futex: make futex_(get|put)_key() calls symmetric
[deliverable/linux.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43 #include <linux/slab.h>
44 #include <linux/poll.h>
45 #include <linux/fs.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
58
59 #include <asm/futex.h>
60
61 #include "rtmutex_common.h"
62
63 int __read_mostly futex_cmpxchg_enabled;
64
65 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
67 /*
68 * Priority Inheritance state:
69 */
70 struct futex_pi_state {
71 /*
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
74 */
75 struct list_head list;
76
77 /*
78 * The PI object:
79 */
80 struct rt_mutex pi_mutex;
81
82 struct task_struct *owner;
83 atomic_t refcount;
84
85 union futex_key key;
86 };
87
88 /*
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
91 *
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
94 * The order of wakup is always to make the first condition true, then
95 * wake up q->waiter, then make the second condition true.
96 */
97 struct futex_q {
98 struct plist_node list;
99 /* There can only be a single waiter */
100 wait_queue_head_t waiter;
101
102 /* Which hash list lock to use: */
103 spinlock_t *lock_ptr;
104
105 /* Key which the futex is hashed on: */
106 union futex_key key;
107
108 /* Optional priority inheritance state: */
109 struct futex_pi_state *pi_state;
110 struct task_struct *task;
111
112 /* Bitset for the optional bitmasked wakeup */
113 u32 bitset;
114 };
115
116 /*
117 * Split the global futex_lock into every hash list lock.
118 */
119 struct futex_hash_bucket {
120 spinlock_t lock;
121 struct plist_head chain;
122 };
123
124 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
125
126 /*
127 * We hash on the keys returned from get_futex_key (see below).
128 */
129 static struct futex_hash_bucket *hash_futex(union futex_key *key)
130 {
131 u32 hash = jhash2((u32*)&key->both.word,
132 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
133 key->both.offset);
134 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
135 }
136
137 /*
138 * Return 1 if two futex_keys are equal, 0 otherwise.
139 */
140 static inline int match_futex(union futex_key *key1, union futex_key *key2)
141 {
142 return (key1->both.word == key2->both.word
143 && key1->both.ptr == key2->both.ptr
144 && key1->both.offset == key2->both.offset);
145 }
146
147 /*
148 * Take a reference to the resource addressed by a key.
149 * Can be called while holding spinlocks.
150 *
151 */
152 static void get_futex_key_refs(union futex_key *key)
153 {
154 if (!key->both.ptr)
155 return;
156
157 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
158 case FUT_OFF_INODE:
159 atomic_inc(&key->shared.inode->i_count);
160 break;
161 case FUT_OFF_MMSHARED:
162 atomic_inc(&key->private.mm->mm_count);
163 break;
164 }
165 }
166
167 /*
168 * Drop a reference to the resource addressed by a key.
169 * The hash bucket spinlock must not be held.
170 */
171 static void drop_futex_key_refs(union futex_key *key)
172 {
173 if (!key->both.ptr)
174 return;
175
176 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
177 case FUT_OFF_INODE:
178 iput(key->shared.inode);
179 break;
180 case FUT_OFF_MMSHARED:
181 mmdrop(key->private.mm);
182 break;
183 }
184 }
185
186 /**
187 * get_futex_key - Get parameters which are the keys for a futex.
188 * @uaddr: virtual address of the futex
189 * @shared: NULL for a PROCESS_PRIVATE futex,
190 * &current->mm->mmap_sem for a PROCESS_SHARED futex
191 * @key: address where result is stored.
192 *
193 * Returns a negative error code or 0
194 * The key words are stored in *key on success.
195 *
196 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
197 * offset_within_page). For private mappings, it's (uaddr, current->mm).
198 * We can usually work out the index without swapping in the page.
199 *
200 * fshared is NULL for PROCESS_PRIVATE futexes
201 * For other futexes, it points to &current->mm->mmap_sem and
202 * caller must have taken the reader lock. but NOT any spinlocks.
203 */
204 static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
205 {
206 unsigned long address = (unsigned long)uaddr;
207 struct mm_struct *mm = current->mm;
208 struct page *page;
209 int err;
210
211 /*
212 * The futex address must be "naturally" aligned.
