[PATCH] pi-futex: robust-futex exit crash fix
[deliverable/linux.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
20 * enough at me, Linus for the original (flawed) idea, Matthew
21 * Kirkwood for proof-of-concept implementation.
22 *
23 * "The futexes are also cursed."
24 * "But they come in a choice of three flavours!"
25 *
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
30 *
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
35 *
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
39 */
40 #include <linux/slab.h>
41 #include <linux/poll.h>
42 #include <linux/fs.h>
43 #include <linux/file.h>
44 #include <linux/jhash.h>
45 #include <linux/init.h>
46 #include <linux/futex.h>
47 #include <linux/mount.h>
48 #include <linux/pagemap.h>
49 #include <linux/syscalls.h>
50 #include <linux/signal.h>
51 #include <asm/futex.h>
52
53 #include "rtmutex_common.h"
54
55 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
56
57 /*
58 * Futexes are matched on equal values of this key.
59 * The key type depends on whether it's a shared or private mapping.
60 * Don't rearrange members without looking at hash_futex().
61 *
62 * offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
63 * We set bit 0 to indicate if it's an inode-based key.
64 */
65 union futex_key {
66 struct {
67 unsigned long pgoff;
68 struct inode *inode;
69 int offset;
70 } shared;
71 struct {
72 unsigned long address;
73 struct mm_struct *mm;
74 int offset;
75 } private;
76 struct {
77 unsigned long word;
78 void *ptr;
79 int offset;
80 } both;
81 };
82
83 /*
84 * Priority Inheritance state:
85 */
86 struct futex_pi_state {
87 /*
88 * list of 'owned' pi_state instances - these have to be
89 * cleaned up in do_exit() if the task exits prematurely:
90 */
91 struct list_head list;
92
93 /*
94 * The PI object:
95 */
96 struct rt_mutex pi_mutex;
97
98 struct task_struct *owner;
99 atomic_t refcount;
100
101 union futex_key key;
102 };
103
104 /*
105 * We use this hashed waitqueue instead of a normal wait_queue_t, so
106 * we can wake only the relevant ones (hashed queues may be shared).
107 *
108 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
109 * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
110 * The order of wakup is always to make the first condition true, then
111 * wake up q->waiters, then make the second condition true.
112 */
113 struct futex_q {
114 struct list_head list;
115 wait_queue_head_t waiters;
116
117 /* Which hash list lock to use: */
118 spinlock_t *lock_ptr;
119
120 /* Key which the futex is hashed on: */
121 union futex_key key;
122
123 /* For fd, sigio sent using these: */
124 int fd;
125 struct file *filp;
126
127 /* Optional priority inheritance state: */
128 struct futex_pi_state *pi_state;
129 struct task_struct *task;
130 };
131
132 /*
133 * Split the global futex_lock into every hash list lock.
134 */
135 struct futex_hash_bucket {
136 spinlock_t lock;
137 struct list_head chain;
138 };
139
140 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
141
142 /* Futex-fs vfsmount entry: */
143 static struct vfsmount *futex_mnt;
144
145 /*
146 * We hash on the keys returned from get_futex_key (see below).
147 */
148 static struct futex_hash_bucket *hash_futex(union futex_key *key)
149 {
150 u32 hash = jhash2((u32*)&key->both.word,
151 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
152 key->both.offset);
153 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
154 }
155
156 /*
157 * Return 1 if two futex_keys are equal, 0 otherwise.
158 */
159 static inline int match_futex(union futex_key *key1, union futex_key *key2)
160 {
161 return (key1->both.word == key2->both.word
162 && key1->both.ptr == key2->both.ptr
163 && key1->both.offset == key2->both.offset);
164 }
165
166 /*
167 * Get parameters which are the keys for a futex.
168 *
169 * For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode,
170 * offset_within_page). For private mappings, it's (uaddr, current->mm).
171 * We can usually work out the index without swapping in the page.
172 *
173 * Returns: 0, or negative error code.
174 * The key words are stored in *key on success.
175 *
176 * Should be called with &current->mm->mmap_sem but NOT any spinlocks.
177 */
178 static int get_futex_key(u32 __user *uaddr, union futex_key *key)
179 {
180 unsigned long address = (unsigned long)uaddr;
181 struct mm_struct *mm = current->mm;
182 struct vm_area_struct *vma;
183 struct page *page;
184 int err;
185
186 /*
187 * The futex address must be "naturally" aligned.
188 */
189 key->both.offset = address % PAGE_SIZE;
190 if (unlikely((key->both.offset % sizeof(u32)) != 0))
191 return -EINVAL;
192 address -= key->both.offset;
193
194 /*
195 * The futex is hashed differently depending on whether
196 * it's in a shared or private mapping. So check vma first.
197 */
198 vma = find_extend_vma(mm, address);
199 if (unlikely(!vma))
200 return -EFAULT;
201
202 /*
203 * Permissions.
204 */
205 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
206 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
207
208 /*
209 * Private mappings are handled in a simple way.
210 *
211 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
212 * it's a read-only handle, it's expected that futexes attach to
213 * the object not the particular process. Therefore we use
214 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
215 * mappings of _writable_ handles.
216 */
217 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
218 key->private.mm = mm;
219 key->private.address = address;
220 return 0;
221 }
222
223 /*
224 * Linear file mappings are also simple.
225 */
226 key->shared.inode = vma->vm_file->f_dentry->d_inode;
227 key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
228 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
229 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
230 + vma->vm_pgoff);
231 return 0;
232 }
233
234 /*
235 * We could walk the page table to read the non-linear
236 * pte, and get the page index without fetching the page
237 * from swap. But that's a lot of code to duplicate here
238 * for a rare case, so we simply fetch the page.
239 */
240 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
241 if (err >= 0) {
242 key->shared.pgoff =
243 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
244 put_page(page);
245 return 0;
246 }
247 return err;
248 }
249
250 /*
251 * Take a reference to the resource addressed by a key.
252 * Can be called while holding spinlocks.
253 *
254 * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
255 * function, if it is called at all. mmap_sem keeps key->shared.inode valid.
256 */
257 static inline void get_key_refs(union futex_key *key)
258 {
259 if (key->both.ptr != 0) {
260 if (key->both.offset & 1)
261 atomic_inc(&key->shared.inode->i_count);
262 else
263 atomic_inc(&key->private.mm->mm_count);
264 }
265 }
266
267 /*
268 * Drop a reference to the resource addressed by a key.
269 * The hash bucket spinlock must not be held.
270 */
271 static void drop_key_refs(union futex_key *key)
272 {
273 if (key->both.ptr != 0) {
274 if (key->both.offset & 1)
275 iput(key->shared.inode);
276 else
277 mmdrop(key->private.mm);
278 }
279 }
280
281 static inline int get_futex_value_locked(u32 *dest, u32 __user *from)
282 {
283 int ret;
284
285 inc_preempt_count();
286 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
287 dec_preempt_count();
288
289 return ret ? -EFAULT : 0;
290 }
291
292 /*
293 * Fault handling. Called with current->mm->mmap_sem held.
