone_flags, p)))
1032 goto bad_fork_cleanup_mm;
1033 if ((retval = copy_namespace(clone_flags, p)))
1034 goto bad_fork_cleanup_keys;
1035 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1036 if (retval)
1037 goto bad_fork_cleanup_namespace;
1038
1039 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1040 /*
1041 * Clear TID on mm_release()?
1042 */
1043 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1044
1045 /*
1046 * Syscall tracing should be turned off in the child regardless
1047 * of CLONE_PTRACE.
1048 */
1049 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1050 #ifdef TIF_SYSCALL_EMU
1051 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1052 #endif
1053
1054 /* Our parent execution domain becomes current domain
1055 These must match for thread signalling to apply */
1056
1057 p->parent_exec_id = p->self_exec_id;
1058
1059 /* ok, now we should be set up.. */
1060 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1061 p->pdeath_signal = 0;
1062 p->exit_state = 0;
1063
1064 /*
1065 * Ok, make it visible to the rest of the system.
1066 * We dont wake it up yet.
1067 */
1068 p->group_leader = p;
1069 INIT_LIST_HEAD(&p->ptrace_children);
1070 INIT_LIST_HEAD(&p->ptrace_list);
1071
1072 /* Perform scheduler related setup. Assign this task to a CPU. */
1073 sched_fork(p, clone_flags);
1074
1075 /* Need tasklist lock for parent etc handling! */
1076 write_lock_irq(&tasklist_lock);
1077
1078 /*
1079 * The task hasn't been attached yet, so its cpus_allowed mask will
1080 * not be changed, nor will its assigned CPU.
1081 *
1082 * The cpus_allowed mask of the parent may have changed after it was
1083 * copied first time - so re-copy it here, then check the child's CPU
1084 * to ensure it is on a valid CPU (and if not, just force it back to
1085 * parent's CPU). This avoids alot of nasty races.
1086 */
1087 p->cpus_allowed = current->cpus_allowed;
1088 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1089 !cpu_online(task_cpu(p))))
1090 set_task_cpu(p, smp_processor_id());
1091
1092 /*
1093 * Check for pending SIGKILL! The new thread should not be allowed
1094 * to slip out of an OOM kill. (or normal SIGKILL.)
1095 */
1096 if (sigismember(&current->pending.signal, SIGKILL)) {
1097 write_unlock_irq(&tasklist_lock);
1098 retval = -EINTR;
1099 goto bad_fork_cleanup_namespace;
1100 }
1101
1102 /* CLONE_PARENT re-uses the old parent */
1103 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1104 p->real_parent = current->real_parent;
1105 else
1106 p->real_parent = current;
1107 p->parent = p->real_parent;
1108
1109 if (clone_flags & CLONE_THREAD) {
1110 spin_lock(&current->sighand->siglock);
1111 /*
1112 * Important: if an exit-all has been started then
1113 * do not create this new thread - the whole thread
1114 * group is supposed to exit anyway.
1115 */
1116 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1117 spin_unlock(&current->sighand->siglock);
1118 write_unlock_irq(&tasklist_lock);
1119 retval = -EAGAIN;
1120 goto bad_fork_cleanup_namespace;
1121 }
1122 p->group_leader = current->group_leader;
1123
1124 if (current->signal->group_stop_count > 0) {
1125 /*
1126 * There is an all-stop in progress for the group.
1127 * We ourselves will stop as soon as we check signals.
1128 * Make the new thread part of that group stop too.
1129 */
1130 current->signal->group_stop_count++;
1131 set_tsk_thread_flag(p, TIF_SIGPENDING);
1132 }
1133
1134 if (!cputime_eq(current->signal->it_virt_expires,
1135 cputime_zero) ||
1136 !cputime_eq(current->signal->it_prof_expires,
1137 cputime_zero) ||
1138 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1139 !list_empty(&current->signal->cpu_timers[0]) ||
1140 !list_empty(&current->signal->cpu_timers[1]) ||
1141 !list_empty(&current->signal->cpu_timers[2])) {
1142 /*
1143 * Have child wake up on its first tick to check
1144 * for process CPU timers.
