CRED: Wrap task credential accesses in the core kernel
[deliverable/linux.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43 #include <linux/slab.h>
44 #include <linux/poll.h>
45 #include <linux/fs.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
58
59 #include <asm/futex.h>
60
61 #include "rtmutex_common.h"
62
63 int __read_mostly futex_cmpxchg_enabled;
64
65 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
67 /*
68 * Priority Inheritance state:
69 */
70 struct futex_pi_state {
71 /*
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
74 */
75 struct list_head list;
76
77 /*
78 * The PI object:
79 */
80 struct rt_mutex pi_mutex;
81
82 struct task_struct *owner;
83 atomic_t refcount;
84
85 union futex_key key;
86 };
87
88 /*
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
91 *
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
94 * The order of wakup is always to make the first condition true, then
95 * wake up q->waiters, then make the second condition true.
96 */
97 struct futex_q {
98 struct plist_node list;
99 wait_queue_head_t waiters;
100
101 /* Which hash list lock to use: */
102 spinlock_t *lock_ptr;
103
104 /* Key which the futex is hashed on: */
105 union futex_key key;
106
107 /* Optional priority inheritance state: */
108 struct futex_pi_state *pi_state;
109 struct task_struct *task;
110
111 /* Bitset for the optional bitmasked wakeup */
112 u32 bitset;
113 };
114
115 /*
116 * Split the global futex_lock into every hash list lock.
117 */
118 struct futex_hash_bucket {
119 spinlock_t lock;
120 struct plist_head chain;
121 };
122
123 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
124
125 /*
126 * Take mm->mmap_sem, when futex is shared
127 */
128 static inline void futex_lock_mm(struct rw_semaphore *fshared)
129 {
130 if (fshared)
131 down_read(fshared);
132 }
133
134 /*
135 * Release mm->mmap_sem, when the futex is shared
136 */
137 static inline void futex_unlock_mm(struct rw_semaphore *fshared)
138 {
139 if (fshared)
140 up_read(fshared);
141 }
142
143 /*
144 * We hash on the keys returned from get_futex_key (see below).
145 */
146 static struct futex_hash_bucket *hash_futex(union futex_key *key)
147 {
148 u32 hash = jhash2((u32*)&key->both.word,
149 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
150 key->both.offset);
151 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
152 }
153
154 /*
155 * Return 1 if two futex_keys are equal, 0 otherwise.
156 */
157 static inline int match_futex(union futex_key *key1, union futex_key *key2)
158 {
159 return (key1->both.word == key2->both.word
160 && key1->both.ptr == key2->both.ptr
161 && key1->both.offset == key2->both.offset);
162 }
163
164 /**
165 * get_futex_key - Get parameters which are the keys for a futex.
166 * @uaddr: virtual address of the futex
167 * @shared: NULL for a PROCESS_PRIVATE futex,
168 * &current->mm->mmap_sem for a PROCESS_SHARED futex
169 * @key: address where result is stored.
170 *
171 * Returns a negative error code or 0
172 * The key words are stored in *key on success.
173 *
174 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
175 * offset_within_page). For private mappings, it's (uaddr, current->mm).
176 * We can usually work out the index without swapping in the page.
177 *
178 * fshared is NULL for PROCESS_PRIVATE futexes
179 * For other futexes, it points to &current->mm->mmap_sem and
180 * caller must have taken the reader lock. but NOT any spinlocks.
181 */
182 static int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared,
183 union futex_key *key)
184 {
185 unsigned long address = (unsigned long)uaddr;
186 struct mm_struct *mm = current->mm;
187 struct vm_area_struct *vma;
188 struct page *page;
189 int err;
190
191 /*
192 * The futex address must be "naturally" aligned.
193 */
194 key->both.offset = address % PAGE_SIZE;
195 if (unlikely((address % sizeof(u32)) != 0))
196 return -EINVAL;
197 address -= key->both.offset;
198
199 /*
200 * PROCESS_PRIVATE futexes are fast.
201 * As the mm cannot disappear under us and the 'key' only needs
202 * virtual address, we dont even have to find the underlying vma.
203 * Note : We do have to check 'uaddr' is a valid user address,
204 * but access_ok() should be faster than find_vma()
205 */
206 if (!fshared) {
207 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
208 return -EFAULT;
209 key->private.mm = mm;
210 key->private.address = address;
211 return 0;
212 }
213 /*
214 * The futex is hashed differently depending on whether
215 * it's in a shared or private mapping. So check vma first.
216 */
217 vma = find_extend_vma(mm, address);
218 if (unlikely(!vma))
219 return -EFAULT;
220
221 /*
222 * Permissions.
223 */
224 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
225 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
226
227 /*
228 * Private mappings are handled in a simple way.
229 *
230 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
231 * it's a read-only handle, it's expected that futexes attach to
232 * the object not the particular process. Therefore we use
233 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
234 * mappings of _writable_ handles.
235 */
236 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
237 key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */
238 key->private.mm = mm;
239 key->private.address = address;
240 return 0;
241 }
242
243 /*
244 * Linear file mappings are also simple.
245 */
246 key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
247 key->both.offset |= FUT_OFF_INODE; /* inode-based key. */
248 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
249 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
250 + vma->vm_pgoff);
251 return 0;
252 }
253
254 /*
255 * We could walk the page table to read the non-linear
256 * pte, and get the page index without fetching the page
257 * from swap. But that's a lot of code to duplicate here
258 * for a rare case, so we simply fetch the page.
259 */
260 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
261 if (err >= 0) {
262 key->shared.pgoff =
263 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
264 put_page(page);
265 return 0;
266 }
267 return err;
268 }
269
270 /*
271 * Take a reference to the resource addressed by a key.
272 * Can be called while holding spinlocks.
273 *
274 */
275 static void get_futex_key_refs(union futex_key *key)
276 {
277 if (key->both.ptr == NULL)
278 return;
279 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
280 case FUT_OFF_INODE:
281 atomic_inc(&key->shared.inode->i_count);
282 break;
283 case FUT_OFF_MMSHARED:
284 atomic_inc(&key->private.mm->mm_count);
285 break;
286 }
287 }
288
289 /*
290 * Drop a reference to the resource addressed by a key.
291 * The hash bucket spinlock must not be held.
292 */
293 static void drop_futex_key_refs(union futex_key *key)
294 {
295 if (!key->both.ptr)
296 return;
297 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
298 case FUT_OFF_INODE:
299 iput(key->shared.inode);
300 break;
301 case FUT_OFF_MMSHARED:
302 mmdrop(key->private.mm);
303 break;
304 }
305 }
306
307 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
308 {
309 u32 curval;
310
311 pagefault_disable();
312 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
313 pagefault_enable();
314
315 return curval;
316 }
317
318 static int get_futex_value_locked(u32 *dest, u32 __user *from)
319 {
320 int ret;
321
322 pagefault_disable();
323 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
324 pagefault_enable();
325
326 return ret ? -EFAULT : 0;
327 }
328
329 /*
330 * Fault handling.
