mm: introduce VM_LOCKONFAULT
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78
79 #include <asm/pgtable.h>
80 #include <asm/pgalloc.h>
81 #include <asm/uaccess.h>
82 #include <asm/mmu_context.h>
83 #include <asm/cacheflush.h>
84 #include <asm/tlbflush.h>
85
86 #include <trace/events/sched.h>
87
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/task.h>
90
91 /*
92 * Minimum number of threads to boot the kernel
93 */
94 #define MIN_THREADS 20
95
96 /*
97 * Maximum number of threads
98 */
99 #define MAX_THREADS FUTEX_TID_MASK
100
101 /*
102 * Protected counters by write_lock_irq(&tasklist_lock)
103 */
104 unsigned long total_forks; /* Handle normal Linux uptimes. */
105 int nr_threads; /* The idle threads do not count.. */
106
107 int max_threads; /* tunable limit on nr_threads */
108
109 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
110
111 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
112
113 #ifdef CONFIG_PROVE_RCU
114 int lockdep_tasklist_lock_is_held(void)
115 {
116 return lockdep_is_held(&tasklist_lock);
117 }
118 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
119 #endif /* #ifdef CONFIG_PROVE_RCU */
120
121 int nr_processes(void)
122 {
123 int cpu;
124 int total = 0;
125
126 for_each_possible_cpu(cpu)
127 total += per_cpu(process_counts, cpu);
128
129 return total;
130 }
131
132 void __weak arch_release_task_struct(struct task_struct *tsk)
133 {
134 }
135
136 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
137 static struct kmem_cache *task_struct_cachep;
138
139 static inline struct task_struct *alloc_task_struct_node(int node)
140 {
141 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
142 }
143
144 static inline void free_task_struct(struct task_struct *tsk)
145 {
146 kmem_cache_free(task_struct_cachep, tsk);
147 }
148 #endif
149
150 void __weak arch_release_thread_info(struct thread_info *ti)
151 {
152 }
153
154 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
155
156 /*
157 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
158 * kmemcache based allocator.
159 */
160 # if THREAD_SIZE >= PAGE_SIZE
161 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
162 int node)
163 {
164 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
165 THREAD_SIZE_ORDER);
166
167 return page ? page_address(page) : NULL;
168 }
169
170 static inline void free_thread_info(struct thread_info *ti)
171 {
172 free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
173 }
174 # else
175 static struct kmem_cache *thread_info_cache;
176
177 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
178 int node)
179 {
180 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
181 }
182
183 static void free_thread_info(struct thread_info *ti)
184 {
185 kmem_cache_free(thread_info_cache, ti);
186 }
187
188 void thread_info_cache_init(void)
189 {
190 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
191 THREAD_SIZE, 0, NULL);
192 BUG_ON(thread_info_cache == NULL);
193 }
194 # endif
195 #endif
196
197 /* SLAB cache for signal_struct structures (tsk->signal) */
198 static struct kmem_cache *signal_cachep;
199
200 /* SLAB cache for sighand_struct structures (tsk->sighand) */
201 struct kmem_cache *sighand_cachep;
202
203 /* SLAB cache for files_struct structures (tsk->files) */
204 struct kmem_cache *files_cachep;
205
206 /* SLAB cache for fs_struct structures (tsk->fs) */
207 struct kmem_cache *fs_cachep;
208
209 /* SLAB cache for vm_area_struct structures */
210 struct kmem_cache *vm_area_cachep;
211
212 /* SLAB cache for mm_struct structures (tsk->mm) */
213 static struct kmem_cache *mm_cachep;
214
215 static void account_kernel_stack(struct thread_info *ti, int account)
216 {
217 struct zone *zone = page_zone(virt_to_page(ti));
218
219 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
220 }
221
222 void free_task(struct task_struct *tsk)
223 {
224 account_kernel_stack(tsk->stack, -1);
225 arch_release_thread_info(tsk->stack);
226 free_thread_info(tsk->stack);
227 rt_mutex_debug_task_free(tsk);
228 ftrace_graph_exit_task(tsk);
229 put_seccomp_filter(tsk);
230 arch_release_task_struct(tsk);
231 free_task_struct(tsk);
232 }
233 EXPORT_SYMBOL(free_task);
234
235 static inline void free_signal_struct(struct signal_struct *sig)
236 {
237 taskstats_tgid_free(sig);
238 sched_autogroup_exit(sig);
239 kmem_cache_free(signal_cachep, sig);
240 }
241
242 static inline void put_signal_struct(struct signal_struct *sig)
243 {
244 if (atomic_dec_and_test(&sig->sigcnt))
245 free_signal_struct(sig);
246 }
247
248 void __put_task_struct(struct task_struct *tsk)
249 {
250 WARN_ON(!tsk->exit_state);
251 WARN_ON(atomic_read(&tsk->usage));
252 WARN_ON(tsk == current);
253
254 task_numa_free(tsk);
255 security_task_free(tsk);
256 exit_creds(tsk);
257 delayacct_tsk_free(tsk);
258 put_signal_struct(tsk->signal);
259
260 if (!profile_handoff_task(tsk))
261 free_task(tsk);
262 }
263 EXPORT_SYMBOL_GPL(__put_task_struct);
264
265 void __init __weak arch_task_cache_init(void) { }
266
267 /*
268 * set_max_threads
269 */
270 static void set_max_threads(unsigned int max_threads_suggested)
271 {
272 u64 threads;
273
274 /*
275 * The number of threads shall be limited such that the thread
276 * structures may only consume a small part of the available memory.
277 */
278 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
279 threads = MAX_THREADS;
280 else
281 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
282 (u64) THREAD_SIZE * 8UL);
283
284 if (threads > max_threads_suggested)
285 threads = max_threads_suggested;
286
287 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
288 }
289
290 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
291 /* Initialized by the architecture: */
292 int arch_task_struct_size __read_mostly;
293 #endif
294
295 void __init fork_init(void)
296 {
297 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
298 #ifndef ARCH_MIN_TASKALIGN
299 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
300 #endif
301 /* create a slab on which task_structs can be allocated */
302 task_struct_cachep =
303 kmem_cache_create("task_struct", arch_task_struct_size,
304 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
305 #endif
306
307 /* do the arch specific task caches init */
308 arch_task_cache_init();
309
310 set_max_threads(MAX_THREADS);
311
312 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
313 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
314 init_task.signal->rlim[RLIMIT_SIGPENDING] =
315 init_task.signal->rlim[RLIMIT_NPROC];
316 }
317
318 int __weak arch_dup_task_struct(struct task_struct *dst,
319 struct task_struct *src)
320 {
321 *dst = *src;
322 return 0;
323 }
324
325 void set_task_stack_end_magic(struct task_struct *tsk)
326 {
327 unsigned long *stackend;
328
329 stackend = end_of_stack(tsk);
330 *stackend = STACK_END_MAGIC; /* for overflow detection */
331 }
332
333 static struct task_struct *dup_task_struct(struct task_struct *orig)
334 {
335 struct task_struct *tsk;
336 struct thread_info *ti;
337 int node = tsk_fork_get_node(orig);
338 int err;
339
340 tsk = alloc_task_struct_node(node);
341 if (!tsk)
342 return NULL;
343
344 ti = alloc_thread_info_node(tsk, node);
345 if (!ti)
346 goto free_tsk;
347
348 err = arch_dup_task_struct(tsk, orig);
349 if (err)
350 goto free_ti;
351
352 tsk->stack = ti;
353 #ifdef CONFIG_SECCOMP
354 /*
355 * We must handle setting up seccomp filters once we're under
356 * the sighand lock in case orig has changed between now and
357 * then. Until then, filter must be NULL to avoid messing up
358 * the usage counts on the error path calling free_task.
