Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78
79 #include <asm/pgtable.h>
80 #include <asm/pgalloc.h>
81 #include <asm/uaccess.h>
82 #include <asm/mmu_context.h>
83 #include <asm/cacheflush.h>
84 #include <asm/tlbflush.h>
85
86 #include <trace/events/sched.h>
87
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/task.h>
90
91 /*
92 * Minimum number of threads to boot the kernel
93 */
94 #define MIN_THREADS 20
95
96 /*
97 * Maximum number of threads
98 */
99 #define MAX_THREADS FUTEX_TID_MASK
100
101 /*
102 * Protected counters by write_lock_irq(&tasklist_lock)
103 */
104 unsigned long total_forks; /* Handle normal Linux uptimes. */
105 int nr_threads; /* The idle threads do not count.. */
106
107 int max_threads; /* tunable limit on nr_threads */
108
109 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
110
111 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
112
113 #ifdef CONFIG_PROVE_RCU
114 int lockdep_tasklist_lock_is_held(void)
115 {
116 return lockdep_is_held(&tasklist_lock);
117 }
118 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
119 #endif /* #ifdef CONFIG_PROVE_RCU */
120
121 int nr_processes(void)
122 {
123 int cpu;
124 int total = 0;
125
126 for_each_possible_cpu(cpu)
127 total += per_cpu(process_counts, cpu);
128
129 return total;
130 }
131
132 void __weak arch_release_task_struct(struct task_struct *tsk)
133 {
134 }
135
136 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
137 static struct kmem_cache *task_struct_cachep;
138
139 static inline struct task_struct *alloc_task_struct_node(int node)
140 {
141 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
142 }
143
144 static inline void free_task_struct(struct task_struct *tsk)
145 {
146 kmem_cache_free(task_struct_cachep, tsk);
147 }
148 #endif
149
150 void __weak arch_release_thread_info(struct thread_info *ti)
151 {
152 }
153
154 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
155
156 /*
157 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
158 * kmemcache based allocator.
159 */
160 # if THREAD_SIZE >= PAGE_SIZE
161 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
162 int node)
163 {
164 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
165 THREAD_SIZE_ORDER);
166
167 return page ? page_address(page) : NULL;
168 }
169
170 static inline void free_thread_info(struct thread_info *ti)
171 {
172 free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
173 }
174 # else
175 static struct kmem_cache *thread_info_cache;
176
177 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
178 int node)
179 {
180 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
181 }
182
183 static void free_thread_info(struct thread_info *ti)
184 {
185 kmem_cache_free(thread_info_cache, ti);
186 }
187
188 void thread_info_cache_init(void)
189 {
190 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
191 THREAD_SIZE, 0, NULL);
192 BUG_ON(thread_info_cache == NULL);
193 }
194 # endif
195 #endif
196
197 /* SLAB cache for signal_struct structures (tsk->signal) */
198 static struct kmem_cache *signal_cachep;
199
200 /* SLAB cache for sighand_struct structures (tsk->sighand) */
201 struct kmem_cache *sighand_cachep;
202
203 /* SLAB cache for files_struct structures (tsk->files) */
204 struct kmem_cache *files_cachep;
205
206 /* SLAB cache for fs_struct structures (tsk->fs) */
207 struct kmem_cache *fs_cachep;
208
209 /* SLAB cache for vm_area_struct structures */
210 struct kmem_cache *vm_area_cachep;
211
212 /* SLAB cache for mm_struct structures (tsk->mm) */
213 static struct kmem_cache *mm_cachep;
214
215 static void account_kernel_stack(struct thread_info *ti, int account)
216 {
217 struct zone *zone = page_zone(virt_to_page(ti));
218
219 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
220 }
221
222 void free_task(struct task_struct *tsk)
223 {
224 account_kernel_stack(tsk->stack, -1);
225 arch_release_thread_info(tsk->stack);
226 free_thread_info(tsk->stack);
227 rt_mutex_debug_task_free(tsk);
228 ftrace_graph_exit_task(tsk);
229 put_seccomp_filter(tsk);
230 arch_release_task_struct(tsk);
231 free_task_struct(tsk);
232 }
233 EXPORT_SYMBOL(free_task);
234
235 static inline void free_signal_struct(struct signal_struct *sig)
236 {
237 taskstats_tgid_free(sig);
238 sched_autogroup_exit(sig);
239 kmem_cache_free(signal_cachep, sig);
240 }
241
242 static inline void put_signal_struct(struct signal_struct *sig)
243 {
244 if (atomic_dec_and_test(&sig->sigcnt))
245 free_signal_struct(sig);
246 }
247
248 void __put_task_struct(struct task_struct *tsk)
249 {
250 WARN_ON(!tsk->exit_state);
251 WARN_ON(atomic_read(&tsk->usage));
252 WARN_ON(tsk == current);
253
254 task_numa_free(tsk);
255 security_task_free(tsk);
256 exit_creds(tsk);
257 delayacct_tsk_free(tsk);
258 put_signal_struct(tsk->signal);
259
260 if (!profile_handoff_task(tsk))
261 free_task(tsk);
262 }
263 EXPORT_SYMBOL_GPL(__put_task_struct);
264
265 void __init __weak arch_task_cache_init(void) { }
266
267 /*
268 * set_max_threads
269 */
270 static void set_max_threads(unsigned int max_threads_suggested)
271 {
272 u64 threads;
273
274 /*
275 * The number of threads shall be limited such that the thread
276 * structures may only consume a small part of the available memory.
277 */
278 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
279 threads = MAX_THREADS;
280 else
281 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
282 (u64) THREAD_SIZE * 8UL);
283
284 if (threads > max_threads_suggested)
285 threads = max_threads_suggested;
286
287 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
288 }
289
290 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
291 /* Initialized by the architecture: */
292 int arch_task_struct_size __read_mostly;
293 #endif
294
295 void __init fork_init(void)
296 {
297 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
298 #ifndef ARCH_MIN_TASKALIGN
299 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
300 #endif
301 /* create a slab on which task_structs can be allocated */
302 task_struct_cachep =
303 kmem_cache_create("task_struct", arch_task_struct_size,
304 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
305 #endif
306
307 /* do the arch specific task caches init */
308 arch_task_cache_init();
309
310 set_max_threads(MAX_THREADS);
311
312 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
313 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
314 init_task.signal->rlim[RLIMIT_SIGPENDING] =
315 init_task.signal->rlim[RLIMIT_NPROC];
316 }
317
318 int __weak arch_dup_task_struct(struct task_struct *dst,
319 struct task_struct *src)
320 {
321 *dst = *src;
322 return 0;
323 }
324
325 void set_task_stack_end_magic(struct task_struct *tsk)
326 {
327 unsigned long *stackend;
328
329 stackend = end_of_stack(tsk);
330 *stackend = STACK_END_MAGIC; /* for overflow detection */
331 }
332
333 static struct task_struct *dup_task_struct(struct task_struct *orig)
334 {
335 struct task_struct *tsk;
336 struct thread_info *ti;
337 int node = tsk_fork_get_node(orig);
338 int err;
339
340 tsk = alloc_task_struct_node(node);
341 if (!tsk)
342 return NULL;
343
344 ti = alloc_thread_info_node(tsk, node);
345 if (!ti)
346 goto free_tsk;
347
348 err = arch_dup_task_struct(tsk, orig);
349 if (err)
350 goto free_ti;
351
352 tsk->stack = ti;
353 #ifdef CONFIG_SECCOMP
354 /*
355 * We must handle setting up seccomp filters once we're under
356 * the sighand lock in case orig has changed between now and
357 * then. Until then, filter must be NULL to avoid messing up
358 * the usage counts on the error path calling free_task.