331 * if fshared is non NULL, current->mm->mmap_sem is already held
332 */
333 static int futex_handle_fault(unsigned long address,
334 struct rw_semaphore *fshared, int attempt)
335 {
336 struct vm_area_struct * vma;
337 struct mm_struct *mm = current->mm;
338 int ret = -EFAULT;
339
340 if (attempt > 2)
341 return ret;
342
343 if (!fshared)
344 down_read(&mm->mmap_sem);
345 vma = find_vma(mm, address);
346 if (vma && address >= vma->vm_start &&
347 (vma->vm_flags & VM_WRITE)) {
348 int fault;
349 fault = handle_mm_fault(mm, vma, address, 1);
350 if (unlikely((fault & VM_FAULT_ERROR))) {
351 #if 0
352 /* XXX: let's do this when we verify it is OK */
353 if (ret & VM_FAULT_OOM)
354 ret = -ENOMEM;
355 #endif
356 } else {
357 ret = 0;
358 if (fault & VM_FAULT_MAJOR)
359 current->maj_flt++;
360 else
361 current->min_flt++;
362 }
363 }
364 if (!fshared)
365 up_read(&mm->mmap_sem);
366 return ret;
367 }
368
369 /*
370 * PI code:
371 */
372 static int refill_pi_state_cache(void)
373 {
374 struct futex_pi_state *pi_state;
375
376 if (likely(current->pi_state_cache))
377 return 0;
378
379 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
380
381 if (!pi_state)
382 return -ENOMEM;
383
384 INIT_LIST_HEAD(&pi_state->list);
385 /* pi_mutex gets initialized later */
386 pi_state->owner = NULL;
387 atomic_set(&pi_state->refcount, 1);
388
389 current->pi_state_cache = pi_state;
390
391 return 0;
392 }
393
394 static struct futex_pi_state * alloc_pi_state(void)
395 {
396 struct futex_pi_state *pi_state = current->pi_state_cache;
397
398 WARN_ON(!pi_state);
399 current->pi_state_cache = NULL;
400
401 return pi_state;
402 }
403
404 static void free_pi_state(struct futex_pi_state *pi_state)
405 {
406 if (!atomic_dec_and_test(&pi_state->refcount))
407 return;
408
409 /*
410 * If pi_state->owner is NULL, the owner is most probably dying
411 * and has cleaned up the pi_state already
412 */
413 if (pi_state->owner) {
414 spin_lock_irq(&pi_state->owner->pi_lock);
415 list_del_init(&pi_state->list);
416 spin_unlock_irq(&pi_state->owner->pi_lock);
417
418 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
419 }
420
421 if (current->pi_state_cache)
422 kfree(pi_state);
423 else {
424 /*
425 * pi_state->list is already empty.
426 * clear pi_state->owner.
427 * refcount is at 0 - put it back to 1.
428 */
429 pi_state->owner = NULL;
430 atomic_set(&pi_state->refcount, 1);
431 current->pi_state_cache = pi_state;
432 }
433 }
434
435 /*
436 * Look up the task based on what TID userspace gave us.
437 * We dont trust it.
438 */
439 static struct task_struct * futex_find_get_task(pid_t pid)
440 {
441 struct task_struct *p;
442 uid_t euid = current_euid();
443
444 rcu_read_lock();
445 p = find_task_by_vpid(pid);
446 if (!p || (euid != p->euid && euid != p->uid))
447 p = ERR_PTR(-ESRCH);
448 else
449 get_task_struct(p);
450
451 rcu_read_unlock();
452
453 return p;
454 }
455
456 /*
457 * This task is holding PI mutexes at exit time => bad.
458 * Kernel cleans up PI-state, but userspace is likely hosed.
459 * (Robust-futex cleanup is separate and might save the day for userspace.)
460 */
461 void exit_pi_state_list(struct task_struct *curr)
462 {
463 struct list_head *next, *head = &curr->pi_state_list;
464 struct futex_pi_state *pi_state;
465 struct futex_hash_bucket *hb;
466 union futex_key key;
467
468 if (!futex_cmpxchg_enabled)
469 return;
470 /*
471 * We are a ZOMBIE and nobody can enqueue itself on
472 * pi_state_list anymore, but we have to be careful
473 * versus waiters unqueueing themselves:
474 */
475 spin_lock_irq(&curr->pi_lock);
476 while (!list_empty(head)) {
477
478 next = head->next;
479 pi_state = list_entry(next, struct futex_pi_state, list);
480 key = pi_state->key;
481 hb = hash_futex(&key);
482 spin_unlock_irq(&curr->pi_lock);
483
484 spin_lock(&hb->lock);
485
486 spin_lock_irq(&curr->pi_lock);
487 /*
488 * We dropped the pi-lock, so re-check whether this
489 * task still owns the PI-state:
490 */
491 if (head->next != next) {
492 spin_unlock(&hb->lock);
493 continue;
494 }
495
496 WARN_ON(pi_state->owner != curr);
497 WARN_ON(list_empty(&pi_state->list));
498 list_del_init(&pi_state->list);
499 pi_state->owner = NULL;
500 spin_unlock_irq(&curr->pi_lock);
501
502 rt_mutex_unlock(&pi_state->pi_mutex);
503
504 spin_unlock(&hb->lock);
505
506 spin_lock_irq(&curr->pi_lock);
507 }
508 spin_unlock_irq(&curr->pi_lock);
509 }
510
511 static int
512 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
513 union futex_key *key, struct futex_pi_state **ps)
514 {
515 struct futex_pi_state *pi_state = NULL;
516 struct futex_q *this, *next;
517 struct plist_head *head;
518 struct task_struct *p;
519 pid_t pid = uval & FUTEX_TID_MASK;
520
521 head = &hb->chain;
522
523 plist_for_each_entry_safe(this, next, head, list) {
524 if (match_futex(&this->key, key)) {
525 /*
526 * Another waiter already exists - bump up
527 * the refcount and return its pi_state:
528 */
529 pi_state = this->pi_state;
530 /*
531 * Userspace might have messed up non PI and PI futexes
532 */
533 if (unlikely(!pi_state))
534 return -EINVAL;
535
536 WARN_ON(!atomic_read(&pi_state->refcount));
537 WARN_ON(pid && pi_state->owner &&
538 pi_state->owner->pid != pid);
539
540 atomic_inc(&pi_state->refcount);
541 *ps = pi_state;
542
543 return 0;
544 }
545 }
546
547 /*
548 * We are the first waiter - try to look up the real owner and attach
549 * the new pi_state to it, but bail out when TID = 0
550 */
551 if (!pid)
552 return -ESRCH;
553 p = futex_find_get_task(pid);
554 if (IS_ERR(p))
555 return PTR_ERR(p);
556
557 /*
558 * We need to look at the task state flags to figure out,
559 * whether the task is exiting. To protect against the do_exit
560 * change of the task flags, we do this protected by
561 * p->pi_lock:
562 */
563 spin_lock_irq(&p->pi_lock);
564 if (unlikely(p->flags & PF_EXITING)) {
565 /*
566 * The task is on the way out. When PF_EXITPIDONE is
567 * set, we know that the task has finished the
568 * cleanup:
569 */
570 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
571
572 spin_unlock_irq(&p->pi_lock);
573 put_task_struct(p);
574 return ret;
575 }
576
577 pi_state = alloc_pi_state();
578
579 /*
580 * Initialize the pi_mutex in locked state and make 'p'
581 * the owner of it:
582 */
583 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
584
585 /* Store the key for possible exit cleanups: */
586 pi_state->key = *key;
587
588 WARN_ON(!list_empty(&pi_state->list));
589 list_add(&pi_state->list, &p->pi_state_list);
590 pi_state->owner = p;
591 spin_unlock_irq(&p->pi_lock);
592
593 put_task_struct(p);
594
595 *ps = pi_state;
596
597 return 0;
598 }
599
600 /*
601 * The hash bucket lock must be held when this is called.
602 * Afterwards, the futex_q must not be accessed.