1145 */
1146 p->it_prof_expires = jiffies_to_cputime(1);
1147 }
1148
1149 spin_unlock(&current->sighand->siglock);
1150 }
1151
1152 /*
1153 * inherit ioprio
1154 */
1155 p->ioprio = current->ioprio;
1156
1157 SET_LINKS(p);
1158 if (unlikely(p->ptrace & PT_PTRACED))
1159 __ptrace_link(p, current->parent);
1160
1161 attach_pid(p, PIDTYPE_PID, p->pid);
1162 attach_pid(p, PIDTYPE_TGID, p->tgid);
1163 if (thread_group_leader(p)) {
1164 p->signal->tty = current->signal->tty;
1165 p->signal->pgrp = process_group(current);
1166 p->signal->session = current->signal->session;
1167 attach_pid(p, PIDTYPE_PGID, process_group(p));
1168 attach_pid(p, PIDTYPE_SID, p->signal->session);
1169 if (p->pid)
1170 __get_cpu_var(process_counts)++;
1171 }
1172
1173 nr_threads++;
1174 total_forks++;
1175 write_unlock_irq(&tasklist_lock);
1176 proc_fork_connector(p);
1177 return p;
1178
1179 bad_fork_cleanup_namespace:
1180 exit_namespace(p);
1181 bad_fork_cleanup_keys:
1182 exit_keys(p);
1183 bad_fork_cleanup_mm:
1184 if (p->mm)
1185 mmput(p->mm);
1186 bad_fork_cleanup_signal:
1187 exit_signal(p);
1188 bad_fork_cleanup_sighand:
1189 exit_sighand(p);
1190 bad_fork_cleanup_fs:
1191 exit_fs(p); /* blocking */
1192 bad_fork_cleanup_files:
1193 exit_files(p); /* blocking */
1194 bad_fork_cleanup_semundo:
1195 exit_sem(p);
1196 bad_fork_cleanup_audit:
1197 audit_free(p);
1198 bad_fork_cleanup_security:
1199 security_task_free(p);
1200 bad_fork_cleanup_policy:
1201 #ifdef CONFIG_NUMA
1202 mpol_free(p->mempolicy);
1203 bad_fork_cleanup_cpuset:
1204 #endif
1205 cpuset_exit(p);
1206 bad_fork_cleanup:
1207 if (p->binfmt)
1208 module_put(p->binfmt->module);
1209 bad_fork_cleanup_put_domain:
1210 module_put(task_thread_info(p)->exec_domain->module);
1211 bad_fork_cleanup_count:
1212 put_group_info(p->group_info);
1213 atomic_dec(&p->user->processes);
1214 free_uid(p->user);
1215 bad_fork_free:
1216 free_task(p);
1217 fork_out:
1218 return ERR_PTR(retval);
1219 }
1220
1221 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1222 {
1223 memset(regs, 0, sizeof(struct pt_regs));
1224 return regs;
1225 }
1226
1227 task_t * __devinit fork_idle(int cpu)
1228 {
1229 task_t *task;
1230 struct pt_regs regs;
1231
1232 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1233 if (!task)
1234 return ERR_PTR(-ENOMEM);
1235 init_idle(task, cpu);
1236 unhash_process(task);
1237 return task;
1238 }
1239
1240 static inline int fork_traceflag (unsigned clone_flags)
1241 {
1242 if (clone_flags & CLONE_UNTRACED)
1243 return 0;
1244 else if (clone_flags & CLONE_VFORK) {
1245 if (current->ptrace & PT_TRACE_VFORK)
1246 return PTRACE_EVENT_VFORK;
1247 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1248 if (current->ptrace & PT_TRACE_CLONE)
1249 return PTRACE_EVENT_CLONE;
1250 } else if (current->ptrace & PT_TRACE_FORK)
1251 return PTRACE_EVENT_FORK;
1252
1253 return 0;
1254 }
1255
1256 /*
1257 * Ok, this is the main fork-routine.
1258 *
1259 * It copies the process, and if successful kick-starts
1260 * it and waits for it to finish using the VM if required.
1261 */
1262 long do_fork(unsigned long clone_flags,
1263 unsigned long stack_start,
1264 struct pt_regs *regs,
1265 unsigned long stack_size,
1266 int __user *parent_tidptr,
1267 int __user *child_tidptr)
1268 {
1269 struct task_struct *p;
1270 int trace = 0;
1271 long pid = alloc_pidmap();
1272
1273 if (pid < 0)
1274 return -EAGAIN;
1275 if (unlikely(current->ptrace)) {
1276 trace = fork_traceflag (clone_flags);
1277 if (trace)
1278 clone_flags |= CLONE_PTRACE;
1279 }
1280
1281 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1282 /*
1283 * Do this prior waking up the new thread - the thread pointer
1284 * might get invalid after that point, if the thread exits quickly.
1285 */
1286 if (!IS_ERR(p)) {
1287 struct completion vfork;
1288
1289 if (clone_flags & CLONE_VFORK) {
1290 p->vfork_done = &vfork;
1291 init_completion(&vfork);
1292 }
1293
1294 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1295 /*
1296 * We'll start up with an immediate SIGSTOP.
