futex-prevent-requeue-pi-on-same-futex.patch futex: Forbid uaddr == uaddr2 in futex_r...
[deliverable/linux.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67
68 #include <asm/futex.h>
69
70 #include "locking/rtmutex_common.h"
71
72 /*
73 * READ this before attempting to hack on futexes!
74 *
75 * Basic futex operation and ordering guarantees
76 * =============================================
77 *
78 * The waiter reads the futex value in user space and calls
79 * futex_wait(). This function computes the hash bucket and acquires
80 * the hash bucket lock. After that it reads the futex user space value
81 * again and verifies that the data has not changed. If it has not changed
82 * it enqueues itself into the hash bucket, releases the hash bucket lock
83 * and schedules.
84 *
85 * The waker side modifies the user space value of the futex and calls
86 * futex_wake(). This function computes the hash bucket and acquires the
87 * hash bucket lock. Then it looks for waiters on that futex in the hash
88 * bucket and wakes them.
89 *
90 * In futex wake up scenarios where no tasks are blocked on a futex, taking
91 * the hb spinlock can be avoided and simply return. In order for this
92 * optimization to work, ordering guarantees must exist so that the waiter
93 * being added to the list is acknowledged when the list is concurrently being
94 * checked by the waker, avoiding scenarios like the following:
95 *
96 * CPU 0 CPU 1
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 * futex_wait(futex, val);
100 * uval = *futex;
101 * *futex = newval;
102 * sys_futex(WAKE, futex);
103 * futex_wake(futex);
104 * if (queue_empty())
105 * return;
106 * if (uval == val)
107 * lock(hash_bucket(futex));
108 * queue();
109 * unlock(hash_bucket(futex));
110 * schedule();
111 *
112 * This would cause the waiter on CPU 0 to wait forever because it
113 * missed the transition of the user space value from val to newval
114 * and the waker did not find the waiter in the hash bucket queue.
115 *
116 * The correct serialization ensures that a waiter either observes
117 * the changed user space value before blocking or is woken by a
118 * concurrent waker:
119 *
120 * CPU 0 CPU 1
121 * val = *futex;
122 * sys_futex(WAIT, futex, val);
123 * futex_wait(futex, val);
124 *
125 * waiters++; (a)
126 * mb(); (A) <-- paired with -.
127 * |
128 * lock(hash_bucket(futex)); |
129 * |
130 * uval = *futex; |
131 * | *futex = newval;
132 * | sys_futex(WAKE, futex);
133 * | futex_wake(futex);
134 * |
135 * `-------> mb(); (B)
136 * if (uval == val)
137 * queue();
138 * unlock(hash_bucket(futex));
139 * schedule(); if (waiters)
140 * lock(hash_bucket(futex));
141 * else wake_waiters(futex);
142 * waiters--; (b) unlock(hash_bucket(futex));
143 *
144 * Where (A) orders the waiters increment and the futex value read through
145 * atomic operations (see hb_waiters_inc) and where (B) orders the write
146 * to futex and the waiters read -- this is done by the barriers in
147 * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
148 * futex type.
149 *
150 * This yields the following case (where X:=waiters, Y:=futex):
151 *
152 * X = Y = 0
153 *
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
157 *
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
161 *
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
165 *
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
172 */
173
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
177
178 /*
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
181 */
182 #define FLAGS_SHARED 0x01
183 #define FLAGS_CLOCKRT 0x02
184 #define FLAGS_HAS_TIMEOUT 0x04
185
186 /*
187 * Priority Inheritance state:
188 */
189 struct futex_pi_state {
190 /*
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
193 */
194 struct list_head list;
195
196 /*
197 * The PI object:
198 */
199 struct rt_mutex pi_mutex;
200
201 struct task_struct *owner;
202 atomic_t refcount;
203
204 union futex_key key;
205 };
206
207 /**
208 * struct futex_q - The hashed futex queue entry, one per waiting task
209 * @list: priority-sorted list of tasks waiting on this futex
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
217 *
218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
219 * we can wake only the relevant ones (hashed queues may be shared).
220 *
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223 * The order of wakeup is always to make the first condition true, then
224 * the second.
225 *
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
228 */
229 struct futex_q {
230 struct plist_node list;
231
232 struct task_struct *task;
233 spinlock_t *lock_ptr;
234 union futex_key key;
235 struct futex_pi_state *pi_state;
236 struct rt_mutex_waiter *rt_waiter;
237 union futex_key *requeue_pi_key;
238 u32 bitset;
239 };
240
241 static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
245 };
246
247 /*
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
251 */
252 struct futex_hash_bucket {
253 atomic_t waiters;
254 spinlock_t lock;
255 struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
257
258 static unsigned long __read_mostly futex_hashsize;
259
260 static struct futex_hash_bucket *futex_queues;
261
262 static inline void futex_get_mm(union futex_key *key)
263 {
264 atomic_inc(&key->private.mm->mm_count);
265 /*
266 * Ensure futex_get_mm() implies a full barrier such that
267 * get_futex_key() implies a full barrier. This is relied upon
268 * as full barrier (B), see the ordering comment above.
269 */
270 smp_mb__after_atomic_inc();
271 }
272
273 /*
274 * Reflects a new waiter being added to the waitqueue.
275 */
276 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
277 {
278 #ifdef CONFIG_SMP
279 atomic_inc(&hb->waiters);
280 /*
281 * Full barrier (A), see the ordering comment above.
282 */
283 smp_mb__after_atomic_inc();
284 #endif
285 }
286
287 /*
288 * Reflects a waiter being removed from the waitqueue by wakeup
289 * paths.
290 */
291 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
292 {
293 #ifdef CONFIG_SMP
294 atomic_dec(&hb->waiters);
295 #endif
296 }
297
298 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
299 {
300 #ifdef CONFIG_SMP
301 return atomic_read(&hb->waiters);
302 #else
303 return 1;
304 #endif
305 }
306
307 /*
308 * We hash on the keys returned from get_futex_key (see below).
309 */
310 static struct futex_hash_bucket *hash_futex(union futex_key *key)
311 {
312 u32 hash = jhash2((u32*)&key->both.word,
313 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
314 key->both.offset);
315 return &futex_queues[hash & (futex_hashsize - 1)];
316 }
317
318 /*
319 * Return 1 if two futex_keys are equal, 0 otherwise.
320 */
321 static inline int match_futex(union futex_key *key1, union futex_key *key2)
322 {
323 return (key1 && key2
324 && key1->both.word == key2->both.word
325 && key1->both.ptr == key2->both.ptr
326 && key1->both.offset == key2->both.offset);
327 }
328
329 /*
330 * Take a reference to the resource addressed by a key.
331 * Can be called while holding spinlocks.
332 *
333 */
334 static void get_futex_key_refs(union futex_key *key)
335 {
336 if (!key->both.ptr)
337 return;
338
339 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
340 case FUT_OFF_INODE:
341 ihold(key->shared.inode); /* implies MB (B) */
342 break;
343 case FUT_OFF_MMSHARED:
344 futex_get_mm(key); /* implies MB (B) */
345 break;
346 }
347 }
348
349 /*
350 * Drop a reference to the resource addressed by a key.
351 * The hash bucket spinlock must not be held.
352 */
353 static void drop_futex_key_refs(union futex_key *key)
354 {
355 if (!key->both.ptr) {
356 /* If we're here then we tried to put a key we failed to get */
357 WARN_ON_ONCE(1);
358 return;
359 }
360
361 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
362 case FUT_OFF_INODE:
363 iput(key->shared.inode);
364 break;
365 case FUT_OFF_MMSHARED:
366 mmdrop(key->private.mm);
367 break;
368 }
369 }
370
371 /**
372 * get_futex_key() - Get parameters which are the keys for a futex
373 * @uaddr: virtual address of the futex
374 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
375 * @key: address where result is stored.
376 * @rw: mapping needs to be read/write (values: VERIFY_READ,
377 * VERIFY_WRITE)
378 *
379 * Return: a negative error code or 0
380 *
381 * The key words are stored in *key on success.
382 *
383 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
384 * offset_within_page). For private mappings, it's (uaddr, current->mm).
385 * We can usually work out the index without swapping in the page.
386 *
387 * lock_page() might sleep, the caller should not hold a spinlock.
388 */
389 static int
390 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
391 {
392 unsigned long address = (unsigned long)uaddr;
393 struct mm_struct *mm = current->mm;
394 struct page *page, *page_head;
395 int err, ro = 0;
396
397 /*
398 * The futex address must be "naturally" aligned.
399 */
400 key->both.offset = address % PAGE_SIZE;
401 if (unlikely((address % sizeof(u32)) != 0))
402 return -EINVAL;
403 address -= key->both.offset;
404
405 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
406 return -EFAULT;
407
408 /*
409 * PROCESS_PRIVATE futexes are fast.
410 * As the mm cannot disappear under us and the 'key' only needs
411 * virtual address, we dont even have to find the underlying vma.
412 * Note : We do have to check 'uaddr' is a valid user address,
413 * but access_ok() should be faster than find_vma()
414 */
415 if (!fshared) {
416 key->private.mm = mm;
417 key->private.address = address;
418 get_futex_key_refs(key); /* implies MB (B) */
419 return 0;
420 }
421
422 again:
423 err = get_user_pages_fast(address, 1, 1, &page);
424 /*
425 * If write access is not required (eg. FUTEX_WAIT), try
426 * and get read-only access.
427 */
428 if (err == -EFAULT && rw == VERIFY_READ) {
429 err = get_user_pages_fast(address, 1, 0, &page);
430 ro = 1;
431 }
432 if (err < 0)
433 return err;
434 else
435 err = 0;
436
437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
438 page_head = page;
439 if (unlikely(PageTail(page))) {
440 put_page(page);
441 /* serialize against __split_huge_page_splitting() */
442 local_irq_disable();
443 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
444 page_head = compound_head(page);
445 /*
446 * page_head is valid pointer but we must pin
447 * it before taking the PG_lock and/or
448 * PG_compound_lock. The moment we re-enable
449 * irqs __split_huge_page_splitting() can
450 * return and the head page can be freed from
451 * under us. We can't take the PG_lock and/or
452 * PG_compound_lock on a page that could be
453 * freed from under us.
454 */
455 if (page != page_head) {
456 get_page(page_head);
457 put_page(page);
458 }
459 local_irq_enable();
460 } else {
461 local_irq_enable();
462 goto again;
463 }
464 }
465 #else
466 page_head = compound_head(page);
467 if (page != page_head) {
468 get_page(page_head);
469 put_page(page);
470 }
471 #endif
472
473 lock_page(page_head);
474
475 /*
476 * If page_head->mapping is NULL, then it cannot be a PageAnon
477 * page; but it might be the ZERO_PAGE or in the gate area or
478 * in a special mapping (all cases which we are happy to fail);
479 * or it may have been a good file page when get_user_pages_fast
480 * found it, but truncated or holepunched or subjected to
481 * invalidate_complete_page2 before we got the page lock (also
482 * cases which we are happy to fail). And we hold a reference,
483 * so refcount care in invalidate_complete_page's remove_mapping
484 * prevents drop_caches from setting mapping to NULL beneath us.