603 */
604 static void wake_futex(struct futex_q *q)
605 {
606 plist_del(&q->list, &q->list.plist);
607 /*
608 * The lock in wake_up_all() is a crucial memory barrier after the
609 * plist_del() and also before assigning to q->lock_ptr.
610 */
611 wake_up_all(&q->waiters);
612 /*
613 * The waiting task can free the futex_q as soon as this is written,
614 * without taking any locks. This must come last.
615 *
616 * A memory barrier is required here to prevent the following store
617 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
618 * at the end of wake_up_all() does not prevent this store from
619 * moving.
620 */
621 smp_wmb();
622 q->lock_ptr = NULL;
623 }
624
625 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
626 {
627 struct task_struct *new_owner;
628 struct futex_pi_state *pi_state = this->pi_state;
629 u32 curval, newval;
630
631 if (!pi_state)
632 return -EINVAL;
633
634 spin_lock(&pi_state->pi_mutex.wait_lock);
635 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
636
637 /*
638 * This happens when we have stolen the lock and the original
639 * pending owner did not enqueue itself back on the rt_mutex.
640 * Thats not a tragedy. We know that way, that a lock waiter
641 * is on the fly. We make the futex_q waiter the pending owner.
642 */
643 if (!new_owner)
644 new_owner = this->task;
645
646 /*
647 * We pass it to the next owner. (The WAITERS bit is always
648 * kept enabled while there is PI state around. We must also
649 * preserve the owner died bit.)
650 */
651 if (!(uval & FUTEX_OWNER_DIED)) {
652 int ret = 0;
653
654 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
655
656 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
657
658 if (curval == -EFAULT)
659 ret = -EFAULT;
660 else if (curval != uval)
661 ret = -EINVAL;
662 if (ret) {
663 spin_unlock(&pi_state->pi_mutex.wait_lock);
664 return ret;
665 }
666 }
667
668 spin_lock_irq(&pi_state->owner->pi_lock);
669 WARN_ON(list_empty(&pi_state->list));
670 list_del_init(&pi_state->list);
671 spin_unlock_irq(&pi_state->owner->pi_lock);
672
673 spin_lock_irq(&new_owner->pi_lock);
674 WARN_ON(!list_empty(&pi_state->list));
675 list_add(&pi_state->list, &new_owner->pi_state_list);
676 pi_state->owner = new_owner;
677 spin_unlock_irq(&new_owner->pi_lock);
678
679 spin_unlock(&pi_state->pi_mutex.wait_lock);
680 rt_mutex_unlock(&pi_state->pi_mutex);
681
682 return 0;
683 }
684
685 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
686 {
687 u32 oldval;
688
689 /*
690 * There is no waiter, so we unlock the futex. The owner died
691 * bit has not to be preserved here. We are the owner:
692 */
693 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
694
695 if (oldval == -EFAULT)
696 return oldval;
697 if (oldval != uval)
698 return -EAGAIN;
699
700 return 0;
701 }
702
703 /*
704 * Express the locking dependencies for lockdep:
705 */
706 static inline void
707 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
708 {
709 if (hb1 <= hb2) {
710 spin_lock(&hb1->lock);
711 if (hb1 < hb2)
712 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
713 } else { /* hb1 > hb2 */
714 spin_lock(&hb2->lock);
715 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
716 }
717 }
718
719 /*
720 * Wake up all waiters hashed on the physical page that is mapped
721 * to this virtual address:
722 */
723 static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared,
724 int nr_wake, u32 bitset)
725 {
726 struct futex_hash_bucket *hb;
727 struct futex_q *this, *next;
728 struct plist_head *head;
729 union futex_key key;
730 int ret;
731
732 if (!bitset)
733 return -EINVAL;
734
735 futex_lock_mm(fshared);
736
737 ret = get_futex_key(uaddr, fshared, &key);
738 if (unlikely(ret != 0))
739 goto out;
740
741 hb = hash_futex(&key);
742 spin_lock(&hb->lock);
743 head = &hb->chain;
744
745 plist_for_each_entry_safe(this, next, head, list) {
746 if (match_futex (&this->key, &key)) {
747 if (this->pi_state) {
748 ret = -EINVAL;
749 break;
750 }
751
752 /* Check if one of the bits is set in both bitsets */
753 if (!(this->bitset & bitset))
754 continue;
755
756 wake_futex(this);
757 if (++ret >= nr_wake)
758 break;
759 }
760 }
761
762 spin_unlock(&hb->lock);
763 out:
764 futex_unlock_mm(fshared);
765 return ret;
766 }
767
768 /*
769 * Wake up all waiters hashed on the physical page that is mapped
770 * to this virtual address:
771 */
772 static int
773 futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared,
774 u32 __user *uaddr2,
775 int nr_wake, int nr_wake2, int op)
776 {
777 union futex_key key1, key2;
778 struct futex_hash_bucket *hb1, *hb2;
779 struct plist_head *head;
780 struct futex_q *this, *next;
781 int ret, op_ret, attempt = 0;
782
783 retryfull:
784 futex_lock_mm(fshared);
785
786 ret = get_futex_key(uaddr1, fshared, &key1);
787 if (unlikely(ret != 0))
788 goto out;
789 ret = get_futex_key(uaddr2, fshared, &key2);
790 if (unlikely(ret != 0))
791 goto out;
792
793 hb1 = hash_futex(&key1);
794 hb2 = hash_futex(&key2);
795
796 retry:
797 double_lock_hb(hb1, hb2);
798
799 op_ret = futex_atomic_op_inuser(op, uaddr2);
800 if (unlikely(op_ret < 0)) {
801 u32 dummy;
802
803 spin_unlock(&hb1->lock);
804 if (hb1 != hb2)
805 spin_unlock(&hb2->lock);
806
807 #ifndef CONFIG_MMU
808 /*
809 * we don't get EFAULT from MMU faults if we don't have an MMU,
810 * but we might get them from range checking
811 */
812 ret = op_ret;
813 goto out;
814 #endif
815
816 if (unlikely(op_ret != -EFAULT)) {
817 ret = op_ret;
818 goto out;
819 }
820
821 /*
822 * futex_atomic_op_inuser needs to both read and write
823 * *(int __user *)uaddr2, but we can't modify it
824 * non-atomically. Therefore, if get_user below is not
825 * enough, we need to handle the fault ourselves, while
826 * still holding the mmap_sem.
827 */
828 if (attempt++) {
829 ret = futex_handle_fault((unsigned long)uaddr2,
830 fshared, attempt);
831 if (ret)
832 goto out;
833 goto retry;
834 }
835
836 /*
837 * If we would have faulted, release mmap_sem,
838 * fault it in and start all over again.
839 */
840 futex_unlock_mm(fshared);
841
842 ret = get_user(dummy, uaddr2);
843 if (ret)
844 return ret;
845
846 goto retryfull;
847 }
848
849 head = &hb1->chain;
850
851 plist_for_each_entry_safe(this, next, head, list) {
852 if (match_futex (&this->key, &key1)) {
853 wake_futex(this);
854 if (++ret >= nr_wake)
855 break;
856 }
857 }
858
859 if (op_ret > 0) {
860 head = &hb2->chain;
861
862 op_ret = 0;
863 plist_for_each_entry_safe(this, next, head, list) {
864 if (match_futex (&this->key, &key2)) {
865 wake_futex(this);
866 if (++op_ret >= nr_wake2)
867 break;
868 }
869 }
870 ret += op_ret;
871 }
872
873 spin_unlock(&hb1->lock);
874 if (hb1 != hb2)
875 spin_unlock(&hb2->lock);
876 out:
877 futex_unlock_mm(fshared);
878
879 return ret;
880 }
881
882 /*
883 * Requeue all waiters hashed on one physical page to another
884 * physical page.