294 */
295 static int futex_handle_fault(unsigned long address, int attempt)
296 {
297 struct vm_area_struct * vma;
298 struct mm_struct *mm = current->mm;
299
300 if (attempt >= 2 || !(vma = find_vma(mm, address)) ||
301 vma->vm_start > address || !(vma->vm_flags & VM_WRITE))
302 return -EFAULT;
303
304 switch (handle_mm_fault(mm, vma, address, 1)) {
305 case VM_FAULT_MINOR:
306 current->min_flt++;
307 break;
308 case VM_FAULT_MAJOR:
309 current->maj_flt++;
310 break;
311 default:
312 return -EFAULT;
313 }
314 return 0;
315 }
316
317 /*
318 * PI code:
319 */
320 static int refill_pi_state_cache(void)
321 {
322 struct futex_pi_state *pi_state;
323
324 if (likely(current->pi_state_cache))
325 return 0;
326
327 pi_state = kmalloc(sizeof(*pi_state), GFP_KERNEL);
328
329 if (!pi_state)
330 return -ENOMEM;
331
332 memset(pi_state, 0, sizeof(*pi_state));
333 INIT_LIST_HEAD(&pi_state->list);
334 /* pi_mutex gets initialized later */
335 pi_state->owner = NULL;
336 atomic_set(&pi_state->refcount, 1);
337
338 current->pi_state_cache = pi_state;
339
340 return 0;
341 }
342
343 static struct futex_pi_state * alloc_pi_state(void)
344 {
345 struct futex_pi_state *pi_state = current->pi_state_cache;
346
347 WARN_ON(!pi_state);
348 current->pi_state_cache = NULL;
349
350 return pi_state;
351 }
352
353 static void free_pi_state(struct futex_pi_state *pi_state)
354 {
355 if (!atomic_dec_and_test(&pi_state->refcount))
356 return;
357
358 /*
359 * If pi_state->owner is NULL, the owner is most probably dying
360 * and has cleaned up the pi_state already
361 */
362 if (pi_state->owner) {
363 spin_lock_irq(&pi_state->owner->pi_lock);
364 list_del_init(&pi_state->list);
365 spin_unlock_irq(&pi_state->owner->pi_lock);
366
367 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
368 }
369
370 if (current->pi_state_cache)
371 kfree(pi_state);
372 else {
373 /*
374 * pi_state->list is already empty.
375 * clear pi_state->owner.
376 * refcount is at 0 - put it back to 1.
377 */
378 pi_state->owner = NULL;
379 atomic_set(&pi_state->refcount, 1);
380 current->pi_state_cache = pi_state;
381 }
382 }
383
384 /*
385 * Look up the task based on what TID userspace gave us.
386 * We dont trust it.
387 */
388 static struct task_struct * futex_find_get_task(pid_t pid)
389 {
390 struct task_struct *p;
391
392 read_lock(&tasklist_lock);
393 p = find_task_by_pid(pid);
394 if (!p)
395 goto out_unlock;
396 if ((current->euid != p->euid) && (current->euid != p->uid)) {
397 p = NULL;
398 goto out_unlock;
399 }
400 if (p->state == EXIT_ZOMBIE || p->exit_state == EXIT_ZOMBIE) {
401 p = NULL;
402 goto out_unlock;
403 }
404 get_task_struct(p);
405 out_unlock:
406 read_unlock(&tasklist_lock);
407
408 return p;
409 }
410
411 /*
412 * This task is holding PI mutexes at exit time => bad.
413 * Kernel cleans up PI-state, but userspace is likely hosed.
414 * (Robust-futex cleanup is separate and might save the day for userspace.)
415 */
416 void exit_pi_state_list(struct task_struct *curr)
417 {
418 struct list_head *next, *head = &curr->pi_state_list;
419 struct futex_pi_state *pi_state;
420 struct futex_hash_bucket *hb;
421 union futex_key key;
422
423 /*
424 * We are a ZOMBIE and nobody can enqueue itself on
425 * pi_state_list anymore, but we have to be careful
426 * versus waiters unqueueing themselves:
427 */
428 spin_lock_irq(&curr->pi_lock);
429 while (!list_empty(head)) {
430
431 next = head->next;
432 pi_state = list_entry(next, struct futex_pi_state, list);
433 key = pi_state->key;
434 hb = hash_futex(&key);
435 spin_unlock_irq(&curr->pi_lock);
436
437 spin_lock(&hb->lock);
438
439 spin_lock_irq(&curr->pi_lock);
440 /*
441 * We dropped the pi-lock, so re-check whether this
442 * task still owns the PI-state:
443 */
444 if (head->next != next) {
445 spin_unlock(&hb->lock);
446 continue;
447 }
448
449 WARN_ON(pi_state->owner != curr);
450 WARN_ON(list_empty(&pi_state->list));
451 list_del_init(&pi_state->list);
452 pi_state->owner = NULL;
453 spin_unlock_irq(&curr->pi_lock);
454
455 rt_mutex_unlock(&pi_state->pi_mutex);
456
457 spin_unlock(&hb->lock);
458
459 spin_lock_irq(&curr->pi_lock);
460 }
461 spin_unlock_irq(&curr->pi_lock);
462 }
463
464 static int
465 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, struct futex_q *me)
466 {
467 struct futex_pi_state *pi_state = NULL;
468 struct futex_q *this, *next;
469 struct list_head *head;
470 struct task_struct *p;
471 pid_t pid;
472
473 head = &hb->chain;
474
475 list_for_each_entry_safe(this, next, head, list) {
476 if (match_futex(&this->key, &me->key)) {
477 /*
478 * Another waiter already exists - bump up
479 * the refcount and return its pi_state:
480 */
481 pi_state = this->pi_state;
482 /*
483 * Userspace might have messed up non PI and PI futexes
484 */
485 if (unlikely(!pi_state))
486 return -EINVAL;
487
488 WARN_ON(!atomic_read(&pi_state->refcount));
489
490 atomic_inc(&pi_state->refcount);
491 me->pi_state = pi_state;
492
493 return 0;
494 }
495 }
496
497 /*
498 * We are the first waiter - try to look up the real owner and
499 * attach the new pi_state to it:
500 */
501 pid = uval & FUTEX_TID_MASK;
502 p = futex_find_get_task(pid);
503 if (!p)
504 return -ESRCH;
505
506 pi_state = alloc_pi_state();
507
508 /*
509 * Initialize the pi_mutex in locked state and make 'p'
510 * the owner of it:
511 */
512 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
513
514 /* Store the key for possible exit cleanups: */
515 pi_state->key = me->key;
516
517 spin_lock_irq(&p->pi_lock);
518 WARN_ON(!list_empty(&pi_state->list));
519 list_add(&pi_state->list, &p->pi_state_list);
520 pi_state->owner = p;
521 spin_unlock_irq(&p->pi_lock);
522
523 put_task_struct(p);
524
525 me->pi_state = pi_state;
526
527 return 0;
528 }
529
530 /*
531 * The hash bucket lock must be held when this is called.
532 * Afterwards, the futex_q must not be accessed.