359 */
360 tsk->seccomp.filter = NULL;
361 #endif
362
363 setup_thread_stack(tsk, orig);
364 clear_user_return_notifier(tsk);
365 clear_tsk_need_resched(tsk);
366 set_task_stack_end_magic(tsk);
367
368 #ifdef CONFIG_CC_STACKPROTECTOR
369 tsk->stack_canary = get_random_int();
370 #endif
371
372 /*
373 * One for us, one for whoever does the "release_task()" (usually
374 * parent)
375 */
376 atomic_set(&tsk->usage, 2);
377 #ifdef CONFIG_BLK_DEV_IO_TRACE
378 tsk->btrace_seq = 0;
379 #endif
380 tsk->splice_pipe = NULL;
381 tsk->task_frag.page = NULL;
382
383 account_kernel_stack(ti, 1);
384
385 return tsk;
386
387 free_ti:
388 free_thread_info(ti);
389 free_tsk:
390 free_task_struct(tsk);
391 return NULL;
392 }
393
394 #ifdef CONFIG_MMU
395 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
396 {
397 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
398 struct rb_node **rb_link, *rb_parent;
399 int retval;
400 unsigned long charge;
401
402 uprobe_start_dup_mmap();
403 down_write(&oldmm->mmap_sem);
404 flush_cache_dup_mm(oldmm);
405 uprobe_dup_mmap(oldmm, mm);
406 /*
407 * Not linked in yet - no deadlock potential:
408 */
409 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
410
411 /* No ordering required: file already has been exposed. */
412 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
413
414 mm->total_vm = oldmm->total_vm;
415 mm->shared_vm = oldmm->shared_vm;
416 mm->exec_vm = oldmm->exec_vm;
417 mm->stack_vm = oldmm->stack_vm;
418
419 rb_link = &mm->mm_rb.rb_node;
420 rb_parent = NULL;
421 pprev = &mm->mmap;
422 retval = ksm_fork(mm, oldmm);
423 if (retval)
424 goto out;
425 retval = khugepaged_fork(mm, oldmm);
426 if (retval)
427 goto out;
428
429 prev = NULL;
430 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
431 struct file *file;
432
433 if (mpnt->vm_flags & VM_DONTCOPY) {
434 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
435 -vma_pages(mpnt));
436 continue;
437 }
438 charge = 0;
439 if (mpnt->vm_flags & VM_ACCOUNT) {
440 unsigned long len = vma_pages(mpnt);
441
442 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
443 goto fail_nomem;
444 charge = len;
445 }
446 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
447 if (!tmp)
448 goto fail_nomem;
449 *tmp = *mpnt;
450 INIT_LIST_HEAD(&tmp->anon_vma_chain);
451 retval = vma_dup_policy(mpnt, tmp);
452 if (retval)
453 goto fail_nomem_policy;
454 tmp->vm_mm = mm;
455 if (anon_vma_fork(tmp, mpnt))
456 goto fail_nomem_anon_vma_fork;
457 tmp->vm_flags &=
458 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
459 tmp->vm_next = tmp->vm_prev = NULL;
460 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
461 file = tmp->vm_file;
462 if (file) {
463 struct inode *inode = file_inode(file);
464 struct address_space *mapping = file->f_mapping;
465
466 get_file(file);
467 if (tmp->vm_flags & VM_DENYWRITE)
468 atomic_dec(&inode->i_writecount);
469 i_mmap_lock_write(mapping);
470 if (tmp->vm_flags & VM_SHARED)
471 atomic_inc(&mapping->i_mmap_writable);
472 flush_dcache_mmap_lock(mapping);
473 /* insert tmp into the share list, just after mpnt */
474 vma_interval_tree_insert_after(tmp, mpnt,
475 &mapping->i_mmap);
476 flush_dcache_mmap_unlock(mapping);
477 i_mmap_unlock_write(mapping);
478 }
479
480 /*
481 * Clear hugetlb-related page reserves for children. This only
482 * affects MAP_PRIVATE mappings. Faults generated by the child
483 * are not guaranteed to succeed, even if read-only
484 */
485 if (is_vm_hugetlb_page(tmp))
486 reset_vma_resv_huge_pages(tmp);
487
488 /*
489 * Link in the new vma and copy the page table entries.
490 */
491 *pprev = tmp;
492 pprev = &tmp->vm_next;
493 tmp->vm_prev = prev;
494 prev = tmp;
495
496 __vma_link_rb(mm, tmp, rb_link, rb_parent);
497 rb_link = &tmp->vm_rb.rb_right;
498 rb_parent = &tmp->vm_rb;
499
500 mm->map_count++;
501 retval = copy_page_range(mm, oldmm, mpnt);
502
503 if (tmp->vm_ops && tmp->vm_ops->open)
504 tmp->vm_ops->open(tmp);
505
506 if (retval)
507 goto out;
508 }
509 /* a new mm has just been created */
510 arch_dup_mmap(oldmm, mm);
511 retval = 0;
512 out:
513 up_write(&mm->mmap_sem);
514 flush_tlb_mm(oldmm);
515 up_write(&oldmm->mmap_sem);
516 uprobe_end_dup_mmap();
517 return retval;
518 fail_nomem_anon_vma_fork:
519 mpol_put(vma_policy(tmp));
520 fail_nomem_policy:
521 kmem_cache_free(vm_area_cachep, tmp);
522 fail_nomem:
523 retval = -ENOMEM;
524 vm_unacct_memory(charge);
525 goto out;
526 }
527
528 static inline int mm_alloc_pgd(struct mm_struct *mm)
529 {
530 mm->pgd = pgd_alloc(mm);
531 if (unlikely(!mm->pgd))
532 return -ENOMEM;
533 return 0;
534 }
535
536 static inline void mm_free_pgd(struct mm_struct *mm)
537 {
538 pgd_free(mm, mm->pgd);
539 }
540 #else
541 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
542 {
543 down_write(&oldmm->mmap_sem);
544 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
545 up_write(&oldmm->mmap_sem);
546 return 0;
547 }
548 #define mm_alloc_pgd(mm) (0)
549 #define mm_free_pgd(mm)
550 #endif /* CONFIG_MMU */
551
552 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
553
554 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
555 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
556
557 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
558
559 static int __init coredump_filter_setup(char *s)
560 {
561 default_dump_filter =
562 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
563 MMF_DUMP_FILTER_MASK;
564 return 1;
565 }
566
567 __setup("coredump_filter=", coredump_filter_setup);
568
569 #include <linux/init_task.h>
570
571 static void mm_init_aio(struct mm_struct *mm)
572 {
573 #ifdef CONFIG_AIO
574 spin_lock_init(&mm->ioctx_lock);
575 mm->ioctx_table = NULL;
576 #endif
577 }
578
579 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
580 {
581 #ifdef CONFIG_MEMCG
582 mm->owner = p;
583 #endif
584 }
585
586 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
587 {
588 mm->mmap = NULL;
589 mm->mm_rb = RB_ROOT;
590 mm->vmacache_seqnum = 0;
591 atomic_set(&mm->mm_users, 1);
592 atomic_set(&mm->mm_count, 1);
593 init_rwsem(&mm->mmap_sem);
594 INIT_LIST_HEAD(&mm->mmlist);
595 mm->core_state = NULL;
596 atomic_long_set(&mm->nr_ptes, 0);
597 mm_nr_pmds_init(mm);
598 mm->map_count = 0;
599 mm->locked_vm = 0;
600 mm->pinned_vm = 0;
601 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
602 spin_lock_init(&mm->page_table_lock);
603 mm_init_cpumask(mm);
604 mm_init_aio(mm);
605 mm_init_owner(mm, p);
606 mmu_notifier_mm_init(mm);
607 clear_tlb_flush_pending(mm);
608 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
609 mm->pmd_huge_pte = NULL;
610 #endif
611
612 if (current->mm) {
613 mm->flags = current->mm->flags & MMF_INIT_MASK;
614 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
615 } else {
616 mm->flags = default_dump_filter;
617 mm->def_flags = 0;
618 }
619
620 if (mm_alloc_pgd(mm))
621 goto fail_nopgd;
622
623 if (init_new_context(p, mm))
624 goto fail_nocontext;
625
626 return mm;
627
628 fail_nocontext:
629 mm_free_pgd(mm);
630 fail_nopgd:
631 free_mm(mm);
632 return NULL;
633 }
634
635 static void check_mm(struct mm_struct *mm)
636 {
637 int i;
638
639 for (i = 0; i < NR_MM_COUNTERS; i++) {
640 long x = atomic_long_read(&mm->rss_stat.count[i]);
641
642 if (unlikely(x))
643 printk(KERN_ALERT "BUG: Bad rss-counter state "
644 "mm:%p idx:%d val:%ld\n", mm, i, x);
645 }
646
647 if (atomic_long_read(&mm->nr_ptes))
648 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
649 atomic_long_read(&mm->nr_ptes));
650 if (mm_nr_pmds(mm))
651 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
652 mm_nr_pmds(mm));
653
654 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
655 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
656 #endif
657 }
658
659 /*
660 * Allocate and initialize an mm_struct.