485 *
486 * The case we do have to guard against is when memory pressure made
487 * shmem_writepage move it from filecache to swapcache beneath us:
488 * an unlikely race, but we do need to retry for page_head->mapping.
489 */
490 if (!page_head->mapping) {
491 int shmem_swizzled = PageSwapCache(page_head);
492 unlock_page(page_head);
493 put_page(page_head);
494 if (shmem_swizzled)
495 goto again;
496 return -EFAULT;
497 }
498
499 /*
500 * Private mappings are handled in a simple way.
501 *
502 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
503 * it's a read-only handle, it's expected that futexes attach to
504 * the object not the particular process.
505 */
506 if (PageAnon(page_head)) {
507 /*
508 * A RO anonymous page will never change and thus doesn't make
509 * sense for futex operations.
510 */
511 if (ro) {
512 err = -EFAULT;
513 goto out;
514 }
515
516 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
517 key->private.mm = mm;
518 key->private.address = address;
519 } else {
520 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
521 key->shared.inode = page_head->mapping->host;
522 key->shared.pgoff = basepage_index(page);
523 }
524
525 get_futex_key_refs(key); /* implies MB (B) */
526
527 out:
528 unlock_page(page_head);
529 put_page(page_head);
530 return err;
531 }
532
533 static inline void put_futex_key(union futex_key *key)
534 {
535 drop_futex_key_refs(key);
536 }
537
538 /**
539 * fault_in_user_writeable() - Fault in user address and verify RW access
540 * @uaddr: pointer to faulting user space address
541 *
542 * Slow path to fixup the fault we just took in the atomic write
543 * access to @uaddr.
544 *
545 * We have no generic implementation of a non-destructive write to the
546 * user address. We know that we faulted in the atomic pagefault
547 * disabled section so we can as well avoid the #PF overhead by
548 * calling get_user_pages() right away.
549 */
550 static int fault_in_user_writeable(u32 __user *uaddr)
551 {
552 struct mm_struct *mm = current->mm;
553 int ret;
554
555 down_read(&mm->mmap_sem);
556 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
557 FAULT_FLAG_WRITE);
558 up_read(&mm->mmap_sem);
559
560 return ret < 0 ? ret : 0;
561 }
562
563 /**
564 * futex_top_waiter() - Return the highest priority waiter on a futex
565 * @hb: the hash bucket the futex_q's reside in
566 * @key: the futex key (to distinguish it from other futex futex_q's)
567 *
568 * Must be called with the hb lock held.
569 */
570 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
571 union futex_key *key)
572 {
573 struct futex_q *this;
574
575 plist_for_each_entry(this, &hb->chain, list) {
576 if (match_futex(&this->key, key))
577 return this;
578 }
579 return NULL;
580 }
581
582 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
583 u32 uval, u32 newval)
584 {
585 int ret;
586
587 pagefault_disable();
588 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
589 pagefault_enable();
590
591 return ret;
592 }
593
594 static int get_futex_value_locked(u32 *dest, u32 __user *from)
595 {
596 int ret;
597
598 pagefault_disable();
599 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
600 pagefault_enable();
601
602 return ret ? -EFAULT : 0;
603 }
604
605
606 /*
607 * PI code:
608 */
609 static int refill_pi_state_cache(void)
610 {
611 struct futex_pi_state *pi_state;
612
613 if (likely(current->pi_state_cache))
614 return 0;
615
616 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
617
618 if (!pi_state)
619 return -ENOMEM;
620
621 INIT_LIST_HEAD(&pi_state->list);
622 /* pi_mutex gets initialized later */
623 pi_state->owner = NULL;
624 atomic_set(&pi_state->refcount, 1);
625 pi_state->key = FUTEX_KEY_INIT;
626
627 current->pi_state_cache = pi_state;
628
629 return 0;
630 }
631
632 static struct futex_pi_state * alloc_pi_state(void)
633 {
634 struct futex_pi_state *pi_state = current->pi_state_cache;
635
636 WARN_ON(!pi_state);
637 current->pi_state_cache = NULL;
638
639 return pi_state;
640 }
641
642 static void free_pi_state(struct futex_pi_state *pi_state)
643 {
644 if (!atomic_dec_and_test(&pi_state->refcount))
645 return;
646
647 /*
648 * If pi_state->owner is NULL, the owner is most probably dying
649 * and has cleaned up the pi_state already
650 */
651 if (pi_state->owner) {
652 raw_spin_lock_irq(&pi_state->owner->pi_lock);
653 list_del_init(&pi_state->list);
654 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
655
656 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
657 }
658
659 if (current->pi_state_cache)
660 kfree(pi_state);
661 else {
662 /*
663 * pi_state->list is already empty.
664 * clear pi_state->owner.
665 * refcount is at 0 - put it back to 1.
666 */
667 pi_state->owner = NULL;
668 atomic_set(&pi_state->refcount, 1);
669 current->pi_state_cache = pi_state;
670 }
671 }
672
673 /*
674 * Look up the task based on what TID userspace gave us.
675 * We dont trust it.
676 */
677 static struct task_struct * futex_find_get_task(pid_t pid)
678 {
679 struct task_struct *p;
680
681 rcu_read_lock();
682 p = find_task_by_vpid(pid);
683 if (p)
684 get_task_struct(p);
685
686 rcu_read_unlock();
687
688 return p;
689 }
690
691 /*
692 * This task is holding PI mutexes at exit time => bad.
693 * Kernel cleans up PI-state, but userspace is likely hosed.
694 * (Robust-futex cleanup is separate and might save the day for userspace.)
695 */
696 void exit_pi_state_list(struct task_struct *curr)
697 {
698 struct list_head *next, *head = &curr->pi_state_list;
699 struct futex_pi_state *pi_state;
700 struct futex_hash_bucket *hb;
701 union futex_key key = FUTEX_KEY_INIT;
702
703 if (!futex_cmpxchg_enabled)
704 return;
705 /*
706 * We are a ZOMBIE and nobody can enqueue itself on
707 * pi_state_list anymore, but we have to be careful
708 * versus waiters unqueueing themselves:
709 */
710 raw_spin_lock_irq(&curr->pi_lock);
711 while (!list_empty(head)) {
712
713 next = head->next;
714 pi_state = list_entry(next, struct futex_pi_state, list);
715 key = pi_state->key;
716 hb = hash_futex(&key);
717 raw_spin_unlock_irq(&curr->pi_lock);
718
719 spin_lock(&hb->lock);
720
721 raw_spin_lock_irq(&curr->pi_lock);
722 /*
723 * We dropped the pi-lock, so re-check whether this
724 * task still owns the PI-state:
725 */
726 if (head->next != next) {
727 spin_unlock(&hb->lock);
728 continue;
729 }
730
731 WARN_ON(pi_state->owner != curr);
732 WARN_ON(list_empty(&pi_state->list));
733 list_del_init(&pi_state->list);
734 pi_state->owner = NULL;
735 raw_spin_unlock_irq(&curr->pi_lock);
736
737 rt_mutex_unlock(&pi_state->pi_mutex);
738
739 spin_unlock(&hb->lock);
740
741 raw_spin_lock_irq(&curr->pi_lock);
742 }
743 raw_spin_unlock_irq(&curr->pi_lock);
744 }
745
746 static int
747 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
748 union futex_key *key, struct futex_pi_state **ps,
749 struct task_struct *task)
750 {
751 struct futex_pi_state *pi_state = NULL;
752 struct futex_q *this, *next;
753 struct task_struct *p;
754 pid_t pid = uval & FUTEX_TID_MASK;
755
756 plist_for_each_entry_safe(this, next, &hb->chain, list) {
757 if (match_futex(&this->key, key)) {
758 /*
759 * Another waiter already exists - bump up
760 * the refcount and return its pi_state:
761 */
762 pi_state = this->pi_state;
763 /*
764 * Userspace might have messed up non-PI and PI futexes
765 */
766 if (unlikely(!pi_state))
767 return -EINVAL;
768
769 WARN_ON(!atomic_read(&pi_state->refcount));
770
771 /*
772 * When pi_state->owner is NULL then the owner died
773 * and another waiter is on the fly. pi_state->owner
774 * is fixed up by the task which acquires
775 * pi_state->rt_mutex.
776 *
777 * We do not check for pid == 0 which can happen when
778 * the owner died and robust_list_exit() cleared the
779 * TID.
780 */
781 if (pid && pi_state->owner) {
782 /*
783 * Bail out if user space manipulated the
784 * futex value.
785 */
786 if (pid != task_pid_vnr(pi_state->owner))
787 return -EINVAL;
788 }
789
790 /*
791 * Protect against a corrupted uval. If uval
792 * is 0x80000000 then pid is 0 and the waiter
793 * bit is set. So the deadlock check in the
794 * calling code has failed and we did not fall
795 * into the check above due to !pid.
796 */
797 if (task && pi_state->owner == task)
798 return -EDEADLK;
799
800 atomic_inc(&pi_state->refcount);
801 *ps = pi_state;
802
803 return 0;
804 }
805 }
806
807 /*
808 * We are the first waiter - try to look up the real owner and attach
809 * the new pi_state to it, but bail out when TID = 0
810 */
811 if (!pid)
812 return -ESRCH;
813 p = futex_find_get_task(pid);
814 if (!p)
815 return -ESRCH;
816
817 if (!p->mm) {
818 put_task_struct(p);
819 return -EPERM;
820 }
821
822 /*
823 * We need to look at the task state flags to figure out,
824 * whether the task is exiting. To protect against the do_exit
825 * change of the task flags, we do this protected by
826 * p->pi_lock:
827 */
828 raw_spin_lock_irq(&p->pi_lock);
829 if (unlikely(p->flags & PF_EXITING)) {
830 /*
831 * The task is on the way out. When PF_EXITPIDONE is
832 * set, we know that the task has finished the
833 * cleanup:
834 */
835 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
836
837 raw_spin_unlock_irq(&p->pi_lock);
838 put_task_struct(p);
839 return ret;
840 }
841
842 pi_state = alloc_pi_state();
843
844 /*
845 * Initialize the pi_mutex in locked state and make 'p'
846 * the owner of it:
847 */
848 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
849
850 /* Store the key for possible exit cleanups: */
851 pi_state->key = *key;
852
853 WARN_ON(!list_empty(&pi_state->list));
854 list_add(&pi_state->list, &p->pi_state_list);
855 pi_state->owner = p;
856 raw_spin_unlock_irq(&p->pi_lock);
857
858 put_task_struct(p);
859
860 *ps = pi_state;
861
862 return 0;
863 }
864
865 /**
866 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
867 * @uaddr: the pi futex user address
868 * @hb: the pi futex hash bucket
869 * @key: the futex key associated with uaddr and hb
870 * @ps: the pi_state pointer where we store the result of the
871 * lookup
872 * @task: the task to perform the atomic lock work for. This will
873 * be "current" except in the case of requeue pi.