359 */
360 tsk->seccomp.filter = NULL;
361 #endif
362
363 setup_thread_stack(tsk, orig);
364 clear_user_return_notifier(tsk);
365 clear_tsk_need_resched(tsk);
366 set_task_stack_end_magic(tsk);
367
368 #ifdef CONFIG_CC_STACKPROTECTOR
369 tsk->stack_canary = get_random_int();
370 #endif
371
372 /*
373 * One for us, one for whoever does the "release_task()" (usually
374 * parent)
375 */
376 atomic_set(&tsk->usage, 2);
377 #ifdef CONFIG_BLK_DEV_IO_TRACE
378 tsk->btrace_seq = 0;
379 #endif
380 tsk->splice_pipe = NULL;
381 tsk->task_frag.page = NULL;
382
383 account_kernel_stack(ti, 1);
384
385 return tsk;
386
387 free_ti:
388 free_thread_info(ti);
389 free_tsk:
390 free_task_struct(tsk);
391 return NULL;
392 }
393
394 #ifdef CONFIG_MMU
395 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
396 {
397 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
398 struct rb_node **rb_link, *rb_parent;
399 int retval;
400 unsigned long charge;
401
402 uprobe_start_dup_mmap();
403 down_write(&oldmm->mmap_sem);
404 flush_cache_dup_mm(oldmm);
405 uprobe_dup_mmap(oldmm, mm);
406 /*
407 * Not linked in yet - no deadlock potential:
408 */
409 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
410
411 /* No ordering required: file already has been exposed. */
412 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
413
414 mm->total_vm = oldmm->total_vm;
415 mm->shared_vm = oldmm->shared_vm;
416 mm->exec_vm = oldmm->exec_vm;
417 mm->stack_vm = oldmm->stack_vm;
418
419 rb_link = &mm->mm_rb.rb_node;
420 rb_parent = NULL;
421 pprev = &mm->mmap;
422 retval = ksm_fork(mm, oldmm);
423 if (retval)
424 goto out;
425 retval = khugepaged_fork(mm, oldmm);
426 if (retval)
427 goto out;
428
429 prev = NULL;
430 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
431 struct file *file;
432
433 if (mpnt->vm_flags & VM_DONTCOPY) {
434 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
435 -vma_pages(mpnt));
436 continue;
437 }
438 charge = 0;
439 if (mpnt->vm_flags & VM_ACCOUNT) {
440 unsigned long len = vma_pages(mpnt);
441
442 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
443 goto fail_nomem;
444 charge = len;
445 }
446 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
447 if (!tmp)
448 goto fail_nomem;
449 *tmp = *mpnt;
450 INIT_LIST_HEAD(&tmp->anon_vma_chain);
451 retval = vma_dup_policy(mpnt, tmp);
452 if (retval)
453 goto fail_nomem_policy;
454 tmp->vm_mm = mm;
455 if (anon_vma_fork(tmp, mpnt))
456 goto fail_nomem_anon_vma_fork;
457 tmp->vm_flags &= ~VM_LOCKED;
458 tmp->vm_next = tmp->vm_prev = NULL;
459 file = tmp->vm_file;
460 if (file) {
461 struct inode *inode = file_inode(file);
462 struct address_space *mapping = file->f_mapping;
463
464 get_file(file);
465 if (tmp->vm_flags & VM_DENYWRITE)
466 atomic_dec(&inode->i_writecount);
467 i_mmap_lock_write(mapping);
468 if (tmp->vm_flags & VM_SHARED)
469 atomic_inc(&mapping->i_mmap_writable);
470 flush_dcache_mmap_lock(mapping);
471 /* insert tmp into the share list, just after mpnt */
472 vma_interval_tree_insert_after(tmp, mpnt,
473 &mapping->i_mmap);
474 flush_dcache_mmap_unlock(mapping);
475 i_mmap_unlock_write(mapping);
476 }
477
478 /*
479 * Clear hugetlb-related page reserves for children. This only
480 * affects MAP_PRIVATE mappings. Faults generated by the child
481 * are not guaranteed to succeed, even if read-only
482 */
483 if (is_vm_hugetlb_page(tmp))
484 reset_vma_resv_huge_pages(tmp);
485
486 /*
487 * Link in the new vma and copy the page table entries.
488 */
489 *pprev = tmp;
490 pprev = &tmp->vm_next;
491 tmp->vm_prev = prev;
492 prev = tmp;
493
494 __vma_link_rb(mm, tmp, rb_link, rb_parent);
495 rb_link = &tmp->vm_rb.rb_right;
496 rb_parent = &tmp->vm_rb;
497
498 mm->map_count++;
499 retval = copy_page_range(mm, oldmm, mpnt);
500
501 if (tmp->vm_ops && tmp->vm_ops->open)
502 tmp->vm_ops->open(tmp);
503
504 if (retval)
505 goto out;
506 }
507 /* a new mm has just been created */
508 arch_dup_mmap(oldmm, mm);
509 retval = 0;
510 out:
511 up_write(&mm->mmap_sem);
512 flush_tlb_mm(oldmm);
513 up_write(&oldmm->mmap_sem);
514 uprobe_end_dup_mmap();
515 return retval;
516 fail_nomem_anon_vma_fork:
517 mpol_put(vma_policy(tmp));
518 fail_nomem_policy:
519 kmem_cache_free(vm_area_cachep, tmp);
520 fail_nomem:
521 retval = -ENOMEM;
522 vm_unacct_memory(charge);
523 goto out;
524 }
525
526 static inline int mm_alloc_pgd(struct mm_struct *mm)
527 {
528 mm->pgd = pgd_alloc(mm);
529 if (unlikely(!mm->pgd))
530 return -ENOMEM;
531 return 0;
532 }
533
534 static inline void mm_free_pgd(struct mm_struct *mm)
535 {
536 pgd_free(mm, mm->pgd);
537 }
538 #else
539 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
540 {
541 down_write(&oldmm->mmap_sem);
542 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
543 up_write(&oldmm->mmap_sem);
544 return 0;
545 }
546 #define mm_alloc_pgd(mm) (0)
547 #define mm_free_pgd(mm)
548 #endif /* CONFIG_MMU */
549
550 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
551
552 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
553 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
554
555 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
556
557 static int __init coredump_filter_setup(char *s)
558 {
559 default_dump_filter =
560 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
561 MMF_DUMP_FILTER_MASK;
562 return 1;
563 }
564
565 __setup("coredump_filter=", coredump_filter_setup);
566
567 #include <linux/init_task.h>
568
569 static void mm_init_aio(struct mm_struct *mm)
570 {
571 #ifdef CONFIG_AIO
572 spin_lock_init(&mm->ioctx_lock);
573 mm->ioctx_table = NULL;
574 #endif
575 }
576
577 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
578 {
579 #ifdef CONFIG_MEMCG
580 mm->owner = p;
581 #endif
582 }
583
584 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
585 {
586 mm->mmap = NULL;
587 mm->mm_rb = RB_ROOT;
588 mm->vmacache_seqnum = 0;
589 atomic_set(&mm->mm_users, 1);
590 atomic_set(&mm->mm_count, 1);
591 init_rwsem(&mm->mmap_sem);
592 INIT_LIST_HEAD(&mm->mmlist);
593 mm->core_state = NULL;
594 atomic_long_set(&mm->nr_ptes, 0);
595 mm_nr_pmds_init(mm);
596 mm->map_count = 0;
597 mm->locked_vm = 0;
598 mm->pinned_vm = 0;
599 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
600 spin_lock_init(&mm->page_table_lock);
601 mm_init_cpumask(mm);
602 mm_init_aio(mm);
603 mm_init_owner(mm, p);
604 mmu_notifier_mm_init(mm);
605 clear_tlb_flush_pending(mm);
606 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
607 mm->pmd_huge_pte = NULL;
608 #endif
609
610 if (current->mm) {
611 mm->flags = current->mm->flags & MMF_INIT_MASK;
612 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
613 } else {
614 mm->flags = default_dump_filter;
615 mm->def_flags = 0;
616 }
617
618 if (mm_alloc_pgd(mm))
619 goto fail_nopgd;
620
621 if (init_new_context(p, mm))
622 goto fail_nocontext;
623
624 return mm;
625
626 fail_nocontext:
627 mm_free_pgd(mm);
628 fail_nopgd:
629 free_mm(mm);
630 return NULL;
631 }
632
633 static void check_mm(struct mm_struct *mm)
634 {
635 int i;
636
637 for (i = 0; i < NR_MM_COUNTERS; i++) {
638 long x = atomic_long_read(&mm->rss_stat.count[i]);
639
640 if (unlikely(x))
641 printk(KERN_ALERT "BUG: Bad rss-counter state "
642 "mm:%p idx:%d val:%ld\n", mm, i, x);
643 }
644
645 if (atomic_long_read(&mm->nr_ptes))
646 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
647 atomic_long_read(&mm->nr_ptes));
648 if (mm_nr_pmds(mm))
649 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
650 mm_nr_pmds(mm));
651
652 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
653 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
654 #endif
655 }
656
657 /*
658 * Allocate and initialize an mm_struct.