885 */
886 static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared,
887 u32 __user *uaddr2,
888 int nr_wake, int nr_requeue, u32 *cmpval)
889 {
890 union futex_key key1, key2;
891 struct futex_hash_bucket *hb1, *hb2;
892 struct plist_head *head1;
893 struct futex_q *this, *next;
894 int ret, drop_count = 0;
895
896 retry:
897 futex_lock_mm(fshared);
898
899 ret = get_futex_key(uaddr1, fshared, &key1);
900 if (unlikely(ret != 0))
901 goto out;
902 ret = get_futex_key(uaddr2, fshared, &key2);
903 if (unlikely(ret != 0))
904 goto out;
905
906 hb1 = hash_futex(&key1);
907 hb2 = hash_futex(&key2);
908
909 double_lock_hb(hb1, hb2);
910
911 if (likely(cmpval != NULL)) {
912 u32 curval;
913
914 ret = get_futex_value_locked(&curval, uaddr1);
915
916 if (unlikely(ret)) {
917 spin_unlock(&hb1->lock);
918 if (hb1 != hb2)
919 spin_unlock(&hb2->lock);
920
921 /*
922 * If we would have faulted, release mmap_sem, fault
923 * it in and start all over again.
924 */
925 futex_unlock_mm(fshared);
926
927 ret = get_user(curval, uaddr1);
928
929 if (!ret)
930 goto retry;
931
932 return ret;
933 }
934 if (curval != *cmpval) {
935 ret = -EAGAIN;
936 goto out_unlock;
937 }
938 }
939
940 head1 = &hb1->chain;
941 plist_for_each_entry_safe(this, next, head1, list) {
942 if (!match_futex (&this->key, &key1))
943 continue;
944 if (++ret <= nr_wake) {
945 wake_futex(this);
946 } else {
947 /*
948 * If key1 and key2 hash to the same bucket, no need to
949 * requeue.
950 */
951 if (likely(head1 != &hb2->chain)) {
952 plist_del(&this->list, &hb1->chain);
953 plist_add(&this->list, &hb2->chain);
954 this->lock_ptr = &hb2->lock;
955 #ifdef CONFIG_DEBUG_PI_LIST
956 this->list.plist.lock = &hb2->lock;
957 #endif
958 }
959 this->key = key2;
960 get_futex_key_refs(&key2);
961 drop_count++;
962
963 if (ret - nr_wake >= nr_requeue)
964 break;
965 }
966 }
967
968 out_unlock:
969 spin_unlock(&hb1->lock);
970 if (hb1 != hb2)
971 spin_unlock(&hb2->lock);
972
973 /* drop_futex_key_refs() must be called outside the spinlocks. */
974 while (--drop_count >= 0)
975 drop_futex_key_refs(&key1);
976
977 out:
978 futex_unlock_mm(fshared);
979 return ret;
980 }
981
982 /* The key must be already stored in q->key. */
983 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
984 {
985 struct futex_hash_bucket *hb;
986
987 init_waitqueue_head(&q->waiters);
988
989 get_futex_key_refs(&q->key);
990 hb = hash_futex(&q->key);
991 q->lock_ptr = &hb->lock;
992
993 spin_lock(&hb->lock);
994 return hb;
995 }
996
997 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
998 {
999 int prio;
1000
1001 /*
1002 * The priority used to register this element is
1003 * - either the real thread-priority for the real-time threads
1004 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1005 * - or MAX_RT_PRIO for non-RT threads.
1006 * Thus, all RT-threads are woken first in priority order, and
1007 * the others are woken last, in FIFO order.
1008 */
1009 prio = min(current->normal_prio, MAX_RT_PRIO);
1010
1011 plist_node_init(&q->list, prio);
1012 #ifdef CONFIG_DEBUG_PI_LIST
1013 q->list.plist.lock = &hb->lock;
1014 #endif
1015 plist_add(&q->list, &hb->chain);
1016 q->task = current;
1017 spin_unlock(&hb->lock);
1018 }
1019
1020 static inline void
1021 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1022 {
1023 spin_unlock(&hb->lock);
1024 drop_futex_key_refs(&q->key);
1025 }
1026
1027 /*
1028 * queue_me and unqueue_me must be called as a pair, each
1029 * exactly once. They are called with the hashed spinlock held.
1030 */
1031
1032 /* Return 1 if we were still queued (ie. 0 means we were woken) */
1033 static int unqueue_me(struct futex_q *q)
1034 {
1035 spinlock_t *lock_ptr;
1036 int ret = 0;
1037
1038 /* In the common case we don't take the spinlock, which is nice. */
1039 retry:
1040 lock_ptr = q->lock_ptr;
1041 barrier();
1042 if (lock_ptr != NULL) {
1043 spin_lock(lock_ptr);
1044 /*
1045 * q->lock_ptr can change between reading it and
1046 * spin_lock(), causing us to take the wrong lock. This
1047 * corrects the race condition.
1048 *
1049 * Reasoning goes like this: if we have the wrong lock,
1050 * q->lock_ptr must have changed (maybe several times)
1051 * between reading it and the spin_lock(). It can
1052 * change again after the spin_lock() but only if it was
1053 * already changed before the spin_lock(). It cannot,
1054 * however, change back to the original value. Therefore
1055 * we can detect whether we acquired the correct lock.
1056 */
1057 if (unlikely(lock_ptr != q->lock_ptr)) {
1058 spin_unlock(lock_ptr);
1059 goto retry;
1060 }
1061 WARN_ON(plist_node_empty(&q->list));
1062 plist_del(&q->list, &q->list.plist);
1063
1064 BUG_ON(q->pi_state);
1065
1066 spin_unlock(lock_ptr);
1067 ret = 1;
1068 }
1069
1070 drop_futex_key_refs(&q->key);
1071 return ret;
1072 }
1073
1074 /*
1075 * PI futexes can not be requeued and must remove themself from the
1076 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1077 * and dropped here.
1078 */
1079 static void unqueue_me_pi(struct futex_q *q)
1080 {
1081 WARN_ON(plist_node_empty(&q->list));
1082 plist_del(&q->list, &q->list.plist);
1083
1084 BUG_ON(!q->pi_state);
1085 free_pi_state(q->pi_state);
1086 q->pi_state = NULL;
1087
1088 spin_unlock(q->lock_ptr);
1089
1090 drop_futex_key_refs(&q->key);
1091 }
1092
1093 /*
1094 * Fixup the pi_state owner with the new owner.
1095 *
1096 * Must be called with hash bucket lock held and mm->sem held for non
1097 * private futexes.
1098 */
1099 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1100 struct task_struct *newowner,
1101 struct rw_semaphore *fshared)
1102 {
1103 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1104 struct futex_pi_state *pi_state = q->pi_state;
1105 struct task_struct *oldowner = pi_state->owner;
1106 u32 uval, curval, newval;
1107 int ret, attempt = 0;
1108
1109 /* Owner died? */
1110 if (!pi_state->owner)
1111 newtid |= FUTEX_OWNER_DIED;
1112
1113 /*
1114 * We are here either because we stole the rtmutex from the
1115 * pending owner or we are the pending owner which failed to
1116 * get the rtmutex. We have to replace the pending owner TID
1117 * in the user space variable. This must be atomic as we have
1118 * to preserve the owner died bit here.