533 */
534 static void wake_futex(struct futex_q *q)
535 {
536 list_del_init(&q->list);
537 if (q->filp)
538 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
539 /*
540 * The lock in wake_up_all() is a crucial memory barrier after the
541 * list_del_init() and also before assigning to q->lock_ptr.
542 */
543 wake_up_all(&q->waiters);
544 /*
545 * The waiting task can free the futex_q as soon as this is written,
546 * without taking any locks. This must come last.
547 *
548 * A memory barrier is required here to prevent the following store
549 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
550 * at the end of wake_up_all() does not prevent this store from
551 * moving.
552 */
553 wmb();
554 q->lock_ptr = NULL;
555 }
556
557 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
558 {
559 struct task_struct *new_owner;
560 struct futex_pi_state *pi_state = this->pi_state;
561 u32 curval, newval;
562
563 if (!pi_state)
564 return -EINVAL;
565
566 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
567
568 /*
569 * This happens when we have stolen the lock and the original
570 * pending owner did not enqueue itself back on the rt_mutex.
571 * Thats not a tragedy. We know that way, that a lock waiter
572 * is on the fly. We make the futex_q waiter the pending owner.
573 */
574 if (!new_owner)
575 new_owner = this->task;
576
577 /*
578 * We pass it to the next owner. (The WAITERS bit is always
579 * kept enabled while there is PI state around. We must also
580 * preserve the owner died bit.)
581 */
582 newval = (uval & FUTEX_OWNER_DIED) | FUTEX_WAITERS | new_owner->pid;
583
584 inc_preempt_count();
585 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
586 dec_preempt_count();
587
588 if (curval == -EFAULT)
589 return -EFAULT;
590 if (curval != uval)
591 return -EINVAL;
592
593 spin_lock_irq(&pi_state->owner->pi_lock);
594 WARN_ON(list_empty(&pi_state->list));
595 list_del_init(&pi_state->list);
596 spin_unlock_irq(&pi_state->owner->pi_lock);
597
598 spin_lock_irq(&new_owner->pi_lock);
599 WARN_ON(!list_empty(&pi_state->list));
600 list_add(&pi_state->list, &new_owner->pi_state_list);
601 pi_state->owner = new_owner;
602 spin_unlock_irq(&new_owner->pi_lock);
603
604 rt_mutex_unlock(&pi_state->pi_mutex);
605
606 return 0;
607 }
608
609 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
610 {
611 u32 oldval;
612
613 /*
614 * There is no waiter, so we unlock the futex. The owner died
615 * bit has not to be preserved here. We are the owner:
616 */
617 inc_preempt_count();
618 oldval = futex_atomic_cmpxchg_inatomic(uaddr, uval, 0);
619 dec_preempt_count();
620
621 if (oldval == -EFAULT)
622 return oldval;
623 if (oldval != uval)
624 return -EAGAIN;
625
626 return 0;
627 }
628
629 /*
630 * Express the locking dependencies for lockdep:
631 */
632 static inline void
633 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
634 {
635 if (hb1 <= hb2) {
636 spin_lock(&hb1->lock);
637 if (hb1 < hb2)
638 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
639 } else { /* hb1 > hb2 */
640 spin_lock(&hb2->lock);
641 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
642 }
643 }
644
645 /*
646 * Wake up all waiters hashed on the physical page that is mapped
647 * to this virtual address:
648 */
649 static int futex_wake(u32 __user *uaddr, int nr_wake)
650 {
651 struct futex_hash_bucket *hb;
652 struct futex_q *this, *next;
653 struct list_head *head;
654 union futex_key key;
655 int ret;
656
657 down_read(&current->mm->mmap_sem);
658
659 ret = get_futex_key(uaddr, &key);
660 if (unlikely(ret != 0))
661 goto out;
662
663 hb = hash_futex(&key);
664 spin_lock(&hb->lock);
665 head = &hb->chain;
666
667 list_for_each_entry_safe(this, next, head, list) {
668 if (match_futex (&this->key, &key)) {
669 if (this->pi_state) {
670 ret = -EINVAL;
671 break;
672 }
673 wake_futex(this);
674 if (++ret >= nr_wake)
675 break;
676 }
677 }
678
679 spin_unlock(&hb->lock);
680 out:
681 up_read(&current->mm->mmap_sem);
682 return ret;
683 }
684
685 /*
686 * Wake up all waiters hashed on the physical page that is mapped
687 * to this virtual address:
688 */
689 static int
690 futex_wake_op(u32 __user *uaddr1, u32 __user *uaddr2,
691 int nr_wake, int nr_wake2, int op)
692 {
693 union futex_key key1, key2;
694 struct futex_hash_bucket *hb1, *hb2;
695 struct list_head *head;
696 struct futex_q *this, *next;
697 int ret, op_ret, attempt = 0;
698
699 retryfull:
700 down_read(&current->mm->mmap_sem);
701
702 ret = get_futex_key(uaddr1, &key1);
703 if (unlikely(ret != 0))
704 goto out;
705 ret = get_futex_key(uaddr2, &key2);
706 if (unlikely(ret != 0))
707 goto out;
708
709 hb1 = hash_futex(&key1);
710 hb2 = hash_futex(&key2);
711
712 retry:
713 double_lock_hb(hb1, hb2);
714
715 op_ret = futex_atomic_op_inuser(op, uaddr2);
716 if (unlikely(op_ret < 0)) {
717 u32 dummy;
718
719 spin_unlock(&hb1->lock);
720 if (hb1 != hb2)
721 spin_unlock(&hb2->lock);
722
723 #ifndef CONFIG_MMU
724 /*
725 * we don't get EFAULT from MMU faults if we don't have an MMU,
726 * but we might get them from range checking
727 */
728 ret = op_ret;
729 goto out;
730 #endif
731
732 if (unlikely(op_ret != -EFAULT)) {
733 ret = op_ret;
734 goto out;
735 }
736
737 /*
738 * futex_atomic_op_inuser needs to both read and write
739 * *(int __user *)uaddr2, but we can't modify it
740 * non-atomically. Therefore, if get_user below is not
741 * enough, we need to handle the fault ourselves, while
742 * still holding the mmap_sem.
743 */
744 if (attempt++) {
745 if (futex_handle_fault((unsigned long)uaddr2,
746 attempt))
747 goto out;
748 goto retry;
749 }
750
751 /*
752 * If we would have faulted, release mmap_sem,
753 * fault it in and start all over again.
754 */
755 up_read(&current->mm->mmap_sem);
756
757 ret = get_user(dummy, uaddr2);
758 if (ret)
759 return ret;
760
761 goto retryfull;
762 }
763
764 head = &hb1->chain;
765
766 list_for_each_entry_safe(this, next, head, list) {
767 if (match_futex (&this->key, &key1)) {
768 wake_futex(this);
769 if (++ret >= nr_wake)
770 break;
771 }
772 }
773
774 if (op_ret > 0) {
775 head = &hb2->chain;
776
777 op_ret = 0;
778 list_for_each_entry_safe(this, next, head, list) {
779 if (match_futex (&this->key, &key2)) {
780 wake_futex(this);
781 if (++op_ret >= nr_wake2)
782 break;
783 }
784 }
785 ret += op_ret;
786 }
787
788 spin_unlock(&hb1->lock);
789 if (hb1 != hb2)
790 spin_unlock(&hb2->lock);
791 out:
792 up_read(&current->mm->mmap_sem);
793 return ret;
794 }
795
796 /*
797 * Requeue all waiters hashed on one physical page to another
798 * physical page.