1297 */
1298 sigaddset(&p->pending.signal, SIGSTOP);
1299 set_tsk_thread_flag(p, TIF_SIGPENDING);
1300 }
1301
1302 if (!(clone_flags & CLONE_STOPPED))
1303 wake_up_new_task(p, clone_flags);
1304 else
1305 p->state = TASK_STOPPED;
1306
1307 if (unlikely (trace)) {
1308 current->ptrace_message = pid;
1309 ptrace_notify ((trace << 8) | SIGTRAP);
1310 }
1311
1312 if (clone_flags & CLONE_VFORK) {
1313 wait_for_completion(&vfork);
1314 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1315 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1316 }
1317 } else {
1318 free_pidmap(pid);
1319 pid = PTR_ERR(p);
1320 }
1321 return pid;
1322 }
1323
1324 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1325 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1326 #endif
1327
1328 void __init proc_caches_init(void)
1329 {
1330 sighand_cachep = kmem_cache_create("sighand_cache",
1331 sizeof(struct sighand_struct), 0,
1332 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1333 signal_cachep = kmem_cache_create("signal_cache",
1334 sizeof(struct signal_struct), 0,
1335 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1336 files_cachep = kmem_cache_create("files_cache",
1337 sizeof(struct files_struct), 0,
1338 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1339 fs_cachep = kmem_cache_create("fs_cache",
1340 sizeof(struct fs_struct), 0,
1341 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1342 vm_area_cachep = kmem_cache_create("vm_area_struct",
1343 sizeof(struct vm_area_struct), 0,
1344 SLAB_PANIC, NULL, NULL);
1345 mm_cachep = kmem_cache_create("mm_struct",
1346 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1347 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1348 }
1349
1350
1351 /*
1352 * Check constraints on flags passed to the unshare system call and
1353 * force unsharing of additional process context as appropriate.
1354 */
1355 static inline void check_unshare_flags(unsigned long *flags_ptr)
1356 {
1357 /*
1358 * If unsharing a thread from a thread group, must also
1359 * unshare vm.
1360 */
1361 if (*flags_ptr & CLONE_THREAD)
1362 *flags_ptr |= CLONE_VM;
1363
1364 /*
1365 * If unsharing vm, must also unshare signal handlers.
1366 */
1367 if (*flags_ptr & CLONE_VM)
1368 *flags_ptr |= CLONE_SIGHAND;
1369
1370 /*
1371 * If unsharing signal handlers and the task was created
1372 * using CLONE_THREAD, then must unshare the thread
1373 */
1374 if ((*flags_ptr & CLONE_SIGHAND) &&
1375 (atomic_read(&current->signal->count) > 1))
1376 *flags_ptr |= CLONE_THREAD;
1377
1378 /*
1379 * If unsharing namespace, must also unshare filesystem information.
1380 */
1381 if (*flags_ptr & CLONE_NEWNS)
1382 *flags_ptr |= CLONE_FS;
1383 }
1384
1385 /*
1386 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1387 */
1388 static int unshare_thread(unsigned long unshare_flags)
1389 {
1390 if (unshare_flags & CLONE_THREAD)
1391 return -EINVAL;
1392
1393 return 0;
1394 }
1395
1396 /*
1397 * Unshare the filesystem structure if it is being shared
1398 */
1399 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1400 {
1401 struct fs_struct *fs = current->fs;
1402
1403 if ((unshare_flags & CLONE_FS) &&
1404 (fs && atomic_read(&fs->count) > 1)) {
1405 *new_fsp = __copy_fs_struct(current->fs);
1406 if (!*new_fsp)
1407 return -ENOMEM;
1408 }
1409
1410 return 0;
1411 }
1412
1413 /*
1414 * Unshare the namespace structure if it is being shared
1415 */
1416 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1417 {
1418 struct namespace *ns = current->namespace;
1419
1420 if ((unshare_flags & CLONE_NEWNS) &&
1421 (ns && atomic_read(&ns->count) > 1)) {
1422 if (!capable(CAP_SYS_ADMIN))
1423 return -EPERM;
1424
1425 *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1426 if (!*new_nsp)
1427 return -ENOMEM;
1428 }
1429
1430 return 0;
1431 }
1432
1433 /*
1434 * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1435 * supported yet
1436 */
1437 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1438 {