1119 *
1120 * Note: We write the user space value _before_ changing the
1121 * pi_state because we can fault here. Imagine swapped out
1122 * pages or a fork, which was running right before we acquired
1123 * mmap_sem, that marked all the anonymous memory readonly for
1124 * cow.
1125 *
1126 * Modifying pi_state _before_ the user space value would
1127 * leave the pi_state in an inconsistent state when we fault
1128 * here, because we need to drop the hash bucket lock to
1129 * handle the fault. This might be observed in the PID check
1130 * in lookup_pi_state.
1131 */
1132 retry:
1133 if (get_futex_value_locked(&uval, uaddr))
1134 goto handle_fault;
1135
1136 while (1) {
1137 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1138
1139 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1140
1141 if (curval == -EFAULT)
1142 goto handle_fault;
1143 if (curval == uval)
1144 break;
1145 uval = curval;
1146 }
1147
1148 /*
1149 * We fixed up user space. Now we need to fix the pi_state
1150 * itself.
1151 */
1152 if (pi_state->owner != NULL) {
1153 spin_lock_irq(&pi_state->owner->pi_lock);
1154 WARN_ON(list_empty(&pi_state->list));
1155 list_del_init(&pi_state->list);
1156 spin_unlock_irq(&pi_state->owner->pi_lock);
1157 }
1158
1159 pi_state->owner = newowner;
1160
1161 spin_lock_irq(&newowner->pi_lock);
1162 WARN_ON(!list_empty(&pi_state->list));
1163 list_add(&pi_state->list, &newowner->pi_state_list);
1164 spin_unlock_irq(&newowner->pi_lock);
1165 return 0;
1166
1167 /*
1168 * To handle the page fault we need to drop the hash bucket
1169 * lock here. That gives the other task (either the pending
1170 * owner itself or the task which stole the rtmutex) the
1171 * chance to try the fixup of the pi_state. So once we are
1172 * back from handling the fault we need to check the pi_state
1173 * after reacquiring the hash bucket lock and before trying to
1174 * do another fixup. When the fixup has been done already we
1175 * simply return.
1176 */
1177 handle_fault:
1178 spin_unlock(q->lock_ptr);
1179
1180 ret = futex_handle_fault((unsigned long)uaddr, fshared, attempt++);
1181
1182 spin_lock(q->lock_ptr);
1183
1184 /*
1185 * Check if someone else fixed it for us:
1186 */
1187 if (pi_state->owner != oldowner)
1188 return 0;
1189
1190 if (ret)
1191 return ret;
1192
1193 goto retry;
1194 }
1195
1196 /*
1197 * In case we must use restart_block to restart a futex_wait,
1198 * we encode in the 'flags' shared capability
1199 */
1200 #define FLAGS_SHARED 1
1201
1202 static long futex_wait_restart(struct restart_block *restart);
1203
1204 static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
1205 u32 val, ktime_t *abs_time, u32 bitset)
1206 {
1207 struct task_struct *curr = current;
1208 DECLARE_WAITQUEUE(wait, curr);
1209 struct futex_hash_bucket *hb;
1210 struct futex_q q;
1211 u32 uval;
1212 int ret;
1213 struct hrtimer_sleeper t;
1214 int rem = 0;
1215
1216 if (!bitset)
1217 return -EINVAL;
1218
1219 q.pi_state = NULL;
1220 q.bitset = bitset;
1221 retry:
1222 futex_lock_mm(fshared);
1223
1224 ret = get_futex_key(uaddr, fshared, &q.key);
1225 if (unlikely(ret != 0))
1226 goto out_release_sem;
1227
1228 hb = queue_lock(&q);
1229
1230 /*
1231 * Access the page AFTER the futex is queued.
1232 * Order is important:
1233 *
1234 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1235 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1236 *
1237 * The basic logical guarantee of a futex is that it blocks ONLY
1238 * if cond(var) is known to be true at the time of blocking, for
1239 * any cond. If we queued after testing *uaddr, that would open
1240 * a race condition where we could block indefinitely with
1241 * cond(var) false, which would violate the guarantee.
1242 *
1243 * A consequence is that futex_wait() can return zero and absorb
1244 * a wakeup when *uaddr != val on entry to the syscall. This is
1245 * rare, but normal.
1246 *
1247 * for shared futexes, we hold the mmap semaphore, so the mapping
1248 * cannot have changed since we looked it up in get_futex_key.
1249 */
1250 ret = get_futex_value_locked(&uval, uaddr);
1251
1252 if (unlikely(ret)) {
1253 queue_unlock(&q, hb);
1254
1255 /*
1256 * If we would have faulted, release mmap_sem, fault it in and
1257 * start all over again.
1258 */
1259 futex_unlock_mm(fshared);
1260
1261 ret = get_user(uval, uaddr);
1262
1263 if (!ret)
1264 goto retry;
1265 return ret;
1266 }
1267 ret = -EWOULDBLOCK;
1268 if (uval != val)
1269 goto out_unlock_release_sem;
1270
1271 /* Only actually queue if *uaddr contained val. */
1272 queue_me(&q, hb);
1273
1274 /*
1275 * Now the futex is queued and we have checked the data, we
1276 * don't want to hold mmap_sem while we sleep.
1277 */
1278 futex_unlock_mm(fshared);
1279
1280 /*
1281 * There might have been scheduling since the queue_me(), as we
1282 * cannot hold a spinlock across the get_user() in case it
1283 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1284 * queueing ourselves into the futex hash. This code thus has to
1285 * rely on the futex_wake() code removing us from hash when it
1286 * wakes us up.
1287 */
1288
1289 /* add_wait_queue is the barrier after __set_current_state. */
1290 __set_current_state(TASK_INTERRUPTIBLE);
1291 add_wait_queue(&q.waiters, &wait);
1292 /*
1293 * !plist_node_empty() is safe here without any lock.
1294 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1295 */
1296 if (likely(!plist_node_empty(&q.list))) {
1297 if (!abs_time)
1298 schedule();
1299 else {
1300 unsigned long slack;
1301 slack = current->timer_slack_ns;
1302 if (rt_task(current))
1303 slack = 0;
1304 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC,
1305 HRTIMER_MODE_ABS);
1306 hrtimer_init_sleeper(&t, current);
1307 hrtimer_set_expires_range_ns(&t.timer, *abs_time, slack);
1308
1309 hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS);
1310 if (!hrtimer_active(&t.timer))
1311 t.task = NULL;
1312
1313 /*
1314 * the timer could have already expired, in which
1315 * case current would be flagged for rescheduling.
1316 * Don't bother calling schedule.
1317 */
1318 if (likely(t.task))
1319 schedule();
1320
1321 hrtimer_cancel(&t.timer);
1322
1323 /* Flag if a timeout occured */
1324 rem = (t.task == NULL);
1325
1326 destroy_hrtimer_on_stack(&t.timer);
1327 }
1328 }
1329 __set_current_state(TASK_RUNNING);
1330
1331 /*
1332 * NOTE: we don't remove ourselves from the waitqueue because
1333 * we are the only user of it.
1334 */
1335
1336 /* If we were woken (and unqueued), we succeeded, whatever. */
1337 if (!unqueue_me(&q))
1338 return 0;
1339 if (rem)
1340 return -ETIMEDOUT;
1341
1342 /*
1343 * We expect signal_pending(current), but another thread may
1344 * have handled it for us already.