874 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
875 *
876 * Return:
877 * 0 - ready to wait;
878 * 1 - acquired the lock;
879 * <0 - error
880 *
881 * The hb->lock and futex_key refs shall be held by the caller.
882 */
883 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
884 union futex_key *key,
885 struct futex_pi_state **ps,
886 struct task_struct *task, int set_waiters)
887 {
888 int lock_taken, ret, force_take = 0;
889 u32 uval, newval, curval, vpid = task_pid_vnr(task);
890
891 retry:
892 ret = lock_taken = 0;
893
894 /*
895 * To avoid races, we attempt to take the lock here again
896 * (by doing a 0 -> TID atomic cmpxchg), while holding all
897 * the locks. It will most likely not succeed.
898 */
899 newval = vpid;
900 if (set_waiters)
901 newval |= FUTEX_WAITERS;
902
903 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
904 return -EFAULT;
905
906 /*
907 * Detect deadlocks.
908 */
909 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
910 return -EDEADLK;
911
912 /*
913 * Surprise - we got the lock. Just return to userspace:
914 */
915 if (unlikely(!curval))
916 return 1;
917
918 uval = curval;
919
920 /*
921 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
922 * to wake at the next unlock.
923 */
924 newval = curval | FUTEX_WAITERS;
925
926 /*
927 * Should we force take the futex? See below.
928 */
929 if (unlikely(force_take)) {
930 /*
931 * Keep the OWNER_DIED and the WAITERS bit and set the
932 * new TID value.
933 */
934 newval = (curval & ~FUTEX_TID_MASK) | vpid;
935 force_take = 0;
936 lock_taken = 1;
937 }
938
939 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
940 return -EFAULT;
941 if (unlikely(curval != uval))
942 goto retry;
943
944 /*
945 * We took the lock due to forced take over.
946 */
947 if (unlikely(lock_taken))
948 return 1;
949
950 /*
951 * We dont have the lock. Look up the PI state (or create it if
952 * we are the first waiter):
953 */
954 ret = lookup_pi_state(uval, hb, key, ps, task);
955
956 if (unlikely(ret)) {
957 switch (ret) {
958 case -ESRCH:
959 /*
960 * We failed to find an owner for this
961 * futex. So we have no pi_state to block
962 * on. This can happen in two cases:
963 *
964 * 1) The owner died
965 * 2) A stale FUTEX_WAITERS bit
966 *
967 * Re-read the futex value.
968 */
969 if (get_futex_value_locked(&curval, uaddr))
970 return -EFAULT;
971
972 /*
973 * If the owner died or we have a stale
974 * WAITERS bit the owner TID in the user space
975 * futex is 0.
976 */
977 if (!(curval & FUTEX_TID_MASK)) {
978 force_take = 1;
979 goto retry;
980 }
981 default:
982 break;
983 }
984 }
985
986 return ret;
987 }
988
989 /**
990 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
991 * @q: The futex_q to unqueue
992 *
993 * The q->lock_ptr must not be NULL and must be held by the caller.
994 */
995 static void __unqueue_futex(struct futex_q *q)
996 {
997 struct futex_hash_bucket *hb;
998
999 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1000 || WARN_ON(plist_node_empty(&q->list)))
1001 return;
1002
1003 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1004 plist_del(&q->list, &hb->chain);
1005 hb_waiters_dec(hb);
1006 }
1007
1008 /*
1009 * The hash bucket lock must be held when this is called.
1010 * Afterwards, the futex_q must not be accessed.
1011 */
1012 static void wake_futex(struct futex_q *q)
1013 {
1014 struct task_struct *p = q->task;
1015
1016 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1017 return;
1018
1019 /*
1020 * We set q->lock_ptr = NULL _before_ we wake up the task. If
1021 * a non-futex wake up happens on another CPU then the task
1022 * might exit and p would dereference a non-existing task
1023 * struct. Prevent this by holding a reference on p across the
1024 * wake up.
1025 */
1026 get_task_struct(p);
1027
1028 __unqueue_futex(q);
1029 /*
1030 * The waiting task can free the futex_q as soon as
1031 * q->lock_ptr = NULL is written, without taking any locks. A
1032 * memory barrier is required here to prevent the following
1033 * store to lock_ptr from getting ahead of the plist_del.
1034 */
1035 smp_wmb();
1036 q->lock_ptr = NULL;
1037
1038 wake_up_state(p, TASK_NORMAL);
1039 put_task_struct(p);
1040 }
1041
1042 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1043 {
1044 struct task_struct *new_owner;
1045 struct futex_pi_state *pi_state = this->pi_state;
1046 u32 uninitialized_var(curval), newval;
1047
1048 if (!pi_state)
1049 return -EINVAL;
1050
1051 /*
1052 * If current does not own the pi_state then the futex is
1053 * inconsistent and user space fiddled with the futex value.
1054 */
1055 if (pi_state->owner != current)
1056 return -EINVAL;
1057
1058 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1059 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1060
1061 /*
1062 * It is possible that the next waiter (the one that brought
1063 * this owner to the kernel) timed out and is no longer
1064 * waiting on the lock.
1065 */
1066 if (!new_owner)
1067 new_owner = this->task;
1068
1069 /*
1070 * We pass it to the next owner. (The WAITERS bit is always
1071 * kept enabled while there is PI state around. We must also
1072 * preserve the owner died bit.)
1073 */
1074 if (!(uval & FUTEX_OWNER_DIED)) {
1075 int ret = 0;
1076
1077 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1078
1079 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1080 ret = -EFAULT;
1081 else if (curval != uval)
1082 ret = -EINVAL;
1083 if (ret) {
1084 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1085 return ret;
1086 }
1087 }
1088
1089 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1090 WARN_ON(list_empty(&pi_state->list));
1091 list_del_init(&pi_state->list);
1092 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1093
1094 raw_spin_lock_irq(&new_owner->pi_lock);
1095 WARN_ON(!list_empty(&pi_state->list));
1096 list_add(&pi_state->list, &new_owner->pi_state_list);
1097 pi_state->owner = new_owner;
1098 raw_spin_unlock_irq(&new_owner->pi_lock);
1099
1100 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1101 rt_mutex_unlock(&pi_state->pi_mutex);
1102
1103 return 0;
1104 }
1105
1106 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1107 {
1108 u32 uninitialized_var(oldval);
1109
1110 /*
1111 * There is no waiter, so we unlock the futex. The owner died
1112 * bit has not to be preserved here. We are the owner:
1113 */
1114 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1115 return -EFAULT;
1116 if (oldval != uval)
1117 return -EAGAIN;
1118
1119 return 0;
1120 }
1121
1122 /*
1123 * Express the locking dependencies for lockdep:
1124 */
1125 static inline void
1126 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1127 {
1128 if (hb1 <= hb2) {
1129 spin_lock(&hb1->lock);
1130 if (hb1 < hb2)
1131 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1132 } else { /* hb1 > hb2 */
1133 spin_lock(&hb2->lock);
1134 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1135 }
1136 }
1137
1138 static inline void
1139 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1140 {
1141 spin_unlock(&hb1->lock);
1142 if (hb1 != hb2)
1143 spin_unlock(&hb2->lock);
1144 }
1145
1146 /*
1147 * Wake up waiters matching bitset queued on this futex (uaddr).
1148 */
1149 static int
1150 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1151 {
1152 struct futex_hash_bucket *hb;
1153 struct futex_q *this, *next;
1154 union futex_key key = FUTEX_KEY_INIT;
1155 int ret;
1156
1157 if (!bitset)
1158 return -EINVAL;
1159
1160 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1161 if (unlikely(ret != 0))
1162 goto out;
1163
1164 hb = hash_futex(&key);
1165
1166 /* Make sure we really have tasks to wakeup */
1167 if (!hb_waiters_pending(hb))
1168 goto out_put_key;
1169
1170 spin_lock(&hb->lock);
1171
1172 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1173 if (match_futex (&this->key, &key)) {
1174 if (this->pi_state || this->rt_waiter) {
1175 ret = -EINVAL;
1176 break;
1177 }
1178
1179 /* Check if one of the bits is set in both bitsets */
1180 if (!(this->bitset & bitset))
1181 continue;
1182
1183 wake_futex(this);
1184 if (++ret >= nr_wake)
1185 break;
1186 }
1187 }
1188
1189 spin_unlock(&hb->lock);
1190 out_put_key:
1191 put_futex_key(&key);
1192 out:
1193 return ret;
1194 }
1195
1196 /*
1197 * Wake up all waiters hashed on the physical page that is mapped
1198 * to this virtual address:
1199 */
1200 static int
1201 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1202 int nr_wake, int nr_wake2, int op)
1203 {
1204 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1205 struct futex_hash_bucket *hb1, *hb2;
1206 struct futex_q *this, *next;
1207 int ret, op_ret;
1208
1209 retry:
1210 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1211 if (unlikely(ret != 0))
1212 goto out;
1213 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1214 if (unlikely(ret != 0))
1215 goto out_put_key1;
1216
1217 hb1 = hash_futex(&key1);
1218 hb2 = hash_futex(&key2);
1219
1220 retry_private:
1221 double_lock_hb(hb1, hb2);
1222 op_ret = futex_atomic_op_inuser(op, uaddr2);
1223 if (unlikely(op_ret < 0)) {
1224
1225 double_unlock_hb(hb1, hb2);
1226
1227 #ifndef CONFIG_MMU
1228 /*
1229 * we don't get EFAULT from MMU faults if we don't have an MMU,
1230 * but we might get them from range checking
1231 */
1232 ret = op_ret;
1233 goto out_put_keys;
1234 #endif
1235
1236 if (unlikely(op_ret != -EFAULT)) {
1237 ret = op_ret;
1238 goto out_put_keys;
1239 }
1240
1241 ret = fault_in_user_writeable(uaddr2);
1242 if (ret)
1243 goto out_put_keys;
1244
1245 if (!(flags & FLAGS_SHARED))
1246 goto retry_private;
1247
1248 put_futex_key(&key2);
1249 put_futex_key(&key1);
1250 goto retry;
1251 }
1252
1253 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1254 if (match_futex (&this->key, &key1)) {
1255 if (this->pi_state || this->rt_waiter) {
1256 ret = -EINVAL;
1257 goto out_unlock;
1258 }
1259 wake_futex(this);
1260 if (++ret >= nr_wake)
1261 break;
1262 }
1263 }
1264
1265 if (op_ret > 0) {
1266 op_ret = 0;
1267 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1268 if (match_futex (&this->key, &key2)) {
1269 if (this->pi_state || this->rt_waiter) {
1270 ret = -EINVAL;
1271 goto out_unlock;
1272 }
1273 wake_futex(this);
1274 if (++op_ret >= nr_wake2)
1275 break;
1276 }
1277 }
1278 ret += op_ret;
1279 }
1280
1281 out_unlock:
1282 double_unlock_hb(hb1, hb2);
1283 out_put_keys:
1284 put_futex_key(&key2);
1285 out_put_key1:
1286 put_futex_key(&key1);
1287 out:
1288 return ret;
1289 }
1290
1291 /**
1292 * requeue_futex() - Requeue a futex_q from one hb to another
1293 * @q: the futex_q to requeue
1294 * @hb1: the source hash_bucket
1295 * @hb2: the target hash_bucket
1296 * @key2: the new key for the requeued futex_q
1297 */
1298 static inline
1299 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1300 struct futex_hash_bucket *hb2, union futex_key *key2)
1301 {
1302
1303 /*
1304 * If key1 and key2 hash to the same bucket, no need to
1305 * requeue.
