7ae2f50641ed16c635d17b01ca9773c9ab1747d1
[deliverable/linux.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
20 * enough at me, Linus for the original (flawed) idea, Matthew
21 * Kirkwood for proof-of-concept implementation.
22 *
23 * "The futexes are also cursed."
24 * "But they come in a choice of three flavours!"
25 *
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
30 *
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
35 *
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
39 */
40 #include <linux/slab.h>
41 #include <linux/poll.h>
42 #include <linux/fs.h>
43 #include <linux/file.h>
44 #include <linux/jhash.h>
45 #include <linux/init.h>
46 #include <linux/futex.h>
47 #include <linux/mount.h>
48 #include <linux/pagemap.h>
49 #include <linux/syscalls.h>
50 #include <linux/signal.h>
51 #include <linux/module.h>
52 #include <asm/futex.h>
53
54 #include "rtmutex_common.h"
55
56 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
57
58 /*
59 * Priority Inheritance state:
60 */
61 struct futex_pi_state {
62 /*
63 * list of 'owned' pi_state instances - these have to be
64 * cleaned up in do_exit() if the task exits prematurely:
65 */
66 struct list_head list;
67
68 /*
69 * The PI object:
70 */
71 struct rt_mutex pi_mutex;
72
73 struct task_struct *owner;
74 atomic_t refcount;
75
76 union futex_key key;
77 };
78
79 /*
80 * We use this hashed waitqueue instead of a normal wait_queue_t, so
81 * we can wake only the relevant ones (hashed queues may be shared).
82 *
83 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
84 * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
85 * The order of wakup is always to make the first condition true, then
86 * wake up q->waiters, then make the second condition true.
87 */
88 struct futex_q {
89 struct list_head list;
90 wait_queue_head_t waiters;
91
92 /* Which hash list lock to use: */
93 spinlock_t *lock_ptr;
94
95 /* Key which the futex is hashed on: */
96 union futex_key key;
97
98 /* For fd, sigio sent using these: */
99 int fd;
100 struct file *filp;
101
102 /* Optional priority inheritance state: */
103 struct futex_pi_state *pi_state;
104 struct task_struct *task;
105 };
106
107 /*
108 * Split the global futex_lock into every hash list lock.
109 */
110 struct futex_hash_bucket {
111 spinlock_t lock;
112 struct list_head chain;
113 };
114
115 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
116
117 /* Futex-fs vfsmount entry: */
118 static struct vfsmount *futex_mnt;
119
120 /*
121 * We hash on the keys returned from get_futex_key (see below).
122 */
123 static struct futex_hash_bucket *hash_futex(union futex_key *key)
124 {
125 u32 hash = jhash2((u32*)&key->both.word,
126 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
127 key->both.offset);
128 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
129 }
130
131 /*
132 * Return 1 if two futex_keys are equal, 0 otherwise.
133 */
134 static inline int match_futex(union futex_key *key1, union futex_key *key2)
135 {
136 return (key1->both.word == key2->both.word
137 && key1->both.ptr == key2->both.ptr
138 && key1->both.offset == key2->both.offset);
139 }
140
141 /*
142 * Get parameters which are the keys for a futex.
143 *
144 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
145 * offset_within_page). For private mappings, it's (uaddr, current->mm).
146 * We can usually work out the index without swapping in the page.
147 *
148 * Returns: 0, or negative error code.
149 * The key words are stored in *key on success.
150 *
151 * Should be called with &current->mm->mmap_sem but NOT any spinlocks.
152 */
153 int get_futex_key(u32 __user *uaddr, union futex_key *key)
154 {
155 unsigned long address = (unsigned long)uaddr;
156 struct mm_struct *mm = current->mm;
157 struct vm_area_struct *vma;
158 struct page *page;
159 int err;
160
161 /*
162 * The futex address must be "naturally" aligned.
163 */
164 key->both.offset = address % PAGE_SIZE;
165 if (unlikely((key->both.offset % sizeof(u32)) != 0))
166 return -EINVAL;
167 address -= key->both.offset;
168
169 /*
170 * The futex is hashed differently depending on whether
171 * it's in a shared or private mapping. So check vma first.
172 */
173 vma = find_extend_vma(mm, address);
174 if (unlikely(!vma))
175 return -EFAULT;
176
177 /*
178 * Permissions.
179 */
180 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
181 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
182
183 /*
184 * Private mappings are handled in a simple way.
185 *
186 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
187 * it's a read-only handle, it's expected that futexes attach to
188 * the object not the particular process. Therefore we use
189 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
190 * mappings of _writable_ handles.
191 */
192 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
193 key->private.mm = mm;
194 key->private.address = address;
195 return 0;
196 }
197
198 /*
199 * Linear file mappings are also simple.
200 */
201 key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
202 key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
203 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
204 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
205 + vma->vm_pgoff);
206 return 0;
207 }
208
209 /*
210 * We could walk the page table to read the non-linear
211 * pte, and get the page index without fetching the page
212 * from swap. But that's a lot of code to duplicate here
213 * for a rare case, so we simply fetch the page.
214 */
215 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
216 if (err >= 0) {
217 key->shared.pgoff =
218 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
219 put_page(page);
220 return 0;
221 }
222 return err;
223 }
224 EXPORT_SYMBOL_GPL(get_futex_key);
225
226 /*
227 * Take a reference to the resource addressed by a key.
228 * Can be called while holding spinlocks.
229 *
230 * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
231 * function, if it is called at all. mmap_sem keeps key->shared.inode valid.
232 */
233 inline void get_futex_key_refs(union futex_key *key)
234 {
235 if (key->both.ptr != 0) {
236 if (key->both.offset & 1)
237 atomic_inc(&key->shared.inode->i_count);
238 else
239 atomic_inc(&key->private.mm->mm_count);
240 }
241 }
242 EXPORT_SYMBOL_GPL(get_futex_key_refs);
243
244 /*
245 * Drop a reference to the resource addressed by a key.
246 * The hash bucket spinlock must not be held.
247 */
248 void drop_futex_key_refs(union futex_key *key)
249 {
250 if (key->both.ptr != 0) {
251 if (key->both.offset & 1)
252 iput(key->shared.inode);
253 else
254 mmdrop(key->private.mm);
255 }
256 }
257 EXPORT_SYMBOL_GPL(drop_futex_key_refs);
258
259 static inline int get_futex_value_locked(u32 *dest, u32 __user *from)
260 {
261 int ret;
262
263 pagefault_disable();
264 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
265 pagefault_enable();
266
267 return ret ? -EFAULT : 0;
268 }
269
270 /*
271 * Fault handling. Called with current->mm->mmap_sem held.