799 */
800 static int futex_requeue(u32 __user *uaddr1, u32 __user *uaddr2,
801 int nr_wake, int nr_requeue, u32 *cmpval)
802 {
803 union futex_key key1, key2;
804 struct futex_hash_bucket *hb1, *hb2;
805 struct list_head *head1;
806 struct futex_q *this, *next;
807 int ret, drop_count = 0;
808
809 retry:
810 down_read(&current->mm->mmap_sem);
811
812 ret = get_futex_key(uaddr1, &key1);
813 if (unlikely(ret != 0))
814 goto out;
815 ret = get_futex_key(uaddr2, &key2);
816 if (unlikely(ret != 0))
817 goto out;
818
819 hb1 = hash_futex(&key1);
820 hb2 = hash_futex(&key2);
821
822 double_lock_hb(hb1, hb2);
823
824 if (likely(cmpval != NULL)) {
825 u32 curval;
826
827 ret = get_futex_value_locked(&curval, uaddr1);
828
829 if (unlikely(ret)) {
830 spin_unlock(&hb1->lock);
831 if (hb1 != hb2)
832 spin_unlock(&hb2->lock);
833
834 /*
835 * If we would have faulted, release mmap_sem, fault
836 * it in and start all over again.
837 */
838 up_read(&current->mm->mmap_sem);
839
840 ret = get_user(curval, uaddr1);
841
842 if (!ret)
843 goto retry;
844
845 return ret;
846 }
847 if (curval != *cmpval) {
848 ret = -EAGAIN;
849 goto out_unlock;
850 }
851 }
852
853 head1 = &hb1->chain;
854 list_for_each_entry_safe(this, next, head1, list) {
855 if (!match_futex (&this->key, &key1))
856 continue;
857 if (++ret <= nr_wake) {
858 wake_futex(this);
859 } else {
860 /*
861 * If key1 and key2 hash to the same bucket, no need to
862 * requeue.
863 */
864 if (likely(head1 != &hb2->chain)) {
865 list_move_tail(&this->list, &hb2->chain);
866 this->lock_ptr = &hb2->lock;
867 }
868 this->key = key2;
869 get_key_refs(&key2);
870 drop_count++;
871
872 if (ret - nr_wake >= nr_requeue)
873 break;
874 }
875 }
876
877 out_unlock:
878 spin_unlock(&hb1->lock);
879 if (hb1 != hb2)
880 spin_unlock(&hb2->lock);
881
882 /* drop_key_refs() must be called outside the spinlocks. */
883 while (--drop_count >= 0)
884 drop_key_refs(&key1);
885
886 out:
887 up_read(&current->mm->mmap_sem);
888 return ret;
889 }
890
891 /* The key must be already stored in q->key. */
892 static inline struct futex_hash_bucket *
893 queue_lock(struct futex_q *q, int fd, struct file *filp)
894 {
895 struct futex_hash_bucket *hb;
896
897 q->fd = fd;
898 q->filp = filp;
899
900 init_waitqueue_head(&q->waiters);
901
902 get_key_refs(&q->key);
903 hb = hash_futex(&q->key);
904 q->lock_ptr = &hb->lock;
905
906 spin_lock(&hb->lock);
907 return hb;
908 }
909
910 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
911 {
912 list_add_tail(&q->list, &hb->chain);
913 q->task = current;
914 spin_unlock(&hb->lock);
915 }
916
917 static inline void
918 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
919 {
920 spin_unlock(&hb->lock);
921 drop_key_refs(&q->key);
922 }
923
924 /*
925 * queue_me and unqueue_me must be called as a pair, each
926 * exactly once. They are called with the hashed spinlock held.
927 */
928
929 /* The key must be already stored in q->key. */
930 static void queue_me(struct futex_q *q, int fd, struct file *filp)
931 {
932 struct futex_hash_bucket *hb;
933
934 hb = queue_lock(q, fd, filp);
935 __queue_me(q, hb);
936 }
937
938 /* Return 1 if we were still queued (ie. 0 means we were woken) */
939 static int unqueue_me(struct futex_q *q)
940 {
941 spinlock_t *lock_ptr;
942 int ret = 0;
943
944 /* In the common case we don't take the spinlock, which is nice. */
945 retry:
946 lock_ptr = q->lock_ptr;
947 if (lock_ptr != 0) {
948 spin_lock(lock_ptr);
949 /*
950 * q->lock_ptr can change between reading it and
951 * spin_lock(), causing us to take the wrong lock. This
952 * corrects the race condition.
953 *
954 * Reasoning goes like this: if we have the wrong lock,
955 * q->lock_ptr must have changed (maybe several times)
956 * between reading it and the spin_lock(). It can
957 * change again after the spin_lock() but only if it was
958 * already changed before the spin_lock(). It cannot,
959 * however, change back to the original value. Therefore
960 * we can detect whether we acquired the correct lock.
961 */
962 if (unlikely(lock_ptr != q->lock_ptr)) {
963 spin_unlock(lock_ptr);
964 goto retry;
965 }
966 WARN_ON(list_empty(&q->list));
967 list_del(&q->list);
968
969 BUG_ON(q->pi_state);
970
971 spin_unlock(lock_ptr);
972 ret = 1;
973 }
974
975 drop_key_refs(&q->key);
976 return ret;
977 }
978
979 /*
980 * PI futexes can not be requeued and must remove themself from the
981 * hash bucket. The hash bucket lock is held on entry and dropped here.
982 */
983 static void unqueue_me_pi(struct futex_q *q, struct futex_hash_bucket *hb)
984 {
985 WARN_ON(list_empty(&q->list));
986 list_del(&q->list);
987
988 BUG_ON(!q->pi_state);
989 free_pi_state(q->pi_state);
990 q->pi_state = NULL;
991
992 spin_unlock(&hb->lock);
993
994 drop_key_refs(&q->key);
995 }
996
997 static int futex_wait(u32 __user *uaddr, u32 val, unsigned long time)
998 {
999 struct task_struct *curr = current;
1000 DECLARE_WAITQUEUE(wait, curr);
1001 struct futex_hash_bucket *hb;
1002 struct futex_q q;
1003 u32 uval;
1004 int ret;
1005
1006 q.pi_state = NULL;
1007 retry:
1008 down_read(&curr->mm->mmap_sem);
1009
1010 ret = get_futex_key(uaddr, &q.key);
1011 if (unlikely(ret != 0))
1012 goto out_release_sem;
1013
1014 hb = queue_lock(&q, -1, NULL);
1015
1016 /*
1017 * Access the page AFTER the futex is queued.