659 */
660 struct mm_struct *mm_alloc(void)
661 {
662 struct mm_struct *mm;
663
664 mm = allocate_mm();
665 if (!mm)
666 return NULL;
667
668 memset(mm, 0, sizeof(*mm));
669 return mm_init(mm, current);
670 }
671
672 /*
673 * Called when the last reference to the mm
674 * is dropped: either by a lazy thread or by
675 * mmput. Free the page directory and the mm.
676 */
677 void __mmdrop(struct mm_struct *mm)
678 {
679 BUG_ON(mm == &init_mm);
680 mm_free_pgd(mm);
681 destroy_context(mm);
682 mmu_notifier_mm_destroy(mm);
683 check_mm(mm);
684 free_mm(mm);
685 }
686 EXPORT_SYMBOL_GPL(__mmdrop);
687
688 /*
689 * Decrement the use count and release all resources for an mm.
690 */
691 void mmput(struct mm_struct *mm)
692 {
693 might_sleep();
694
695 if (atomic_dec_and_test(&mm->mm_users)) {
696 uprobe_clear_state(mm);
697 exit_aio(mm);
698 ksm_exit(mm);
699 khugepaged_exit(mm); /* must run before exit_mmap */
700 exit_mmap(mm);
701 set_mm_exe_file(mm, NULL);
702 if (!list_empty(&mm->mmlist)) {
703 spin_lock(&mmlist_lock);
704 list_del(&mm->mmlist);
705 spin_unlock(&mmlist_lock);
706 }
707 if (mm->binfmt)
708 module_put(mm->binfmt->module);
709 mmdrop(mm);
710 }
711 }
712 EXPORT_SYMBOL_GPL(mmput);
713
714 /**
715 * set_mm_exe_file - change a reference to the mm's executable file
716 *
717 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
718 *
719 * Main users are mmput() and sys_execve(). Callers prevent concurrent
720 * invocations: in mmput() nobody alive left, in execve task is single
721 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
722 * mm->exe_file, but does so without using set_mm_exe_file() in order
723 * to do avoid the need for any locks.
724 */
725 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
726 {
727 struct file *old_exe_file;
728
729 /*
730 * It is safe to dereference the exe_file without RCU as
731 * this function is only called if nobody else can access
732 * this mm -- see comment above for justification.
733 */
734 old_exe_file = rcu_dereference_raw(mm->exe_file);
735
736 if (new_exe_file)
737 get_file(new_exe_file);
738 rcu_assign_pointer(mm->exe_file, new_exe_file);
739 if (old_exe_file)
740 fput(old_exe_file);
741 }
742
743 /**
744 * get_mm_exe_file - acquire a reference to the mm's executable file
745 *
746 * Returns %NULL if mm has no associated executable file.
747 * User must release file via fput().
748 */
749 struct file *get_mm_exe_file(struct mm_struct *mm)
750 {
751 struct file *exe_file;
752
753 rcu_read_lock();
754 exe_file = rcu_dereference(mm->exe_file);
755 if (exe_file && !get_file_rcu(exe_file))
756 exe_file = NULL;
757 rcu_read_unlock();
758 return exe_file;
759 }
760 EXPORT_SYMBOL(get_mm_exe_file);
761
762 /**
763 * get_task_mm - acquire a reference to the task's mm
764 *
765 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
766 * this kernel workthread has transiently adopted a user mm with use_mm,
767 * to do its AIO) is not set and if so returns a reference to it, after
768 * bumping up the use count. User must release the mm via mmput()
769 * after use. Typically used by /proc and ptrace.
770 */
771 struct mm_struct *get_task_mm(struct task_struct *task)
772 {
773 struct mm_struct *mm;
774
775 task_lock(task);
776 mm = task->mm;
777 if (mm) {
778 if (task->flags & PF_KTHREAD)
779 mm = NULL;
780 else
781 atomic_inc(&mm->mm_users);
782 }
783 task_unlock(task);
784 return mm;
785 }
786 EXPORT_SYMBOL_GPL(get_task_mm);
787
788 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
789 {
790 struct mm_struct *mm;
791 int err;
792
793 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
794 if (err)
795 return ERR_PTR(err);
796
797 mm = get_task_mm(task);
798 if (mm && mm != current->mm &&
799 !ptrace_may_access(task, mode)) {
800 mmput(mm);
801 mm = ERR_PTR(-EACCES);
802 }
803 mutex_unlock(&task->signal->cred_guard_mutex);
804
805 return mm;
806 }
807
808 static void complete_vfork_done(struct task_struct *tsk)
809 {
810 struct completion *vfork;
811
812 task_lock(tsk);
813 vfork = tsk->vfork_done;
814 if (likely(vfork)) {
815 tsk->vfork_done = NULL;
816 complete(vfork);
817 }
818 task_unlock(tsk);
819 }
820
821 static int wait_for_vfork_done(struct task_struct *child,
822 struct completion *vfork)
823 {
824 int killed;
825
826 freezer_do_not_count();
827 killed = wait_for_completion_killable(vfork);
828 freezer_count();
829
830 if (killed) {
831 task_lock(child);
832 child->vfork_done = NULL;
833 task_unlock(child);
834 }
835
836 put_task_struct(child);
837 return killed;
838 }
839
840 /* Please note the differences between mmput and mm_release.
841 * mmput is called whenever we stop holding onto a mm_struct,
842 * error success whatever.
843 *
844 * mm_release is called after a mm_struct has been removed
845 * from the current process.
846 *
847 * This difference is important for error handling, when we
848 * only half set up a mm_struct for a new process and need to restore
849 * the old one. Because we mmput the new mm_struct before
850 * restoring the old one. . .
851 * Eric Biederman 10 January 1998
852 */
853 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
854 {
855 /* Get rid of any futexes when releasing the mm */
856 #ifdef CONFIG_FUTEX
857 if (unlikely(tsk->robust_list)) {
858 exit_robust_list(tsk);
859 tsk->robust_list = NULL;
860 }
861 #ifdef CONFIG_COMPAT
862 if (unlikely(tsk->compat_robust_list)) {
863 compat_exit_robust_list(tsk);
864 tsk->compat_robust_list = NULL;
865 }
866 #endif
867 if (unlikely(!list_empty(&tsk->pi_state_list)))
868 exit_pi_state_list(tsk);
869 #endif
870
871 uprobe_free_utask(tsk);
872
873 /* Get rid of any cached register state */
874 deactivate_mm(tsk, mm);
875
876 /*
877 * If we're exiting normally, clear a user-space tid field if
878 * requested. We leave this alone when dying by signal, to leave
879 * the value intact in a core dump, and to save the unnecessary
880 * trouble, say, a killed vfork parent shouldn't touch this mm.