1306 */
1307 if (likely(&hb1->chain != &hb2->chain)) {
1308 plist_del(&q->list, &hb1->chain);
1309 hb_waiters_dec(hb1);
1310 plist_add(&q->list, &hb2->chain);
1311 hb_waiters_inc(hb2);
1312 q->lock_ptr = &hb2->lock;
1313 }
1314 get_futex_key_refs(key2);
1315 q->key = *key2;
1316 }
1317
1318 /**
1319 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1320 * @q: the futex_q
1321 * @key: the key of the requeue target futex
1322 * @hb: the hash_bucket of the requeue target futex
1323 *
1324 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1325 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1326 * to the requeue target futex so the waiter can detect the wakeup on the right
1327 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1328 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1329 * to protect access to the pi_state to fixup the owner later. Must be called
1330 * with both q->lock_ptr and hb->lock held.
1331 */
1332 static inline
1333 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1334 struct futex_hash_bucket *hb)
1335 {
1336 get_futex_key_refs(key);
1337 q->key = *key;
1338
1339 __unqueue_futex(q);
1340
1341 WARN_ON(!q->rt_waiter);
1342 q->rt_waiter = NULL;
1343
1344 q->lock_ptr = &hb->lock;
1345
1346 wake_up_state(q->task, TASK_NORMAL);
1347 }
1348
1349 /**
1350 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1351 * @pifutex: the user address of the to futex
1352 * @hb1: the from futex hash bucket, must be locked by the caller
1353 * @hb2: the to futex hash bucket, must be locked by the caller
1354 * @key1: the from futex key
1355 * @key2: the to futex key
1356 * @ps: address to store the pi_state pointer
1357 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1358 *
1359 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1360 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1361 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1362 * hb1 and hb2 must be held by the caller.
1363 *
1364 * Return:
1365 * 0 - failed to acquire the lock atomically;
1366 * >0 - acquired the lock, return value is vpid of the top_waiter
1367 * <0 - error
1368 */
1369 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1370 struct futex_hash_bucket *hb1,
1371 struct futex_hash_bucket *hb2,
1372 union futex_key *key1, union futex_key *key2,
1373 struct futex_pi_state **ps, int set_waiters)
1374 {
1375 struct futex_q *top_waiter = NULL;
1376 u32 curval;
1377 int ret, vpid;
1378
1379 if (get_futex_value_locked(&curval, pifutex))
1380 return -EFAULT;
1381
1382 /*
1383 * Find the top_waiter and determine if there are additional waiters.
1384 * If the caller intends to requeue more than 1 waiter to pifutex,
1385 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1386 * as we have means to handle the possible fault. If not, don't set
1387 * the bit unecessarily as it will force the subsequent unlock to enter
1388 * the kernel.
1389 */
1390 top_waiter = futex_top_waiter(hb1, key1);
1391
1392 /* There are no waiters, nothing for us to do. */
1393 if (!top_waiter)
1394 return 0;
1395
1396 /* Ensure we requeue to the expected futex. */
1397 if (!match_futex(top_waiter->requeue_pi_key, key2))
1398 return -EINVAL;
1399
1400 /*
1401 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1402 * the contended case or if set_waiters is 1. The pi_state is returned
1403 * in ps in contended cases.
1404 */
1405 vpid = task_pid_vnr(top_waiter->task);
1406 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1407 set_waiters);
1408 if (ret == 1) {
1409 requeue_pi_wake_futex(top_waiter, key2, hb2);
1410 return vpid;
1411 }
1412 return ret;
1413 }
1414
1415 /**
1416 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1417 * @uaddr1: source futex user address
1418 * @flags: futex flags (FLAGS_SHARED, etc.)
1419 * @uaddr2: target futex user address
1420 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1421 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1422 * @cmpval: @uaddr1 expected value (or %NULL)
1423 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1424 * pi futex (pi to pi requeue is not supported)
1425 *
1426 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1427 * uaddr2 atomically on behalf of the top waiter.
1428 *
1429 * Return:
1430 * >=0 - on success, the number of tasks requeued or woken;
1431 * <0 - on error
1432 */
1433 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1434 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1435 u32 *cmpval, int requeue_pi)
1436 {
1437 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1438 int drop_count = 0, task_count = 0, ret;
1439 struct futex_pi_state *pi_state = NULL;
1440 struct futex_hash_bucket *hb1, *hb2;
1441 struct futex_q *this, *next;
1442
1443 if (requeue_pi) {
1444 /*
1445 * Requeue PI only works on two distinct uaddrs. This
1446 * check is only valid for private futexes. See below.
1447 */
1448 if (uaddr1 == uaddr2)
1449 return -EINVAL;
1450
1451 /*
1452 * requeue_pi requires a pi_state, try to allocate it now
1453 * without any locks in case it fails.
1454 */
1455 if (refill_pi_state_cache())
1456 return -ENOMEM;
1457 /*
1458 * requeue_pi must wake as many tasks as it can, up to nr_wake
1459 * + nr_requeue, since it acquires the rt_mutex prior to
1460 * returning to userspace, so as to not leave the rt_mutex with
1461 * waiters and no owner. However, second and third wake-ups
1462 * cannot be predicted as they involve race conditions with the
1463 * first wake and a fault while looking up the pi_state. Both
1464 * pthread_cond_signal() and pthread_cond_broadcast() should
1465 * use nr_wake=1.
1466 */
1467 if (nr_wake != 1)
1468 return -EINVAL;
1469 }
1470
1471 retry:
1472 if (pi_state != NULL) {
1473 /*
1474 * We will have to lookup the pi_state again, so free this one
1475 * to keep the accounting correct.
1476 */
1477 free_pi_state(pi_state);
1478 pi_state = NULL;
1479 }
1480
1481 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1482 if (unlikely(ret != 0))
1483 goto out;
1484 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1485 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1486 if (unlikely(ret != 0))
1487 goto out_put_key1;
1488
1489 /*
1490 * The check above which compares uaddrs is not sufficient for
1491 * shared futexes. We need to compare the keys:
1492 */
1493 if (requeue_pi && match_futex(&key1, &key2)) {
1494 ret = -EINVAL;
1495 goto out_put_keys;
1496 }
1497
1498 hb1 = hash_futex(&key1);
1499 hb2 = hash_futex(&key2);
1500
1501 retry_private:
1502 hb_waiters_inc(hb2);
1503 double_lock_hb(hb1, hb2);
1504
1505 if (likely(cmpval != NULL)) {
1506 u32 curval;
1507
1508 ret = get_futex_value_locked(&curval, uaddr1);
1509
1510 if (unlikely(ret)) {
1511 double_unlock_hb(hb1, hb2);
1512 hb_waiters_dec(hb2);
1513
1514 ret = get_user(curval, uaddr1);
1515 if (ret)
1516 goto out_put_keys;
1517
1518 if (!(flags & FLAGS_SHARED))
1519 goto retry_private;
1520
1521 put_futex_key(&key2);
1522 put_futex_key(&key1);
1523 goto retry;
1524 }
1525 if (curval != *cmpval) {
1526 ret = -EAGAIN;
1527 goto out_unlock;
1528 }
1529 }
1530
1531 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1532 /*
1533 * Attempt to acquire uaddr2 and wake the top waiter. If we
1534 * intend to requeue waiters, force setting the FUTEX_WAITERS
1535 * bit. We force this here where we are able to easily handle
1536 * faults rather in the requeue loop below.
1537 */
1538 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1539 &key2, &pi_state, nr_requeue);
1540
1541 /*
1542 * At this point the top_waiter has either taken uaddr2 or is
1543 * waiting on it. If the former, then the pi_state will not
1544 * exist yet, look it up one more time to ensure we have a
1545 * reference to it. If the lock was taken, ret contains the
1546 * vpid of the top waiter task.
1547 */
1548 if (ret > 0) {
1549 WARN_ON(pi_state);
1550 drop_count++;
1551 task_count++;
1552 /*
1553 * If we acquired the lock, then the user
1554 * space value of uaddr2 should be vpid. It
1555 * cannot be changed by the top waiter as it
1556 * is blocked on hb2 lock if it tries to do
1557 * so. If something fiddled with it behind our
1558 * back the pi state lookup might unearth
1559 * it. So we rather use the known value than
1560 * rereading and handing potential crap to
1561 * lookup_pi_state.
1562 */
1563 ret = lookup_pi_state(ret, hb2, &key2, &pi_state, NULL);
1564 }
1565
1566 switch (ret) {
1567 case 0:
1568 break;
1569 case -EFAULT:
1570 double_unlock_hb(hb1, hb2);
1571 hb_waiters_dec(hb2);
1572 put_futex_key(&key2);
1573 put_futex_key(&key1);
1574 ret = fault_in_user_writeable(uaddr2);
1575 if (!ret)
1576 goto retry;
1577 goto out;
1578 case -EAGAIN:
1579 /* The owner was exiting, try again. */
1580 double_unlock_hb(hb1, hb2);
1581 hb_waiters_dec(hb2);
1582 put_futex_key(&key2);
1583 put_futex_key(&key1);
1584 cond_resched();
1585 goto retry;
1586 default:
1587 goto out_unlock;
1588 }
1589 }
1590
1591 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1592 if (task_count - nr_wake >= nr_requeue)
1593 break;
1594
1595 if (!match_futex(&this->key, &key1))
1596 continue;
1597
1598 /*
1599 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1600 * be paired with each other and no other futex ops.
1601 *
1602 * We should never be requeueing a futex_q with a pi_state,
1603 * which is awaiting a futex_unlock_pi().