213 */
214 key->both.offset = address % PAGE_SIZE;
215 if (unlikely((address % sizeof(u32)) != 0))
216 return -EINVAL;
217 address -= key->both.offset;
218
219 /*
220 * PROCESS_PRIVATE futexes are fast.
221 * As the mm cannot disappear under us and the 'key' only needs
222 * virtual address, we dont even have to find the underlying vma.
223 * Note : We do have to check 'uaddr' is a valid user address,
224 * but access_ok() should be faster than find_vma()
225 */
226 if (!fshared) {
227 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
228 return -EFAULT;
229 key->private.mm = mm;
230 key->private.address = address;
231 get_futex_key_refs(key);
232 return 0;
233 }
234
235 again:
236 err = get_user_pages_fast(address, 1, 0, &page);
237 if (err < 0)
238 return err;
239
240 lock_page(page);
241 if (!page->mapping) {
242 unlock_page(page);
243 put_page(page);
244 goto again;
245 }
246
247 /*
248 * Private mappings are handled in a simple way.
249 *
250 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
251 * it's a read-only handle, it's expected that futexes attach to
252 * the object not the particular process.
253 */
254 if (PageAnon(page)) {
255 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
256 key->private.mm = mm;
257 key->private.address = address;
258 } else {
259 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
260 key->shared.inode = page->mapping->host;
261 key->shared.pgoff = page->index;
262 }
263
264 get_futex_key_refs(key);
265
266 unlock_page(page);
267 put_page(page);
268 return 0;
269 }
270
271 static inline
272 void put_futex_key(int fshared, union futex_key *key)
273 {
274 drop_futex_key_refs(key);
275 }
276
277 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
278 {
279 u32 curval;
280
281 pagefault_disable();
282 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
283 pagefault_enable();
284
285 return curval;
286 }
287
288 static int get_futex_value_locked(u32 *dest, u32 __user *from)
289 {
290 int ret;
291
292 pagefault_disable();
293 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
294 pagefault_enable();
295
296 return ret ? -EFAULT : 0;
297 }
298
299 /*
300 * Fault handling.
301 */
302 static int futex_handle_fault(unsigned long address, int attempt)
303 {
304 struct vm_area_struct * vma;
305 struct mm_struct *mm = current->mm;
306 int ret = -EFAULT;
307
308 if (attempt > 2)
309 return ret;
310
311 down_read(&mm->mmap_sem);
312 vma = find_vma(mm, address);
313 if (vma && address >= vma->vm_start &&
314 (vma->vm_flags & VM_WRITE)) {
315 int fault;
316 fault = handle_mm_fault(mm, vma, address, 1);
317 if (unlikely((fault & VM_FAULT_ERROR))) {
318 #if 0
319 /* XXX: let's do this when we verify it is OK */
320 if (ret & VM_FAULT_OOM)
321 ret = -ENOMEM;
322 #endif
323 } else {
324 ret = 0;
325 if (fault & VM_FAULT_MAJOR)
326 current->maj_flt++;
327 else
328 current->min_flt++;
329 }
330 }
331 up_read(&mm->mmap_sem);
332 return ret;
333 }
334
335 /*
336 * PI code:
337 */
338 static int refill_pi_state_cache(void)
339 {
340 struct futex_pi_state *pi_state;
341
342 if (likely(current->pi_state_cache))
343 return 0;
344
345 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
346
347 if (!pi_state)
348 return -ENOMEM;
349
350 INIT_LIST_HEAD(&pi_state->list);
351 /* pi_mutex gets initialized later */
352 pi_state->owner = NULL;
353 atomic_set(&pi_state->refcount, 1);
354 pi_state->key = FUTEX_KEY_INIT;
355
356 current->pi_state_cache = pi_state;
357
358 return 0;
359 }
360
361 static struct futex_pi_state * alloc_pi_state(void)
362 {
363 struct futex_pi_state *pi_state = current->pi_state_cache;
364
365 WARN_ON(!pi_state);
366 current->pi_state_cache = NULL;
367
368 return pi_state;
369 }
370
371 static void free_pi_state(struct futex_pi_state *pi_state)
372 {
373 if (!atomic_dec_and_test(&pi_state->refcount))
374 return;
375
376 /*
377 * If pi_state->owner is NULL, the owner is most probably dying
378 * and has cleaned up the pi_state already
379 */
380 if (pi_state->owner) {
381 spin_lock_irq(&pi_state->owner->pi_lock);
382 list_del_init(&pi_state->list);
383 spin_unlock_irq(&pi_state->owner->pi_lock);
384
385 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
386 }
387
388 if (current->pi_state_cache)
389 kfree(pi_state);
390 else {
391 /*
392 * pi_state->list is already empty.