1345 */
1346 if (!abs_time)
1347 return -ERESTARTSYS;
1348 else {
1349 struct restart_block *restart;
1350 restart = &current_thread_info()->restart_block;
1351 restart->fn = futex_wait_restart;
1352 restart->futex.uaddr = (u32 *)uaddr;
1353 restart->futex.val = val;
1354 restart->futex.time = abs_time->tv64;
1355 restart->futex.bitset = bitset;
1356 restart->futex.flags = 0;
1357
1358 if (fshared)
1359 restart->futex.flags |= FLAGS_SHARED;
1360 return -ERESTART_RESTARTBLOCK;
1361 }
1362
1363 out_unlock_release_sem:
1364 queue_unlock(&q, hb);
1365
1366 out_release_sem:
1367 futex_unlock_mm(fshared);
1368 return ret;
1369 }
1370
1371
1372 static long futex_wait_restart(struct restart_block *restart)
1373 {
1374 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1375 struct rw_semaphore *fshared = NULL;
1376 ktime_t t;
1377
1378 t.tv64 = restart->futex.time;
1379 restart->fn = do_no_restart_syscall;
1380 if (restart->futex.flags & FLAGS_SHARED)
1381 fshared = &current->mm->mmap_sem;
1382 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1383 restart->futex.bitset);
1384 }
1385
1386
1387 /*
1388 * Userspace tried a 0 -> TID atomic transition of the futex value
1389 * and failed. The kernel side here does the whole locking operation:
1390 * if there are waiters then it will block, it does PI, etc. (Due to
1391 * races the kernel might see a 0 value of the futex too.)
1392 */
1393 static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared,
1394 int detect, ktime_t *time, int trylock)
1395 {
1396 struct hrtimer_sleeper timeout, *to = NULL;
1397 struct task_struct *curr = current;
1398 struct futex_hash_bucket *hb;
1399 u32 uval, newval, curval;
1400 struct futex_q q;
1401 int ret, lock_taken, ownerdied = 0, attempt = 0;
1402
1403 if (refill_pi_state_cache())
1404 return -ENOMEM;
1405
1406 if (time) {
1407 to = &timeout;
1408 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1409 HRTIMER_MODE_ABS);
1410 hrtimer_init_sleeper(to, current);
1411 hrtimer_set_expires(&to->timer, *time);
1412 }
1413
1414 q.pi_state = NULL;
1415 retry:
1416 futex_lock_mm(fshared);
1417
1418 ret = get_futex_key(uaddr, fshared, &q.key);
1419 if (unlikely(ret != 0))
1420 goto out_release_sem;
1421
1422 retry_unlocked:
1423 hb = queue_lock(&q);
1424
1425 retry_locked:
1426 ret = lock_taken = 0;
1427
1428 /*
1429 * To avoid races, we attempt to take the lock here again
1430 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1431 * the locks. It will most likely not succeed.
1432 */
1433 newval = task_pid_vnr(current);
1434
1435 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1436
1437 if (unlikely(curval == -EFAULT))
1438 goto uaddr_faulted;
1439
1440 /*
1441 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1442 * situation and we return success to user space.
1443 */
1444 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
1445 ret = -EDEADLK;
1446 goto out_unlock_release_sem;
1447 }
1448
1449 /*
1450 * Surprise - we got the lock. Just return to userspace:
1451 */
1452 if (unlikely(!curval))
1453 goto out_unlock_release_sem;
1454
1455 uval = curval;
1456
1457 /*
1458 * Set the WAITERS flag, so the owner will know it has someone
1459 * to wake at next unlock
1460 */
1461 newval = curval | FUTEX_WAITERS;
1462
1463 /*
1464 * There are two cases, where a futex might have no owner (the
1465 * owner TID is 0): OWNER_DIED. We take over the futex in this
1466 * case. We also do an unconditional take over, when the owner
1467 * of the futex died.
1468 *
1469 * This is safe as we are protected by the hash bucket lock !
1470 */
1471 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1472 /* Keep the OWNER_DIED bit */
1473 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
1474 ownerdied = 0;
1475 lock_taken = 1;
1476 }
1477
1478 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1479
1480 if (unlikely(curval == -EFAULT))
1481 goto uaddr_faulted;
1482 if (unlikely(curval != uval))
1483 goto retry_locked;
1484
1485 /*
1486 * We took the lock due to owner died take over.
1487 */
1488 if (unlikely(lock_taken))
1489 goto out_unlock_release_sem;
1490
1491 /*
1492 * We dont have the lock. Look up the PI state (or create it if
1493 * we are the first waiter):
1494 */
1495 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1496
1497 if (unlikely(ret)) {
1498 switch (ret) {
1499
1500 case -EAGAIN:
1501 /*
1502 * Task is exiting and we just wait for the
1503 * exit to complete.
1504 */
1505 queue_unlock(&q, hb);
1506 futex_unlock_mm(fshared);
1507 cond_resched();
1508 goto retry;
1509
1510 case -ESRCH:
1511 /*
1512 * No owner found for this futex. Check if the
1513 * OWNER_DIED bit is set to figure out whether
1514 * this is a robust futex or not.
1515 */
1516 if (get_futex_value_locked(&curval, uaddr))
1517 goto uaddr_faulted;
1518
1519 /*
1520 * We simply start over in case of a robust
1521 * futex. The code above will take the futex
1522 * and return happy.
1523 */
1524 if (curval & FUTEX_OWNER_DIED) {
1525 ownerdied = 1;
1526 goto retry_locked;
1527 }
1528 default:
1529 goto out_unlock_release_sem;
1530 }
1531 }
1532
1533 /*
1534 * Only actually queue now that the atomic ops are done:
1535 */
1536 queue_me(&q, hb);
1537
1538 /*
1539 * Now the futex is queued and we have checked the data, we
1540 * don't want to hold mmap_sem while we sleep.
1541 */
1542 futex_unlock_mm(fshared);
1543
1544 WARN_ON(!q.pi_state);
1545 /*
1546 * Block on the PI mutex:
1547 */
1548 if (!trylock)
1549 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1550 else {
1551 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1552 /* Fixup the trylock return value: */
1553 ret = ret ? 0 : -EWOULDBLOCK;
1554 }
1555
1556 futex_lock_mm(fshared);
1557 spin_lock(q.lock_ptr);
1558
1559 if (!ret) {
1560 /*
1561 * Got the lock. We might not be the anticipated owner
1562 * if we did a lock-steal - fix up the PI-state in
1563 * that case:
1564 */
1565 if (q.pi_state->owner != curr)
1566 ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
1567 } else {
1568 /*
1569 * Catch the rare case, where the lock was released
1570 * when we were on the way back before we locked the
1571 * hash bucket.
1572 */
1573 if (q.pi_state->owner == curr) {
1574 /*
1575 * Try to get the rt_mutex now. This might
1576 * fail as some other task acquired the
1577 * rt_mutex after we removed ourself from the
1578 * rt_mutex waiters list.
1579 */
1580 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1581 ret = 0;
1582 else {
1583 /*
1584 * pi_state is incorrect, some other
1585 * task did a lock steal and we
1586 * returned due to timeout or signal
1587 * without taking the rt_mutex. Too
1588 * late. We can access the
1589 * rt_mutex_owner without locking, as
1590 * the other task is now blocked on
1591 * the hash bucket lock. Fix the state
1592 * up.