1604 */
1605 if ((requeue_pi && !this->rt_waiter) ||
1606 (!requeue_pi && this->rt_waiter) ||
1607 this->pi_state) {
1608 ret = -EINVAL;
1609 break;
1610 }
1611
1612 /*
1613 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1614 * lock, we already woke the top_waiter. If not, it will be
1615 * woken by futex_unlock_pi().
1616 */
1617 if (++task_count <= nr_wake && !requeue_pi) {
1618 wake_futex(this);
1619 continue;
1620 }
1621
1622 /* Ensure we requeue to the expected futex for requeue_pi. */
1623 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1624 ret = -EINVAL;
1625 break;
1626 }
1627
1628 /*
1629 * Requeue nr_requeue waiters and possibly one more in the case
1630 * of requeue_pi if we couldn't acquire the lock atomically.
1631 */
1632 if (requeue_pi) {
1633 /* Prepare the waiter to take the rt_mutex. */
1634 atomic_inc(&pi_state->refcount);
1635 this->pi_state = pi_state;
1636 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1637 this->rt_waiter,
1638 this->task, 1);
1639 if (ret == 1) {
1640 /* We got the lock. */
1641 requeue_pi_wake_futex(this, &key2, hb2);
1642 drop_count++;
1643 continue;
1644 } else if (ret) {
1645 /* -EDEADLK */
1646 this->pi_state = NULL;
1647 free_pi_state(pi_state);
1648 goto out_unlock;
1649 }
1650 }
1651 requeue_futex(this, hb1, hb2, &key2);
1652 drop_count++;
1653 }
1654
1655 out_unlock:
1656 double_unlock_hb(hb1, hb2);
1657 hb_waiters_dec(hb2);
1658
1659 /*
1660 * drop_futex_key_refs() must be called outside the spinlocks. During
1661 * the requeue we moved futex_q's from the hash bucket at key1 to the
1662 * one at key2 and updated their key pointer. We no longer need to
1663 * hold the references to key1.
1664 */
1665 while (--drop_count >= 0)
1666 drop_futex_key_refs(&key1);
1667
1668 out_put_keys:
1669 put_futex_key(&key2);
1670 out_put_key1:
1671 put_futex_key(&key1);
1672 out:
1673 if (pi_state != NULL)
1674 free_pi_state(pi_state);
1675 return ret ? ret : task_count;
1676 }
1677
1678 /* The key must be already stored in q->key. */
1679 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1680 __acquires(&hb->lock)
1681 {
1682 struct futex_hash_bucket *hb;
1683
1684 hb = hash_futex(&q->key);
1685
1686 /*
1687 * Increment the counter before taking the lock so that
1688 * a potential waker won't miss a to-be-slept task that is
1689 * waiting for the spinlock. This is safe as all queue_lock()
1690 * users end up calling queue_me(). Similarly, for housekeeping,
1691 * decrement the counter at queue_unlock() when some error has
1692 * occurred and we don't end up adding the task to the list.
1693 */
1694 hb_waiters_inc(hb);
1695
1696 q->lock_ptr = &hb->lock;
1697
1698 spin_lock(&hb->lock); /* implies MB (A) */
1699 return hb;
1700 }
1701
1702 static inline void
1703 queue_unlock(struct futex_hash_bucket *hb)
1704 __releases(&hb->lock)
1705 {
1706 spin_unlock(&hb->lock);
1707 hb_waiters_dec(hb);
1708 }
1709
1710 /**
1711 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1712 * @q: The futex_q to enqueue
1713 * @hb: The destination hash bucket
1714 *
1715 * The hb->lock must be held by the caller, and is released here. A call to
1716 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1717 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1718 * or nothing if the unqueue is done as part of the wake process and the unqueue
1719 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1720 * an example).
1721 */
1722 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1723 __releases(&hb->lock)
1724 {
1725 int prio;
1726
1727 /*
1728 * The priority used to register this element is
1729 * - either the real thread-priority for the real-time threads
1730 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1731 * - or MAX_RT_PRIO for non-RT threads.
1732 * Thus, all RT-threads are woken first in priority order, and
1733 * the others are woken last, in FIFO order.
1734 */
1735 prio = min(current->normal_prio, MAX_RT_PRIO);
1736
1737 plist_node_init(&q->list, prio);
1738 plist_add(&q->list, &hb->chain);
1739 q->task = current;
1740 spin_unlock(&hb->lock);
1741 }
1742
1743 /**
1744 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1745 * @q: The futex_q to unqueue
1746 *
1747 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1748 * be paired with exactly one earlier call to queue_me().
1749 *
1750 * Return:
1751 * 1 - if the futex_q was still queued (and we removed unqueued it);
1752 * 0 - if the futex_q was already removed by the waking thread
1753 */
1754 static int unqueue_me(struct futex_q *q)
1755 {
1756 spinlock_t *lock_ptr;
1757 int ret = 0;
1758
1759 /* In the common case we don't take the spinlock, which is nice. */
1760 retry:
1761 lock_ptr = q->lock_ptr;
1762 barrier();
1763 if (lock_ptr != NULL) {
1764 spin_lock(lock_ptr);
1765 /*
1766 * q->lock_ptr can change between reading it and
1767 * spin_lock(), causing us to take the wrong lock. This
1768 * corrects the race condition.
1769 *
1770 * Reasoning goes like this: if we have the wrong lock,
1771 * q->lock_ptr must have changed (maybe several times)
1772 * between reading it and the spin_lock(). It can
1773 * change again after the spin_lock() but only if it was
1774 * already changed before the spin_lock(). It cannot,
1775 * however, change back to the original value. Therefore
1776 * we can detect whether we acquired the correct lock.
1777 */
1778 if (unlikely(lock_ptr != q->lock_ptr)) {
1779 spin_unlock(lock_ptr);
1780 goto retry;
1781 }
1782 __unqueue_futex(q);
1783
1784 BUG_ON(q->pi_state);
1785
1786 spin_unlock(lock_ptr);
1787 ret = 1;
1788 }
1789
1790 drop_futex_key_refs(&q->key);
1791 return ret;
1792 }
1793
1794 /*
1795 * PI futexes can not be requeued and must remove themself from the
1796 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1797 * and dropped here.
1798 */
1799 static void unqueue_me_pi(struct futex_q *q)
1800 __releases(q->lock_ptr)
1801 {
1802 __unqueue_futex(q);
1803
1804 BUG_ON(!q->pi_state);
1805 free_pi_state(q->pi_state);
1806 q->pi_state = NULL;
1807
1808 spin_unlock(q->lock_ptr);
1809 }
1810
1811 /*
1812 * Fixup the pi_state owner with the new owner.
1813 *
1814 * Must be called with hash bucket lock held and mm->sem held for non
1815 * private futexes.
1816 */
1817 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1818 struct task_struct *newowner)
1819 {
1820 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1821 struct futex_pi_state *pi_state = q->pi_state;
1822 struct task_struct *oldowner = pi_state->owner;
1823 u32 uval, uninitialized_var(curval), newval;
1824 int ret;
1825
1826 /* Owner died? */
1827 if (!pi_state->owner)
1828 newtid |= FUTEX_OWNER_DIED;
1829
1830 /*
1831 * We are here either because we stole the rtmutex from the
1832 * previous highest priority waiter or we are the highest priority
1833 * waiter but failed to get the rtmutex the first time.
1834 * We have to replace the newowner TID in the user space variable.
1835 * This must be atomic as we have to preserve the owner died bit here.
1836 *
1837 * Note: We write the user space value _before_ changing the pi_state
1838 * because we can fault here. Imagine swapped out pages or a fork
1839 * that marked all the anonymous memory readonly for cow.
1840 *
1841 * Modifying pi_state _before_ the user space value would
1842 * leave the pi_state in an inconsistent state when we fault
1843 * here, because we need to drop the hash bucket lock to
1844 * handle the fault. This might be observed in the PID check
1845 * in lookup_pi_state.
1846 */
1847 retry:
1848 if (get_futex_value_locked(&uval, uaddr))
1849 goto handle_fault;
1850
1851 while (1) {
1852 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1853
1854 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1855 goto handle_fault;
1856 if (curval == uval)
1857 break;
1858 uval = curval;
1859 }
1860
1861 /*
1862 * We fixed up user space. Now we need to fix the pi_state
1863 * itself.
1864 */
1865 if (pi_state->owner != NULL) {
1866 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1867 WARN_ON(list_empty(&pi_state->list));
1868 list_del_init(&pi_state->list);
1869 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1870 }
1871
1872 pi_state->owner = newowner;
1873
1874 raw_spin_lock_irq(&newowner->pi_lock);
1875 WARN_ON(!list_empty(&pi_state->list));
1876 list_add(&pi_state->list, &newowner->pi_state_list);
1877 raw_spin_unlock_irq(&newowner->pi_lock);
1878 return 0;
1879
1880 /*
1881 * To handle the page fault we need to drop the hash bucket
1882 * lock here. That gives the other task (either the highest priority
1883 * waiter itself or the task which stole the rtmutex) the
1884 * chance to try the fixup of the pi_state. So once we are
1885 * back from handling the fault we need to check the pi_state
1886 * after reacquiring the hash bucket lock and before trying to
1887 * do another fixup. When the fixup has been done already we
1888 * simply return.
1889 */
1890 handle_fault:
1891 spin_unlock(q->lock_ptr);
1892
1893 ret = fault_in_user_writeable(uaddr);
1894
1895 spin_lock(q->lock_ptr);
1896
1897 /*
1898 * Check if someone else fixed it for us:
1899 */
1900 if (pi_state->owner != oldowner)
1901 return 0;
1902
1903 if (ret)
1904 return ret;
1905
1906 goto retry;
1907 }
1908
1909 static long futex_wait_restart(struct restart_block *restart);
1910
1911 /**
1912 * fixup_owner() - Post lock pi_state and corner case management
1913 * @uaddr: user address of the futex
1914 * @q: futex_q (contains pi_state and access to the rt_mutex)
1915 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1916 *
1917 * After attempting to lock an rt_mutex, this function is called to cleanup
1918 * the pi_state owner as well as handle race conditions that may allow us to
1919 * acquire the lock. Must be called with the hb lock held.
1920 *
1921 * Return:
1922 * 1 - success, lock taken;
1923 * 0 - success, lock not taken;
1924 * <0 - on error (-EFAULT)
1925 */
1926 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1927 {
1928 struct task_struct *owner;
1929 int ret = 0;
1930
1931 if (locked) {
1932 /*
1933 * Got the lock. We might not be the anticipated owner if we
1934 * did a lock-steal - fix up the PI-state in that case:
1935 */
1936 if (q->pi_state->owner != current)
1937 ret = fixup_pi_state_owner(uaddr, q, current);
1938 goto out;
1939 }
1940
1941 /*
1942 * Catch the rare case, where the lock was released when we were on the
1943 * way back before we locked the hash bucket.