661 */
662 struct mm_struct *mm_alloc(void)
663 {
664 struct mm_struct *mm;
665
666 mm = allocate_mm();
667 if (!mm)
668 return NULL;
669
670 memset(mm, 0, sizeof(*mm));
671 return mm_init(mm, current);
672 }
673
674 /*
675 * Called when the last reference to the mm
676 * is dropped: either by a lazy thread or by
677 * mmput. Free the page directory and the mm.
678 */
679 void __mmdrop(struct mm_struct *mm)
680 {
681 BUG_ON(mm == &init_mm);
682 mm_free_pgd(mm);
683 destroy_context(mm);
684 mmu_notifier_mm_destroy(mm);
685 check_mm(mm);
686 free_mm(mm);
687 }
688 EXPORT_SYMBOL_GPL(__mmdrop);
689
690 /*
691 * Decrement the use count and release all resources for an mm.
692 */
693 void mmput(struct mm_struct *mm)
694 {
695 might_sleep();
696
697 if (atomic_dec_and_test(&mm->mm_users)) {
698 uprobe_clear_state(mm);
699 exit_aio(mm);
700 ksm_exit(mm);
701 khugepaged_exit(mm); /* must run before exit_mmap */
702 exit_mmap(mm);
703 set_mm_exe_file(mm, NULL);
704 if (!list_empty(&mm->mmlist)) {
705 spin_lock(&mmlist_lock);
706 list_del(&mm->mmlist);
707 spin_unlock(&mmlist_lock);
708 }
709 if (mm->binfmt)
710 module_put(mm->binfmt->module);
711 mmdrop(mm);
712 }
713 }
714 EXPORT_SYMBOL_GPL(mmput);
715
716 /**
717 * set_mm_exe_file - change a reference to the mm's executable file
718 *
719 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
720 *
721 * Main users are mmput() and sys_execve(). Callers prevent concurrent
722 * invocations: in mmput() nobody alive left, in execve task is single
723 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
724 * mm->exe_file, but does so without using set_mm_exe_file() in order
725 * to do avoid the need for any locks.
726 */
727 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
728 {
729 struct file *old_exe_file;
730
731 /*
732 * It is safe to dereference the exe_file without RCU as
733 * this function is only called if nobody else can access
734 * this mm -- see comment above for justification.
735 */
736 old_exe_file = rcu_dereference_raw(mm->exe_file);
737
738 if (new_exe_file)
739 get_file(new_exe_file);
740 rcu_assign_pointer(mm->exe_file, new_exe_file);
741 if (old_exe_file)
742 fput(old_exe_file);
743 }
744
745 /**
746 * get_mm_exe_file - acquire a reference to the mm's executable file
747 *
748 * Returns %NULL if mm has no associated executable file.
749 * User must release file via fput().
750 */
751 struct file *get_mm_exe_file(struct mm_struct *mm)
752 {
753 struct file *exe_file;
754
755 rcu_read_lock();
756 exe_file = rcu_dereference(mm->exe_file);
757 if (exe_file && !get_file_rcu(exe_file))
758 exe_file = NULL;
759 rcu_read_unlock();
760 return exe_file;
761 }
762 EXPORT_SYMBOL(get_mm_exe_file);
763
764 /**
765 * get_task_mm - acquire a reference to the task's mm
766 *
767 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
768 * this kernel workthread has transiently adopted a user mm with use_mm,
769 * to do its AIO) is not set and if so returns a reference to it, after
770 * bumping up the use count. User must release the mm via mmput()
771 * after use. Typically used by /proc and ptrace.
772 */
773 struct mm_struct *get_task_mm(struct task_struct *task)
774 {
775 struct mm_struct *mm;
776
777 task_lock(task);
778 mm = task->mm;
779 if (mm) {
780 if (task->flags & PF_KTHREAD)
781 mm = NULL;
782 else
783 atomic_inc(&mm->mm_users);
784 }
785 task_unlock(task);
786 return mm;
787 }
788 EXPORT_SYMBOL_GPL(get_task_mm);
789
790 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
791 {
792 struct mm_struct *mm;
793 int err;
794
795 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
796 if (err)
797 return ERR_PTR(err);
798
799 mm = get_task_mm(task);
800 if (mm && mm != current->mm &&
801 !ptrace_may_access(task, mode)) {
802 mmput(mm);
803 mm = ERR_PTR(-EACCES);
804 }
805 mutex_unlock(&task->signal->cred_guard_mutex);
806
807 return mm;
808 }
809
810 static void complete_vfork_done(struct task_struct *tsk)
811 {
812 struct completion *vfork;
813
814 task_lock(tsk);
815 vfork = tsk->vfork_done;
816 if (likely(vfork)) {
817 tsk->vfork_done = NULL;
818 complete(vfork);
819 }
820 task_unlock(tsk);
821 }
822
823 static int wait_for_vfork_done(struct task_struct *child,
824 struct completion *vfork)
825 {
826 int killed;
827
828 freezer_do_not_count();
829 killed = wait_for_completion_killable(vfork);
830 freezer_count();
831
832 if (killed) {
833 task_lock(child);
834 child->vfork_done = NULL;
835 task_unlock(child);
836 }
837
838 put_task_struct(child);
839 return killed;
840 }
841
842 /* Please note the differences between mmput and mm_release.
843 * mmput is called whenever we stop holding onto a mm_struct,
844 * error success whatever.
845 *
846 * mm_release is called after a mm_struct has been removed
847 * from the current process.
848 *
849 * This difference is important for error handling, when we
850 * only half set up a mm_struct for a new process and need to restore
851 * the old one. Because we mmput the new mm_struct before
852 * restoring the old one. . .
853 * Eric Biederman 10 January 1998
854 */
855 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
856 {
857 /* Get rid of any futexes when releasing the mm */
858 #ifdef CONFIG_FUTEX
859 if (unlikely(tsk->robust_list)) {
860 exit_robust_list(tsk);
861 tsk->robust_list = NULL;
862 }
863 #ifdef CONFIG_COMPAT
864 if (unlikely(tsk->compat_robust_list)) {
865 compat_exit_robust_list(tsk);
866 tsk->compat_robust_list = NULL;
867 }
868 #endif
869 if (unlikely(!list_empty(&tsk->pi_state_list)))
870 exit_pi_state_list(tsk);
871 #endif
872
873 uprobe_free_utask(tsk);
874
875 /* Get rid of any cached register state */
876 deactivate_mm(tsk, mm);
877
878 /*
879 * If we're exiting normally, clear a user-space tid field if
880 * requested. We leave this alone when dying by signal, to leave
881 * the value intact in a core dump, and to save the unnecessary
882 * trouble, say, a killed vfork parent shouldn't touch this mm.