393 * clear pi_state->owner.
394 * refcount is at 0 - put it back to 1.
395 */
396 pi_state->owner = NULL;
397 atomic_set(&pi_state->refcount, 1);
398 current->pi_state_cache = pi_state;
399 }
400 }
401
402 /*
403 * Look up the task based on what TID userspace gave us.
404 * We dont trust it.
405 */
406 static struct task_struct * futex_find_get_task(pid_t pid)
407 {
408 struct task_struct *p;
409
410 rcu_read_lock();
411 p = find_task_by_vpid(pid);
412 if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
413 p = ERR_PTR(-ESRCH);
414 else
415 get_task_struct(p);
416
417 rcu_read_unlock();
418
419 return p;
420 }
421
422 /*
423 * This task is holding PI mutexes at exit time => bad.
424 * Kernel cleans up PI-state, but userspace is likely hosed.
425 * (Robust-futex cleanup is separate and might save the day for userspace.)
426 */
427 void exit_pi_state_list(struct task_struct *curr)
428 {
429 struct list_head *next, *head = &curr->pi_state_list;
430 struct futex_pi_state *pi_state;
431 struct futex_hash_bucket *hb;
432 union futex_key key = FUTEX_KEY_INIT;
433
434 if (!futex_cmpxchg_enabled)
435 return;
436 /*
437 * We are a ZOMBIE and nobody can enqueue itself on
438 * pi_state_list anymore, but we have to be careful
439 * versus waiters unqueueing themselves:
440 */
441 spin_lock_irq(&curr->pi_lock);
442 while (!list_empty(head)) {
443
444 next = head->next;
445 pi_state = list_entry(next, struct futex_pi_state, list);
446 key = pi_state->key;
447 hb = hash_futex(&key);
448 spin_unlock_irq(&curr->pi_lock);
449
450 spin_lock(&hb->lock);
451
452 spin_lock_irq(&curr->pi_lock);
453 /*
454 * We dropped the pi-lock, so re-check whether this
455 * task still owns the PI-state:
456 */
457 if (head->next != next) {
458 spin_unlock(&hb->lock);
459 continue;
460 }
461
462 WARN_ON(pi_state->owner != curr);
463 WARN_ON(list_empty(&pi_state->list));
464 list_del_init(&pi_state->list);
465 pi_state->owner = NULL;
466 spin_unlock_irq(&curr->pi_lock);
467
468 rt_mutex_unlock(&pi_state->pi_mutex);
469
470 spin_unlock(&hb->lock);
471
472 spin_lock_irq(&curr->pi_lock);
473 }
474 spin_unlock_irq(&curr->pi_lock);
475 }
476
477 static int
478 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
479 union futex_key *key, struct futex_pi_state **ps)
480 {
481 struct futex_pi_state *pi_state = NULL;
482 struct futex_q *this, *next;
483 struct plist_head *head;
484 struct task_struct *p;
485 pid_t pid = uval & FUTEX_TID_MASK;
486
487 head = &hb->chain;
488
489 plist_for_each_entry_safe(this, next, head, list) {
490 if (match_futex(&this->key, key)) {
491 /*
492 * Another waiter already exists - bump up
493 * the refcount and return its pi_state:
494 */
495 pi_state = this->pi_state;
496 /*
497 * Userspace might have messed up non PI and PI futexes
498 */
499 if (unlikely(!pi_state))
500 return -EINVAL;
501
502 WARN_ON(!atomic_read(&pi_state->refcount));
503 WARN_ON(pid && pi_state->owner &&
504 pi_state->owner->pid != pid);
505
506 atomic_inc(&pi_state->refcount);
507 *ps = pi_state;
508
509 return 0;
510 }
511 }
512
513 /*
514 * We are the first waiter - try to look up the real owner and attach
515 * the new pi_state to it, but bail out when TID = 0
516 */
517 if (!pid)
518 return -ESRCH;
519 p = futex_find_get_task(pid);
520 if (IS_ERR(p))
521 return PTR_ERR(p);
522
523 /*
524 * We need to look at the task state flags to figure out,
525 * whether the task is exiting. To protect against the do_exit
526 * change of the task flags, we do this protected by
527 * p->pi_lock:
528 */
529 spin_lock_irq(&p->pi_lock);
530 if (unlikely(p->flags & PF_EXITING)) {
531 /*
532 * The task is on the way out. When PF_EXITPIDONE is
533 * set, we know that the task has finished the
534 * cleanup:
535 */