272 */
273 static int futex_handle_fault(unsigned long address, int attempt)
274 {
275 struct vm_area_struct * vma;
276 struct mm_struct *mm = current->mm;
277
278 if (attempt > 2 || !(vma = find_vma(mm, address)) ||
279 vma->vm_start > address || !(vma->vm_flags & VM_WRITE))
280 return -EFAULT;
281
282 switch (handle_mm_fault(mm, vma, address, 1)) {
283 case VM_FAULT_MINOR:
284 current->min_flt++;
285 break;
286 case VM_FAULT_MAJOR:
287 current->maj_flt++;
288 break;
289 default:
290 return -EFAULT;
291 }
292 return 0;
293 }
294
295 /*
296 * PI code:
297 */
298 static int refill_pi_state_cache(void)
299 {
300 struct futex_pi_state *pi_state;
301
302 if (likely(current->pi_state_cache))
303 return 0;
304
305 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
306
307 if (!pi_state)
308 return -ENOMEM;
309
310 INIT_LIST_HEAD(&pi_state->list);
311 /* pi_mutex gets initialized later */
312 pi_state->owner = NULL;
313 atomic_set(&pi_state->refcount, 1);
314
315 current->pi_state_cache = pi_state;
316
317 return 0;
318 }
319
320 static struct futex_pi_state * alloc_pi_state(void)
321 {
322 struct futex_pi_state *pi_state = current->pi_state_cache;
323
324 WARN_ON(!pi_state);
325 current->pi_state_cache = NULL;
326
327 return pi_state;
328 }
329
330 static void free_pi_state(struct futex_pi_state *pi_state)
331 {
332 if (!atomic_dec_and_test(&pi_state->refcount))
333 return;
334
335 /*
336 * If pi_state->owner is NULL, the owner is most probably dying
337 * and has cleaned up the pi_state already
338 */
339 if (pi_state->owner) {
340 spin_lock_irq(&pi_state->owner->pi_lock);
341 list_del_init(&pi_state->list);
342 spin_unlock_irq(&pi_state->owner->pi_lock);
343
344 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
345 }
346
347 if (current->pi_state_cache)
348 kfree(pi_state);
349 else {
350 /*
351 * pi_state->list is already empty.
352 * clear pi_state->owner.
353 * refcount is at 0 - put it back to 1.
354 */
355 pi_state->owner = NULL;
356 atomic_set(&pi_state->refcount, 1);
357 current->pi_state_cache = pi_state;
358 }
359 }
360
361 /*
362 * Look up the task based on what TID userspace gave us.
363 * We dont trust it.
364 */
365 static struct task_struct * futex_find_get_task(pid_t pid)
366 {
367 struct task_struct *p;
368
369 rcu_read_lock();
370 p = find_task_by_pid(pid);
371 if (!p)
372 goto out_unlock;
373 if ((current->euid != p->euid) && (current->euid != p->uid)) {
374 p = NULL;
375 goto out_unlock;
376 }
377 if (p->exit_state != 0) {
378 p = NULL;
379 goto out_unlock;
380 }
381 get_task_struct(p);
382 out_unlock:
383 rcu_read_unlock();
384
385 return p;
386 }
387
388 /*
389 * This task is holding PI mutexes at exit time => bad.
390 * Kernel cleans up PI-state, but userspace is likely hosed.
391 * (Robust-futex cleanup is separate and might save the day for userspace.)
392 */
393 void exit_pi_state_list(struct task_struct *curr)
394 {
395 struct list_head *next, *head = &curr->pi_state_list;
396 struct futex_pi_state *pi_state;
397 struct futex_hash_bucket *hb;
398 union futex_key key;
399
400 /*
401 * We are a ZOMBIE and nobody can enqueue itself on
402 * pi_state_list anymore, but we have to be careful
403 * versus waiters unqueueing themselves:
404 */
405 spin_lock_irq(&curr->pi_lock);
406 while (!list_empty(head)) {
407
408 next = head->next;
409 pi_state = list_entry(next, struct futex_pi_state, list);
410 key = pi_state->key;
411 hb = hash_futex(&key);
412 spin_unlock_irq(&curr->pi_lock);
413
414 spin_lock(&hb->lock);
415
416 spin_lock_irq(&curr->pi_lock);
417 /*
418 * We dropped the pi-lock, so re-check whether this
419 * task still owns the PI-state:
420 */
421 if (head->next != next) {
422 spin_unlock(&hb->lock);
423 continue;
424 }
425
426 WARN_ON(pi_state->owner != curr);
427 WARN_ON(list_empty(&pi_state->list));
428 list_del_init(&pi_state->list);
429 pi_state->owner = NULL;
430 spin_unlock_irq(&curr->pi_lock);
431
432 rt_mutex_unlock(&pi_state->pi_mutex);
433
434 spin_unlock(&hb->lock);
435
436 spin_lock_irq(&curr->pi_lock);
437 }
438 spin_unlock_irq(&curr->pi_lock);
439 }
440
441 static int
442 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, struct futex_q *me)
443 {
444 struct futex_pi_state *pi_state = NULL;
445 struct futex_q *this, *next;
446 struct list_head *head;
447 struct task_struct *p;
448 pid_t pid;
449
450 head = &hb->chain;
451
452 list_for_each_entry_safe(this, next, head, list) {
453 if (match_futex(&this->key, &me->key)) {
454 /*
455 * Another waiter already exists - bump up
456 * the refcount and return its pi_state:
457 */
458 pi_state = this->pi_state;
459 /*
460 * Userspace might have messed up non PI and PI futexes
461 */
462 if (unlikely(!pi_state))
463 return -EINVAL;
464
465 WARN_ON(!atomic_read(&pi_state->refcount));
466
467 atomic_inc(&pi_state->refcount);
468 me->pi_state = pi_state;
469
470 return 0;
471 }
472 }
473
474 /*
475 * We are the first waiter - try to look up the real owner and attach
476 * the new pi_state to it, but bail out when the owner died bit is set
477 * and TID = 0:
478 */
479 pid = uval & FUTEX_TID_MASK;
480 if (!pid && (uval & FUTEX_OWNER_DIED))
481 return -ESRCH;
482 p = futex_find_get_task(pid);
483 if (!p)
484 return -ESRCH;
485
486 pi_state = alloc_pi_state();
487
488 /*
489 * Initialize the pi_mutex in locked state and make 'p'
490 * the owner of it:
491 */
492 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
493
494 /* Store the key for possible exit cleanups: */
495 pi_state->key = me->key;
496
497 spin_lock_irq(&p->pi_lock);
498 WARN_ON(!list_empty(&pi_state->list));
499 list_add(&pi_state->list, &p->pi_state_list);
500 pi_state->owner = p;
501 spin_unlock_irq(&p->pi_lock);
502
503 put_task_struct(p);
504
505 me->pi_state = pi_state;
506
507 return 0;
508 }
509
510 /*
511 * The hash bucket lock must be held when this is called.
512 * Afterwards, the futex_q must not be accessed.
513 */
514 static void wake_futex(struct futex_q *q)
515 {
516 list_del_init(&q->list);
517 if (q->filp)
518 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
519 /*
520 * The lock in wake_up_all() is a crucial memory barrier after the
521 * list_del_init() and also before assigning to q->lock_ptr.