881 * Userland only wants this done for a sys_exit.
882 */
883 if (tsk->clear_child_tid) {
884 if (!(tsk->flags & PF_SIGNALED) &&
885 atomic_read(&mm->mm_users) > 1) {
886 /*
887 * We don't check the error code - if userspace has
888 * not set up a proper pointer then tough luck.
889 */
890 put_user(0, tsk->clear_child_tid);
891 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
892 1, NULL, NULL, 0);
893 }
894 tsk->clear_child_tid = NULL;
895 }
896
897 /*
898 * All done, finally we can wake up parent and return this mm to him.
899 * Also kthread_stop() uses this completion for synchronization.
900 */
901 if (tsk->vfork_done)
902 complete_vfork_done(tsk);
903 }
904
905 /*
906 * Allocate a new mm structure and copy contents from the
907 * mm structure of the passed in task structure.
908 */
909 static struct mm_struct *dup_mm(struct task_struct *tsk)
910 {
911 struct mm_struct *mm, *oldmm = current->mm;
912 int err;
913
914 mm = allocate_mm();
915 if (!mm)
916 goto fail_nomem;
917
918 memcpy(mm, oldmm, sizeof(*mm));
919
920 if (!mm_init(mm, tsk))
921 goto fail_nomem;
922
923 err = dup_mmap(mm, oldmm);
924 if (err)
925 goto free_pt;
926
927 mm->hiwater_rss = get_mm_rss(mm);
928 mm->hiwater_vm = mm->total_vm;
929
930 if (mm->binfmt && !try_module_get(mm->binfmt->module))
931 goto free_pt;
932
933 return mm;
934
935 free_pt:
936 /* don't put binfmt in mmput, we haven't got module yet */
937 mm->binfmt = NULL;
938 mmput(mm);
939
940 fail_nomem:
941 return NULL;
942 }
943
944 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
945 {
946 struct mm_struct *mm, *oldmm;
947 int retval;
948
949 tsk->min_flt = tsk->maj_flt = 0;
950 tsk->nvcsw = tsk->nivcsw = 0;
951 #ifdef CONFIG_DETECT_HUNG_TASK
952 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
953 #endif
954
955 tsk->mm = NULL;
956 tsk->active_mm = NULL;
957
958 /*
959 * Are we cloning a kernel thread?
960 *
961 * We need to steal a active VM for that..
962 */
963 oldmm = current->mm;
964 if (!oldmm)
965 return 0;
966
967 /* initialize the new vmacache entries */
968 vmacache_flush(tsk);
969
970 if (clone_flags & CLONE_VM) {
971 atomic_inc(&oldmm->mm_users);
972 mm = oldmm;
973 goto good_mm;
974 }
975
976 retval = -ENOMEM;
977 mm = dup_mm(tsk);
978 if (!mm)
979 goto fail_nomem;
980
981 good_mm:
982 tsk->mm = mm;
983 tsk->active_mm = mm;
984 return 0;
985
986 fail_nomem:
987 return retval;
988 }
989
990 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
991 {
992 struct fs_struct *fs = current->fs;
993 if (clone_flags & CLONE_FS) {
994 /* tsk->fs is already what we want */
995 spin_lock(&fs->lock);
996 if (fs->in_exec) {
997 spin_unlock(&fs->lock);
998 return -EAGAIN;
999 }
1000 fs->users++;
1001 spin_unlock(&fs->lock);
1002 return 0;
1003 }
1004 tsk->fs = copy_fs_struct(fs);
1005 if (!tsk->fs)
1006 return -ENOMEM;
1007 return 0;
1008 }
1009
1010 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1011 {
1012 struct files_struct *oldf, *newf;
1013 int error = 0;
1014
1015 /*
1016 * A background process may not have any files ...
1017 */
1018 oldf = current->files;
1019 if (!oldf)
1020 goto out;
1021
1022 if (clone_flags & CLONE_FILES) {
1023 atomic_inc(&oldf->count);
1024 goto out;
1025 }
1026
1027 newf = dup_fd(oldf, &error);
1028 if (!newf)
1029 goto out;
1030
1031 tsk->files = newf;
1032 error = 0;
1033 out:
1034 return error;
1035 }
1036
1037 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1038 {
1039 #ifdef CONFIG_BLOCK
1040 struct io_context *ioc = current->io_context;
1041 struct io_context *new_ioc;
1042
1043 if (!ioc)
1044 return 0;
1045 /*
1046 * Share io context with parent, if CLONE_IO is set
1047 */
1048 if (clone_flags & CLONE_IO) {
1049 ioc_task_link(ioc);
1050 tsk->io_context = ioc;
1051 } else if (ioprio_valid(ioc->ioprio)) {
1052 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1053 if (unlikely(!new_ioc))
1054 return -ENOMEM;
1055
1056 new_ioc->ioprio = ioc->ioprio;
1057 put_io_context(new_ioc);
1058 }
1059 #endif
1060 return 0;
1061 }
1062
1063 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1064 {
1065 struct sighand_struct *sig;
1066
1067 if (clone_flags & CLONE_SIGHAND) {
1068 atomic_inc(&current->sighand->count);
1069 return 0;
1070 }
1071 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1072 rcu_assign_pointer(tsk->sighand, sig);
1073 if (!sig)
1074 return -ENOMEM;
1075
1076 atomic_set(&sig->count, 1);
1077 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1078 return 0;
1079 }
1080
1081 void __cleanup_sighand(struct sighand_struct *sighand)
1082 {
1083 if (atomic_dec_and_test(&sighand->count)) {
1084 signalfd_cleanup(sighand);
1085 /*
1086 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1087 * without an RCU grace period, see __lock_task_sighand().
1088 */
1089 kmem_cache_free(sighand_cachep, sighand);
1090 }
1091 }
1092
1093 /*
1094 * Initialize POSIX timer handling for a thread group.
1095 */
1096 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1097 {
1098 unsigned long cpu_limit;
1099
1100 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1101 if (cpu_limit != RLIM_INFINITY) {
1102 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1103 sig->cputimer.running = 1;
1104 }
1105
1106 /* The timer lists. */
1107 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1108 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1109 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1110 }
1111
1112 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1113 {
1114 struct signal_struct *sig;
1115
1116 if (clone_flags & CLONE_THREAD)
1117 return 0;
1118
1119 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1120 tsk->signal = sig;
1121 if (!sig)
1122 return -ENOMEM;
1123
1124 sig->nr_threads = 1;
1125 atomic_set(&sig->live, 1);
1126 atomic_set(&sig->sigcnt, 1);
1127
1128 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1129 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1130 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1131
1132 init_waitqueue_head(&sig->wait_chldexit);
1133 sig->curr_target = tsk;
1134 init_sigpending(&sig->shared_pending);
1135 INIT_LIST_HEAD(&sig->posix_timers);
1136 seqlock_init(&sig->stats_lock);
1137 prev_cputime_init(&sig->prev_cputime);
1138
1139 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1140 sig->real_timer.function = it_real_fn;
1141
1142 task_lock(current->group_leader);
1143 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1144 task_unlock(current->group_leader);
1145
1146 posix_cpu_timers_init_group(sig);
1147
1148 tty_audit_fork(sig);
1149 sched_autogroup_fork(sig);
1150
1151 sig->oom_score_adj = current->signal->oom_score_adj;
1152 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1153
1154 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1155 current->signal->is_child_subreaper;
1156
1157 mutex_init(&sig->cred_guard_mutex);
1158
1159 return 0;
1160 }
1161
1162 static void copy_seccomp(struct task_struct *p)
1163 {
1164 #ifdef CONFIG_SECCOMP
1165 /*
1166 * Must be called with sighand->lock held, which is common to
1167 * all threads in the group. Holding cred_guard_mutex is not
1168 * needed because this new task is not yet running and cannot
1169 * be racing exec.