1018 * Order is important:
1019 *
1020 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1021 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1022 *
1023 * The basic logical guarantee of a futex is that it blocks ONLY
1024 * if cond(var) is known to be true at the time of blocking, for
1025 * any cond. If we queued after testing *uaddr, that would open
1026 * a race condition where we could block indefinitely with
1027 * cond(var) false, which would violate the guarantee.
1028 *
1029 * A consequence is that futex_wait() can return zero and absorb
1030 * a wakeup when *uaddr != val on entry to the syscall. This is
1031 * rare, but normal.
1032 *
1033 * We hold the mmap semaphore, so the mapping cannot have changed
1034 * since we looked it up in get_futex_key.
1035 */
1036 ret = get_futex_value_locked(&uval, uaddr);
1037
1038 if (unlikely(ret)) {
1039 queue_unlock(&q, hb);
1040
1041 /*
1042 * If we would have faulted, release mmap_sem, fault it in and
1043 * start all over again.
1044 */
1045 up_read(&curr->mm->mmap_sem);
1046
1047 ret = get_user(uval, uaddr);
1048
1049 if (!ret)
1050 goto retry;
1051 return ret;
1052 }
1053 ret = -EWOULDBLOCK;
1054 if (uval != val)
1055 goto out_unlock_release_sem;
1056
1057 /* Only actually queue if *uaddr contained val. */
1058 __queue_me(&q, hb);
1059
1060 /*
1061 * Now the futex is queued and we have checked the data, we
1062 * don't want to hold mmap_sem while we sleep.
1063 */
1064 up_read(&curr->mm->mmap_sem);
1065
1066 /*
1067 * There might have been scheduling since the queue_me(), as we
1068 * cannot hold a spinlock across the get_user() in case it
1069 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1070 * queueing ourselves into the futex hash. This code thus has to
1071 * rely on the futex_wake() code removing us from hash when it
1072 * wakes us up.
1073 */
1074
1075 /* add_wait_queue is the barrier after __set_current_state. */
1076 __set_current_state(TASK_INTERRUPTIBLE);
1077 add_wait_queue(&q.waiters, &wait);
1078 /*
1079 * !list_empty() is safe here without any lock.
1080 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1081 */
1082 if (likely(!list_empty(&q.list)))
1083 time = schedule_timeout(time);
1084 __set_current_state(TASK_RUNNING);
1085
1086 /*
1087 * NOTE: we don't remove ourselves from the waitqueue because
1088 * we are the only user of it.
1089 */
1090
1091 /* If we were woken (and unqueued), we succeeded, whatever. */
1092 if (!unqueue_me(&q))
1093 return 0;
1094 if (time == 0)
1095 return -ETIMEDOUT;
1096 /*
1097 * We expect signal_pending(current), but another thread may
1098 * have handled it for us already.
1099 */
1100 return -EINTR;
1101
1102 out_unlock_release_sem:
1103 queue_unlock(&q, hb);
1104
1105 out_release_sem:
1106 up_read(&curr->mm->mmap_sem);
1107 return ret;
1108 }
1109
1110 /*
1111 * Userspace tried a 0 -> TID atomic transition of the futex value
1112 * and failed. The kernel side here does the whole locking operation:
1113 * if there are waiters then it will block, it does PI, etc. (Due to
1114 * races the kernel might see a 0 value of the futex too.)
1115 */
1116 static int do_futex_lock_pi(u32 __user *uaddr, int detect, int trylock,
1117 struct hrtimer_sleeper *to)
1118 {
1119 struct task_struct *curr = current;
1120 struct futex_hash_bucket *hb;
1121 u32 uval, newval, curval;
1122 struct futex_q q;
1123 int ret, attempt = 0;
1124
1125 if (refill_pi_state_cache())
1126 return -ENOMEM;
1127
1128 q.pi_state = NULL;
1129 retry:
1130 down_read(&curr->mm->mmap_sem);
1131
1132 ret = get_futex_key(uaddr, &q.key);
1133 if (unlikely(ret != 0))
1134 goto out_release_sem;
1135
1136 hb = queue_lock(&q, -1, NULL);
1137
1138 retry_locked:
1139 /*
1140 * To avoid races, we attempt to take the lock here again
1141 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1142 * the locks. It will most likely not succeed.
1143 */
1144 newval = current->pid;
1145
1146 inc_preempt_count();
1147 curval = futex_atomic_cmpxchg_inatomic(uaddr, 0, newval);
1148 dec_preempt_count();
1149
1150 if (unlikely(curval == -EFAULT))
1151 goto uaddr_faulted;
1152
1153 /* We own the lock already */
1154 if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
1155 if (!detect && 0)
1156 force_sig(SIGKILL, current);
1157 ret = -EDEADLK;
1158 goto out_unlock_release_sem;
1159 }
1160
1161 /*
1162 * Surprise - we got the lock. Just return
1163 * to userspace:
1164 */
1165 if (unlikely(!curval))
1166 goto out_unlock_release_sem;
1167
1168 uval = curval;
1169 newval = uval | FUTEX_WAITERS;
1170
1171 inc_preempt_count();
1172 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
1173 dec_preempt_count();
1174
1175 if (unlikely(curval == -EFAULT))
1176 goto uaddr_faulted;
1177 if (unlikely(curval != uval))
1178 goto retry_locked;
1179
1180 /*
1181 * We dont have the lock. Look up the PI state (or create it if
1182 * we are the first waiter):
1183 */
1184 ret = lookup_pi_state(uval, hb, &q);
1185
1186 if (unlikely(ret)) {
1187 /*
1188 * There were no waiters and the owner task lookup
1189 * failed. When the OWNER_DIED bit is set, then we
1190 * know that this is a robust futex and we actually
1191 * take the lock. This is safe as we are protected by
1192 * the hash bucket lock. We also set the waiters bit
1193 * unconditionally here, to simplify glibc handling of
1194 * multiple tasks racing to acquire the lock and
1195 * cleanup the problems which were left by the dead
1196 * owner.
1197 */
1198 if (curval & FUTEX_OWNER_DIED) {
1199 uval = newval;
1200 newval = current->pid |
1201 FUTEX_OWNER_DIED | FUTEX_WAITERS;
1202
1203 inc_preempt_count();
1204 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1205 uval, newval);
1206 dec_preempt_count();
1207
1208 if (unlikely(curval == -EFAULT))
1209 goto uaddr_faulted;
1210 if (unlikely(curval != uval))
1211 goto retry_locked;
1212 ret = 0;
1213 }
1214 goto out_unlock_release_sem;
1215 }
1216
1217 /*
1218 * Only actually queue now that the atomic ops are done:
1219 */
1220 __queue_me(&q, hb);
1221
1222 /*
1223 * Now the futex is queued and we have checked the data, we
1224 * don't want to hold mmap_sem while we sleep.