1944 */
1945 if (q->pi_state->owner == current) {
1946 /*
1947 * Try to get the rt_mutex now. This might fail as some other
1948 * task acquired the rt_mutex after we removed ourself from the
1949 * rt_mutex waiters list.
1950 */
1951 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1952 locked = 1;
1953 goto out;
1954 }
1955
1956 /*
1957 * pi_state is incorrect, some other task did a lock steal and
1958 * we returned due to timeout or signal without taking the
1959 * rt_mutex. Too late.
1960 */
1961 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1962 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1963 if (!owner)
1964 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1965 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1966 ret = fixup_pi_state_owner(uaddr, q, owner);
1967 goto out;
1968 }
1969
1970 /*
1971 * Paranoia check. If we did not take the lock, then we should not be
1972 * the owner of the rt_mutex.
1973 */
1974 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1975 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1976 "pi-state %p\n", ret,
1977 q->pi_state->pi_mutex.owner,
1978 q->pi_state->owner);
1979
1980 out:
1981 return ret ? ret : locked;
1982 }
1983
1984 /**
1985 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1986 * @hb: the futex hash bucket, must be locked by the caller
1987 * @q: the futex_q to queue up on
1988 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1989 */
1990 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1991 struct hrtimer_sleeper *timeout)
1992 {
1993 /*
1994 * The task state is guaranteed to be set before another task can
1995 * wake it. set_current_state() is implemented using set_mb() and
1996 * queue_me() calls spin_unlock() upon completion, both serializing
1997 * access to the hash list and forcing another memory barrier.
1998 */
1999 set_current_state(TASK_INTERRUPTIBLE);
2000 queue_me(q, hb);
2001
2002 /* Arm the timer */
2003 if (timeout) {
2004 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2005 if (!hrtimer_active(&timeout->timer))
2006 timeout->task = NULL;
2007 }
2008
2009 /*
2010 * If we have been removed from the hash list, then another task
2011 * has tried to wake us, and we can skip the call to schedule().
2012 */
2013 if (likely(!plist_node_empty(&q->list))) {
2014 /*
2015 * If the timer has already expired, current will already be
2016 * flagged for rescheduling. Only call schedule if there
2017 * is no timeout, or if it has yet to expire.
2018 */
2019 if (!timeout || timeout->task)
2020 freezable_schedule();
2021 }
2022 __set_current_state(TASK_RUNNING);
2023 }
2024
2025 /**
2026 * futex_wait_setup() - Prepare to wait on a futex
2027 * @uaddr: the futex userspace address
2028 * @val: the expected value
2029 * @flags: futex flags (FLAGS_SHARED, etc.)
2030 * @q: the associated futex_q
2031 * @hb: storage for hash_bucket pointer to be returned to caller
2032 *
2033 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2034 * compare it with the expected value. Handle atomic faults internally.
2035 * Return with the hb lock held and a q.key reference on success, and unlocked
2036 * with no q.key reference on failure.
2037 *
2038 * Return:
2039 * 0 - uaddr contains val and hb has been locked;
2040 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2041 */
2042 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2043 struct futex_q *q, struct futex_hash_bucket **hb)
2044 {
2045 u32 uval;
2046 int ret;
2047
2048 /*
2049 * Access the page AFTER the hash-bucket is locked.
2050 * Order is important:
2051 *
2052 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2053 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2054 *
2055 * The basic logical guarantee of a futex is that it blocks ONLY
2056 * if cond(var) is known to be true at the time of blocking, for
2057 * any cond. If we locked the hash-bucket after testing *uaddr, that
2058 * would open a race condition where we could block indefinitely with
2059 * cond(var) false, which would violate the guarantee.
2060 *
2061 * On the other hand, we insert q and release the hash-bucket only
2062 * after testing *uaddr. This guarantees that futex_wait() will NOT
2063 * absorb a wakeup if *uaddr does not match the desired values
2064 * while the syscall executes.
2065 */
2066 retry:
2067 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2068 if (unlikely(ret != 0))
2069 return ret;
2070
2071 retry_private:
2072 *hb = queue_lock(q);
2073
2074 ret = get_futex_value_locked(&uval, uaddr);
2075
2076 if (ret) {
2077 queue_unlock(*hb);
2078
2079 ret = get_user(uval, uaddr);
2080 if (ret)
2081 goto out;
2082
2083 if (!(flags & FLAGS_SHARED))
2084 goto retry_private;
2085
2086 put_futex_key(&q->key);
2087 goto retry;
2088 }
2089
2090 if (uval != val) {
2091 queue_unlock(*hb);
2092 ret = -EWOULDBLOCK;
2093 }
2094
2095 out:
2096 if (ret)
2097 put_futex_key(&q->key);
2098 return ret;
2099 }
2100
2101 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2102 ktime_t *abs_time, u32 bitset)
2103 {
2104 struct hrtimer_sleeper timeout, *to = NULL;
2105 struct restart_block *restart;
2106 struct futex_hash_bucket *hb;
2107 struct futex_q q = futex_q_init;
2108 int ret;
2109
2110 if (!bitset)
2111 return -EINVAL;
2112 q.bitset = bitset;
2113
2114 if (abs_time) {
2115 to = &timeout;
2116
2117 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2118 CLOCK_REALTIME : CLOCK_MONOTONIC,
2119 HRTIMER_MODE_ABS);
2120 hrtimer_init_sleeper(to, current);
2121 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2122 current->timer_slack_ns);
2123 }
2124
2125 retry:
2126 /*
2127 * Prepare to wait on uaddr. On success, holds hb lock and increments
2128 * q.key refs.
2129 */
2130 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2131 if (ret)
2132 goto out;
2133
2134 /* queue_me and wait for wakeup, timeout, or a signal. */
2135 futex_wait_queue_me(hb, &q, to);
2136
2137 /* If we were woken (and unqueued), we succeeded, whatever. */
2138 ret = 0;
2139 /* unqueue_me() drops q.key ref */
2140 if (!unqueue_me(&q))
2141 goto out;
2142 ret = -ETIMEDOUT;
2143 if (to && !to->task)
2144 goto out;
2145
2146 /*
2147 * We expect signal_pending(current), but we might be the
2148 * victim of a spurious wakeup as well.
2149 */
2150 if (!signal_pending(current))
2151 goto retry;
2152
2153 ret = -ERESTARTSYS;
2154 if (!abs_time)
2155 goto out;
2156
2157 restart = &current_thread_info()->restart_block;
2158 restart->fn = futex_wait_restart;
2159 restart->futex.uaddr = uaddr;
2160 restart->futex.val = val;
2161 restart->futex.time = abs_time->tv64;
2162 restart->futex.bitset = bitset;
2163 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2164
2165 ret = -ERESTART_RESTARTBLOCK;
2166
2167 out:
2168 if (to) {
2169 hrtimer_cancel(&to->timer);
2170 destroy_hrtimer_on_stack(&to->timer);
2171 }
2172 return ret;
2173 }
2174
2175
2176 static long futex_wait_restart(struct restart_block *restart)
2177 {
2178 u32 __user *uaddr = restart->futex.uaddr;
2179 ktime_t t, *tp = NULL;
2180
2181 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2182 t.tv64 = restart->futex.time;
2183 tp = &t;
2184 }
2185 restart->fn = do_no_restart_syscall;
2186
2187 return (long)futex_wait(uaddr, restart->futex.flags,
2188 restart->futex.val, tp, restart->futex.bitset);
2189 }
2190
2191
2192 /*
2193 * Userspace tried a 0 -> TID atomic transition of the futex value
2194 * and failed. The kernel side here does the whole locking operation:
2195 * if there are waiters then it will block, it does PI, etc. (Due to
2196 * races the kernel might see a 0 value of the futex too.)
2197 */
2198 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2199 ktime_t *time, int trylock)
2200 {
2201 struct hrtimer_sleeper timeout, *to = NULL;
2202 struct futex_hash_bucket *hb;
2203 struct futex_q q = futex_q_init;
2204 int res, ret;
2205
2206 if (refill_pi_state_cache())
2207 return -ENOMEM;
2208
2209 if (time) {
2210 to = &timeout;
2211 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2212 HRTIMER_MODE_ABS);
2213 hrtimer_init_sleeper(to, current);
2214 hrtimer_set_expires(&to->timer, *time);
2215 }
2216
2217 retry:
2218 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2219 if (unlikely(ret != 0))
2220 goto out;
2221
2222 retry_private:
2223 hb = queue_lock(&q);
2224
2225 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2226 if (unlikely(ret)) {
2227 switch (ret) {
2228 case 1:
2229 /* We got the lock. */
2230 ret = 0;
2231 goto out_unlock_put_key;
2232 case -EFAULT:
2233 goto uaddr_faulted;
2234 case -EAGAIN:
2235 /*
2236 * Task is exiting and we just wait for the
2237 * exit to complete.
2238 */
2239 queue_unlock(hb);
2240 put_futex_key(&q.key);
2241 cond_resched();
2242 goto retry;
2243 default:
2244 goto out_unlock_put_key;
2245 }
2246 }
2247
2248 /*
2249 * Only actually queue now that the atomic ops are done:
2250 */
2251 queue_me(&q, hb);
2252
2253 WARN_ON(!q.pi_state);
2254 /*
2255 * Block on the PI mutex:
2256 */
2257 if (!trylock)
2258 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2259 else {
2260 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2261 /* Fixup the trylock return value: */
2262 ret = ret ? 0 : -EWOULDBLOCK;
2263 }
2264
2265 spin_lock(q.lock_ptr);
2266 /*
2267 * Fixup the pi_state owner and possibly acquire the lock if we
2268 * haven't already.
2269 */
2270 res = fixup_owner(uaddr, &q, !ret);
2271 /*
2272 * If fixup_owner() returned an error, proprogate that. If it acquired
2273 * the lock, clear our -ETIMEDOUT or -EINTR.
2274 */
2275 if (res)
2276 ret = (res < 0) ? res : 0;
2277
2278 /*
2279 * If fixup_owner() faulted and was unable to handle the fault, unlock
2280 * it and return the fault to userspace.
2281 */
2282 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2283 rt_mutex_unlock(&q.pi_state->pi_mutex);
2284
2285 /* Unqueue and drop the lock */
2286 unqueue_me_pi(&q);
2287
2288 goto out_put_key;
2289
2290 out_unlock_put_key:
2291 queue_unlock(hb);
2292
2293 out_put_key:
2294 put_futex_key(&q.key);
2295 out:
2296 if (to)
2297 destroy_hrtimer_on_stack(&to->timer);
2298 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2299
2300 uaddr_faulted:
2301 queue_unlock(hb);
2302
2303 ret = fault_in_user_writeable(uaddr);
2304 if (ret)
2305 goto out_put_key;
2306
2307 if (!(flags & FLAGS_SHARED))
2308 goto retry_private;
2309
2310 put_futex_key(&q.key);
2311 goto retry;
2312 }
2313
2314 /*
2315 * Userspace attempted a TID -> 0 atomic transition, and failed.