883 * Userland only wants this done for a sys_exit.
884 */
885 if (tsk->clear_child_tid) {
886 if (!(tsk->flags & PF_SIGNALED) &&
887 atomic_read(&mm->mm_users) > 1) {
888 /*
889 * We don't check the error code - if userspace has
890 * not set up a proper pointer then tough luck.
891 */
892 put_user(0, tsk->clear_child_tid);
893 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
894 1, NULL, NULL, 0);
895 }
896 tsk->clear_child_tid = NULL;
897 }
898
899 /*
900 * All done, finally we can wake up parent and return this mm to him.
901 * Also kthread_stop() uses this completion for synchronization.
902 */
903 if (tsk->vfork_done)
904 complete_vfork_done(tsk);
905 }
906
907 /*
908 * Allocate a new mm structure and copy contents from the
909 * mm structure of the passed in task structure.
910 */
911 static struct mm_struct *dup_mm(struct task_struct *tsk)
912 {
913 struct mm_struct *mm, *oldmm = current->mm;
914 int err;
915
916 mm = allocate_mm();
917 if (!mm)
918 goto fail_nomem;
919
920 memcpy(mm, oldmm, sizeof(*mm));
921
922 if (!mm_init(mm, tsk))
923 goto fail_nomem;
924
925 err = dup_mmap(mm, oldmm);
926 if (err)
927 goto free_pt;
928
929 mm->hiwater_rss = get_mm_rss(mm);
930 mm->hiwater_vm = mm->total_vm;
931
932 if (mm->binfmt && !try_module_get(mm->binfmt->module))
933 goto free_pt;
934
935 return mm;
936
937 free_pt:
938 /* don't put binfmt in mmput, we haven't got module yet */
939 mm->binfmt = NULL;
940 mmput(mm);
941
942 fail_nomem:
943 return NULL;
944 }
945
946 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
947 {
948 struct mm_struct *mm, *oldmm;
949 int retval;
950
951 tsk->min_flt = tsk->maj_flt = 0;
952 tsk->nvcsw = tsk->nivcsw = 0;
953 #ifdef CONFIG_DETECT_HUNG_TASK
954 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
955 #endif
956
957 tsk->mm = NULL;
958 tsk->active_mm = NULL;
959
960 /*
961 * Are we cloning a kernel thread?
962 *
963 * We need to steal a active VM for that..
964 */
965 oldmm = current->mm;
966 if (!oldmm)
967 return 0;
968
969 /* initialize the new vmacache entries */
970 vmacache_flush(tsk);
971
972 if (clone_flags & CLONE_VM) {
973 atomic_inc(&oldmm->mm_users);
974 mm = oldmm;
975 goto good_mm;
976 }
977
978 retval = -ENOMEM;
979 mm = dup_mm(tsk);
980 if (!mm)
981 goto fail_nomem;
982
983 good_mm:
984 tsk->mm = mm;
985 tsk->active_mm = mm;
986 return 0;
987
988 fail_nomem:
989 return retval;
990 }
991
992 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
993 {
994 struct fs_struct *fs = current->fs;
995 if (clone_flags & CLONE_FS) {
996 /* tsk->fs is already what we want */
997 spin_lock(&fs->lock);
998 if (fs->in_exec) {
999 spin_unlock(&fs->lock);
1000 return -EAGAIN;
1001 }
1002 fs->users++;
1003 spin_unlock(&fs->lock);
1004 return 0;
1005 }
1006 tsk->fs = copy_fs_struct(fs);
1007 if (!tsk->fs)
1008 return -ENOMEM;
1009 return 0;
1010 }
1011
1012 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1013 {
1014 struct files_struct *oldf, *newf;
1015 int error = 0;
1016
1017 /*
1018 * A background process may not have any files ...
1019 */
1020 oldf = current->files;
1021 if (!oldf)
1022 goto out;
1023
1024 if (clone_flags & CLONE_FILES) {
1025 atomic_inc(&oldf->count);
1026 goto out;
1027 }
1028
1029 newf = dup_fd(oldf, &error);
1030 if (!newf)
1031 goto out;
1032
1033 tsk->files = newf;
1034 error = 0;
1035 out:
1036 return error;
1037 }
1038
1039 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1040 {
1041 #ifdef CONFIG_BLOCK
1042 struct io_context *ioc = current->io_context;
1043 struct io_context *new_ioc;
1044
1045 if (!ioc)
1046 return 0;
1047 /*
1048 * Share io context with parent, if CLONE_IO is set
1049 */
1050 if (clone_flags & CLONE_IO) {
1051 ioc_task_link(ioc);
1052 tsk->io_context = ioc;
1053 } else if (ioprio_valid(ioc->ioprio)) {
1054 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1055 if (unlikely(!new_ioc))
1056 return -ENOMEM;
1057
1058 new_ioc->ioprio = ioc->ioprio;
1059 put_io_context(new_ioc);
1060 }
1061 #endif
1062 return 0;
1063 }
1064
1065 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1066 {
1067 struct sighand_struct *sig;
1068
1069 if (clone_flags & CLONE_SIGHAND) {
1070 atomic_inc(&current->sighand->count);
1071 return 0;
1072 }
1073 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1074 rcu_assign_pointer(tsk->sighand, sig);
1075 if (!sig)
1076 return -ENOMEM;
1077
1078 atomic_set(&sig->count, 1);
1079 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1080 return 0;
1081 }
1082
1083 void __cleanup_sighand(struct sighand_struct *sighand)
1084 {
1085 if (atomic_dec_and_test(&sighand->count)) {
1086 signalfd_cleanup(sighand);
1087 /*
1088 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1089 * without an RCU grace period, see __lock_task_sighand().
1090 */
1091 kmem_cache_free(sighand_cachep, sighand);
1092 }
1093 }
1094
1095 /*
1096 * Initialize POSIX timer handling for a thread group.
1097 */
1098 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1099 {
1100 unsigned long cpu_limit;
1101
1102 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1103 if (cpu_limit != RLIM_INFINITY) {
1104 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1105 sig->cputimer.running = true;
1106 }
1107
1108 /* The timer lists. */
1109 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1110 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1111 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1112 }
1113
1114 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1115 {
1116 struct signal_struct *sig;
1117
1118 if (clone_flags & CLONE_THREAD)
1119 return 0;
1120
1121 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1122 tsk->signal = sig;
1123 if (!sig)
1124 return -ENOMEM;
1125
1126 sig->nr_threads = 1;
1127 atomic_set(&sig->live, 1);
1128 atomic_set(&sig->sigcnt, 1);
1129
1130 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1131 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1132 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1133
1134 init_waitqueue_head(&sig->wait_chldexit);
1135 sig->curr_target = tsk;
1136 init_sigpending(&sig->shared_pending);
1137 INIT_LIST_HEAD(&sig->posix_timers);
1138 seqlock_init(&sig->stats_lock);
1139 prev_cputime_init(&sig->prev_cputime);
1140
1141 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1142 sig->real_timer.function = it_real_fn;
1143
1144 task_lock(current->group_leader);
1145 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1146 task_unlock(current->group_leader);
1147
1148 posix_cpu_timers_init_group(sig);
1149
1150 tty_audit_fork(sig);
1151 sched_autogroup_fork(sig);
1152
1153 #ifdef CONFIG_CGROUPS
1154 init_rwsem(&sig->group_rwsem);
1155 #endif
1156
1157 sig->oom_score_adj = current->signal->oom_score_adj;
1158 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1159
1160 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1161 current->signal->is_child_subreaper;
1162
1163 mutex_init(&sig->cred_guard_mutex);
1164
1165 return 0;
1166 }
1167
1168 static void copy_seccomp(struct task_struct *p)
1169 {
1170 #ifdef CONFIG_SECCOMP
1171 /*
1172 * Must be called with sighand->lock held, which is common to
1173 * all threads in the group. Holding cred_guard_mutex is not
1174 * needed because this new task is not yet running and cannot
1175 * be racing exec.