522 */
523 wake_up_all(&q->waiters);
524 /*
525 * The waiting task can free the futex_q as soon as this is written,
526 * without taking any locks. This must come last.
527 *
528 * A memory barrier is required here to prevent the following store
529 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
530 * at the end of wake_up_all() does not prevent this store from
531 * moving.
532 */
533 smp_wmb();
534 q->lock_ptr = NULL;
535 }
536
537 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
538 {
539 struct task_struct *new_owner;
540 struct futex_pi_state *pi_state = this->pi_state;
541 u32 curval, newval;
542
543 if (!pi_state)
544 return -EINVAL;
545
546 spin_lock(&pi_state->pi_mutex.wait_lock);
547 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
548
549 /*
550 * This happens when we have stolen the lock and the original
551 * pending owner did not enqueue itself back on the rt_mutex.
552 * Thats not a tragedy. We know that way, that a lock waiter
553 * is on the fly. We make the futex_q waiter the pending owner.
554 */
555 if (!new_owner)
556 new_owner = this->task;
557
558 /*
559 * We pass it to the next owner. (The WAITERS bit is always
560 * kept enabled while there is PI state around. We must also
561 * preserve the owner died bit.)
562 */
563 if (!(uval & FUTEX_OWNER_DIED)) {
564 newval = FUTEX_WAITERS | new_owner->pid;
565
566 pagefault_disable();
567 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
568 pagefault_enable();
569 if (curval == -EFAULT)
570 return -EFAULT;
571 if (curval != uval)
572 return -EINVAL;
573 }
574
575 spin_lock_irq(&pi_state->owner->pi_lock);
576 WARN_ON(list_empty(&pi_state->list));
577 list_del_init(&pi_state->list);
578 spin_unlock_irq(&pi_state->owner->pi_lock);
579
580 spin_lock_irq(&new_owner->pi_lock);
581 WARN_ON(!list_empty(&pi_state->list));
582 list_add(&pi_state->list, &new_owner->pi_state_list);
583 pi_state->owner = new_owner;
584 spin_unlock_irq(&new_owner->pi_lock);
585
586 spin_unlock(&pi_state->pi_mutex.wait_lock);
587 rt_mutex_unlock(&pi_state->pi_mutex);
588
589 return 0;
590 }
591
592 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
593 {
594 u32 oldval;
595
596 /*
597 * There is no waiter, so we unlock the futex. The owner died
598 * bit has not to be preserved here. We are the owner:
599 */
600 pagefault_disable();
601 oldval = futex_atomic_cmpxchg_inatomic(uaddr, uval, 0);
602 pagefault_enable();
603
604 if (oldval == -EFAULT)
605 return oldval;
606 if (oldval != uval)
607 return -EAGAIN;
608
609 return 0;
610 }
611
612 /*
613 * Express the locking dependencies for lockdep:
614 */
615 static inline void
616 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
617 {
618 if (hb1 <= hb2) {
619 spin_lock(&hb1->lock);
620 if (hb1 < hb2)
621 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
622 } else { /* hb1 > hb2 */
623 spin_lock(&hb2->lock);
624 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
625 }
626 }
627
628 /*
629 * Wake up all waiters hashed on the physical page that is mapped
630 * to this virtual address:
631 */
632 static int futex_wake(u32 __user *uaddr, int nr_wake)
633 {
634 struct futex_hash_bucket *hb;
635 struct futex_q *this, *next;
636 struct list_head *head;
637 union futex_key key;
638 int ret;
639
640 down_read(&current->mm->mmap_sem);
641
642 ret = get_futex_key(uaddr, &key);
643 if (unlikely(ret != 0))
644 goto out;
645
646 hb = hash_futex(&key);
647 spin_lock(&hb->lock);
648 head = &hb->chain;
649
650 list_for_each_entry_safe(this, next, head, list) {
651 if (match_futex (&this->key, &key)) {
652 if (this->pi_state) {
653 ret = -EINVAL;
654 break;
655 }
656 wake_futex(this);
657 if (++ret >= nr_wake)
658 break;
659 }
660 }
661
662 spin_unlock(&hb->lock);
663 out:
664 up_read(&current->mm->mmap_sem);
665 return ret;
666 }
667
668 /*
669 * Wake up all waiters hashed on the physical page that is mapped
670 * to this virtual address:
671 */
672 static int
673 futex_wake_op(u32 __user *uaddr1, u32 __user *uaddr2,
674 int nr_wake, int nr_wake2, int op)
675 {
676 union futex_key key1, key2;
677 struct futex_hash_bucket *hb1, *hb2;
678 struct list_head *head;
679 struct futex_q *this, *next;
680 int ret, op_ret, attempt = 0;
681
682 retryfull:
683 down_read(&current->mm->mmap_sem);
684
685 ret = get_futex_key(uaddr1, &key1);
686 if (unlikely(ret != 0))
687 goto out;
688 ret = get_futex_key(uaddr2, &key2);
689 if (unlikely(ret != 0))
690 goto out;
691
692 hb1 = hash_futex(&key1);
693 hb2 = hash_futex(&key2);
694
695 retry:
696 double_lock_hb(hb1, hb2);
697
698 op_ret = futex_atomic_op_inuser(op, uaddr2);
699 if (unlikely(op_ret < 0)) {
700 u32 dummy;
701
702 spin_unlock(&hb1->lock);
703 if (hb1 != hb2)
704 spin_unlock(&hb2->lock);
705
706 #ifndef CONFIG_MMU
707 /*
708 * we don't get EFAULT from MMU faults if we don't have an MMU,
709 * but we might get them from range checking
710 */
711 ret = op_ret;
712 goto out;
713 #endif
714
715 if (unlikely(op_ret != -EFAULT)) {
716 ret = op_ret;
717 goto out;
718 }
719
720 /*
721 * futex_atomic_op_inuser needs to both read and write
722 * *(int __user *)uaddr2, but we can't modify it
723 * non-atomically. Therefore, if get_user below is not
724 * enough, we need to handle the fault ourselves, while
725 * still holding the mmap_sem.
726 */
727 if (attempt++) {
728 if (futex_handle_fault((unsigned long)uaddr2,
729 attempt)) {
730 ret = -EFAULT;
731 goto out;
732 }
733 goto retry;
734 }
735
736 /*
737 * If we would have faulted, release mmap_sem,
738 * fault it in and start all over again.