1225 */
1226 up_read(&curr->mm->mmap_sem);
1227
1228 WARN_ON(!q.pi_state);
1229 /*
1230 * Block on the PI mutex:
1231 */
1232 if (!trylock)
1233 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1234 else {
1235 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1236 /* Fixup the trylock return value: */
1237 ret = ret ? 0 : -EWOULDBLOCK;
1238 }
1239
1240 down_read(&curr->mm->mmap_sem);
1241 spin_lock(q.lock_ptr);
1242
1243 /*
1244 * Got the lock. We might not be the anticipated owner if we
1245 * did a lock-steal - fix up the PI-state in that case.
1246 */
1247 if (!ret && q.pi_state->owner != curr) {
1248 u32 newtid = current->pid | FUTEX_WAITERS;
1249
1250 /* Owner died? */
1251 if (q.pi_state->owner != NULL) {
1252 spin_lock_irq(&q.pi_state->owner->pi_lock);
1253 WARN_ON(list_empty(&q.pi_state->list));
1254 list_del_init(&q.pi_state->list);
1255 spin_unlock_irq(&q.pi_state->owner->pi_lock);
1256 } else
1257 newtid |= FUTEX_OWNER_DIED;
1258
1259 q.pi_state->owner = current;
1260
1261 spin_lock_irq(&current->pi_lock);
1262 WARN_ON(!list_empty(&q.pi_state->list));
1263 list_add(&q.pi_state->list, &current->pi_state_list);
1264 spin_unlock_irq(&current->pi_lock);
1265
1266 /* Unqueue and drop the lock */
1267 unqueue_me_pi(&q, hb);
1268 up_read(&curr->mm->mmap_sem);
1269 /*
1270 * We own it, so we have to replace the pending owner
1271 * TID. This must be atomic as we have preserve the
1272 * owner died bit here.
1273 */
1274 ret = get_user(uval, uaddr);
1275 while (!ret) {
1276 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1277 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1278 uval, newval);
1279 if (curval == -EFAULT)
1280 ret = -EFAULT;
1281 if (curval == uval)
1282 break;
1283 uval = curval;
1284 }
1285 } else {
1286 /*
1287 * Catch the rare case, where the lock was released
1288 * when we were on the way back before we locked
1289 * the hash bucket.
1290 */
1291 if (ret && q.pi_state->owner == curr) {
1292 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1293 ret = 0;
1294 }
1295 /* Unqueue and drop the lock */
1296 unqueue_me_pi(&q, hb);
1297 up_read(&curr->mm->mmap_sem);
1298 }
1299
1300 if (!detect && ret == -EDEADLK && 0)
1301 force_sig(SIGKILL, current);
1302
1303 return ret;
1304
1305 out_unlock_release_sem:
1306 queue_unlock(&q, hb);
1307
1308 out_release_sem:
1309 up_read(&curr->mm->mmap_sem);
1310 return ret;
1311
1312 uaddr_faulted:
1313 /*
1314 * We have to r/w *(int __user *)uaddr, but we can't modify it
1315 * non-atomically. Therefore, if get_user below is not
1316 * enough, we need to handle the fault ourselves, while
1317 * still holding the mmap_sem.
1318 */
1319 if (attempt++) {
1320 if (futex_handle_fault((unsigned long)uaddr, attempt))
1321 goto out_unlock_release_sem;
1322
1323 goto retry_locked;
1324 }
1325
1326 queue_unlock(&q, hb);
1327 up_read(&curr->mm->mmap_sem);
1328
1329 ret = get_user(uval, uaddr);
1330 if (!ret && (uval != -EFAULT))
1331 goto retry;
1332
1333 return ret;
1334 }
1335
1336 /*
1337 * Restart handler
1338 */
1339 static long futex_lock_pi_restart(struct restart_block *restart)
1340 {
1341 struct hrtimer_sleeper timeout, *to = NULL;
1342 int ret;
1343
1344 restart->fn = do_no_restart_syscall;
1345
1346 if (restart->arg2 || restart->arg3) {
1347 to = &timeout;
1348 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS);
1349 hrtimer_init_sleeper(to, current);
1350 to->timer.expires.tv64 = ((u64)restart->arg1 << 32) |
1351 (u64) restart->arg0;
1352 }
1353
1354 pr_debug("lock_pi restart: %p, %d (%d)\n",
1355 (u32 __user *)restart->arg0, current->pid);
1356
1357 ret = do_futex_lock_pi((u32 __user *)restart->arg0, restart->arg1,
1358 0, to);
1359
1360 if (ret != -EINTR)
1361 return ret;
1362
1363 restart->fn = futex_lock_pi_restart;
1364
1365 /* The other values are filled in */
1366 return -ERESTART_RESTARTBLOCK;
1367 }
1368
1369 /*
1370 * Called from the syscall entry below.
1371 */
1372 static int futex_lock_pi(u32 __user *uaddr, int detect, unsigned long sec,
1373 long nsec, int trylock)
1374 {
1375 struct hrtimer_sleeper timeout, *to = NULL;
1376 struct restart_block *restart;
1377 int ret;
1378
1379 if (sec != MAX_SCHEDULE_TIMEOUT) {
1380 to = &timeout;
1381 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS);
1382 hrtimer_init_sleeper(to, current);
1383 to->timer.expires = ktime_set(sec, nsec);
1384 }
1385
1386 ret = do_futex_lock_pi(uaddr, detect, trylock, to);
1387
1388 if (ret != -EINTR)
1389 return ret;
1390
1391 pr_debug("lock_pi interrupted: %p, %d (%d)\n", uaddr, current->pid);
1392
1393 restart = &current_thread_info()->restart_block;
1394 restart->fn = futex_lock_pi_restart;
1395 restart->arg0 = (unsigned long) uaddr;
1396 restart->arg1 = detect;
1397 if (to) {
1398 restart->arg2 = to->timer.expires.tv64 & 0xFFFFFFFF;
1399 restart->arg3 = to->timer.expires.tv64 >> 32;
1400 } else
1401 restart->arg2 = restart->arg3 = 0;
1402
1403 return -ERESTART_RESTARTBLOCK;
1404 }
1405
1406 /*
1407 * Userspace attempted a TID -> 0 atomic transition, and failed.
1408 * This is the in-kernel slowpath: we look up the PI state (if any),
1409 * and do the rt-mutex unlock.