2316 * This is the in-kernel slowpath: we look up the PI state (if any),
2317 * and do the rt-mutex unlock.
2318 */
2319 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2320 {
2321 struct futex_hash_bucket *hb;
2322 struct futex_q *this, *next;
2323 union futex_key key = FUTEX_KEY_INIT;
2324 u32 uval, vpid = task_pid_vnr(current);
2325 int ret;
2326
2327 retry:
2328 if (get_user(uval, uaddr))
2329 return -EFAULT;
2330 /*
2331 * We release only a lock we actually own:
2332 */
2333 if ((uval & FUTEX_TID_MASK) != vpid)
2334 return -EPERM;
2335
2336 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2337 if (unlikely(ret != 0))
2338 goto out;
2339
2340 hb = hash_futex(&key);
2341 spin_lock(&hb->lock);
2342
2343 /*
2344 * To avoid races, try to do the TID -> 0 atomic transition
2345 * again. If it succeeds then we can return without waking
2346 * anyone else up:
2347 */
2348 if (!(uval & FUTEX_OWNER_DIED) &&
2349 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2350 goto pi_faulted;
2351 /*
2352 * Rare case: we managed to release the lock atomically,
2353 * no need to wake anyone else up:
2354 */
2355 if (unlikely(uval == vpid))
2356 goto out_unlock;
2357
2358 /*
2359 * Ok, other tasks may need to be woken up - check waiters
2360 * and do the wakeup if necessary:
2361 */
2362 plist_for_each_entry_safe(this, next, &hb->chain, list) {
2363 if (!match_futex (&this->key, &key))
2364 continue;
2365 ret = wake_futex_pi(uaddr, uval, this);
2366 /*
2367 * The atomic access to the futex value
2368 * generated a pagefault, so retry the
2369 * user-access and the wakeup:
2370 */
2371 if (ret == -EFAULT)
2372 goto pi_faulted;
2373 goto out_unlock;
2374 }
2375 /*
2376 * No waiters - kernel unlocks the futex:
2377 */
2378 if (!(uval & FUTEX_OWNER_DIED)) {
2379 ret = unlock_futex_pi(uaddr, uval);
2380 if (ret == -EFAULT)
2381 goto pi_faulted;
2382 }
2383
2384 out_unlock:
2385 spin_unlock(&hb->lock);
2386 put_futex_key(&key);
2387
2388 out:
2389 return ret;
2390
2391 pi_faulted:
2392 spin_unlock(&hb->lock);
2393 put_futex_key(&key);
2394
2395 ret = fault_in_user_writeable(uaddr);
2396 if (!ret)
2397 goto retry;
2398
2399 return ret;
2400 }
2401
2402 /**
2403 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2404 * @hb: the hash_bucket futex_q was original enqueued on
2405 * @q: the futex_q woken while waiting to be requeued
2406 * @key2: the futex_key of the requeue target futex
2407 * @timeout: the timeout associated with the wait (NULL if none)
2408 *
2409 * Detect if the task was woken on the initial futex as opposed to the requeue
2410 * target futex. If so, determine if it was a timeout or a signal that caused
2411 * the wakeup and return the appropriate error code to the caller. Must be
2412 * called with the hb lock held.
2413 *
2414 * Return:
2415 * 0 = no early wakeup detected;
2416 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2417 */
2418 static inline
2419 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2420 struct futex_q *q, union futex_key *key2,
2421 struct hrtimer_sleeper *timeout)
2422 {
2423 int ret = 0;
2424
2425 /*
2426 * With the hb lock held, we avoid races while we process the wakeup.
2427 * We only need to hold hb (and not hb2) to ensure atomicity as the
2428 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2429 * It can't be requeued from uaddr2 to something else since we don't
2430 * support a PI aware source futex for requeue.
2431 */
2432 if (!match_futex(&q->key, key2)) {
2433 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2434 /*
2435 * We were woken prior to requeue by a timeout or a signal.
2436 * Unqueue the futex_q and determine which it was.
2437 */
2438 plist_del(&q->list, &hb->chain);
2439 hb_waiters_dec(hb);
2440
2441 /* Handle spurious wakeups gracefully */
2442 ret = -EWOULDBLOCK;
2443 if (timeout && !timeout->task)
2444 ret = -ETIMEDOUT;
2445 else if (signal_pending(current))
2446 ret = -ERESTARTNOINTR;
2447 }
2448 return ret;
2449 }
2450
2451 /**
2452 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2453 * @uaddr: the futex we initially wait on (non-pi)
2454 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2455 * the same type, no requeueing from private to shared, etc.
2456 * @val: the expected value of uaddr
2457 * @abs_time: absolute timeout
2458 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2459 * @uaddr2: the pi futex we will take prior to returning to user-space
2460 *
2461 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2462 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2463 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2464 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2465 * without one, the pi logic would not know which task to boost/deboost, if
2466 * there was a need to.
2467 *
2468 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2469 * via the following--
2470 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2471 * 2) wakeup on uaddr2 after a requeue
2472 * 3) signal
2473 * 4) timeout
2474 *
2475 * If 3, cleanup and return -ERESTARTNOINTR.
2476 *
2477 * If 2, we may then block on trying to take the rt_mutex and return via:
2478 * 5) successful lock
2479 * 6) signal
2480 * 7) timeout
2481 * 8) other lock acquisition failure
2482 *
2483 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2484 *
2485 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2486 *
2487 * Return:
2488 * 0 - On success;
2489 * <0 - On error
2490 */
2491 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2492 u32 val, ktime_t *abs_time, u32 bitset,
2493 u32 __user *uaddr2)
2494 {
2495 struct hrtimer_sleeper timeout, *to = NULL;
2496 struct rt_mutex_waiter rt_waiter;
2497 struct rt_mutex *pi_mutex = NULL;
2498 struct futex_hash_bucket *hb;
2499 union futex_key key2 = FUTEX_KEY_INIT;
2500 struct futex_q q = futex_q_init;
2501 int res, ret;
2502
2503 if (uaddr == uaddr2)
2504 return -EINVAL;
2505
2506 if (!bitset)
2507 return -EINVAL;
2508
2509 if (abs_time) {
2510 to = &timeout;
2511 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2512 CLOCK_REALTIME : CLOCK_MONOTONIC,
2513 HRTIMER_MODE_ABS);
2514 hrtimer_init_sleeper(to, current);
2515 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2516 current->timer_slack_ns);
2517 }
2518
2519 /*
2520 * The waiter is allocated on our stack, manipulated by the requeue
2521 * code while we sleep on uaddr.
2522 */
2523 debug_rt_mutex_init_waiter(&rt_waiter);
2524 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2525 RB_CLEAR_NODE(&rt_waiter.tree_entry);
2526 rt_waiter.task = NULL;
2527
2528 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2529 if (unlikely(ret != 0))
2530 goto out;
2531
2532 q.bitset = bitset;
2533 q.rt_waiter = &rt_waiter;
2534 q.requeue_pi_key = &key2;
2535
2536 /*
2537 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2538 * count.
2539 */
2540 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2541 if (ret)
2542 goto out_key2;
2543
2544 /*
2545 * The check above which compares uaddrs is not sufficient for
2546 * shared futexes. We need to compare the keys:
2547 */
2548 if (match_futex(&q.key, &key2)) {
2549 ret = -EINVAL;
2550 goto out_put_keys;
2551 }
2552
2553 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2554 futex_wait_queue_me(hb, &q, to);
2555
2556 spin_lock(&hb->lock);
2557 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2558 spin_unlock(&hb->lock);
2559 if (ret)
2560 goto out_put_keys;
2561
2562 /*
2563 * In order for us to be here, we know our q.key == key2, and since
2564 * we took the hb->lock above, we also know that futex_requeue() has
2565 * completed and we no longer have to concern ourselves with a wakeup
2566 * race with the atomic proxy lock acquisition by the requeue code. The
2567 * futex_requeue dropped our key1 reference and incremented our key2
2568 * reference count.
2569 */
2570
2571 /* Check if the requeue code acquired the second futex for us. */
2572 if (!q.rt_waiter) {
2573 /*
2574 * Got the lock. We might not be the anticipated owner if we
2575 * did a lock-steal - fix up the PI-state in that case.
2576 */
2577 if (q.pi_state && (q.pi_state->owner != current)) {
2578 spin_lock(q.lock_ptr);
2579 ret = fixup_pi_state_owner(uaddr2, &q, current);
2580 spin_unlock(q.lock_ptr);
2581 }
2582 } else {
2583 /*
2584 * We have been woken up by futex_unlock_pi(), a timeout, or a
2585 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2586 * the pi_state.
2587 */
2588 WARN_ON(!q.pi_state);
2589 pi_mutex = &q.pi_state->pi_mutex;
2590 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2591 debug_rt_mutex_free_waiter(&rt_waiter);
2592
2593 spin_lock(q.lock_ptr);
2594 /*
2595 * Fixup the pi_state owner and possibly acquire the lock if we
2596 * haven't already.
2597 */
2598 res = fixup_owner(uaddr2, &q, !ret);
2599 /*
2600 * If fixup_owner() returned an error, proprogate that. If it
2601 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2602 */
2603 if (res)
2604 ret = (res < 0) ? res : 0;
2605
2606 /* Unqueue and drop the lock. */
2607 unqueue_me_pi(&q);
2608 }
2609
2610 /*
2611 * If fixup_pi_state_owner() faulted and was unable to handle the
2612 * fault, unlock the rt_mutex and return the fault to userspace.
2613 */
2614 if (ret == -EFAULT) {
2615 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2616 rt_mutex_unlock(pi_mutex);
2617 } else if (ret == -EINTR) {
2618 /*
2619 * We've already been requeued, but cannot restart by calling
2620 * futex_lock_pi() directly. We could restart this syscall, but
2621 * it would detect that the user space "val" changed and return
2622 * -EWOULDBLOCK. Save the overhead of the restart and return
2623 * -EWOULDBLOCK directly.
2624 */
2625 ret = -EWOULDBLOCK;
2626 }
2627
2628 out_put_keys:
2629 put_futex_key(&q.key);
2630 out_key2:
2631 put_futex_key(&key2);
2632
2633 out:
2634 if (to) {
2635 hrtimer_cancel(&to->timer);
2636 destroy_hrtimer_on_stack(&to->timer);
2637 }
2638 return ret;
2639 }
2640
2641 /*
2642 * Support for robust futexes: the kernel cleans up held futexes at
2643 * thread exit time.