739 */
740 up_read(&current->mm->mmap_sem);
741
742 ret = get_user(dummy, uaddr2);
743 if (ret)
744 return ret;
745
746 goto retryfull;
747 }
748
749 head = &hb1->chain;
750
751 list_for_each_entry_safe(this, next, head, list) {
752 if (match_futex (&this->key, &key1)) {
753 wake_futex(this);
754 if (++ret >= nr_wake)
755 break;
756 }
757 }
758
759 if (op_ret > 0) {
760 head = &hb2->chain;
761
762 op_ret = 0;
763 list_for_each_entry_safe(this, next, head, list) {
764 if (match_futex (&this->key, &key2)) {
765 wake_futex(this);
766 if (++op_ret >= nr_wake2)
767 break;
768 }
769 }
770 ret += op_ret;
771 }
772
773 spin_unlock(&hb1->lock);
774 if (hb1 != hb2)
775 spin_unlock(&hb2->lock);
776 out:
777 up_read(&current->mm->mmap_sem);
778 return ret;
779 }
780
781 /*
782 * Requeue all waiters hashed on one physical page to another
783 * physical page.
784 */
785 static int futex_requeue(u32 __user *uaddr1, u32 __user *uaddr2,
786 int nr_wake, int nr_requeue, u32 *cmpval)
787 {
788 union futex_key key1, key2;
789 struct futex_hash_bucket *hb1, *hb2;
790 struct list_head *head1;
791 struct futex_q *this, *next;
792 int ret, drop_count = 0;
793
794 retry:
795 down_read(&current->mm->mmap_sem);
796
797 ret = get_futex_key(uaddr1, &key1);
798 if (unlikely(ret != 0))
799 goto out;
800 ret = get_futex_key(uaddr2, &key2);
801 if (unlikely(ret != 0))
802 goto out;
803
804 hb1 = hash_futex(&key1);
805 hb2 = hash_futex(&key2);
806
807 double_lock_hb(hb1, hb2);
808
809 if (likely(cmpval != NULL)) {
810 u32 curval;
811
812 ret = get_futex_value_locked(&curval, uaddr1);
813
814 if (unlikely(ret)) {
815 spin_unlock(&hb1->lock);
816 if (hb1 != hb2)
817 spin_unlock(&hb2->lock);
818
819 /*
820 * If we would have faulted, release mmap_sem, fault
821 * it in and start all over again.
822 */
823 up_read(&current->mm->mmap_sem);
824
825 ret = get_user(curval, uaddr1);
826
827 if (!ret)
828 goto retry;
829
830 return ret;
831 }
832 if (curval != *cmpval) {
833 ret = -EAGAIN;
834 goto out_unlock;
835 }
836 }
837
838 head1 = &hb1->chain;
839 list_for_each_entry_safe(this, next, head1, list) {
840 if (!match_futex (&this->key, &key1))
841 continue;
842 if (++ret <= nr_wake) {
843 wake_futex(this);
844 } else {
845 /*
846 * If key1 and key2 hash to the same bucket, no need to
847 * requeue.
848 */
849 if (likely(head1 != &hb2->chain)) {
850 list_move_tail(&this->list, &hb2->chain);
851 this->lock_ptr = &hb2->lock;
852 }
853 this->key = key2;
854 get_futex_key_refs(&key2);
855 drop_count++;
856
857 if (ret - nr_wake >= nr_requeue)
858 break;
859 }
860 }
861
862 out_unlock:
863 spin_unlock(&hb1->lock);
864 if (hb1 != hb2)
865 spin_unlock(&hb2->lock);
866
867 /* drop_futex_key_refs() must be called outside the spinlocks. */
868 while (--drop_count >= 0)
869 drop_futex_key_refs(&key1);
870
871 out:
872 up_read(&current->mm->mmap_sem);
873 return ret;
874 }
875
876 /* The key must be already stored in q->key. */
877 static inline struct futex_hash_bucket *
878 queue_lock(struct futex_q *q, int fd, struct file *filp)
879 {
880 struct futex_hash_bucket *hb;
881
882 q->fd = fd;
883 q->filp = filp;
884
885 init_waitqueue_head(&q->waiters);
886
887 get_futex_key_refs(&q->key);
888 hb = hash_futex(&q->key);
889 q->lock_ptr = &hb->lock;
890
891 spin_lock(&hb->lock);
892 return hb;
893 }
894
895 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
896 {
897 list_add_tail(&q->list, &hb->chain);
898 q->task = current;
899 spin_unlock(&hb->lock);
900 }
901
902 static inline void
903 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
904 {
905 spin_unlock(&hb->lock);
906 drop_futex_key_refs(&q->key);
907 }
908
909 /*
910 * queue_me and unqueue_me must be called as a pair, each
911 * exactly once. They are called with the hashed spinlock held.
912 */
913
914 /* The key must be already stored in q->key. */
915 static void queue_me(struct futex_q *q, int fd, struct file *filp)
916 {
917 struct futex_hash_bucket *hb;
918
919 hb = queue_lock(q, fd, filp);
920 __queue_me(q, hb);
921 }
922
923 /* Return 1 if we were still queued (ie. 0 means we were woken) */
924 static int unqueue_me(struct futex_q *q)
925 {
926 spinlock_t *lock_ptr;
927 int ret = 0;
928
929 /* In the common case we don't take the spinlock, which is nice. */
930 retry:
931 lock_ptr = q->lock_ptr;
932 barrier();
933 if (lock_ptr != 0) {
934 spin_lock(lock_ptr);
935 /*
936 * q->lock_ptr can change between reading it and
937 * spin_lock(), causing us to take the wrong lock. This
938 * corrects the race condition.
939 *
940 * Reasoning goes like this: if we have the wrong lock,
941 * q->lock_ptr must have changed (maybe several times)
942 * between reading it and the spin_lock(). It can
943 * change again after the spin_lock() but only if it was
944 * already changed before the spin_lock(). It cannot,
945 * however, change back to the original value. Therefore
946 * we can detect whether we acquired the correct lock.
947 */
948 if (unlikely(lock_ptr != q->lock_ptr)) {
949 spin_unlock(lock_ptr);
950 goto retry;
951 }
952 WARN_ON(list_empty(&q->list));
953 list_del(&q->list);
954
955 BUG_ON(q->pi_state);
956
957 spin_unlock(lock_ptr);
958 ret = 1;
959 }
960
961 drop_futex_key_refs(&q->key);
962 return ret;
963 }
964
965 /*
966 * PI futexes can not be requeued and must remove themself from the
967 * hash bucket. The hash bucket lock is held on entry and dropped here.
968 */
969 static void unqueue_me_pi(struct futex_q *q, struct futex_hash_bucket *hb)
970 {
971 WARN_ON(list_empty(&q->list));
972 list_del(&q->list);
973
974 BUG_ON(!q->pi_state);
975 free_pi_state(q->pi_state);
976 q->pi_state = NULL;
977
978 spin_unlock(&hb->lock);
979
980 drop_futex_key_refs(&q->key);
981 }
982
983 static int futex_wait(u32 __user *uaddr, u32 val, unsigned long time)
984 {
985 struct task_struct *curr = current;
986 DECLARE_WAITQUEUE(wait, curr);
987 struct futex_hash_bucket *hb;
988 struct futex_q q;
989 u32 uval;
990 int ret;
991
992 q.pi_state = NULL;
993 retry:
994 down_read(&curr->mm->mmap_sem);
995
996 ret = get_futex_key(uaddr, &q.key);
997 if (unlikely(ret != 0))
998 goto out_release_sem;
999
1000 hb = queue_lock(&q, -1, NULL);
1001
1002 /*
1003 * Access the page AFTER the futex is queued.