1176 */
1177 assert_spin_locked(&current->sighand->siglock);
1178
1179 /* Ref-count the new filter user, and assign it. */
1180 get_seccomp_filter(current);
1181 p->seccomp = current->seccomp;
1182
1183 /*
1184 * Explicitly enable no_new_privs here in case it got set
1185 * between the task_struct being duplicated and holding the
1186 * sighand lock. The seccomp state and nnp must be in sync.
1187 */
1188 if (task_no_new_privs(current))
1189 task_set_no_new_privs(p);
1190
1191 /*
1192 * If the parent gained a seccomp mode after copying thread
1193 * flags and between before we held the sighand lock, we have
1194 * to manually enable the seccomp thread flag here.
1195 */
1196 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1197 set_tsk_thread_flag(p, TIF_SECCOMP);
1198 #endif
1199 }
1200
1201 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1202 {
1203 current->clear_child_tid = tidptr;
1204
1205 return task_pid_vnr(current);
1206 }
1207
1208 static void rt_mutex_init_task(struct task_struct *p)
1209 {
1210 raw_spin_lock_init(&p->pi_lock);
1211 #ifdef CONFIG_RT_MUTEXES
1212 p->pi_waiters = RB_ROOT;
1213 p->pi_waiters_leftmost = NULL;
1214 p->pi_blocked_on = NULL;
1215 #endif
1216 }
1217
1218 /*
1219 * Initialize POSIX timer handling for a single task.
1220 */
1221 static void posix_cpu_timers_init(struct task_struct *tsk)
1222 {
1223 tsk->cputime_expires.prof_exp = 0;
1224 tsk->cputime_expires.virt_exp = 0;
1225 tsk->cputime_expires.sched_exp = 0;
1226 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1227 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1228 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1229 }
1230
1231 static inline void
1232 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1233 {
1234 task->pids[type].pid = pid;
1235 }
1236
1237 /*
1238 * This creates a new process as a copy of the old one,
1239 * but does not actually start it yet.
1240 *
1241 * It copies the registers, and all the appropriate
1242 * parts of the process environment (as per the clone
1243 * flags). The actual kick-off is left to the caller.
1244 */
1245 static struct task_struct *copy_process(unsigned long clone_flags,
1246 unsigned long stack_start,
1247 unsigned long stack_size,
1248 int __user *child_tidptr,
1249 struct pid *pid,
1250 int trace,
1251 unsigned long tls)
1252 {
1253 int retval;
1254 struct task_struct *p;
1255 void *cgrp_ss_priv[CGROUP_CANFORK_COUNT] = {};
1256
1257 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1258 return ERR_PTR(-EINVAL);
1259
1260 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1261 return ERR_PTR(-EINVAL);
1262
1263 /*
1264 * Thread groups must share signals as well, and detached threads
1265 * can only be started up within the thread group.
1266 */
1267 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1268 return ERR_PTR(-EINVAL);
1269
1270 /*
1271 * Shared signal handlers imply shared VM. By way of the above,
1272 * thread groups also imply shared VM. Blocking this case allows
1273 * for various simplifications in other code.
1274 */
1275 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1276 return ERR_PTR(-EINVAL);
1277
1278 /*
1279 * Siblings of global init remain as zombies on exit since they are
1280 * not reaped by their parent (swapper). To solve this and to avoid
1281 * multi-rooted process trees, prevent global and container-inits
1282 * from creating siblings.
1283 */
1284 if ((clone_flags & CLONE_PARENT) &&
1285 current->signal->flags & SIGNAL_UNKILLABLE)
1286 return ERR_PTR(-EINVAL);
1287
1288 /*
1289 * If the new process will be in a different pid or user namespace
1290 * do not allow it to share a thread group with the forking task.
1291 */
1292 if (clone_flags & CLONE_THREAD) {
1293 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1294 (task_active_pid_ns(current) !=
1295 current->nsproxy->pid_ns_for_children))
1296 return ERR_PTR(-EINVAL);
1297 }
1298
1299 retval = security_task_create(clone_flags);
1300 if (retval)
1301 goto fork_out;
1302
1303 retval = -ENOMEM;
1304 p = dup_task_struct(current);
1305 if (!p)
1306 goto fork_out;
1307
1308 ftrace_graph_init_task(p);
1309
1310 rt_mutex_init_task(p);
1311
1312 #ifdef CONFIG_PROVE_LOCKING
1313 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1314 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1315 #endif
1316 retval = -EAGAIN;
1317 if (atomic_read(&p->real_cred->user->processes) >=
1318 task_rlimit(p, RLIMIT_NPROC)) {
1319 if (p->real_cred->user != INIT_USER &&
1320 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1321 goto bad_fork_free;
1322 }
1323 current->flags &= ~PF_NPROC_EXCEEDED;
1324
1325 retval = copy_creds(p, clone_flags);
1326 if (retval < 0)
1327 goto bad_fork_free;
1328
1329 /*
1330 * If multiple threads are within copy_process(), then this check
1331 * triggers too late. This doesn't hurt, the check is only there
1332 * to stop root fork bombs.
1333 */
1334 retval = -EAGAIN;
1335 if (nr_threads >= max_threads)
1336 goto bad_fork_cleanup_count;
1337
1338 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1339 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1340 p->flags |= PF_FORKNOEXEC;
1341 INIT_LIST_HEAD(&p->children);
1342 INIT_LIST_HEAD(&p->sibling);
1343 rcu_copy_process(p);
1344 p->vfork_done = NULL;
1345 spin_lock_init(&p->alloc_lock);
1346
1347 init_sigpending(&p->pending);
1348
1349 p->utime = p->stime = p->gtime = 0;
1350 p->utimescaled = p->stimescaled = 0;
1351 prev_cputime_init(&p->prev_cputime);
1352
1353 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1354 seqlock_init(&p->vtime_seqlock);
1355 p->vtime_snap = 0;
1356 p->vtime_snap_whence = VTIME_SLEEPING;
1357 #endif
1358
1359 #if defined(SPLIT_RSS_COUNTING)
1360 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1361 #endif
1362
1363 p->default_timer_slack_ns = current->timer_slack_ns;
1364
1365 task_io_accounting_init(&p->ioac);
1366 acct_clear_integrals(p);
1367
1368 posix_cpu_timers_init(p);
1369
1370 p->start_time = ktime_get_ns();