1410 */
1411 static int futex_unlock_pi(u32 __user *uaddr)
1412 {
1413 struct futex_hash_bucket *hb;
1414 struct futex_q *this, *next;
1415 u32 uval;
1416 struct list_head *head;
1417 union futex_key key;
1418 int ret, attempt = 0;
1419
1420 retry:
1421 if (get_user(uval, uaddr))
1422 return -EFAULT;
1423 /*
1424 * We release only a lock we actually own:
1425 */
1426 if ((uval & FUTEX_TID_MASK) != current->pid)
1427 return -EPERM;
1428 /*
1429 * First take all the futex related locks:
1430 */
1431 down_read(&current->mm->mmap_sem);
1432
1433 ret = get_futex_key(uaddr, &key);
1434 if (unlikely(ret != 0))
1435 goto out;
1436
1437 hb = hash_futex(&key);
1438 spin_lock(&hb->lock);
1439
1440 retry_locked:
1441 /*
1442 * To avoid races, try to do the TID -> 0 atomic transition
1443 * again. If it succeeds then we can return without waking
1444 * anyone else up:
1445 */
1446 inc_preempt_count();
1447 uval = futex_atomic_cmpxchg_inatomic(uaddr, current->pid, 0);
1448 dec_preempt_count();
1449
1450 if (unlikely(uval == -EFAULT))
1451 goto pi_faulted;
1452 /*
1453 * Rare case: we managed to release the lock atomically,
1454 * no need to wake anyone else up:
1455 */
1456 if (unlikely(uval == current->pid))
1457 goto out_unlock;
1458
1459 /*
1460 * Ok, other tasks may need to be woken up - check waiters
1461 * and do the wakeup if necessary:
1462 */
1463 head = &hb->chain;
1464
1465 list_for_each_entry_safe(this, next, head, list) {
1466 if (!match_futex (&this->key, &key))
1467 continue;
1468 ret = wake_futex_pi(uaddr, uval, this);
1469 /*
1470 * The atomic access to the futex value
1471 * generated a pagefault, so retry the
1472 * user-access and the wakeup:
1473 */
1474 if (ret == -EFAULT)
1475 goto pi_faulted;
1476 goto out_unlock;
1477 }
1478 /*
1479 * No waiters - kernel unlocks the futex:
1480 */
1481 ret = unlock_futex_pi(uaddr, uval);
1482 if (ret == -EFAULT)
1483 goto pi_faulted;
1484
1485 out_unlock:
1486 spin_unlock(&hb->lock);
1487 out:
1488 up_read(&current->mm->mmap_sem);
1489
1490 return ret;
1491
1492 pi_faulted:
1493 /*
1494 * We have to r/w *(int __user *)uaddr, but we can't modify it
1495 * non-atomically. Therefore, if get_user below is not
1496 * enough, we need to handle the fault ourselves, while
1497 * still holding the mmap_sem.
1498 */
1499 if (attempt++) {
1500 if (futex_handle_fault((unsigned long)uaddr, attempt))
1501 goto out_unlock;
1502
1503 goto retry_locked;
1504 }
1505
1506 spin_unlock(&hb->lock);
1507 up_read(&current->mm->mmap_sem);
1508
1509 ret = get_user(uval, uaddr);
1510 if (!ret && (uval != -EFAULT))
1511 goto retry;
1512
1513 return ret;
1514 }
1515
1516 static int futex_close(struct inode *inode, struct file *filp)
1517 {
1518 struct futex_q *q = filp->private_data;
1519
1520 unqueue_me(q);
1521 kfree(q);
1522
1523 return 0;
1524 }
1525
1526 /* This is one-shot: once it's gone off you need a new fd */
1527 static unsigned int futex_poll(struct file *filp,
1528 struct poll_table_struct *wait)
1529 {
1530 struct futex_q *q = filp->private_data;
1531 int ret = 0;
1532
1533 poll_wait(filp, &q->waiters, wait);
1534
1535 /*
1536 * list_empty() is safe here without any lock.
1537 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1538 */
1539 if (list_empty(&q->list))
1540 ret = POLLIN | POLLRDNORM;
1541
1542 return ret;
1543 }
1544
1545 static struct file_operations futex_fops = {
1546 .release = futex_close,
1547 .poll = futex_poll,
1548 };
1549
1550 /*
1551 * Signal allows caller to avoid the race which would occur if they
1552 * set the sigio stuff up afterwards.
1553 */
1554 static int futex_fd(u32 __user *uaddr, int signal)
1555 {
1556 struct futex_q *q;
1557 struct file *filp;
1558 int ret, err;
1559
1560 ret = -EINVAL;
1561 if (!valid_signal(signal))
1562 goto out;
1563
1564 ret = get_unused_fd();
1565 if (ret < 0)
1566 goto out;
1567 filp = get_empty_filp();
1568 if (!filp) {
1569 put_unused_fd(ret);
1570 ret = -ENFILE;
1571 goto out;
1572 }
1573 filp->f_op = &futex_fops;
1574 filp->f_vfsmnt = mntget(futex_mnt);
1575 filp->f_dentry = dget(futex_mnt->mnt_root);
1576 filp->f_mapping = filp->f_dentry->d_inode->i_mapping;
1577
1578 if (signal) {
1579 err = f_setown(filp, current->pid, 1);
1580 if (err < 0) {
1581 goto error;
1582 }
1583 filp->f_owner.signum = signal;
1584 }
1585
1586 q = kmalloc(sizeof(*q), GFP_KERNEL);
1587 if (!q) {
1588 err = -ENOMEM;
1589 goto error;
1590 }
1591 q->pi_state = NULL;
1592
1593 down_read(&current->mm->mmap_sem);
1594 err = get_futex_key(uaddr, &q->key);
1595
1596 if (unlikely(err != 0)) {
1597 up_read(&current->mm->mmap_sem);
1598 kfree(q);
1599 goto error;
1600 }
1601
1602 /*
1603 * queue_me() must be called before releasing mmap_sem, because
1604 * key->shared.inode needs to be referenced while holding it.
1605 */
1606 filp->private_data = q;
1607
1608 queue_me(q, ret, filp);
1609 up_read(&current->mm->mmap_sem);
1610
1611 /* Now we map fd to filp, so userspace can access it */
1612 fd_install(ret, filp);
1613 out:
1614 return ret;
1615 error:
1616 put_unused_fd(ret);
1617 put_filp(filp);
1618 ret = err;
1619 goto out;
1620 }
1621
1622 /*
1623 * Support for robust futexes: the kernel cleans up held futexes at
1624 * thread exit time.
1625 *
1626 * Implementation: user-space maintains a per-thread list of locks it
1627 * is holding. Upon do_exit(), the kernel carefully walks this list,
1628 * and marks all locks that are owned by this thread with the
1629 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1630 * always manipulated with the lock held, so the list is private and
1631 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1632 * field, to allow the kernel to clean up if the thread dies after
1633 * acquiring the lock, but just before it could have added itself to
1634 * the list. There can only be one such pending lock.