1004 * Order is important:
1005 *
1006 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1007 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1008 *
1009 * The basic logical guarantee of a futex is that it blocks ONLY
1010 * if cond(var) is known to be true at the time of blocking, for
1011 * any cond. If we queued after testing *uaddr, that would open
1012 * a race condition where we could block indefinitely with
1013 * cond(var) false, which would violate the guarantee.
1014 *
1015 * A consequence is that futex_wait() can return zero and absorb
1016 * a wakeup when *uaddr != val on entry to the syscall. This is
1017 * rare, but normal.
1018 *
1019 * We hold the mmap semaphore, so the mapping cannot have changed
1020 * since we looked it up in get_futex_key.
1021 */
1022 ret = get_futex_value_locked(&uval, uaddr);
1023
1024 if (unlikely(ret)) {
1025 queue_unlock(&q, hb);
1026
1027 /*
1028 * If we would have faulted, release mmap_sem, fault it in and
1029 * start all over again.
1030 */
1031 up_read(&curr->mm->mmap_sem);
1032
1033 ret = get_user(uval, uaddr);
1034
1035 if (!ret)
1036 goto retry;
1037 return ret;
1038 }
1039 ret = -EWOULDBLOCK;
1040 if (uval != val)
1041 goto out_unlock_release_sem;
1042
1043 /* Only actually queue if *uaddr contained val. */
1044 __queue_me(&q, hb);
1045
1046 /*
1047 * Now the futex is queued and we have checked the data, we
1048 * don't want to hold mmap_sem while we sleep.
1049 */
1050 up_read(&curr->mm->mmap_sem);
1051
1052 /*
1053 * There might have been scheduling since the queue_me(), as we
1054 * cannot hold a spinlock across the get_user() in case it
1055 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1056 * queueing ourselves into the futex hash. This code thus has to
1057 * rely on the futex_wake() code removing us from hash when it
1058 * wakes us up.
1059 */
1060
1061 /* add_wait_queue is the barrier after __set_current_state. */
1062 __set_current_state(TASK_INTERRUPTIBLE);
1063 add_wait_queue(&q.waiters, &wait);
1064 /*
1065 * !list_empty() is safe here without any lock.
1066 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1067 */
1068 if (likely(!list_empty(&q.list)))
1069 time = schedule_timeout(time);
1070 __set_current_state(TASK_RUNNING);
1071
1072 /*
1073 * NOTE: we don't remove ourselves from the waitqueue because
1074 * we are the only user of it.
1075 */
1076
1077 /* If we were woken (and unqueued), we succeeded, whatever. */
1078 if (!unqueue_me(&q))
1079 return 0;
1080 if (time == 0)
1081 return -ETIMEDOUT;
1082 /*
1083 * We expect signal_pending(current), but another thread may
1084 * have handled it for us already.
1085 */
1086 return -EINTR;
1087
1088 out_unlock_release_sem:
1089 queue_unlock(&q, hb);
1090
1091 out_release_sem:
1092 up_read(&curr->mm->mmap_sem);
1093 return ret;
1094 }
1095
1096 /*
1097 * Userspace tried a 0 -> TID atomic transition of the futex value
1098 * and failed. The kernel side here does the whole locking operation:
1099 * if there are waiters then it will block, it does PI, etc. (Due to
1100 * races the kernel might see a 0 value of the futex too.)
1101 */
1102 static int futex_lock_pi(u32 __user *uaddr, int detect, unsigned long sec,
1103 long nsec, int trylock)
1104 {
1105 struct hrtimer_sleeper timeout, *to = NULL;
1106 struct task_struct *curr = current;
1107 struct futex_hash_bucket *hb;
1108 u32 uval, newval, curval;
1109 struct futex_q q;
1110 int ret, attempt = 0;
1111
1112 if (refill_pi_state_cache())
1113 return -ENOMEM;
1114
1115 if (sec != MAX_SCHEDULE_TIMEOUT) {
1116 to = &timeout;
1117 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
1118 hrtimer_init_sleeper(to, current);
1119 to->timer.expires = ktime_set(sec, nsec);
1120 }
1121
1122 q.pi_state = NULL;
1123 retry:
1124 down_read(&curr->mm->mmap_sem);
1125
1126 ret = get_futex_key(uaddr, &q.key);
1127 if (unlikely(ret != 0))
1128 goto out_release_sem;
1129
1130 hb = queue_lock(&q, -1, NULL);
1131
1132 retry_locked:
1133 /*
1134 * To avoid races, we attempt to take the lock here again
1135 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1136 * the locks. It will most likely not succeed.
1137 */
1138 newval = current->pid;
1139
1140 pagefault_disable();
1141 curval = futex_atomic_cmpxchg_inatomic(uaddr, 0, newval);
1142 pagefault_enable();
1143
1144 if (unlikely(curval == -EFAULT))
1145 goto uaddr_faulted;
1146
1147 /* We own the lock already */
1148 if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
1149 if (!detect && 0)
1150 force_sig(SIGKILL, current);
1151 ret = -EDEADLK;
1152 goto out_unlock_release_sem;
1153 }
1154
1155 /*
1156 * Surprise - we got the lock. Just return
1157 * to userspace:
1158 */
1159 if (unlikely(!curval))
1160 goto out_unlock_release_sem;
1161
1162 uval = curval;
1163 newval = uval | FUTEX_WAITERS;
1164
1165 pagefault_disable();
1166 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
1167 pagefault_enable();
1168
1169 if (unlikely(curval == -EFAULT))
1170 goto uaddr_faulted;
1171 if (unlikely(curval != uval))
1172 goto retry_locked;
1173
1174 /*
1175 * We dont have the lock. Look up the PI state (or create it if
1176 * we are the first waiter):
1177 */
1178 ret = lookup_pi_state(uval, hb, &q);
1179
1180 if (unlikely(ret)) {
1181 /*
1182 * There were no waiters and the owner task lookup
1183 * failed. When the OWNER_DIED bit is set, then we
1184 * know that this is a robust futex and we actually
1185 * take the lock. This is safe as we are protected by
1186 * the hash bucket lock. We also set the waiters bit
1187 * unconditionally here, to simplify glibc handling of
1188 * multiple tasks racing to acquire the lock and
1189 * cleanup the problems which were left by the dead
1190 * owner.