1170 */
1171 assert_spin_locked(&current->sighand->siglock);
1172
1173 /* Ref-count the new filter user, and assign it. */
1174 get_seccomp_filter(current);
1175 p->seccomp = current->seccomp;
1176
1177 /*
1178 * Explicitly enable no_new_privs here in case it got set
1179 * between the task_struct being duplicated and holding the
1180 * sighand lock. The seccomp state and nnp must be in sync.
1181 */
1182 if (task_no_new_privs(current))
1183 task_set_no_new_privs(p);
1184
1185 /*
1186 * If the parent gained a seccomp mode after copying thread
1187 * flags and between before we held the sighand lock, we have
1188 * to manually enable the seccomp thread flag here.
1189 */
1190 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1191 set_tsk_thread_flag(p, TIF_SECCOMP);
1192 #endif
1193 }
1194
1195 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1196 {
1197 current->clear_child_tid = tidptr;
1198
1199 return task_pid_vnr(current);
1200 }
1201
1202 static void rt_mutex_init_task(struct task_struct *p)
1203 {
1204 raw_spin_lock_init(&p->pi_lock);
1205 #ifdef CONFIG_RT_MUTEXES
1206 p->pi_waiters = RB_ROOT;
1207 p->pi_waiters_leftmost = NULL;
1208 p->pi_blocked_on = NULL;
1209 #endif
1210 }
1211
1212 /*
1213 * Initialize POSIX timer handling for a single task.
1214 */
1215 static void posix_cpu_timers_init(struct task_struct *tsk)
1216 {
1217 tsk->cputime_expires.prof_exp = 0;
1218 tsk->cputime_expires.virt_exp = 0;
1219 tsk->cputime_expires.sched_exp = 0;
1220 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1221 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1222 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1223 }
1224
1225 static inline void
1226 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1227 {
1228 task->pids[type].pid = pid;
1229 }
1230
1231 /*
1232 * This creates a new process as a copy of the old one,
1233 * but does not actually start it yet.
1234 *
1235 * It copies the registers, and all the appropriate
1236 * parts of the process environment (as per the clone
1237 * flags). The actual kick-off is left to the caller.
1238 */
1239 static struct task_struct *copy_process(unsigned long clone_flags,
1240 unsigned long stack_start,
1241 unsigned long stack_size,
1242 int __user *child_tidptr,
1243 struct pid *pid,
1244 int trace,
1245 unsigned long tls)
1246 {
1247 int retval;
1248 struct task_struct *p;
1249 void *cgrp_ss_priv[CGROUP_CANFORK_COUNT] = {};
1250
1251 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1252 return ERR_PTR(-EINVAL);
1253
1254 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1255 return ERR_PTR(-EINVAL);
1256
1257 /*
1258 * Thread groups must share signals as well, and detached threads
1259 * can only be started up within the thread group.
1260 */
1261 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1262 return ERR_PTR(-EINVAL);
1263
1264 /*
1265 * Shared signal handlers imply shared VM. By way of the above,
1266 * thread groups also imply shared VM. Blocking this case allows
1267 * for various simplifications in other code.
1268 */
1269 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1270 return ERR_PTR(-EINVAL);
1271
1272 /*
1273 * Siblings of global init remain as zombies on exit since they are
1274 * not reaped by their parent (swapper). To solve this and to avoid
1275 * multi-rooted process trees, prevent global and container-inits
1276 * from creating siblings.
1277 */
1278 if ((clone_flags & CLONE_PARENT) &&
1279 current->signal->flags & SIGNAL_UNKILLABLE)
1280 return ERR_PTR(-EINVAL);
1281
1282 /*
1283 * If the new process will be in a different pid or user namespace
1284 * do not allow it to share a thread group with the forking task.
1285 */
1286 if (clone_flags & CLONE_THREAD) {
1287 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1288 (task_active_pid_ns(current) !=
1289 current->nsproxy->pid_ns_for_children))
1290 return ERR_PTR(-EINVAL);
1291 }
1292
1293 retval = security_task_create(clone_flags);
1294 if (retval)
1295 goto fork_out;
1296
1297 retval = -ENOMEM;
1298 p = dup_task_struct(current);
1299 if (!p)
1300 goto fork_out;
1301
1302 ftrace_graph_init_task(p);
1303
1304 rt_mutex_init_task(p);
1305
1306 #ifdef CONFIG_PROVE_LOCKING
1307 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1308 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1309 #endif
1310 retval = -EAGAIN;
1311 if (atomic_read(&p->real_cred->user->processes) >=
1312 task_rlimit(p, RLIMIT_NPROC)) {
1313 if (p->real_cred->user != INIT_USER &&
1314 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1315 goto bad_fork_free;
1316 }
1317 current->flags &= ~PF_NPROC_EXCEEDED;
1318
1319 retval = copy_creds(p, clone_flags);
1320 if (retval < 0)
1321 goto bad_fork_free;
1322
1323 /*
1324 * If multiple threads are within copy_process(), then this check
1325 * triggers too late. This doesn't hurt, the check is only there
1326 * to stop root fork bombs.
1327 */
1328 retval = -EAGAIN;
1329 if (nr_threads >= max_threads)
1330 goto bad_fork_cleanup_count;
1331
1332 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1333 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1334 p->flags |= PF_FORKNOEXEC;
1335 INIT_LIST_HEAD(&p->children);
1336 INIT_LIST_HEAD(&p->sibling);
1337 rcu_copy_process(p);
1338 p->vfork_done = NULL;
1339 spin_lock_init(&p->alloc_lock);
1340
1341 init_sigpending(&p->pending);
1342
1343 p->utime = p->stime = p->gtime = 0;
1344 p->utimescaled = p->stimescaled = 0;
1345 prev_cputime_init(&p->prev_cputime);
1346
1347 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1348 seqlock_init(&p->vtime_seqlock);
1349 p->vtime_snap = 0;
1350 p->vtime_snap_whence = VTIME_SLEEPING;
1351 #endif
1352
1353 #if defined(SPLIT_RSS_COUNTING)
1354 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1355 #endif
1356
1357 p->default_timer_slack_ns = current->timer_slack_ns;
1358
1359 task_io_accounting_init(&p->ioac);
1360 acct_clear_integrals(p);
1361
1362 posix_cpu_timers_init(p);
1363
1364 p->start_time = ktime_get_ns();