1371 p->real_start_time = ktime_get_boot_ns();
1372 p->io_context = NULL;
1373 p->audit_context = NULL;
1374 if (clone_flags & CLONE_THREAD)
1375 threadgroup_change_begin(current);
1376 cgroup_fork(p);
1377 #ifdef CONFIG_NUMA
1378 p->mempolicy = mpol_dup(p->mempolicy);
1379 if (IS_ERR(p->mempolicy)) {
1380 retval = PTR_ERR(p->mempolicy);
1381 p->mempolicy = NULL;
1382 goto bad_fork_cleanup_threadgroup_lock;
1383 }
1384 #endif
1385 #ifdef CONFIG_CPUSETS
1386 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1387 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1388 seqcount_init(&p->mems_allowed_seq);
1389 #endif
1390 #ifdef CONFIG_TRACE_IRQFLAGS
1391 p->irq_events = 0;
1392 p->hardirqs_enabled = 0;
1393 p->hardirq_enable_ip = 0;
1394 p->hardirq_enable_event = 0;
1395 p->hardirq_disable_ip = _THIS_IP_;
1396 p->hardirq_disable_event = 0;
1397 p->softirqs_enabled = 1;
1398 p->softirq_enable_ip = _THIS_IP_;
1399 p->softirq_enable_event = 0;
1400 p->softirq_disable_ip = 0;
1401 p->softirq_disable_event = 0;
1402 p->hardirq_context = 0;
1403 p->softirq_context = 0;
1404 #endif
1405
1406 p->pagefault_disabled = 0;
1407
1408 #ifdef CONFIG_LOCKDEP
1409 p->lockdep_depth = 0; /* no locks held yet */
1410 p->curr_chain_key = 0;
1411 p->lockdep_recursion = 0;
1412 #endif
1413
1414 #ifdef CONFIG_DEBUG_MUTEXES
1415 p->blocked_on = NULL; /* not blocked yet */
1416 #endif
1417 #ifdef CONFIG_BCACHE
1418 p->sequential_io = 0;
1419 p->sequential_io_avg = 0;
1420 #endif
1421
1422 /* Perform scheduler related setup. Assign this task to a CPU. */
1423 retval = sched_fork(clone_flags, p);
1424 if (retval)
1425 goto bad_fork_cleanup_policy;
1426
1427 retval = perf_event_init_task(p);
1428 if (retval)
1429 goto bad_fork_cleanup_policy;
1430 retval = audit_alloc(p);
1431 if (retval)
1432 goto bad_fork_cleanup_perf;
1433 /* copy all the process information */
1434 shm_init_task(p);
1435 retval = copy_semundo(clone_flags, p);
1436 if (retval)
1437 goto bad_fork_cleanup_audit;
1438 retval = copy_files(clone_flags, p);
1439 if (retval)
1440 goto bad_fork_cleanup_semundo;
1441 retval = copy_fs(clone_flags, p);
1442 if (retval)
1443 goto bad_fork_cleanup_files;
1444 retval = copy_sighand(clone_flags, p);
1445 if (retval)
1446 goto bad_fork_cleanup_fs;
1447 retval = copy_signal(clone_flags, p);
1448 if (retval)
1449 goto bad_fork_cleanup_sighand;
1450 retval = copy_mm(clone_flags, p);
1451 if (retval)
1452 goto bad_fork_cleanup_signal;
1453 retval = copy_namespaces(clone_flags, p);
1454 if (retval)
1455 goto bad_fork_cleanup_mm;
1456 retval = copy_io(clone_flags, p);
1457 if (retval)
1458 goto bad_fork_cleanup_namespaces;
1459 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1460 if (retval)
1461 goto bad_fork_cleanup_io;
1462
1463 if (pid != &init_struct_pid) {
1464 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1465 if (IS_ERR(pid)) {
1466 retval = PTR_ERR(pid);
1467 goto bad_fork_cleanup_io;
1468 }
1469 }
1470
1471 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1472 /*
1473 * Clear TID on mm_release()?
1474 */
1475 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1476 #ifdef CONFIG_BLOCK
1477 p->plug = NULL;
1478 #endif
1479 #ifdef CONFIG_FUTEX
1480 p->robust_list = NULL;
1481 #ifdef CONFIG_COMPAT
1482 p->compat_robust_list = NULL;
1483 #endif
1484 INIT_LIST_HEAD(&p->pi_state_list);
1485 p->pi_state_cache = NULL;
1486 #endif
1487 /*
1488 * sigaltstack should be cleared when sharing the same VM
1489 */
1490 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1491 p->sas_ss_sp = p->sas_ss_size = 0;
1492
1493 /*
1494 * Syscall tracing and stepping should be turned off in the
1495 * child regardless of CLONE_PTRACE.
1496 */
1497 user_disable_single_step(p);
1498 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1499 #ifdef TIF_SYSCALL_EMU
1500 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1501 #endif
1502 clear_all_latency_tracing(p);
1503
1504 /* ok, now we should be set up.. */
1505 p->pid = pid_nr(pid);
1506 if (clone_flags & CLONE_THREAD) {
1507 p->exit_signal = -1;
1508 p->group_leader = current->group_leader;
1509 p->tgid = current->tgid;
1510 } else {
1511 if (clone_flags & CLONE_PARENT)
1512 p->exit_signal = current->group_leader->exit_signal;
1513 else
1514 p->exit_signal = (clone_flags & CSIGNAL);
1515 p->group_leader = p;
1516 p->tgid = p->pid;
1517 }
1518
1519 p->nr_dirtied = 0;
1520 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1521 p->dirty_paused_when = 0;
1522
1523 p->pdeath_signal = 0;
1524 INIT_LIST_HEAD(&p->thread_group);
1525 p->task_works = NULL;
1526
1527 /*
1528 * Ensure that the cgroup subsystem policies allow the new process to be
1529 * forked. It should be noted the the new process's css_set can be changed
1530 * between here and cgroup_post_fork() if an organisation operation is in
1531 * progress.
1532 */
1533 retval = cgroup_can_fork(p, cgrp_ss_priv);
1534 if (retval)
1535 goto bad_fork_free_pid;
1536
1537 /*
1538 * Make it visible to the rest of the system, but dont wake it up yet.
1539 * Need tasklist lock for parent etc handling!
1540 */
1541 write_lock_irq(&tasklist_lock);
1542
1543 /* CLONE_PARENT re-uses the old parent */
1544 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1545 p->real_parent = current->real_parent;
1546 p->parent_exec_id = current->parent_exec_id;
1547 } else {
1548 p->real_parent = current;
1549 p->parent_exec_id = current->self_exec_id;
1550 }
1551
1552 spin_lock(&current->sighand->siglock);
1553
1554 /*
1555 * Copy seccomp details explicitly here, in case they were changed
1556 * before holding sighand lock.
1557 */
1558 copy_seccomp(p);
1559
1560 /*
1561 * Process group and session signals need to be delivered to just the
1562 * parent before the fork or both the parent and the child after the
1563 * fork. Restart if a signal comes in before we add the new process to
1564 * it's process group.
1565 * A fatal signal pending means that current will exit, so the new
1566 * thread can't slip out of an OOM kill (or normal SIGKILL).