1593 */
1594 struct task_struct *owner;
1595 int res;
1596
1597 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1598 res = fixup_pi_state_owner(uaddr, &q, owner,
1599 fshared);
1600
1601 /* propagate -EFAULT, if the fixup failed */
1602 if (res)
1603 ret = res;
1604 }
1605 } else {
1606 /*
1607 * Paranoia check. If we did not take the lock
1608 * in the trylock above, then we should not be
1609 * the owner of the rtmutex, neither the real
1610 * nor the pending one:
1611 */
1612 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1613 printk(KERN_ERR "futex_lock_pi: ret = %d "
1614 "pi-mutex: %p pi-state %p\n", ret,
1615 q.pi_state->pi_mutex.owner,
1616 q.pi_state->owner);
1617 }
1618 }
1619
1620 /* Unqueue and drop the lock */
1621 unqueue_me_pi(&q);
1622 futex_unlock_mm(fshared);
1623
1624 if (to)
1625 destroy_hrtimer_on_stack(&to->timer);
1626 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1627
1628 out_unlock_release_sem:
1629 queue_unlock(&q, hb);
1630
1631 out_release_sem:
1632 futex_unlock_mm(fshared);
1633 if (to)
1634 destroy_hrtimer_on_stack(&to->timer);
1635 return ret;
1636
1637 uaddr_faulted:
1638 /*
1639 * We have to r/w *(int __user *)uaddr, but we can't modify it
1640 * non-atomically. Therefore, if get_user below is not
1641 * enough, we need to handle the fault ourselves, while
1642 * still holding the mmap_sem.
1643 *
1644 * ... and hb->lock. :-) --ANK
1645 */
1646 queue_unlock(&q, hb);
1647
1648 if (attempt++) {
1649 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1650 attempt);
1651 if (ret)
1652 goto out_release_sem;
1653 goto retry_unlocked;
1654 }
1655
1656 futex_unlock_mm(fshared);
1657
1658 ret = get_user(uval, uaddr);
1659 if (!ret && (uval != -EFAULT))
1660 goto retry;
1661
1662 if (to)
1663 destroy_hrtimer_on_stack(&to->timer);
1664 return ret;
1665 }
1666
1667 /*
1668 * Userspace attempted a TID -> 0 atomic transition, and failed.
1669 * This is the in-kernel slowpath: we look up the PI state (if any),
1670 * and do the rt-mutex unlock.
1671 */
1672 static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared)
1673 {
1674 struct futex_hash_bucket *hb;
1675 struct futex_q *this, *next;
1676 u32 uval;
1677 struct plist_head *head;
1678 union futex_key key;
1679 int ret, attempt = 0;
1680
1681 retry:
1682 if (get_user(uval, uaddr))
1683 return -EFAULT;
1684 /*
1685 * We release only a lock we actually own:
1686 */
1687 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1688 return -EPERM;
1689 /*
1690 * First take all the futex related locks:
1691 */
1692 futex_lock_mm(fshared);
1693
1694 ret = get_futex_key(uaddr, fshared, &key);
1695 if (unlikely(ret != 0))
1696 goto out;
1697
1698 hb = hash_futex(&key);
1699 retry_unlocked:
1700 spin_lock(&hb->lock);
1701
1702 /*
1703 * To avoid races, try to do the TID -> 0 atomic transition
1704 * again. If it succeeds then we can return without waking
1705 * anyone else up:
1706 */
1707 if (!(uval & FUTEX_OWNER_DIED))
1708 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1709
1710
1711 if (unlikely(uval == -EFAULT))
1712 goto pi_faulted;
1713 /*
1714 * Rare case: we managed to release the lock atomically,
1715 * no need to wake anyone else up:
1716 */
1717 if (unlikely(uval == task_pid_vnr(current)))
1718 goto out_unlock;
1719
1720 /*
1721 * Ok, other tasks may need to be woken up - check waiters
1722 * and do the wakeup if necessary:
1723 */
1724 head = &hb->chain;
1725
1726 plist_for_each_entry_safe(this, next, head, list) {
1727 if (!match_futex (&this->key, &key))
1728 continue;
1729 ret = wake_futex_pi(uaddr, uval, this);
1730 /*
1731 * The atomic access to the futex value
1732 * generated a pagefault, so retry the
1733 * user-access and the wakeup:
1734 */
1735 if (ret == -EFAULT)
1736 goto pi_faulted;
1737 goto out_unlock;
1738 }
1739 /*
1740 * No waiters - kernel unlocks the futex:
1741 */
1742 if (!(uval & FUTEX_OWNER_DIED)) {
1743 ret = unlock_futex_pi(uaddr, uval);
1744 if (ret == -EFAULT)
1745 goto pi_faulted;
1746 }
1747
1748 out_unlock:
1749 spin_unlock(&hb->lock);
1750 out:
1751 futex_unlock_mm(fshared);
1752
1753 return ret;
1754
1755 pi_faulted:
1756 /*
1757 * We have to r/w *(int __user *)uaddr, but we can't modify it
1758 * non-atomically. Therefore, if get_user below is not
1759 * enough, we need to handle the fault ourselves, while
1760 * still holding the mmap_sem.
1761 *
1762 * ... and hb->lock. --ANK
1763 */
1764 spin_unlock(&hb->lock);
1765
1766 if (attempt++) {
1767 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1768 attempt);
1769 if (ret)
1770 goto out;
1771 uval = 0;
1772 goto retry_unlocked;
1773 }
1774
1775 futex_unlock_mm(fshared);
1776
1777 ret = get_user(uval, uaddr);
1778 if (!ret && (uval != -EFAULT))
1779 goto retry;
1780
1781 return ret;
1782 }
1783
1784 /*
1785 * Support for robust futexes: the kernel cleans up held futexes at
1786 * thread exit time.
1787 *
1788 * Implementation: user-space maintains a per-thread list of locks it
1789 * is holding. Upon do_exit(), the kernel carefully walks this list,
1790 * and marks all locks that are owned by this thread with the
1791 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1792 * always manipulated with the lock held, so the list is private and
1793 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1794 * field, to allow the kernel to clean up if the thread dies after
1795 * acquiring the lock, but just before it could have added itself to
1796 * the list. There can only be one such pending lock.
1797 */
1798
1799 /**
1800 * sys_set_robust_list - set the robust-futex list head of a task
1801 * @head: pointer to the list-head
1802 * @len: length of the list-head, as userspace expects
1803 */
1804 asmlinkage long
1805 sys_set_robust_list(struct robust_list_head __user *head,
1806 size_t len)
1807 {
1808 if (!futex_cmpxchg_enabled)
1809 return -ENOSYS;
1810 /*
1811 * The kernel knows only one size for now:
1812 */
1813 if (unlikely(len != sizeof(*head)))
1814 return -EINVAL;
1815
1816 current->robust_list = head;
1817
1818 return 0;
1819 }
1820
1821 /**
1822 * sys_get_robust_list - get the robust-futex list head of a task
1823 * @pid: pid of the process [zero for current task]
1824 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1825 * @len_ptr: pointer to a length field, the kernel fills in the header size
1826 */
1827 asmlinkage long
1828 sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
1829 size_t __user *len_ptr)
1830 {
1831 struct robust_list_head __user *head;
1832 unsigned long ret;
1833 uid_t euid = current_euid();
1834
1835 if (!futex_cmpxchg_enabled)
1836 return -ENOSYS;
1837
1838 if (!pid)
1839 head = current->robust_list;
1840 else {
1841 struct task_struct *p;
1842
1843 ret = -ESRCH;
1844 rcu_read_lock();
1845 p = find_task_by_vpid(pid);
1846 if (!p)
1847 goto err_unlock;
1848 ret = -EPERM;
1849 if (euid != p->euid && euid != p->uid &&
1850 !capable(CAP_SYS_PTRACE))
1851 goto err_unlock;
1852 head = p->robust_list;
1853 rcu_read_unlock();
1854 }
1855
1856 if (put_user(sizeof(*head), len_ptr))
1857 return -EFAULT;
1858 return put_user(head, head_ptr);
1859
1860 err_unlock:
1861 rcu_read_unlock();
1862
1863 return ret;
1864 }
1865
1866 /*
1867 * Process a futex-list entry, check whether it's owned by the
1868 * dying task, and do notification if so:
1869 */
1870 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1871 {
1872 u32 uval, nval, mval;
1873
1874 retry:
1875 if (get_user(uval, uaddr))
1876 return -1;
1877
1878 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
1879 /*
1880 * Ok, this dying thread is truly holding a futex
1881 * of interest. Set the OWNER_DIED bit atomically
1882 * via cmpxchg, and if the value had FUTEX_WAITERS
1883 * set, wake up a waiter (if any). (We have to do a
1884 * futex_wake() even if OWNER_DIED is already set -
1885 * to handle the rare but possible case of recursive
1886 * thread-death.) The rest of the cleanup is done in
1887 * userspace.