1365 p->real_start_time = ktime_get_boot_ns();
1366 p->io_context = NULL;
1367 p->audit_context = NULL;
1368 if (clone_flags & CLONE_THREAD)
1369 threadgroup_change_begin(current);
1370 cgroup_fork(p);
1371 #ifdef CONFIG_NUMA
1372 p->mempolicy = mpol_dup(p->mempolicy);
1373 if (IS_ERR(p->mempolicy)) {
1374 retval = PTR_ERR(p->mempolicy);
1375 p->mempolicy = NULL;
1376 goto bad_fork_cleanup_threadgroup_lock;
1377 }
1378 #endif
1379 #ifdef CONFIG_CPUSETS
1380 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1381 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1382 seqcount_init(&p->mems_allowed_seq);
1383 #endif
1384 #ifdef CONFIG_TRACE_IRQFLAGS
1385 p->irq_events = 0;
1386 p->hardirqs_enabled = 0;
1387 p->hardirq_enable_ip = 0;
1388 p->hardirq_enable_event = 0;
1389 p->hardirq_disable_ip = _THIS_IP_;
1390 p->hardirq_disable_event = 0;
1391 p->softirqs_enabled = 1;
1392 p->softirq_enable_ip = _THIS_IP_;
1393 p->softirq_enable_event = 0;
1394 p->softirq_disable_ip = 0;
1395 p->softirq_disable_event = 0;
1396 p->hardirq_context = 0;
1397 p->softirq_context = 0;
1398 #endif
1399
1400 p->pagefault_disabled = 0;
1401
1402 #ifdef CONFIG_LOCKDEP
1403 p->lockdep_depth = 0; /* no locks held yet */
1404 p->curr_chain_key = 0;
1405 p->lockdep_recursion = 0;
1406 #endif
1407
1408 #ifdef CONFIG_DEBUG_MUTEXES
1409 p->blocked_on = NULL; /* not blocked yet */
1410 #endif
1411 #ifdef CONFIG_BCACHE
1412 p->sequential_io = 0;
1413 p->sequential_io_avg = 0;
1414 #endif
1415
1416 /* Perform scheduler related setup. Assign this task to a CPU. */
1417 retval = sched_fork(clone_flags, p);
1418 if (retval)
1419 goto bad_fork_cleanup_policy;
1420
1421 retval = perf_event_init_task(p);
1422 if (retval)
1423 goto bad_fork_cleanup_policy;
1424 retval = audit_alloc(p);
1425 if (retval)
1426 goto bad_fork_cleanup_perf;
1427 /* copy all the process information */
1428 shm_init_task(p);
1429 retval = copy_semundo(clone_flags, p);
1430 if (retval)
1431 goto bad_fork_cleanup_audit;
1432 retval = copy_files(clone_flags, p);
1433 if (retval)
1434 goto bad_fork_cleanup_semundo;
1435 retval = copy_fs(clone_flags, p);
1436 if (retval)
1437 goto bad_fork_cleanup_files;
1438 retval = copy_sighand(clone_flags, p);
1439 if (retval)
1440 goto bad_fork_cleanup_fs;
1441 retval = copy_signal(clone_flags, p);
1442 if (retval)
1443 goto bad_fork_cleanup_sighand;
1444 retval = copy_mm(clone_flags, p);
1445 if (retval)
1446 goto bad_fork_cleanup_signal;
1447 retval = copy_namespaces(clone_flags, p);
1448 if (retval)
1449 goto bad_fork_cleanup_mm;
1450 retval = copy_io(clone_flags, p);
1451 if (retval)
1452 goto bad_fork_cleanup_namespaces;
1453 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1454 if (retval)
1455 goto bad_fork_cleanup_io;
1456
1457 if (pid != &init_struct_pid) {
1458 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1459 if (IS_ERR(pid)) {
1460 retval = PTR_ERR(pid);
1461 goto bad_fork_cleanup_io;
1462 }
1463 }
1464
1465 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1466 /*
1467 * Clear TID on mm_release()?
1468 */
1469 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1470 #ifdef CONFIG_BLOCK
1471 p->plug = NULL;
1472 #endif
1473 #ifdef CONFIG_FUTEX
1474 p->robust_list = NULL;
1475 #ifdef CONFIG_COMPAT
1476 p->compat_robust_list = NULL;
1477 #endif
1478 INIT_LIST_HEAD(&p->pi_state_list);
1479 p->pi_state_cache = NULL;
1480 #endif
1481 /*
1482 * sigaltstack should be cleared when sharing the same VM
1483 */
1484 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1485 p->sas_ss_sp = p->sas_ss_size = 0;
1486
1487 /*
1488 * Syscall tracing and stepping should be turned off in the
1489 * child regardless of CLONE_PTRACE.
1490 */
1491 user_disable_single_step(p);
1492 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1493 #ifdef TIF_SYSCALL_EMU
1494 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1495 #endif
1496 clear_all_latency_tracing(p);
1497
1498 /* ok, now we should be set up.. */
1499 p->pid = pid_nr(pid);
1500 if (clone_flags & CLONE_THREAD) {
1501 p->exit_signal = -1;
1502 p->group_leader = current->group_leader;
1503 p->tgid = current->tgid;
1504 } else {
1505 if (clone_flags & CLONE_PARENT)
1506 p->exit_signal = current->group_leader->exit_signal;
1507 else
1508 p->exit_signal = (clone_flags & CSIGNAL);
1509 p->group_leader = p;
1510 p->tgid = p->pid;
1511 }
1512
1513 p->nr_dirtied = 0;
1514 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1515 p->dirty_paused_when = 0;
1516
1517 p->pdeath_signal = 0;
1518 INIT_LIST_HEAD(&p->thread_group);
1519 p->task_works = NULL;
1520
1521 /*
1522 * Ensure that the cgroup subsystem policies allow the new process to be
1523 * forked. It should be noted the the new process's css_set can be changed
1524 * between here and cgroup_post_fork() if an organisation operation is in
1525 * progress.
1526 */
1527 retval = cgroup_can_fork(p, cgrp_ss_priv);
1528 if (retval)
1529 goto bad_fork_free_pid;
1530
1531 /*
1532 * Make it visible to the rest of the system, but dont wake it up yet.
1533 * Need tasklist lock for parent etc handling!
1534 */
1535 write_lock_irq(&tasklist_lock);
1536
1537 /* CLONE_PARENT re-uses the old parent */
1538 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1539 p->real_parent = current->real_parent;
1540 p->parent_exec_id = current->parent_exec_id;
1541 } else {
1542 p->real_parent = current;
1543 p->parent_exec_id = current->self_exec_id;
1544 }
1545
1546 spin_lock(&current->sighand->siglock);
1547
1548 /*
1549 * Copy seccomp details explicitly here, in case they were changed
1550 * before holding sighand lock.
1551 */
1552 copy_seccomp(p);
1553
1554 /*
1555 * Process group and session signals need to be delivered to just the
1556 * parent before the fork or both the parent and the child after the
1557 * fork. Restart if a signal comes in before we add the new process to
1558 * it's process group.
1559 * A fatal signal pending means that current will exit, so the new
1560 * thread can't slip out of an OOM kill (or normal SIGKILL).