1191 */
1192 if (curval & FUTEX_OWNER_DIED) {
1193 uval = newval;
1194 newval = current->pid |
1195 FUTEX_OWNER_DIED | FUTEX_WAITERS;
1196
1197 pagefault_disable();
1198 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1199 uval, newval);
1200 pagefault_enable();
1201
1202 if (unlikely(curval == -EFAULT))
1203 goto uaddr_faulted;
1204 if (unlikely(curval != uval))
1205 goto retry_locked;
1206 ret = 0;
1207 }
1208 goto out_unlock_release_sem;
1209 }
1210
1211 /*
1212 * Only actually queue now that the atomic ops are done:
1213 */
1214 __queue_me(&q, hb);
1215
1216 /*
1217 * Now the futex is queued and we have checked the data, we
1218 * don't want to hold mmap_sem while we sleep.
1219 */
1220 up_read(&curr->mm->mmap_sem);
1221
1222 WARN_ON(!q.pi_state);
1223 /*
1224 * Block on the PI mutex:
1225 */
1226 if (!trylock)
1227 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1228 else {
1229 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1230 /* Fixup the trylock return value: */
1231 ret = ret ? 0 : -EWOULDBLOCK;
1232 }
1233
1234 down_read(&curr->mm->mmap_sem);
1235 spin_lock(q.lock_ptr);
1236
1237 /*
1238 * Got the lock. We might not be the anticipated owner if we
1239 * did a lock-steal - fix up the PI-state in that case.
1240 */
1241 if (!ret && q.pi_state->owner != curr) {
1242 u32 newtid = current->pid | FUTEX_WAITERS;
1243
1244 /* Owner died? */
1245 if (q.pi_state->owner != NULL) {
1246 spin_lock_irq(&q.pi_state->owner->pi_lock);
1247 WARN_ON(list_empty(&q.pi_state->list));
1248 list_del_init(&q.pi_state->list);
1249 spin_unlock_irq(&q.pi_state->owner->pi_lock);
1250 } else
1251 newtid |= FUTEX_OWNER_DIED;
1252
1253 q.pi_state->owner = current;
1254
1255 spin_lock_irq(&current->pi_lock);
1256 WARN_ON(!list_empty(&q.pi_state->list));
1257 list_add(&q.pi_state->list, &current->pi_state_list);
1258 spin_unlock_irq(&current->pi_lock);
1259
1260 /* Unqueue and drop the lock */
1261 unqueue_me_pi(&q, hb);
1262 up_read(&curr->mm->mmap_sem);
1263 /*
1264 * We own it, so we have to replace the pending owner
1265 * TID. This must be atomic as we have preserve the
1266 * owner died bit here.
1267 */
1268 ret = get_user(uval, uaddr);
1269 while (!ret) {
1270 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1271 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1272 uval, newval);
1273 if (curval == -EFAULT)
1274 ret = -EFAULT;
1275 if (curval == uval)
1276 break;
1277 uval = curval;
1278 }
1279 } else {
1280 /*
1281 * Catch the rare case, where the lock was released
1282 * when we were on the way back before we locked
1283 * the hash bucket.
1284 */
1285 if (ret && q.pi_state->owner == curr) {
1286 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1287 ret = 0;
1288 }
1289 /* Unqueue and drop the lock */
1290 unqueue_me_pi(&q, hb);
1291 up_read(&curr->mm->mmap_sem);
1292 }
1293
1294 if (!detect && ret == -EDEADLK && 0)
1295 force_sig(SIGKILL, current);
1296
1297 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1298
1299 out_unlock_release_sem:
1300 queue_unlock(&q, hb);
1301
1302 out_release_sem:
1303 up_read(&curr->mm->mmap_sem);
1304 return ret;
1305
1306 uaddr_faulted:
1307 /*
1308 * We have to r/w *(int __user *)uaddr, but we can't modify it
1309 * non-atomically. Therefore, if get_user below is not
1310 * enough, we need to handle the fault ourselves, while
1311 * still holding the mmap_sem.
1312 */
1313 if (attempt++) {
1314 if (futex_handle_fault((unsigned long)uaddr, attempt)) {
1315 ret = -EFAULT;
1316 goto out_unlock_release_sem;
1317 }
1318 goto retry_locked;
1319 }
1320
1321 queue_unlock(&q, hb);
1322 up_read(&curr->mm->mmap_sem);
1323
1324 ret = get_user(uval, uaddr);
1325 if (!ret && (uval != -EFAULT))
1326 goto retry;
1327
1328 return ret;
1329 }
1330
1331 /*
1332 * Userspace attempted a TID -> 0 atomic transition, and failed.
1333 * This is the in-kernel slowpath: we look up the PI state (if any),
1334 * and do the rt-mutex unlock.
1335 */
1336 static int futex_unlock_pi(u32 __user *uaddr)
1337 {
1338 struct futex_hash_bucket *hb;
1339 struct futex_q *this, *next;
1340 u32 uval;
1341 struct list_head *head;
1342 union futex_key key;
1343 int ret, attempt = 0;
1344
1345 retry:
1346 if (get_user(uval, uaddr))
1347 return -EFAULT;
1348 /*
1349 * We release only a lock we actually own:
1350 */
1351 if ((uval & FUTEX_TID_MASK) != current->pid)
1352 return -EPERM;
1353 /*
1354 * First take all the futex related locks:
1355 */
1356 down_read(&current->mm->mmap_sem);
1357
1358 ret = get_futex_key(uaddr, &key);
1359 if (unlikely(ret != 0))
1360 goto out;
1361
1362 hb = hash_futex(&key);
1363 spin_lock(&hb->lock);
1364
1365 retry_locked:
1366 /*
1367 * To avoid races, try to do the TID -> 0 atomic transition
1368 * again. If it succeeds then we can return without waking
1369 * anyone else up:
1370 */
1371 if (!(uval & FUTEX_OWNER_DIED)) {
1372 pagefault_disable();
1373 uval = futex_atomic_cmpxchg_inatomic(uaddr, current->pid, 0);
1374 pagefault_enable();
1375 }
1376
1377 if (unlikely(uval == -EFAULT))
1378 goto pi_faulted;
1379 /*
1380 * Rare case: we managed to release the lock atomically,
1381 * no need to wake anyone else up:
1382 */
1383 if (unlikely(uval == current->pid))
1384 goto out_unlock;
1385
1386 /*
1387 * Ok, other tasks may need to be woken up - check waiters
1388 * and do the wakeup if necessary:
1389 */
1390 head = &hb->chain;
1391
1392 list_for_each_entry_safe(this, next, head, list) {
1393 if (!match_futex (&this->key, &key))
1394 continue;
1395 ret = wake_futex_pi(uaddr, uval, this);
1396 /*
1397 * The atomic access to the futex value
1398 * generated a pagefault, so retry the
1399 * user-access and the wakeup:
1400 */
1401 if (ret == -EFAULT)
1402 goto pi_faulted;
1403 goto out_unlock;
1404 }
1405 /*
1406 * No waiters - kernel unlocks the futex:
1407 */
1408 if (!(uval & FUTEX_OWNER_DIED)) {
1409 ret = unlock_futex_pi(uaddr, uval);
1410 if (ret == -EFAULT)
1411 goto pi_faulted;
1412 }
1413
1414 out_unlock:
1415 spin_unlock(&hb->lock);
1416 out:
1417 up_read(&current->mm->mmap_sem);
1418
1419 return ret;
1420
1421 pi_faulted:
1422 /*
1423 * We have to r/w *(int __user *)uaddr, but we can't modify it
1424 * non-atomically. Therefore, if get_user below is not
1425 * enough, we need to handle the fault ourselves, while
1426 * still holding the mmap_sem.