536 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
537
538 spin_unlock_irq(&p->pi_lock);
539 put_task_struct(p);
540 return ret;
541 }
542
543 pi_state = alloc_pi_state();
544
545 /*
546 * Initialize the pi_mutex in locked state and make 'p'
547 * the owner of it:
548 */
549 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
550
551 /* Store the key for possible exit cleanups: */
552 pi_state->key = *key;
553
554 WARN_ON(!list_empty(&pi_state->list));
555 list_add(&pi_state->list, &p->pi_state_list);
556 pi_state->owner = p;
557 spin_unlock_irq(&p->pi_lock);
558
559 put_task_struct(p);
560
561 *ps = pi_state;
562
563 return 0;
564 }
565
566 /*
567 * The hash bucket lock must be held when this is called.
568 * Afterwards, the futex_q must not be accessed.
569 */
570 static void wake_futex(struct futex_q *q)
571 {
572 plist_del(&q->list, &q->list.plist);
573 /*
574 * The lock in wake_up_all() is a crucial memory barrier after the
575 * plist_del() and also before assigning to q->lock_ptr.
576 */
577 wake_up(&q->waiter);
578 /*
579 * The waiting task can free the futex_q as soon as this is written,
580 * without taking any locks. This must come last.
581 *
582 * A memory barrier is required here to prevent the following store
583 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
584 * at the end of wake_up_all() does not prevent this store from
585 * moving.
586 */
587 smp_wmb();
588 q->lock_ptr = NULL;
589 }
590
591 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
592 {
593 struct task_struct *new_owner;
594 struct futex_pi_state *pi_state = this->pi_state;
595 u32 curval, newval;
596
597 if (!pi_state)
598 return -EINVAL;
599
600 spin_lock(&pi_state->pi_mutex.wait_lock);
601 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
602
603 /*
604 * This happens when we have stolen the lock and the original
605 * pending owner did not enqueue itself back on the rt_mutex.
606 * Thats not a tragedy. We know that way, that a lock waiter
607 * is on the fly. We make the futex_q waiter the pending owner.
608 */
609 if (!new_owner)
610 new_owner = this->task;
611
612 /*
613 * We pass it to the next owner. (The WAITERS bit is always
614 * kept enabled while there is PI state around. We must also
615 * preserve the owner died bit.)
616 */
617 if (!(uval & FUTEX_OWNER_DIED)) {
618 int ret = 0;
619
620 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
621
622 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
623
624 if (curval == -EFAULT)
625 ret = -EFAULT;
626 else if (curval != uval)
627 ret = -EINVAL;
628 if (ret) {
629 spin_unlock(&pi_state->pi_mutex.wait_lock);
630 return ret;
631 }
632 }
633
634 spin_lock_irq(&pi_state->owner->pi_lock);
635 WARN_ON(list_empty(&pi_state->list));
636 list_del_init(&pi_state->list);
637 spin_unlock_irq(&pi_state->owner->pi_lock);
638
639 spin_lock_irq(&new_owner->pi_lock);
640 WARN_ON(!list_empty(&pi_state->list));
641 list_add(&pi_state->list, &new_owner->pi_state_list);
642 pi_state->owner = new_owner;
643 spin_unlock_irq(&new_owner->pi_lock);
644
645 spin_unlock(&pi_state->pi_mutex.wait_lock);
646 rt_mutex_unlock(&pi_state->pi_mutex);
647
648 return 0;
649 }
650
651 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
652 {
653 u32 oldval;
654
655 /*
656 * There is no waiter, so we unlock the futex. The owner died
657 * bit has not to be preserved here. We are the owner:
658 */
659 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
660
661 if (oldval == -EFAULT)
662 return oldval;
663 if (oldval != uval)
664 return -EAGAIN;
665
666 return 0;
667 }
668
669 /*
670 * Express the locking dependencies for lockdep:
671 */
672 static inline void
673 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
674 {
675 if (hb1 <= hb2) {
676 spin_lock(&hb1->lock);