1561 */
1562 recalc_sigpending();
1563 if (signal_pending(current)) {
1564 spin_unlock(&current->sighand->siglock);
1565 write_unlock_irq(&tasklist_lock);
1566 retval = -ERESTARTNOINTR;
1567 goto bad_fork_cancel_cgroup;
1568 }
1569
1570 if (likely(p->pid)) {
1571 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1572
1573 init_task_pid(p, PIDTYPE_PID, pid);
1574 if (thread_group_leader(p)) {
1575 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1576 init_task_pid(p, PIDTYPE_SID, task_session(current));
1577
1578 if (is_child_reaper(pid)) {
1579 ns_of_pid(pid)->child_reaper = p;
1580 p->signal->flags |= SIGNAL_UNKILLABLE;
1581 }
1582
1583 p->signal->leader_pid = pid;
1584 p->signal->tty = tty_kref_get(current->signal->tty);
1585 list_add_tail(&p->sibling, &p->real_parent->children);
1586 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1587 attach_pid(p, PIDTYPE_PGID);
1588 attach_pid(p, PIDTYPE_SID);
1589 __this_cpu_inc(process_counts);
1590 } else {
1591 current->signal->nr_threads++;
1592 atomic_inc(&current->signal->live);
1593 atomic_inc(&current->signal->sigcnt);
1594 list_add_tail_rcu(&p->thread_group,
1595 &p->group_leader->thread_group);
1596 list_add_tail_rcu(&p->thread_node,
1597 &p->signal->thread_head);
1598 }
1599 attach_pid(p, PIDTYPE_PID);
1600 nr_threads++;
1601 }
1602
1603 total_forks++;
1604 spin_unlock(&current->sighand->siglock);
1605 syscall_tracepoint_update(p);
1606 write_unlock_irq(&tasklist_lock);
1607
1608 proc_fork_connector(p);
1609 cgroup_post_fork(p, cgrp_ss_priv);
1610 if (clone_flags & CLONE_THREAD)
1611 threadgroup_change_end(current);
1612 perf_event_fork(p);
1613
1614 trace_task_newtask(p, clone_flags);
1615 uprobe_copy_process(p, clone_flags);
1616
1617 return p;
1618
1619 bad_fork_cancel_cgroup:
1620 cgroup_cancel_fork(p, cgrp_ss_priv);
1621 bad_fork_free_pid:
1622 if (pid != &init_struct_pid)
1623 free_pid(pid);
1624 bad_fork_cleanup_io:
1625 if (p->io_context)
1626 exit_io_context(p);
1627 bad_fork_cleanup_namespaces:
1628 exit_task_namespaces(p);
1629 bad_fork_cleanup_mm:
1630 if (p->mm)
1631 mmput(p->mm);
1632 bad_fork_cleanup_signal:
1633 if (!(clone_flags & CLONE_THREAD))
1634 free_signal_struct(p->signal);
1635 bad_fork_cleanup_sighand:
1636 __cleanup_sighand(p->sighand);
1637 bad_fork_cleanup_fs:
1638 exit_fs(p); /* blocking */
1639 bad_fork_cleanup_files:
1640 exit_files(p); /* blocking */
1641 bad_fork_cleanup_semundo:
1642 exit_sem(p);
1643 bad_fork_cleanup_audit:
1644 audit_free(p);
1645 bad_fork_cleanup_perf:
1646 perf_event_free_task(p);
1647 bad_fork_cleanup_policy:
1648 #ifdef CONFIG_NUMA
1649 mpol_put(p->mempolicy);
1650 bad_fork_cleanup_threadgroup_lock:
1651 #endif
1652 if (clone_flags & CLONE_THREAD)
1653 threadgroup_change_end(current);
1654 delayacct_tsk_free(p);
1655 bad_fork_cleanup_count:
1656 atomic_dec(&p->cred->user->processes);
1657 exit_creds(p);
1658 bad_fork_free:
1659 free_task(p);
1660 fork_out:
1661 return ERR_PTR(retval);
1662 }
1663
1664 static inline void init_idle_pids(struct pid_link *links)
1665 {
1666 enum pid_type type;
1667
1668 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1669 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1670 links[type].pid = &init_struct_pid;
1671 }
1672 }
1673
1674 struct task_struct *fork_idle(int cpu)
1675 {
1676 struct task_struct *task;
1677 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
1678 if (!IS_ERR(task)) {
1679 init_idle_pids(task->pids);
1680 init_idle(task, cpu);
1681 }
1682
1683 return task;
1684 }
1685
1686 /*
1687 * Ok, this is the main fork-routine.
1688 *
1689 * It copies the process, and if successful kick-starts
1690 * it and waits for it to finish using the VM if required.
1691 */
1692 long _do_fork(unsigned long clone_flags,
1693 unsigned long stack_start,
1694 unsigned long stack_size,
1695 int __user *parent_tidptr,
1696 int __user *child_tidptr,
1697 unsigned long tls)
1698 {
1699 struct task_struct *p;
1700 int trace = 0;
1701 long nr;
1702
1703 /*
1704 * Determine whether and which event to report to ptracer. When
1705 * called from kernel_thread or CLONE_UNTRACED is explicitly
1706 * requested, no event is reported; otherwise, report if the event
1707 * for the type of forking is enabled.
1708 */
1709 if (!(clone_flags & CLONE_UNTRACED)) {
1710 if (clone_flags & CLONE_VFORK)
1711 trace = PTRACE_EVENT_VFORK;
1712 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1713 trace = PTRACE_EVENT_CLONE;
1714 else
1715 trace = PTRACE_EVENT_FORK;
1716
1717 if (likely(!ptrace_event_enabled(current, trace)))
1718 trace = 0;
1719 }
1720
1721 p = copy_process(clone_flags, stack_start, stack_size,
1722 child_tidptr, NULL, trace, tls);
1723 /*
1724 * Do this prior waking up the new thread - the thread pointer
1725 * might get invalid after that point, if the thread exits quickly.
1726 */
1727 if (!IS_ERR(p)) {
1728 struct completion vfork;
1729 struct pid *pid;
1730
1731 trace_sched_process_fork(current, p);
1732
1733 pid = get_task_pid(p, PIDTYPE_PID);
1734 nr = pid_vnr(pid);
1735
1736 if (clone_flags & CLONE_PARENT_SETTID)
1737 put_user(nr, parent_tidptr);
1738
1739 if (clone_flags & CLONE_VFORK) {
1740 p->vfork_done = &vfork;
1741 init_completion(&vfork);
1742 get_task_struct(p);
1743 }
1744
1745 wake_up_new_task(p);
1746
1747 /* forking complete and child started to run, tell ptracer */
1748 if (unlikely(trace))
1749 ptrace_event_pid(trace, pid);
1750
1751 if (clone_flags & CLONE_VFORK) {
1752 if (!wait_for_vfork_done(p, &vfork))
1753 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1754 }
1755
1756 put_pid(pid);
1757 } else {
1758 nr = PTR_ERR(p);
1759 }
1760 return nr;
1761 }
1762
1763 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1764 /* For compatibility with architectures that call do_fork directly rather than
1765 * using the syscall entry points below. */
1766 long do_fork(unsigned long clone_flags,
1767 unsigned long stack_start,
1768 unsigned long stack_size,
1769 int __user *parent_tidptr,
1770 int __user *child_tidptr)
1771 {
1772 return _do_fork(clone_flags, stack_start, stack_size,
1773 parent_tidptr, child_tidptr, 0);
1774 }
1775 #endif
1776
1777 /*
1778 * Create a kernel thread.
1779 */
1780 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1781 {
1782 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1783 (unsigned long)arg, NULL, NULL, 0);
1784 }
1785
1786 #ifdef __ARCH_WANT_SYS_FORK
1787 SYSCALL_DEFINE0(fork)
1788 {
1789 #ifdef CONFIG_MMU
1790 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1791 #else
1792 /* can not support in nommu mode */
1793 return -EINVAL;
1794 #endif
1795 }
1796 #endif
1797
1798 #ifdef __ARCH_WANT_SYS_VFORK
1799 SYSCALL_DEFINE0(vfork)
1800 {
1801 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1802 0, NULL, NULL, 0);
1803 }
1804 #endif
1805
1806 #ifdef __ARCH_WANT_SYS_CLONE
1807 #ifdef CONFIG_CLONE_BACKWARDS
1808 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1809 int __user *, parent_tidptr,
1810 unsigned long, tls,
1811 int __user *, child_tidptr)
1812 #elif defined(CONFIG_CLONE_BACKWARDS2)
1813 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1814 int __user *, parent_tidptr,
1815 int __user *, child_tidptr,
1816 unsigned long, tls)
1817 #elif defined(CONFIG_CLONE_BACKWARDS3)
1818 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1819 int, stack_size,
1820 int __user *, parent_tidptr,
1821 int __user *, child_tidptr,
1822 unsigned long, tls)
1823 #else
1824 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1825 int __user *, parent_tidptr,
1826 int __user *, child_tidptr,
1827 unsigned long, tls)
1828 #endif
1829 {
1830 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1831 }
1832 #endif
1833
1834 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1835 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1836 #endif
1837
1838 static void sighand_ctor(void *data)
1839 {
1840 struct sighand_struct *sighand = data;
1841
1842 spin_lock_init(&sighand->siglock);
1843 init_waitqueue_head(&sighand->signalfd_wqh);
1844 }
1845
1846 void __init proc_caches_init(void)
1847 {
1848 sighand_cachep = kmem_cache_create("sighand_cache",
1849 sizeof(struct sighand_struct), 0,
1850 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1851 SLAB_NOTRACK, sighand_ctor);
1852 signal_cachep = kmem_cache_create("signal_cache",
1853 sizeof(struct signal_struct), 0,
1854 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1855 files_cachep = kmem_cache_create("files_cache",
1856 sizeof(struct files_struct), 0,
1857 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1858 fs_cachep = kmem_cache_create("fs_cache",
1859 sizeof(struct fs_struct), 0,
1860 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1861 /*
1862 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1863 * whole struct cpumask for the OFFSTACK case. We could change
1864 * this to *only* allocate as much of it as required by the
1865 * maximum number of CPU's we can ever have. The cpumask_allocation
1866 * is at the end of the structure, exactly for that reason.