1427 */
1428 if (attempt++) {
1429 if (futex_handle_fault((unsigned long)uaddr, attempt)) {
1430 ret = -EFAULT;
1431 goto out_unlock;
1432 }
1433 goto retry_locked;
1434 }
1435
1436 spin_unlock(&hb->lock);
1437 up_read(&current->mm->mmap_sem);
1438
1439 ret = get_user(uval, uaddr);
1440 if (!ret && (uval != -EFAULT))
1441 goto retry;
1442
1443 return ret;
1444 }
1445
1446 static int futex_close(struct inode *inode, struct file *filp)
1447 {
1448 struct futex_q *q = filp->private_data;
1449
1450 unqueue_me(q);
1451 kfree(q);
1452
1453 return 0;
1454 }
1455
1456 /* This is one-shot: once it's gone off you need a new fd */
1457 static unsigned int futex_poll(struct file *filp,
1458 struct poll_table_struct *wait)
1459 {
1460 struct futex_q *q = filp->private_data;
1461 int ret = 0;
1462
1463 poll_wait(filp, &q->waiters, wait);
1464
1465 /*
1466 * list_empty() is safe here without any lock.
1467 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1468 */
1469 if (list_empty(&q->list))
1470 ret = POLLIN | POLLRDNORM;
1471
1472 return ret;
1473 }
1474
1475 static const struct file_operations futex_fops = {
1476 .release = futex_close,
1477 .poll = futex_poll,
1478 };
1479
1480 /*
1481 * Signal allows caller to avoid the race which would occur if they
1482 * set the sigio stuff up afterwards.
1483 */
1484 static int futex_fd(u32 __user *uaddr, int signal)
1485 {
1486 struct futex_q *q;
1487 struct file *filp;
1488 int ret, err;
1489 static unsigned long printk_interval;
1490
1491 if (printk_timed_ratelimit(&printk_interval, 60 * 60 * 1000)) {
1492 printk(KERN_WARNING "Process `%s' used FUTEX_FD, which "
1493 "will be removed from the kernel in June 2007\n",
1494 current->comm);
1495 }
1496
1497 ret = -EINVAL;
1498 if (!valid_signal(signal))
1499 goto out;
1500
1501 ret = get_unused_fd();
1502 if (ret < 0)
1503 goto out;
1504 filp = get_empty_filp();
1505 if (!filp) {
1506 put_unused_fd(ret);
1507 ret = -ENFILE;
1508 goto out;
1509 }
1510 filp->f_op = &futex_fops;
1511 filp->f_path.mnt = mntget(futex_mnt);
1512 filp->f_path.dentry = dget(futex_mnt->mnt_root);
1513 filp->f_mapping = filp->f_path.dentry->d_inode->i_mapping;
1514
1515 if (signal) {
1516 err = __f_setown(filp, task_pid(current), PIDTYPE_PID, 1);
1517 if (err < 0) {
1518 goto error;
1519 }
1520 filp->f_owner.signum = signal;
1521 }
1522
1523 q = kmalloc(sizeof(*q), GFP_KERNEL);
1524 if (!q) {
1525 err = -ENOMEM;
1526 goto error;
1527 }
1528 q->pi_state = NULL;
1529
1530 down_read(&current->mm->mmap_sem);
1531 err = get_futex_key(uaddr, &q->key);
1532
1533 if (unlikely(err != 0)) {
1534 up_read(&current->mm->mmap_sem);
1535 kfree(q);
1536 goto error;
1537 }
1538
1539 /*
1540 * queue_me() must be called before releasing mmap_sem, because
1541 * key->shared.inode needs to be referenced while holding it.
1542 */
1543 filp->private_data = q;
1544
1545 queue_me(q, ret, filp);
1546 up_read(&current->mm->mmap_sem);
1547
1548 /* Now we map fd to filp, so userspace can access it */
1549 fd_install(ret, filp);
1550 out:
1551 return ret;
1552 error:
1553 put_unused_fd(ret);
1554 put_filp(filp);
1555 ret = err;
1556 goto out;
1557 }
1558
1559 /*
1560 * Support for robust futexes: the kernel cleans up held futexes at
1561 * thread exit time.
1562 *
1563 * Implementation: user-space maintains a per-thread list of locks it
1564 * is holding. Upon do_exit(), the kernel carefully walks this list,
1565 * and marks all locks that are owned by this thread with the
1566 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1567 * always manipulated with the lock held, so the list is private and
1568 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1569 * field, to allow the kernel to clean up if the thread dies after
1570 * acquiring the lock, but just before it could have added itself to
1571 * the list. There can only be one such pending lock.
1572 */
1573
1574 /**
1575 * sys_set_robust_list - set the robust-futex list head of a task
1576 * @head: pointer to the list-head
1577 * @len: length of the list-head, as userspace expects
1578 */
1579 asmlinkage long
1580 sys_set_robust_list(struct robust_list_head __user *head,
1581 size_t len)
1582 {
1583 /*
1584 * The kernel knows only one size for now:
1585 */
1586 if (unlikely(len != sizeof(*head)))
1587 return -EINVAL;
1588
1589 current->robust_list = head;
1590
1591 return 0;
1592 }
1593
1594 /**
1595 * sys_get_robust_list - get the robust-futex list head of a task
1596 * @pid: pid of the process [zero for current task]
1597 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1598 * @len_ptr: pointer to a length field, the kernel fills in the header size
1599 */
1600 asmlinkage long
1601 sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
1602 size_t __user *len_ptr)
1603 {
1604 struct robust_list_head __user *head;
1605 unsigned long ret;
1606
1607 if (!pid)
1608 head = current->robust_list;
1609 else {
1610 struct task_struct *p;
1611
1612 ret = -ESRCH;
1613 rcu_read_lock();
1614 p = find_task_by_pid(pid);
1615 if (!p)
1616 goto err_unlock;
1617 ret = -EPERM;
1618 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1619 !capable(CAP_SYS_PTRACE))
1620 goto err_unlock;
1621 head = p->robust_list;
1622 rcu_read_unlock();
1623 }
1624
1625 if (put_user(sizeof(*head), len_ptr))
1626 return -EFAULT;
1627 return put_user(head, head_ptr);
1628
1629 err_unlock:
1630 rcu_read_unlock();
1631
1632 return ret;
1633 }
1634
1635 /*
1636 * Process a futex-list entry, check whether it's owned by the
1637 * dying task, and do notification if so:
1638 */
1639 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1640 {
1641 u32 uval, nval, mval;
1642
1643 retry:
1644 if (get_user(uval, uaddr))
1645 return -1;
1646
1647 if ((uval & FUTEX_TID_MASK) == curr->pid) {
1648 /*
1649 * Ok, this dying thread is truly holding a futex
1650 * of interest. Set the OWNER_DIED bit atomically
1651 * via cmpxchg, and if the value had FUTEX_WAITERS
1652 * set, wake up a waiter (if any). (We have to do a
1653 * futex_wake() even if OWNER_DIED is already set -
1654 * to handle the rare but possible case of recursive
1655 * thread-death.) The rest of the cleanup is done in
1656 * userspace.