677 if (hb1 < hb2)
678 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
679 } else { /* hb1 > hb2 */
680 spin_lock(&hb2->lock);
681 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
682 }
683 }
684
685 /*
686 * Wake up all waiters hashed on the physical page that is mapped
687 * to this virtual address:
688 */
689 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
690 {
691 struct futex_hash_bucket *hb;
692 struct futex_q *this, *next;
693 struct plist_head *head;
694 union futex_key key = FUTEX_KEY_INIT;
695 int ret;
696
697 if (!bitset)
698 return -EINVAL;
699
700 ret = get_futex_key(uaddr, fshared, &key);
701 if (unlikely(ret != 0))
702 goto out;
703
704 hb = hash_futex(&key);
705 spin_lock(&hb->lock);
706 head = &hb->chain;
707
708 plist_for_each_entry_safe(this, next, head, list) {
709 if (match_futex (&this->key, &key)) {
710 if (this->pi_state) {
711 ret = -EINVAL;
712 break;
713 }
714
715 /* Check if one of the bits is set in both bitsets */
716 if (!(this->bitset & bitset))
717 continue;
718
719 wake_futex(this);
720 if (++ret >= nr_wake)
721 break;
722 }
723 }
724
725 spin_unlock(&hb->lock);
726 put_futex_key(fshared, &key);
727 out:
728 return ret;
729 }
730
731 /*
732 * Wake up all waiters hashed on the physical page that is mapped
733 * to this virtual address:
734 */
735 static int
736 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
737 int nr_wake, int nr_wake2, int op)
738 {
739 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
740 struct futex_hash_bucket *hb1, *hb2;
741 struct plist_head *head;
742 struct futex_q *this, *next;
743 int ret, op_ret, attempt = 0;
744
745 retryfull:
746 ret = get_futex_key(uaddr1, fshared, &key1);
747 if (unlikely(ret != 0))
748 goto out;
749 ret = get_futex_key(uaddr2, fshared, &key2);
750 if (unlikely(ret != 0))
751 goto out_put_key1;
752
753 hb1 = hash_futex(&key1);
754 hb2 = hash_futex(&key2);
755
756 retry:
757 double_lock_hb(hb1, hb2);
758
759 op_ret = futex_atomic_op_inuser(op, uaddr2);
760 if (unlikely(op_ret < 0)) {
761 u32 dummy;
762
763 spin_unlock(&hb1->lock);
764 if (hb1 != hb2)
765 spin_unlock(&hb2->lock);
766
767 #ifndef CONFIG_MMU
768 /*
769 * we don't get EFAULT from MMU faults if we don't have an MMU,
770 * but we might get them from range checking
771 */
772 ret = op_ret;
773 goto out_put_keys;
774 #endif
775
776 if (unlikely(op_ret != -EFAULT)) {
777 ret = op_ret;
778 goto out_put_keys;
779 }
780
781 /*
782 * futex_atomic_op_inuser needs to both read and write
783 * *(int __user *)uaddr2, but we can't modify it
784 * non-atomically. Therefore, if get_user below is not
785 * enough, we need to handle the fault ourselves, while
786 * still holding the mmap_sem.
787 */
788 if (attempt++) {
789 ret = futex_handle_fault((unsigned long)uaddr2,
790 attempt);
791 if (ret)
792 goto out_put_keys;
793 goto retry;
794 }
795
796 ret = get_user(dummy, uaddr2);
797 if (ret)
798 return ret;
799
800 goto retryfull;
801 }
802
803 head = &hb1->chain;
804
805 plist_for_each_entry_safe(this, next, head, list) {
806 if (match_futex (&this->key, &key1)) {
807 wake_futex(this);
808 if (++ret >= nr_wake)
809 break;
810 }
811 }
812
813 if (op_ret > 0) {
814 head = &hb2->chain;
815
816 op_ret = 0;
817 plist_for_each_entry_safe(this, next, head, list) {
818 if (match_futex (&this->key, &key2)) {
819 wake_futex(this);
820 if (++op_ret >= nr_wake2)
821 break;
822 }
823 }
824 ret += op_ret;
825 }
826
827 spin_unlock(&hb1->lock);
828 if (hb1 != hb2)
829 spin_unlock(&hb2->lock);
830 out_put_keys:
831 put_futex_key(fshared, &key2);
832 out_put_key1:
833 put_futex_key(fshared, &key1);
834 out:
835 return ret;
836 }
837
838 /*
839 * Requeue all waiters hashed on one physical page to another
840 * physical page.