1635 */
1636
1637 /**
1638 * sys_set_robust_list - set the robust-futex list head of a task
1639 * @head: pointer to the list-head
1640 * @len: length of the list-head, as userspace expects
1641 */
1642 asmlinkage long
1643 sys_set_robust_list(struct robust_list_head __user *head,
1644 size_t len)
1645 {
1646 /*
1647 * The kernel knows only one size for now:
1648 */
1649 if (unlikely(len != sizeof(*head)))
1650 return -EINVAL;
1651
1652 current->robust_list = head;
1653
1654 return 0;
1655 }
1656
1657 /**
1658 * sys_get_robust_list - get the robust-futex list head of a task
1659 * @pid: pid of the process [zero for current task]
1660 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1661 * @len_ptr: pointer to a length field, the kernel fills in the header size
1662 */
1663 asmlinkage long
1664 sys_get_robust_list(int pid, struct robust_list_head __user **head_ptr,
1665 size_t __user *len_ptr)
1666 {
1667 struct robust_list_head *head;
1668 unsigned long ret;
1669
1670 if (!pid)
1671 head = current->robust_list;
1672 else {
1673 struct task_struct *p;
1674
1675 ret = -ESRCH;
1676 read_lock(&tasklist_lock);
1677 p = find_task_by_pid(pid);
1678 if (!p)
1679 goto err_unlock;
1680 ret = -EPERM;
1681 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1682 !capable(CAP_SYS_PTRACE))
1683 goto err_unlock;
1684 head = p->robust_list;
1685 read_unlock(&tasklist_lock);
1686 }
1687
1688 if (put_user(sizeof(*head), len_ptr))
1689 return -EFAULT;
1690 return put_user(head, head_ptr);
1691
1692 err_unlock:
1693 read_unlock(&tasklist_lock);
1694
1695 return ret;
1696 }
1697
1698 /*
1699 * Process a futex-list entry, check whether it's owned by the
1700 * dying task, and do notification if so:
1701 */
1702 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr)
1703 {
1704 u32 uval, nval;
1705
1706 retry:
1707 if (get_user(uval, uaddr))
1708 return -1;
1709
1710 if ((uval & FUTEX_TID_MASK) == curr->pid) {
1711 /*
1712 * Ok, this dying thread is truly holding a futex
1713 * of interest. Set the OWNER_DIED bit atomically
1714 * via cmpxchg, and if the value had FUTEX_WAITERS
1715 * set, wake up a waiter (if any). (We have to do a
1716 * futex_wake() even if OWNER_DIED is already set -
1717 * to handle the rare but possible case of recursive
1718 * thread-death.) The rest of the cleanup is done in
1719 * userspace.
1720 */
1721 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval,
1722 uval | FUTEX_OWNER_DIED);
1723 if (nval == -EFAULT)
1724 return -1;
1725
1726 if (nval != uval)
1727 goto retry;
1728
1729 if (uval & FUTEX_WAITERS)
1730 futex_wake(uaddr, 1);
1731 }
1732 return 0;
1733 }
1734
1735 /*
1736 * Walk curr->robust_list (very carefully, it's a userspace list!)
1737 * and mark any locks found there dead, and notify any waiters.
1738 *
1739 * We silently return on any sign of list-walking problem.
1740 */
1741 void exit_robust_list(struct task_struct *curr)
1742 {
1743 struct robust_list_head __user *head = curr->robust_list;
1744 struct robust_list __user *entry, *pending;
1745 unsigned int limit = ROBUST_LIST_LIMIT;
1746 unsigned long futex_offset;
1747
1748 /*
1749 * Fetch the list head (which was registered earlier, via
1750 * sys_set_robust_list()):
1751 */
1752 if (get_user(entry, &head->list.next))
1753 return;
1754 /*
1755 * Fetch the relative futex offset:
1756 */
1757 if (get_user(futex_offset, &head->futex_offset))
1758 return;
1759 /*
1760 * Fetch any possibly pending lock-add first, and handle it
1761 * if it exists:
1762 */
1763 if (get_user(pending, &head->list_op_pending))
1764 return;
1765 if (pending)
1766 handle_futex_death((void *)pending + futex_offset, curr);
1767
1768 while (entry != &head->list) {
1769 /*
1770 * A pending lock might already be on the list, so
1771 * don't process it twice:
1772 */
1773 if (entry != pending)
1774 if (handle_futex_death((void *)entry + futex_offset,
1775 curr))
1776 return;
1777 /*
1778 * Fetch the next entry in the list:
1779 */
1780 if (get_user(entry, &entry->next))
1781 return;
1782 /*
1783 * Avoid excessively long or circular lists:
1784 */
1785 if (!--limit)
1786 break;
1787
1788 cond_resched();
1789 }
1790 }
1791
1792 long do_futex(u32 __user *uaddr, int op, u32 val, unsigned long timeout,
1793 u32 __user *uaddr2, u32 val2, u32 val3)
1794 {
1795 int ret;
1796
1797 switch (op) {
1798 case FUTEX_WAIT:
1799 ret = futex_wait(uaddr, val, timeout);
1800 break;
1801 case FUTEX_WAKE:
1802 ret = futex_wake(uaddr, val);
1803 break;
1804 case FUTEX_FD:
1805 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
1806 ret = futex_fd(uaddr, val);
1807 break;
1808 case FUTEX_REQUEUE:
1809 ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
1810 break;
1811 case FUTEX_CMP_REQUEUE:
1812 ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
1813 break;
1814 case FUTEX_WAKE_OP:
1815 ret = futex_wake_op(uaddr, uaddr2, val, val2, val3);
1816 break;
1817 case FUTEX_LOCK_PI:
1818 ret = futex_lock_pi(uaddr, val, timeout, val2, 0);
1819 break;
1820 case FUTEX_UNLOCK_PI:
1821 ret = futex_unlock_pi(uaddr);
1822 break;
1823 case FUTEX_TRYLOCK_PI:
1824 ret = futex_lock_pi(uaddr, 0, timeout, val2, 1);
1825 break;
1826 default:
1827 ret = -ENOSYS;
1828 }
1829 return ret;
1830 }
1831
1832
1833 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1834 struct timespec __user *utime, u32 __user *uaddr2,
1835 u32 val3)
1836 {
1837 struct timespec t;
1838 unsigned long timeout = MAX_SCHEDULE_TIMEOUT;
1839 u32 val2 = 0;
1840
1841 if (utime && (op == FUTEX_WAIT || op == FUTEX_LOCK_PI)) {
1842 if (copy_from_user(&t, utime, sizeof(t)) != 0)
1843 return -EFAULT;
1844 if (!timespec_valid(&t))
1845 return -EINVAL;
1846 if (op == FUTEX_WAIT)
1847 timeout = timespec_to_jiffies(&t) + 1;
1848 else {
1849 timeout = t.tv_sec;
1850 val2 = t.tv_nsec;
1851 }
1852 }
1853 /*
1854 * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
1855 */
1856 if (op == FUTEX_REQUEUE || op == FUTEX_CMP_REQUEUE)
1857 val2 = (u32) (unsigned long) utime;
1858
1859 return do_futex(uaddr, op, val, timeout, uaddr2, val2, val3);
1860 }
1861
1862 static int futexfs_get_sb(struct file_system_type *fs_type,
1863 int flags, const char *dev_name, void *data,
1864 struct vfsmount *mnt)
1865 {
1866 return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt);
1867 }
1868
1869 static struct file_system_type futex_fs_type = {
1870 .name = "futexfs",
1871 .get_sb = futexfs_get_sb,
1872 .kill_sb = kill_anon_super,
1873 };
1874
1875 static int __init init(void)
1876 {
1877 unsigned int i;
1878
1879 register_filesystem(&futex_fs_type);
1880 futex_mnt = kern_mount(&futex_fs_type);
1881
1882 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
1883 INIT_LIST_HEAD(&futex_queues[i].chain);
1884 spin_lock_init(&futex_queues[i].lock);
1885 }
1886 return 0;
1887 }
1888 __initcall(init);
This page took 0.092124 seconds and 5 git commands to generate.