1439 struct sighand_struct *sigh = current->sighand;
1440
1441 if ((unshare_flags & CLONE_SIGHAND) &&
1442 (sigh && atomic_read(&sigh->count) > 1))
1443 return -EINVAL;
1444 else
1445 return 0;
1446 }
1447
1448 /*
1449 * Unshare vm if it is being shared
1450 */
1451 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1452 {
1453 struct mm_struct *mm = current->mm;
1454
1455 if ((unshare_flags & CLONE_VM) &&
1456 (mm && atomic_read(&mm->mm_users) > 1)) {
1457 *new_mmp = dup_mm(current);
1458 if (!*new_mmp)
1459 return -ENOMEM;
1460 }
1461
1462 return 0;
1463 }
1464
1465 /*
1466 * Unsharing of files for tasks created with CLONE_FILES is not supported yet
1467 */
1468 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1469 {
1470 struct files_struct *fd = current->files;
1471
1472 if ((unshare_flags & CLONE_FILES) &&
1473 (fd && atomic_read(&fd->count) > 1))
1474 return -EINVAL;
1475
1476 return 0;
1477 }
1478
1479 /*
1480 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1481 * supported yet
1482 */
1483 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1484 {
1485 if (unshare_flags & CLONE_SYSVSEM)
1486 return -EINVAL;
1487
1488 return 0;
1489 }
1490
1491 /*
1492 * unshare allows a process to 'unshare' part of the process
1493 * context which was originally shared using clone. copy_*
1494 * functions used by do_fork() cannot be used here directly
1495 * because they modify an inactive task_struct that is being
1496 * constructed. Here we are modifying the current, active,
1497 * task_struct.
1498 */
1499 asmlinkage long sys_unshare(unsigned long unshare_flags)
1500 {
1501 int err = 0;
1502 struct fs_struct *fs, *new_fs = NULL;
1503 struct namespace *ns, *new_ns = NULL;
1504 struct sighand_struct *sigh, *new_sigh = NULL;
1505 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1506 struct files_struct *fd, *new_fd = NULL;
1507 struct sem_undo_list *new_ulist = NULL;
1508
1509 check_unshare_flags(&unshare_flags);
1510
1511 if ((err = unshare_thread(unshare_flags)))
1512 goto bad_unshare_out;
1513 if ((err = unshare_fs(unshare_flags, &new_fs)))
1514 goto bad_unshare_cleanup_thread;
1515 if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1516 goto bad_unshare_cleanup_fs;
1517 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1518 goto bad_unshare_cleanup_ns;
1519 if ((err = unshare_vm(unshare_flags, &new_mm)))
1520 goto bad_unshare_cleanup_sigh;
1521 if ((err = unshare_fd(unshare_flags, &new_fd)))
1522 goto bad_unshare_cleanup_vm;
1523 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1524 goto bad_unshare_cleanup_fd;
1525
1526 if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
1527
1528 task_lock(current);
1529
1530 if (new_fs) {
1531 fs = current->fs;
1532 current->fs = new_fs;
1533 new_fs = fs;
1534 }
1535
1536 if (new_ns) {
1537 ns = current->namespace;
1538 current->namespace = new_ns;
1539 new_ns = ns;
1540 }
1541
1542 if (new_sigh) {
1543 sigh = current->sighand;
1544 current->sighand = new_sigh;
1545 new_sigh = sigh;
1546 }
1547
1548 if (new_mm) {
1549 mm = current->mm;
1550 active_mm = current->active_mm;
1551 current->mm = new_mm;
1552 current->active_mm = new_mm;
1553 activate_mm(active_mm, new_mm);
1554 new_mm = mm;
1555 }
1556
1557 if (new_fd) {
1558 fd = current->files;
1559 current->files = new_fd;
1560 new_fd = fd;
1561 }
1562
1563 task_unlock(current);
1564 }
1565
1566 bad_unshare_cleanup_fd:
1567 if (new_fd)
1568 put_files_struct(new_fd);
1569
1570 bad_unshare_cleanup_vm:
1571 if (new_mm)
1572 mmput(new_mm);
1573
1574 bad_unshare_cleanup_sigh:
1575 if (new_sigh)
1576 if (atomic_dec_and_test(&new_sigh->count))
1577 kmem_cache_free(sighand_cachep, new_sigh);
1578
1579 bad_unshare_cleanup_ns:
1580 if (new_ns)
1581 put_namespace(new_ns);
1582
1583 bad_unshare_cleanup_fs:
1584 if (new_fs)
1585 put_fs_struct(new_fs);
1586
1587 bad_unshare_cleanup_thread:
1588 bad_unshare_out:
1589 return err;
1590 }
This page took 0.063715 seconds and 6 git commands to generate.