841 */
842 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
843 int nr_wake, int nr_requeue, u32 *cmpval)
844 {
845 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
846 struct futex_hash_bucket *hb1, *hb2;
847 struct plist_head *head1;
848 struct futex_q *this, *next;
849 int ret, drop_count = 0;
850
851 retry:
852 ret = get_futex_key(uaddr1, fshared, &key1);
853 if (unlikely(ret != 0))
854 goto out;
855 ret = get_futex_key(uaddr2, fshared, &key2);
856 if (unlikely(ret != 0))
857 goto out_put_key1;
858
859 hb1 = hash_futex(&key1);
860 hb2 = hash_futex(&key2);
861
862 double_lock_hb(hb1, hb2);
863
864 if (likely(cmpval != NULL)) {
865 u32 curval;
866
867 ret = get_futex_value_locked(&curval, uaddr1);
868
869 if (unlikely(ret)) {
870 spin_unlock(&hb1->lock);
871 if (hb1 != hb2)
872 spin_unlock(&hb2->lock);
873
874 ret = get_user(curval, uaddr1);
875
876 if (!ret)
877 goto retry;
878
879 goto out_put_keys;
880 }
881 if (curval != *cmpval) {
882 ret = -EAGAIN;
883 goto out_unlock;
884 }
885 }
886
887 head1 = &hb1->chain;
888 plist_for_each_entry_safe(this, next, head1, list) {
889 if (!match_futex (&this->key, &key1))
890 continue;
891 if (++ret <= nr_wake) {
892 wake_futex(this);
893 } else {
894 /*
895 * If key1 and key2 hash to the same bucket, no need to
896 * requeue.
897 */
898 if (likely(head1 != &hb2->chain)) {
899 plist_del(&this->list, &hb1->chain);
900 plist_add(&this->list, &hb2->chain);
901 this->lock_ptr = &hb2->lock;
902 #ifdef CONFIG_DEBUG_PI_LIST
903 this->list.plist.lock = &hb2->lock;
904 #endif
905 }
906 this->key = key2;
907 get_futex_key_refs(&key2);
908 drop_count++;
909
910 if (ret - nr_wake >= nr_requeue)
911 break;
912 }
913 }
914
915 out_unlock:
916 spin_unlock(&hb1->lock);
917 if (hb1 != hb2)
918 spin_unlock(&hb2->lock);
919
920 /* drop_futex_key_refs() must be called outside the spinlocks. */
921 while (--drop_count >= 0)
922 drop_futex_key_refs(&key1);
923
924 out_put_keys:
925 put_futex_key(fshared, &key2);
926 out_put_key1:
927 put_futex_key(fshared, &key1);
928 out:
929 return ret;
930 }
931
932 /* The key must be already stored in q->key. */
933 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
934 {
935 struct futex_hash_bucket *hb;
936
937 init_waitqueue_head(&q->waiter);
938
939 get_futex_key_refs(&q->key);
940 hb = hash_futex(&q->key);
941 q->lock_ptr = &hb->lock;
942
943 spin_lock(&hb->lock);
944 return hb;
945 }
946
947 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
948 {
949 int prio;
950
951 /*
952 * The priority used to register this element is
953 * - either the real thread-priority for the real-time threads
954 * (i.e. threads with a priority lower than MAX_RT_PRIO)
955 * - or MAX_RT_PRIO for non-RT threads.
956 * Thus, all RT-threads are woken first in priority order, and
957 * the others are woken last, in FIFO order.