1567 */
1568 recalc_sigpending();
1569 if (signal_pending(current)) {
1570 spin_unlock(&current->sighand->siglock);
1571 write_unlock_irq(&tasklist_lock);
1572 retval = -ERESTARTNOINTR;
1573 goto bad_fork_cancel_cgroup;
1574 }
1575
1576 if (likely(p->pid)) {
1577 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1578
1579 init_task_pid(p, PIDTYPE_PID, pid);
1580 if (thread_group_leader(p)) {
1581 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1582 init_task_pid(p, PIDTYPE_SID, task_session(current));
1583
1584 if (is_child_reaper(pid)) {
1585 ns_of_pid(pid)->child_reaper = p;
1586 p->signal->flags |= SIGNAL_UNKILLABLE;
1587 }
1588
1589 p->signal->leader_pid = pid;
1590 p->signal->tty = tty_kref_get(current->signal->tty);
1591 list_add_tail(&p->sibling, &p->real_parent->children);
1592 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1593 attach_pid(p, PIDTYPE_PGID);
1594 attach_pid(p, PIDTYPE_SID);
1595 __this_cpu_inc(process_counts);
1596 } else {
1597 current->signal->nr_threads++;
1598 atomic_inc(&current->signal->live);
1599 atomic_inc(&current->signal->sigcnt);
1600 list_add_tail_rcu(&p->thread_group,
1601 &p->group_leader->thread_group);
1602 list_add_tail_rcu(&p->thread_node,
1603 &p->signal->thread_head);
1604 }
1605 attach_pid(p, PIDTYPE_PID);
1606 nr_threads++;
1607 }
1608
1609 total_forks++;
1610 spin_unlock(&current->sighand->siglock);
1611 syscall_tracepoint_update(p);
1612 write_unlock_irq(&tasklist_lock);
1613
1614 proc_fork_connector(p);
1615 cgroup_post_fork(p, cgrp_ss_priv);
1616 if (clone_flags & CLONE_THREAD)
1617 threadgroup_change_end(current);
1618 perf_event_fork(p);
1619
1620 trace_task_newtask(p, clone_flags);
1621 uprobe_copy_process(p, clone_flags);
1622
1623 return p;
1624
1625 bad_fork_cancel_cgroup:
1626 cgroup_cancel_fork(p, cgrp_ss_priv);
1627 bad_fork_free_pid:
1628 if (pid != &init_struct_pid)
1629 free_pid(pid);
1630 bad_fork_cleanup_io:
1631 if (p->io_context)
1632 exit_io_context(p);
1633 bad_fork_cleanup_namespaces:
1634 exit_task_namespaces(p);
1635 bad_fork_cleanup_mm:
1636 if (p->mm)
1637 mmput(p->mm);
1638 bad_fork_cleanup_signal:
1639 if (!(clone_flags & CLONE_THREAD))
1640 free_signal_struct(p->signal);
1641 bad_fork_cleanup_sighand:
1642 __cleanup_sighand(p->sighand);
1643 bad_fork_cleanup_fs:
1644 exit_fs(p); /* blocking */
1645 bad_fork_cleanup_files:
1646 exit_files(p); /* blocking */
1647 bad_fork_cleanup_semundo:
1648 exit_sem(p);
1649 bad_fork_cleanup_audit:
1650 audit_free(p);
1651 bad_fork_cleanup_perf:
1652 perf_event_free_task(p);
1653 bad_fork_cleanup_policy:
1654 #ifdef CONFIG_NUMA
1655 mpol_put(p->mempolicy);
1656 bad_fork_cleanup_threadgroup_lock:
1657 #endif
1658 if (clone_flags & CLONE_THREAD)
1659 threadgroup_change_end(current);
1660 delayacct_tsk_free(p);
1661 bad_fork_cleanup_count:
1662 atomic_dec(&p->cred->user->processes);
1663 exit_creds(p);
1664 bad_fork_free:
1665 free_task(p);
1666 fork_out:
1667 return ERR_PTR(retval);
1668 }
1669
1670 static inline void init_idle_pids(struct pid_link *links)
1671 {
1672 enum pid_type type;
1673
1674 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1675 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1676 links[type].pid = &init_struct_pid;
1677 }
1678 }
1679
1680 struct task_struct *fork_idle(int cpu)
1681 {
1682 struct task_struct *task;
1683 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
1684 if (!IS_ERR(task)) {
1685 init_idle_pids(task->pids);
1686 init_idle(task, cpu);
1687 }
1688
1689 return task;
1690 }
1691
1692 /*
1693 * Ok, this is the main fork-routine.
1694 *
1695 * It copies the process, and if successful kick-starts
1696 * it and waits for it to finish using the VM if required.
1697 */
1698 long _do_fork(unsigned long clone_flags,
1699 unsigned long stack_start,
1700 unsigned long stack_size,
1701 int __user *parent_tidptr,
1702 int __user *child_tidptr,
1703 unsigned long tls)
1704 {
1705 struct task_struct *p;
1706 int trace = 0;
1707 long nr;
1708
1709 /*
1710 * Determine whether and which event to report to ptracer. When
1711 * called from kernel_thread or CLONE_UNTRACED is explicitly
1712 * requested, no event is reported; otherwise, report if the event
1713 * for the type of forking is enabled.
1714 */
1715 if (!(clone_flags & CLONE_UNTRACED)) {
1716 if (clone_flags & CLONE_VFORK)
1717 trace = PTRACE_EVENT_VFORK;
1718 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1719 trace = PTRACE_EVENT_CLONE;
1720 else
1721 trace = PTRACE_EVENT_FORK;
1722
1723 if (likely(!ptrace_event_enabled(current, trace)))
1724 trace = 0;
1725 }
1726
1727 p = copy_process(clone_flags, stack_start, stack_size,
1728 child_tidptr, NULL, trace, tls);
1729 /*
1730 * Do this prior waking up the new thread - the thread pointer
1731 * might get invalid after that point, if the thread exits quickly.
1732 */
1733 if (!IS_ERR(p)) {
1734 struct completion vfork;
1735 struct pid *pid;
1736
1737 trace_sched_process_fork(current, p);
1738
1739 pid = get_task_pid(p, PIDTYPE_PID);
1740 nr = pid_vnr(pid);
1741
1742 if (clone_flags & CLONE_PARENT_SETTID)
1743 put_user(nr, parent_tidptr);
1744
1745 if (clone_flags & CLONE_VFORK) {
1746 p->vfork_done = &vfork;
1747 init_completion(&vfork);
1748 get_task_struct(p);
1749 }
1750
1751 wake_up_new_task(p);
1752
1753 /* forking complete and child started to run, tell ptracer */
1754 if (unlikely(trace))
1755 ptrace_event_pid(trace, pid);
1756
1757 if (clone_flags & CLONE_VFORK) {
1758 if (!wait_for_vfork_done(p, &vfork))
1759 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1760 }
1761
1762 put_pid(pid);
1763 } else {
1764 nr = PTR_ERR(p);
1765 }
1766 return nr;
1767 }
1768
1769 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1770 /* For compatibility with architectures that call do_fork directly rather than
1771 * using the syscall entry points below. */
1772 long do_fork(unsigned long clone_flags,
1773 unsigned long stack_start,
1774 unsigned long stack_size,
1775 int __user *parent_tidptr,
1776 int __user *child_tidptr)
1777 {
1778 return _do_fork(clone_flags, stack_start, stack_size,
1779 parent_tidptr, child_tidptr, 0);
1780 }
1781 #endif
1782
1783 /*
1784 * Create a kernel thread.
1785 */
1786 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1787 {
1788 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1789 (unsigned long)arg, NULL, NULL, 0);
1790 }
1791
1792 #ifdef __ARCH_WANT_SYS_FORK
1793 SYSCALL_DEFINE0(fork)
1794 {
1795 #ifdef CONFIG_MMU
1796 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1797 #else
1798 /* can not support in nommu mode */
1799 return -EINVAL;
1800 #endif
1801 }
1802 #endif
1803
1804 #ifdef __ARCH_WANT_SYS_VFORK
1805 SYSCALL_DEFINE0(vfork)
1806 {
1807 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1808 0, NULL, NULL, 0);
1809 }
1810 #endif
1811
1812 #ifdef __ARCH_WANT_SYS_CLONE
1813 #ifdef CONFIG_CLONE_BACKWARDS
1814 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1815 int __user *, parent_tidptr,
1816 unsigned long, tls,
1817 int __user *, child_tidptr)
1818 #elif defined(CONFIG_CLONE_BACKWARDS2)
1819 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1820 int __user *, parent_tidptr,
1821 int __user *, child_tidptr,
1822 unsigned long, tls)
1823 #elif defined(CONFIG_CLONE_BACKWARDS3)
1824 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1825 int, stack_size,
1826 int __user *, parent_tidptr,
1827 int __user *, child_tidptr,
1828 unsigned long, tls)
1829 #else
1830 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1831 int __user *, parent_tidptr,
1832 int __user *, child_tidptr,
1833 unsigned long, tls)
1834 #endif
1835 {
1836 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1837 }
1838 #endif
1839
1840 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1841 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1842 #endif
1843
1844 static void sighand_ctor(void *data)
1845 {
1846 struct sighand_struct *sighand = data;
1847
1848 spin_lock_init(&sighand->siglock);
1849 init_waitqueue_head(&sighand->signalfd_wqh);
1850 }
1851
1852 void __init proc_caches_init(void)
1853 {
1854 sighand_cachep = kmem_cache_create("sighand_cache",
1855 sizeof(struct sighand_struct), 0,
1856 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1857 SLAB_NOTRACK, sighand_ctor);
1858 signal_cachep = kmem_cache_create("signal_cache",
1859 sizeof(struct signal_struct), 0,
1860 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1861 files_cachep = kmem_cache_create("files_cache",
1862 sizeof(struct files_struct), 0,
1863 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1864 fs_cachep = kmem_cache_create("fs_cache",
1865 sizeof(struct fs_struct), 0,
1866 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1867 /*
1868 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1869 * whole struct cpumask for the OFFSTACK case. We could change
1870 * this to *only* allocate as much of it as required by the
1871 * maximum number of CPU's we can ever have. The cpumask_allocation
1872 * is at the end of the structure, exactly for that reason.