1888 */
1889 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1890 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1891
1892 if (nval == -EFAULT)
1893 return -1;
1894
1895 if (nval != uval)
1896 goto retry;
1897
1898 /*
1899 * Wake robust non-PI futexes here. The wakeup of
1900 * PI futexes happens in exit_pi_state():
1901 */
1902 if (!pi && (uval & FUTEX_WAITERS))
1903 futex_wake(uaddr, &curr->mm->mmap_sem, 1,
1904 FUTEX_BITSET_MATCH_ANY);
1905 }
1906 return 0;
1907 }
1908
1909 /*
1910 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1911 */
1912 static inline int fetch_robust_entry(struct robust_list __user **entry,
1913 struct robust_list __user * __user *head,
1914 int *pi)
1915 {
1916 unsigned long uentry;
1917
1918 if (get_user(uentry, (unsigned long __user *)head))
1919 return -EFAULT;
1920
1921 *entry = (void __user *)(uentry & ~1UL);
1922 *pi = uentry & 1;
1923
1924 return 0;
1925 }
1926
1927 /*
1928 * Walk curr->robust_list (very carefully, it's a userspace list!)
1929 * and mark any locks found there dead, and notify any waiters.
1930 *
1931 * We silently return on any sign of list-walking problem.
1932 */
1933 void exit_robust_list(struct task_struct *curr)
1934 {
1935 struct robust_list_head __user *head = curr->robust_list;
1936 struct robust_list __user *entry, *next_entry, *pending;
1937 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
1938 unsigned long futex_offset;
1939 int rc;
1940
1941 if (!futex_cmpxchg_enabled)
1942 return;
1943
1944 /*
1945 * Fetch the list head (which was registered earlier, via
1946 * sys_set_robust_list()):
1947 */
1948 if (fetch_robust_entry(&entry, &head->list.next, &pi))
1949 return;
1950 /*
1951 * Fetch the relative futex offset:
1952 */
1953 if (get_user(futex_offset, &head->futex_offset))
1954 return;
1955 /*
1956 * Fetch any possibly pending lock-add first, and handle it
1957 * if it exists:
1958 */
1959 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1960 return;
1961
1962 next_entry = NULL; /* avoid warning with gcc */
1963 while (entry != &head->list) {
1964 /*
1965 * Fetch the next entry in the list before calling
1966 * handle_futex_death:
1967 */
1968 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
1969 /*
1970 * A pending lock might already be on the list, so
1971 * don't process it twice:
1972 */
1973 if (entry != pending)
1974 if (handle_futex_death((void __user *)entry + futex_offset,
1975 curr, pi))
1976 return;
1977 if (rc)
1978 return;
1979 entry = next_entry;
1980 pi = next_pi;
1981 /*
1982 * Avoid excessively long or circular lists:
1983 */
1984 if (!--limit)
1985 break;
1986
1987 cond_resched();
1988 }
1989
1990 if (pending)
1991 handle_futex_death((void __user *)pending + futex_offset,
1992 curr, pip);
1993 }
1994
1995 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
1996 u32 __user *uaddr2, u32 val2, u32 val3)
1997 {
1998 int ret = -ENOSYS;
1999 int cmd = op & FUTEX_CMD_MASK;
2000 struct rw_semaphore *fshared = NULL;
2001
2002 if (!(op & FUTEX_PRIVATE_FLAG))
2003 fshared = &current->mm->mmap_sem;
2004
2005 switch (cmd) {
2006 case FUTEX_WAIT:
2007 val3 = FUTEX_BITSET_MATCH_ANY;
2008 case FUTEX_WAIT_BITSET:
2009 ret = futex_wait(uaddr, fshared, val, timeout, val3);
2010 break;
2011 case FUTEX_WAKE:
2012 val3 = FUTEX_BITSET_MATCH_ANY;
2013 case FUTEX_WAKE_BITSET:
2014 ret = futex_wake(uaddr, fshared, val, val3);
2015 break;
2016 case FUTEX_REQUEUE:
2017 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
2018 break;
2019 case FUTEX_CMP_REQUEUE:
2020 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
2021 break;
2022 case FUTEX_WAKE_OP:
2023 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2024 break;
2025 case FUTEX_LOCK_PI:
2026 if (futex_cmpxchg_enabled)
2027 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2028 break;
2029 case FUTEX_UNLOCK_PI:
2030 if (futex_cmpxchg_enabled)
2031 ret = futex_unlock_pi(uaddr, fshared);
2032 break;
2033 case FUTEX_TRYLOCK_PI:
2034 if (futex_cmpxchg_enabled)
2035 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2036 break;
2037 default:
2038 ret = -ENOSYS;
2039 }
2040 return ret;
2041 }
2042
2043
2044 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
2045 struct timespec __user *utime, u32 __user *uaddr2,
2046 u32 val3)
2047 {
2048 struct timespec ts;
2049 ktime_t t, *tp = NULL;
2050 u32 val2 = 0;
2051 int cmd = op & FUTEX_CMD_MASK;
2052
2053 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2054 cmd == FUTEX_WAIT_BITSET)) {
2055 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2056 return -EFAULT;
2057 if (!timespec_valid(&ts))
2058 return -EINVAL;
2059
2060 t = timespec_to_ktime(ts);
2061 if (cmd == FUTEX_WAIT)
2062 t = ktime_add_safe(ktime_get(), t);
2063 tp = &t;
2064 }
2065 /*
2066 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
2067 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2068 */
2069 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2070 cmd == FUTEX_WAKE_OP)
2071 val2 = (u32) (unsigned long) utime;
2072
2073 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2074 }
2075
2076 static int __init futex_init(void)
2077 {
2078 u32 curval;
2079 int i;
2080
2081 /*
2082 * This will fail and we want it. Some arch implementations do
2083 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2084 * functionality. We want to know that before we call in any
2085 * of the complex code paths. Also we want to prevent
2086 * registration of robust lists in that case. NULL is
2087 * guaranteed to fault and we get -EFAULT on functional
2088 * implementation, the non functional ones will return
2089 * -ENOSYS.
2090 */
2091 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2092 if (curval == -EFAULT)
2093 futex_cmpxchg_enabled = 1;
2094
2095 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2096 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2097 spin_lock_init(&futex_queues[i].lock);
2098 }
2099
2100 return 0;
2101 }
2102 __initcall(futex_init);
This page took 0.093313 seconds and 5 git commands to generate.