2644 *
2645 * Implementation: user-space maintains a per-thread list of locks it
2646 * is holding. Upon do_exit(), the kernel carefully walks this list,
2647 * and marks all locks that are owned by this thread with the
2648 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2649 * always manipulated with the lock held, so the list is private and
2650 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2651 * field, to allow the kernel to clean up if the thread dies after
2652 * acquiring the lock, but just before it could have added itself to
2653 * the list. There can only be one such pending lock.
2654 */
2655
2656 /**
2657 * sys_set_robust_list() - Set the robust-futex list head of a task
2658 * @head: pointer to the list-head
2659 * @len: length of the list-head, as userspace expects
2660 */
2661 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2662 size_t, len)
2663 {
2664 if (!futex_cmpxchg_enabled)
2665 return -ENOSYS;
2666 /*
2667 * The kernel knows only one size for now:
2668 */
2669 if (unlikely(len != sizeof(*head)))
2670 return -EINVAL;
2671
2672 current->robust_list = head;
2673
2674 return 0;
2675 }
2676
2677 /**
2678 * sys_get_robust_list() - Get the robust-futex list head of a task
2679 * @pid: pid of the process [zero for current task]
2680 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2681 * @len_ptr: pointer to a length field, the kernel fills in the header size
2682 */
2683 SYSCALL_DEFINE3(get_robust_list, int, pid,
2684 struct robust_list_head __user * __user *, head_ptr,
2685 size_t __user *, len_ptr)
2686 {
2687 struct robust_list_head __user *head;
2688 unsigned long ret;
2689 struct task_struct *p;
2690
2691 if (!futex_cmpxchg_enabled)
2692 return -ENOSYS;
2693
2694 rcu_read_lock();
2695
2696 ret = -ESRCH;
2697 if (!pid)
2698 p = current;
2699 else {
2700 p = find_task_by_vpid(pid);
2701 if (!p)
2702 goto err_unlock;
2703 }
2704
2705 ret = -EPERM;
2706 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2707 goto err_unlock;
2708
2709 head = p->robust_list;
2710 rcu_read_unlock();
2711
2712 if (put_user(sizeof(*head), len_ptr))
2713 return -EFAULT;
2714 return put_user(head, head_ptr);
2715
2716 err_unlock:
2717 rcu_read_unlock();
2718
2719 return ret;
2720 }
2721
2722 /*
2723 * Process a futex-list entry, check whether it's owned by the
2724 * dying task, and do notification if so:
2725 */
2726 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2727 {
2728 u32 uval, uninitialized_var(nval), mval;
2729
2730 retry:
2731 if (get_user(uval, uaddr))
2732 return -1;
2733
2734 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2735 /*
2736 * Ok, this dying thread is truly holding a futex
2737 * of interest. Set the OWNER_DIED bit atomically
2738 * via cmpxchg, and if the value had FUTEX_WAITERS
2739 * set, wake up a waiter (if any). (We have to do a
2740 * futex_wake() even if OWNER_DIED is already set -
2741 * to handle the rare but possible case of recursive
2742 * thread-death.) The rest of the cleanup is done in
2743 * userspace.
2744 */
2745 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2746 /*
2747 * We are not holding a lock here, but we want to have
2748 * the pagefault_disable/enable() protection because
2749 * we want to handle the fault gracefully. If the
2750 * access fails we try to fault in the futex with R/W
2751 * verification via get_user_pages. get_user() above
2752 * does not guarantee R/W access. If that fails we
2753 * give up and leave the futex locked.
2754 */
2755 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2756 if (fault_in_user_writeable(uaddr))
2757 return -1;
2758 goto retry;
2759 }
2760 if (nval != uval)
2761 goto retry;
2762
2763 /*
2764 * Wake robust non-PI futexes here. The wakeup of
2765 * PI futexes happens in exit_pi_state():
2766 */
2767 if (!pi && (uval & FUTEX_WAITERS))
2768 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2769 }
2770 return 0;
2771 }
2772
2773 /*
2774 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2775 */
2776 static inline int fetch_robust_entry(struct robust_list __user **entry,
2777 struct robust_list __user * __user *head,
2778 unsigned int *pi)
2779 {
2780 unsigned long uentry;
2781
2782 if (get_user(uentry, (unsigned long __user *)head))
2783 return -EFAULT;
2784
2785 *entry = (void __user *)(uentry & ~1UL);
2786 *pi = uentry & 1;
2787
2788 return 0;
2789 }
2790
2791 /*
2792 * Walk curr->robust_list (very carefully, it's a userspace list!)
2793 * and mark any locks found there dead, and notify any waiters.
2794 *
2795 * We silently return on any sign of list-walking problem.
2796 */
2797 void exit_robust_list(struct task_struct *curr)
2798 {
2799 struct robust_list_head __user *head = curr->robust_list;
2800 struct robust_list __user *entry, *next_entry, *pending;
2801 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2802 unsigned int uninitialized_var(next_pi);
2803 unsigned long futex_offset;
2804 int rc;
2805
2806 if (!futex_cmpxchg_enabled)
2807 return;
2808
2809 /*
2810 * Fetch the list head (which was registered earlier, via
2811 * sys_set_robust_list()):
2812 */
2813 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2814 return;
2815 /*
2816 * Fetch the relative futex offset:
2817 */
2818 if (get_user(futex_offset, &head->futex_offset))
2819 return;
2820 /*
2821 * Fetch any possibly pending lock-add first, and handle it
2822 * if it exists:
2823 */
2824 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2825 return;
2826
2827 next_entry = NULL; /* avoid warning with gcc */
2828 while (entry != &head->list) {
2829 /*
2830 * Fetch the next entry in the list before calling
2831 * handle_futex_death:
2832 */
2833 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2834 /*
2835 * A pending lock might already be on the list, so
2836 * don't process it twice:
2837 */
2838 if (entry != pending)
2839 if (handle_futex_death((void __user *)entry + futex_offset,
2840 curr, pi))
2841 return;
2842 if (rc)
2843 return;
2844 entry = next_entry;
2845 pi = next_pi;
2846 /*
2847 * Avoid excessively long or circular lists:
2848 */
2849 if (!--limit)
2850 break;
2851
2852 cond_resched();
2853 }
2854
2855 if (pending)
2856 handle_futex_death((void __user *)pending + futex_offset,
2857 curr, pip);
2858 }
2859
2860 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2861 u32 __user *uaddr2, u32 val2, u32 val3)
2862 {
2863 int cmd = op & FUTEX_CMD_MASK;
2864 unsigned int flags = 0;
2865
2866 if (!(op & FUTEX_PRIVATE_FLAG))
2867 flags |= FLAGS_SHARED;
2868
2869 if (op & FUTEX_CLOCK_REALTIME) {
2870 flags |= FLAGS_CLOCKRT;
2871 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2872 return -ENOSYS;
2873 }
2874
2875 switch (cmd) {
2876 case FUTEX_LOCK_PI:
2877 case FUTEX_UNLOCK_PI:
2878 case FUTEX_TRYLOCK_PI:
2879 case FUTEX_WAIT_REQUEUE_PI:
2880 case FUTEX_CMP_REQUEUE_PI:
2881 if (!futex_cmpxchg_enabled)
2882 return -ENOSYS;
2883 }
2884
2885 switch (cmd) {
2886 case FUTEX_WAIT:
2887 val3 = FUTEX_BITSET_MATCH_ANY;
2888 case FUTEX_WAIT_BITSET:
2889 return futex_wait(uaddr, flags, val, timeout, val3);
2890 case FUTEX_WAKE:
2891 val3 = FUTEX_BITSET_MATCH_ANY;
2892 case FUTEX_WAKE_BITSET:
2893 return futex_wake(uaddr, flags, val, val3);
2894 case FUTEX_REQUEUE:
2895 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2896 case FUTEX_CMP_REQUEUE:
2897 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2898 case FUTEX_WAKE_OP:
2899 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2900 case FUTEX_LOCK_PI:
2901 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2902 case FUTEX_UNLOCK_PI:
2903 return futex_unlock_pi(uaddr, flags);
2904 case FUTEX_TRYLOCK_PI:
2905 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2906 case FUTEX_WAIT_REQUEUE_PI:
2907 val3 = FUTEX_BITSET_MATCH_ANY;
2908 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2909 uaddr2);
2910 case FUTEX_CMP_REQUEUE_PI:
2911 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2912 }
2913 return -ENOSYS;
2914 }
2915
2916
2917 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2918 struct timespec __user *, utime, u32 __user *, uaddr2,
2919 u32, val3)
2920 {
2921 struct timespec ts;
2922 ktime_t t, *tp = NULL;
2923 u32 val2 = 0;
2924 int cmd = op & FUTEX_CMD_MASK;
2925
2926 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2927 cmd == FUTEX_WAIT_BITSET ||
2928 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2929 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2930 return -EFAULT;
2931 if (!timespec_valid(&ts))
2932 return -EINVAL;
2933
2934 t = timespec_to_ktime(ts);
2935 if (cmd == FUTEX_WAIT)
2936 t = ktime_add_safe(ktime_get(), t);
2937 tp = &t;
2938 }
2939 /*
2940 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2941 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2942 */
2943 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2944 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2945 val2 = (u32) (unsigned long) utime;
2946
2947 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2948 }
2949
2950 static void __init futex_detect_cmpxchg(void)
2951 {
2952 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
2953 u32 curval;
2954
2955 /*
2956 * This will fail and we want it. Some arch implementations do
2957 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2958 * functionality. We want to know that before we call in any
2959 * of the complex code paths. Also we want to prevent
2960 * registration of robust lists in that case. NULL is
2961 * guaranteed to fault and we get -EFAULT on functional
2962 * implementation, the non-functional ones will return
2963 * -ENOSYS.
2964 */
2965 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2966 futex_cmpxchg_enabled = 1;
2967 #endif
2968 }
2969
2970 static int __init futex_init(void)
2971 {
2972 unsigned int futex_shift;
2973 unsigned long i;
2974
2975 #if CONFIG_BASE_SMALL
2976 futex_hashsize = 16;
2977 #else
2978 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
2979 #endif
2980
2981 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
2982 futex_hashsize, 0,
2983 futex_hashsize < 256 ? HASH_SMALL : 0,
2984 &futex_shift, NULL,
2985 futex_hashsize, futex_hashsize);
2986 futex_hashsize = 1UL << futex_shift;
2987
2988 futex_detect_cmpxchg();
2989
2990 for (i = 0; i < futex_hashsize; i++) {
2991 atomic_set(&futex_queues[i].waiters, 0);
2992 plist_head_init(&futex_queues[i].chain);
2993 spin_lock_init(&futex_queues[i].lock);
2994 }
2995
2996 return 0;
2997 }
2998 __initcall(futex_init);
This page took 0.092178 seconds and 5 git commands to generate.