1873 */
1874 mm_cachep = kmem_cache_create("mm_struct",
1875 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1876 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1877 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1878 mmap_init();
1879 nsproxy_cache_init();
1880 }
1881
1882 /*
1883 * Check constraints on flags passed to the unshare system call.
1884 */
1885 static int check_unshare_flags(unsigned long unshare_flags)
1886 {
1887 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1888 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1889 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1890 CLONE_NEWUSER|CLONE_NEWPID))
1891 return -EINVAL;
1892 /*
1893 * Not implemented, but pretend it works if there is nothing
1894 * to unshare. Note that unsharing the address space or the
1895 * signal handlers also need to unshare the signal queues (aka
1896 * CLONE_THREAD).
1897 */
1898 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1899 if (!thread_group_empty(current))
1900 return -EINVAL;
1901 }
1902 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1903 if (atomic_read(&current->sighand->count) > 1)
1904 return -EINVAL;
1905 }
1906 if (unshare_flags & CLONE_VM) {
1907 if (!current_is_single_threaded())
1908 return -EINVAL;
1909 }
1910
1911 return 0;
1912 }
1913
1914 /*
1915 * Unshare the filesystem structure if it is being shared
1916 */
1917 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1918 {
1919 struct fs_struct *fs = current->fs;
1920
1921 if (!(unshare_flags & CLONE_FS) || !fs)
1922 return 0;
1923
1924 /* don't need lock here; in the worst case we'll do useless copy */
1925 if (fs->users == 1)
1926 return 0;
1927
1928 *new_fsp = copy_fs_struct(fs);
1929 if (!*new_fsp)
1930 return -ENOMEM;
1931
1932 return 0;
1933 }
1934
1935 /*
1936 * Unshare file descriptor table if it is being shared
1937 */
1938 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1939 {
1940 struct files_struct *fd = current->files;
1941 int error = 0;
1942
1943 if ((unshare_flags & CLONE_FILES) &&
1944 (fd && atomic_read(&fd->count) > 1)) {
1945 *new_fdp = dup_fd(fd, &error);
1946 if (!*new_fdp)
1947 return error;
1948 }
1949
1950 return 0;
1951 }
1952
1953 /*
1954 * unshare allows a process to 'unshare' part of the process
1955 * context which was originally shared using clone. copy_*
1956 * functions used by do_fork() cannot be used here directly
1957 * because they modify an inactive task_struct that is being
1958 * constructed. Here we are modifying the current, active,
1959 * task_struct.
1960 */
1961 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1962 {
1963 struct fs_struct *fs, *new_fs = NULL;
1964 struct files_struct *fd, *new_fd = NULL;
1965 struct cred *new_cred = NULL;
1966 struct nsproxy *new_nsproxy = NULL;
1967 int do_sysvsem = 0;
1968 int err;
1969
1970 /*
1971 * If unsharing a user namespace must also unshare the thread group
1972 * and unshare the filesystem root and working directories.
1973 */
1974 if (unshare_flags & CLONE_NEWUSER)
1975 unshare_flags |= CLONE_THREAD | CLONE_FS;
1976 /*
1977 * If unsharing vm, must also unshare signal handlers.
1978 */
1979 if (unshare_flags & CLONE_VM)
1980 unshare_flags |= CLONE_SIGHAND;
1981 /*
1982 * If unsharing a signal handlers, must also unshare the signal queues.
1983 */
1984 if (unshare_flags & CLONE_SIGHAND)
1985 unshare_flags |= CLONE_THREAD;
1986 /*
1987 * If unsharing namespace, must also unshare filesystem information.
1988 */
1989 if (unshare_flags & CLONE_NEWNS)
1990 unshare_flags |= CLONE_FS;
1991
1992 err = check_unshare_flags(unshare_flags);
1993 if (err)
1994 goto bad_unshare_out;
1995 /*
1996 * CLONE_NEWIPC must also detach from the undolist: after switching
1997 * to a new ipc namespace, the semaphore arrays from the old
1998 * namespace are unreachable.
1999 */
2000 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2001 do_sysvsem = 1;
2002 err = unshare_fs(unshare_flags, &new_fs);
2003 if (err)
2004 goto bad_unshare_out;
2005 err = unshare_fd(unshare_flags, &new_fd);
2006 if (err)
2007 goto bad_unshare_cleanup_fs;
2008 err = unshare_userns(unshare_flags, &new_cred);
2009 if (err)
2010 goto bad_unshare_cleanup_fd;
2011 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2012 new_cred, new_fs);
2013 if (err)
2014 goto bad_unshare_cleanup_cred;
2015
2016 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2017 if (do_sysvsem) {
2018 /*
2019 * CLONE_SYSVSEM is equivalent to sys_exit().
2020 */
2021 exit_sem(current);
2022 }
2023 if (unshare_flags & CLONE_NEWIPC) {
2024 /* Orphan segments in old ns (see sem above). */
2025 exit_shm(current);
2026 shm_init_task(current);
2027 }
2028
2029 if (new_nsproxy)
2030 switch_task_namespaces(current, new_nsproxy);
2031
2032 task_lock(current);
2033
2034 if (new_fs) {
2035 fs = current->fs;
2036 spin_lock(&fs->lock);
2037 current->fs = new_fs;
2038 if (--fs->users)
2039 new_fs = NULL;
2040 else
2041 new_fs = fs;
2042 spin_unlock(&fs->lock);
2043 }
2044
2045 if (new_fd) {
2046 fd = current->files;
2047 current->files = new_fd;
2048 new_fd = fd;
2049 }
2050
2051 task_unlock(current);
2052
2053 if (new_cred) {
2054 /* Install the new user namespace */
2055 commit_creds(new_cred);
2056 new_cred = NULL;
2057 }
2058 }
2059
2060 bad_unshare_cleanup_cred:
2061 if (new_cred)
2062 put_cred(new_cred);
2063 bad_unshare_cleanup_fd:
2064 if (new_fd)
2065 put_files_struct(new_fd);
2066
2067 bad_unshare_cleanup_fs:
2068 if (new_fs)
2069 free_fs_struct(new_fs);
2070
2071 bad_unshare_out:
2072 return err;
2073 }
2074
2075 /*
2076 * Helper to unshare the files of the current task.
2077 * We don't want to expose copy_files internals to
2078 * the exec layer of the kernel.
2079 */
2080
2081 int unshare_files(struct files_struct **displaced)
2082 {
2083 struct task_struct *task = current;
2084 struct files_struct *copy = NULL;
2085 int error;
2086
2087 error = unshare_fd(CLONE_FILES, &copy);
2088 if (error || !copy) {
2089 *displaced = NULL;
2090 return error;
2091 }
2092 *displaced = task->files;
2093 task_lock(task);
2094 task->files = copy;
2095 task_unlock(task);
2096 return 0;
2097 }
2098
2099 int sysctl_max_threads(struct ctl_table *table, int write,
2100 void __user *buffer, size_t *lenp, loff_t *ppos)
2101 {
2102 struct ctl_table t;
2103 int ret;
2104 int threads = max_threads;
2105 int min = MIN_THREADS;
2106 int max = MAX_THREADS;
2107
2108 t = *table;
2109 t.data = &threads;
2110 t.extra1 = &min;
2111 t.extra2 = &max;
2112
2113 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2114 if (ret || !write)
2115 return ret;
2116
2117 set_max_threads(threads);
2118
2119 return 0;
2120 }
This page took 0.073301 seconds and 6 git commands to generate.