1867 */
1868 mm_cachep = kmem_cache_create("mm_struct",
1869 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1870 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1871 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1872 mmap_init();
1873 nsproxy_cache_init();
1874 }
1875
1876 /*
1877 * Check constraints on flags passed to the unshare system call.
1878 */
1879 static int check_unshare_flags(unsigned long unshare_flags)
1880 {
1881 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1882 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1883 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1884 CLONE_NEWUSER|CLONE_NEWPID))
1885 return -EINVAL;
1886 /*
1887 * Not implemented, but pretend it works if there is nothing
1888 * to unshare. Note that unsharing the address space or the
1889 * signal handlers also need to unshare the signal queues (aka
1890 * CLONE_THREAD).
1891 */
1892 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1893 if (!thread_group_empty(current))
1894 return -EINVAL;
1895 }
1896 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1897 if (atomic_read(&current->sighand->count) > 1)
1898 return -EINVAL;
1899 }
1900 if (unshare_flags & CLONE_VM) {
1901 if (!current_is_single_threaded())
1902 return -EINVAL;
1903 }
1904
1905 return 0;
1906 }
1907
1908 /*
1909 * Unshare the filesystem structure if it is being shared
1910 */
1911 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1912 {
1913 struct fs_struct *fs = current->fs;
1914
1915 if (!(unshare_flags & CLONE_FS) || !fs)
1916 return 0;
1917
1918 /* don't need lock here; in the worst case we'll do useless copy */
1919 if (fs->users == 1)
1920 return 0;
1921
1922 *new_fsp = copy_fs_struct(fs);
1923 if (!*new_fsp)
1924 return -ENOMEM;
1925
1926 return 0;
1927 }
1928
1929 /*
1930 * Unshare file descriptor table if it is being shared
1931 */
1932 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1933 {
1934 struct files_struct *fd = current->files;
1935 int error = 0;
1936
1937 if ((unshare_flags & CLONE_FILES) &&
1938 (fd && atomic_read(&fd->count) > 1)) {
1939 *new_fdp = dup_fd(fd, &error);
1940 if (!*new_fdp)
1941 return error;
1942 }
1943
1944 return 0;
1945 }
1946
1947 /*
1948 * unshare allows a process to 'unshare' part of the process
1949 * context which was originally shared using clone. copy_*
1950 * functions used by do_fork() cannot be used here directly
1951 * because they modify an inactive task_struct that is being
1952 * constructed. Here we are modifying the current, active,
1953 * task_struct.
1954 */
1955 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1956 {
1957 struct fs_struct *fs, *new_fs = NULL;
1958 struct files_struct *fd, *new_fd = NULL;
1959 struct cred *new_cred = NULL;
1960 struct nsproxy *new_nsproxy = NULL;
1961 int do_sysvsem = 0;
1962 int err;
1963
1964 /*
1965 * If unsharing a user namespace must also unshare the thread group
1966 * and unshare the filesystem root and working directories.
1967 */
1968 if (unshare_flags & CLONE_NEWUSER)
1969 unshare_flags |= CLONE_THREAD | CLONE_FS;
1970 /*
1971 * If unsharing vm, must also unshare signal handlers.
1972 */
1973 if (unshare_flags & CLONE_VM)
1974 unshare_flags |= CLONE_SIGHAND;
1975 /*
1976 * If unsharing a signal handlers, must also unshare the signal queues.
1977 */
1978 if (unshare_flags & CLONE_SIGHAND)
1979 unshare_flags |= CLONE_THREAD;
1980 /*
1981 * If unsharing namespace, must also unshare filesystem information.
1982 */
1983 if (unshare_flags & CLONE_NEWNS)
1984 unshare_flags |= CLONE_FS;
1985
1986 err = check_unshare_flags(unshare_flags);
1987 if (err)
1988 goto bad_unshare_out;
1989 /*
1990 * CLONE_NEWIPC must also detach from the undolist: after switching
1991 * to a new ipc namespace, the semaphore arrays from the old
1992 * namespace are unreachable.
1993 */
1994 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1995 do_sysvsem = 1;
1996 err = unshare_fs(unshare_flags, &new_fs);
1997 if (err)
1998 goto bad_unshare_out;
1999 err = unshare_fd(unshare_flags, &new_fd);
2000 if (err)
2001 goto bad_unshare_cleanup_fs;
2002 err = unshare_userns(unshare_flags, &new_cred);
2003 if (err)
2004 goto bad_unshare_cleanup_fd;
2005 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2006 new_cred, new_fs);
2007 if (err)
2008 goto bad_unshare_cleanup_cred;
2009
2010 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2011 if (do_sysvsem) {
2012 /*
2013 * CLONE_SYSVSEM is equivalent to sys_exit().
2014 */
2015 exit_sem(current);
2016 }
2017 if (unshare_flags & CLONE_NEWIPC) {
2018 /* Orphan segments in old ns (see sem above). */
2019 exit_shm(current);
2020 shm_init_task(current);
2021 }
2022
2023 if (new_nsproxy)
2024 switch_task_namespaces(current, new_nsproxy);
2025
2026 task_lock(current);
2027
2028 if (new_fs) {
2029 fs = current->fs;
2030 spin_lock(&fs->lock);
2031 current->fs = new_fs;
2032 if (--fs->users)
2033 new_fs = NULL;
2034 else
2035 new_fs = fs;
2036 spin_unlock(&fs->lock);
2037 }
2038
2039 if (new_fd) {
2040 fd = current->files;
2041 current->files = new_fd;
2042 new_fd = fd;
2043 }
2044
2045 task_unlock(current);
2046
2047 if (new_cred) {
2048 /* Install the new user namespace */
2049 commit_creds(new_cred);
2050 new_cred = NULL;
2051 }
2052 }
2053
2054 bad_unshare_cleanup_cred:
2055 if (new_cred)
2056 put_cred(new_cred);
2057 bad_unshare_cleanup_fd:
2058 if (new_fd)
2059 put_files_struct(new_fd);
2060
2061 bad_unshare_cleanup_fs:
2062 if (new_fs)
2063 free_fs_struct(new_fs);
2064
2065 bad_unshare_out:
2066 return err;
2067 }
2068
2069 /*
2070 * Helper to unshare the files of the current task.
2071 * We don't want to expose copy_files internals to
2072 * the exec layer of the kernel.
2073 */
2074
2075 int unshare_files(struct files_struct **displaced)
2076 {
2077 struct task_struct *task = current;
2078 struct files_struct *copy = NULL;
2079 int error;
2080
2081 error = unshare_fd(CLONE_FILES, &copy);
2082 if (error || !copy) {
2083 *displaced = NULL;
2084 return error;
2085 }
2086 *displaced = task->files;
2087 task_lock(task);
2088 task->files = copy;
2089 task_unlock(task);
2090 return 0;
2091 }
2092
2093 int sysctl_max_threads(struct ctl_table *table, int write,
2094 void __user *buffer, size_t *lenp, loff_t *ppos)
2095 {
2096 struct ctl_table t;
2097 int ret;
2098 int threads = max_threads;
2099 int min = MIN_THREADS;
2100 int max = MAX_THREADS;
2101
2102 t = *table;
2103 t.data = &threads;
2104 t.extra1 = &min;
2105 t.extra2 = &max;
2106
2107 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2108 if (ret || !write)
2109 return ret;
2110
2111 set_max_threads(threads);
2112
2113 return 0;
2114 }
This page took 0.072023 seconds and 6 git commands to generate.