1657 */
1658 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1659 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1660
1661 if (nval == -EFAULT)
1662 return -1;
1663
1664 if (nval != uval)
1665 goto retry;
1666
1667 /*
1668 * Wake robust non-PI futexes here. The wakeup of
1669 * PI futexes happens in exit_pi_state():
1670 */
1671 if (!pi) {
1672 if (uval & FUTEX_WAITERS)
1673 futex_wake(uaddr, 1);
1674 }
1675 }
1676 return 0;
1677 }
1678
1679 /*
1680 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1681 */
1682 static inline int fetch_robust_entry(struct robust_list __user **entry,
1683 struct robust_list __user * __user *head,
1684 int *pi)
1685 {
1686 unsigned long uentry;
1687
1688 if (get_user(uentry, (unsigned long __user *)head))
1689 return -EFAULT;
1690
1691 *entry = (void __user *)(uentry & ~1UL);
1692 *pi = uentry & 1;
1693
1694 return 0;
1695 }
1696
1697 /*
1698 * Walk curr->robust_list (very carefully, it's a userspace list!)
1699 * and mark any locks found there dead, and notify any waiters.
1700 *
1701 * We silently return on any sign of list-walking problem.
1702 */
1703 void exit_robust_list(struct task_struct *curr)
1704 {
1705 struct robust_list_head __user *head = curr->robust_list;
1706 struct robust_list __user *entry, *pending;
1707 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
1708 unsigned long futex_offset;
1709
1710 /*
1711 * Fetch the list head (which was registered earlier, via
1712 * sys_set_robust_list()):
1713 */
1714 if (fetch_robust_entry(&entry, &head->list.next, &pi))
1715 return;
1716 /*
1717 * Fetch the relative futex offset:
1718 */
1719 if (get_user(futex_offset, &head->futex_offset))
1720 return;
1721 /*
1722 * Fetch any possibly pending lock-add first, and handle it
1723 * if it exists:
1724 */
1725 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1726 return;
1727
1728 if (pending)
1729 handle_futex_death((void __user *)pending + futex_offset, curr, pip);
1730
1731 while (entry != &head->list) {
1732 /*
1733 * A pending lock might already be on the list, so
1734 * don't process it twice:
1735 */
1736 if (entry != pending)
1737 if (handle_futex_death((void __user *)entry + futex_offset,
1738 curr, pi))
1739 return;
1740 /*
1741 * Fetch the next entry in the list:
1742 */
1743 if (fetch_robust_entry(&entry, &entry->next, &pi))
1744 return;
1745 /*
1746 * Avoid excessively long or circular lists:
1747 */
1748 if (!--limit)
1749 break;
1750
1751 cond_resched();
1752 }
1753 }
1754
1755 long do_futex(u32 __user *uaddr, int op, u32 val, unsigned long timeout,
1756 u32 __user *uaddr2, u32 val2, u32 val3)
1757 {
1758 int ret;
1759
1760 switch (op) {
1761 case FUTEX_WAIT:
1762 ret = futex_wait(uaddr, val, timeout);
1763 break;
1764 case FUTEX_WAKE:
1765 ret = futex_wake(uaddr, val);
1766 break;
1767 case FUTEX_FD:
1768 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
1769 ret = futex_fd(uaddr, val);
1770 break;
1771 case FUTEX_REQUEUE:
1772 ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
1773 break;
1774 case FUTEX_CMP_REQUEUE:
1775 ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
1776 break;
1777 case FUTEX_WAKE_OP:
1778 ret = futex_wake_op(uaddr, uaddr2, val, val2, val3);
1779 break;
1780 case FUTEX_LOCK_PI:
1781 ret = futex_lock_pi(uaddr, val, timeout, val2, 0);
1782 break;
1783 case FUTEX_UNLOCK_PI:
1784 ret = futex_unlock_pi(uaddr);
1785 break;
1786 case FUTEX_TRYLOCK_PI:
1787 ret = futex_lock_pi(uaddr, 0, timeout, val2, 1);
1788 break;
1789 default:
1790 ret = -ENOSYS;
1791 }
1792 return ret;
1793 }
1794
1795
1796 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1797 struct timespec __user *utime, u32 __user *uaddr2,
1798 u32 val3)
1799 {
1800 struct timespec t;
1801 unsigned long timeout = MAX_SCHEDULE_TIMEOUT;
1802 u32 val2 = 0;
1803
1804 if (utime && (op == FUTEX_WAIT || op == FUTEX_LOCK_PI)) {
1805 if (copy_from_user(&t, utime, sizeof(t)) != 0)
1806 return -EFAULT;
1807 if (!timespec_valid(&t))
1808 return -EINVAL;
1809 if (op == FUTEX_WAIT)
1810 timeout = timespec_to_jiffies(&t) + 1;
1811 else {
1812 timeout = t.tv_sec;
1813 val2 = t.tv_nsec;
1814 }
1815 }
1816 /*
1817 * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
1818 */
1819 if (op == FUTEX_REQUEUE || op == FUTEX_CMP_REQUEUE)
1820 val2 = (u32) (unsigned long) utime;
1821
1822 return do_futex(uaddr, op, val, timeout, uaddr2, val2, val3);
1823 }
1824
1825 static int futexfs_get_sb(struct file_system_type *fs_type,
1826 int flags, const char *dev_name, void *data,
1827 struct vfsmount *mnt)
1828 {
1829 return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt);
1830 }
1831
1832 static struct file_system_type futex_fs_type = {
1833 .name = "futexfs",
1834 .get_sb = futexfs_get_sb,
1835 .kill_sb = kill_anon_super,
1836 };
1837
1838 static int __init init(void)
1839 {
1840 int i = register_filesystem(&futex_fs_type);
1841
1842 if (i)
1843 return i;
1844
1845 futex_mnt = kern_mount(&futex_fs_type);
1846 if (IS_ERR(futex_mnt)) {
1847 unregister_filesystem(&futex_fs_type);
1848 return PTR_ERR(futex_mnt);
1849 }
1850
1851 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
1852 INIT_LIST_HEAD(&futex_queues[i].chain);
1853 spin_lock_init(&futex_queues[i].lock);
1854 }
1855 return 0;
1856 }
1857 __initcall(init);
This page took 0.267555 seconds and 4 git commands to generate.