958 */
959 prio = min(current->normal_prio, MAX_RT_PRIO);
960
961 plist_node_init(&q->list, prio);
962 #ifdef CONFIG_DEBUG_PI_LIST
963 q->list.plist.lock = &hb->lock;
964 #endif
965 plist_add(&q->list, &hb->chain);
966 q->task = current;
967 spin_unlock(&hb->lock);
968 }
969
970 static inline void
971 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
972 {
973 spin_unlock(&hb->lock);
974 drop_futex_key_refs(&q->key);
975 }
976
977 /*
978 * queue_me and unqueue_me must be called as a pair, each
979 * exactly once. They are called with the hashed spinlock held.
980 */
981
982 /* Return 1 if we were still queued (ie. 0 means we were woken) */
983 static int unqueue_me(struct futex_q *q)
984 {
985 spinlock_t *lock_ptr;
986 int ret = 0;
987
988 /* In the common case we don't take the spinlock, which is nice. */
989 retry:
990 lock_ptr = q->lock_ptr;
991 barrier();
992 if (lock_ptr != NULL) {
993 spin_lock(lock_ptr);
994 /*
995 * q->lock_ptr can change between reading it and
996 * spin_lock(), causing us to take the wrong lock. This
997 * corrects the race condition.
998 *
999 * Reasoning goes like this: if we have the wrong lock,
1000 * q->lock_ptr must have changed (maybe several times)
1001 * between reading it and the spin_lock(). It can
1002 * change again after the spin_lock() but only if it was
1003 * already changed before the spin_lock(). It cannot,
1004 * however, change back to the original value. Therefore
1005 * we can detect whether we acquired the correct lock.
1006 */
1007 if (unlikely(lock_ptr != q->lock_ptr)) {
1008 spin_unlock(lock_ptr);
1009 goto retry;
1010 }
1011 WARN_ON(plist_node_empty(&q->list));
1012 plist_del(&q->list, &q->list.plist);
1013
1014 BUG_ON(q->pi_state);
1015
1016 spin_unlock(lock_ptr);
1017 ret = 1;
1018 }
1019
1020 drop_futex_key_refs(&q->key);
1021 return ret;
1022 }
1023
1024 /*
1025 * PI futexes can not be requeued and must remove themself from the
1026 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1027 * and dropped here.
1028 */
1029 static void unqueue_me_pi(struct futex_q *q)
1030 {
1031 WARN_ON(plist_node_empty(&q->list));
1032 plist_del(&q->list, &q->list.plist);
1033
1034 BUG_ON(!q->pi_state);
1035 free_pi_state(q->pi_state);
1036 q->pi_state = NULL;
1037
1038 spin_unlock(q->lock_ptr);
1039
1040 drop_futex_key_refs(&q->key);
1041 }
1042
1043 /*
1044 * Fixup the pi_state owner with the new owner.
1045 *
1046 * Must be called with hash bucket lock held and mm->sem held for non
1047 * private futexes.
1048 */
1049 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1050 struct task_struct *newowner, int fshared)
1051 {
1052 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1053 struct futex_pi_state *pi_state = q->pi_state;
1054 struct task_struct *oldowner = pi_state->owner;
1055 u32 uval, curval, newval;
1056 int ret, attempt = 0;
1057
1058 /* Owner died? */
1059 if (!pi_state->owner)
1060 newtid |= FUTEX_OWNER_DIED;
1061
1062 /*
1063 * We are here either because we stole the rtmutex from the
1064 * pending owner or we are the pending owner which failed to
1065 * get the rtmutex. We have to replace the pending owner TID
1066 * in the user space variable. This must be atomic as we have
1067 * to preserve the owner died bit here.
1068 *
1069 * Note: We write the user space value _before_ changing the
1070 * pi_state because we can fault here. Imagine swapped out
1071 * pages or a fork, which was running right before we acquired
1072 * mmap_sem, that marked all the anonymous memory readonly for
1073 * cow.
1074 *
1075 * Modifying pi_state _before_ the user space value would
1076 * leave the pi_state in an inconsistent state when we fault
1077 * here, because we need to drop the hash bucket lock to
1078 * handle the fault. This might be observed in the PID check
1079 * in lookup_pi_state.
1080 */
1081 retry:
1082 if (get_futex_value_locked(&uval, uaddr))
1083 goto handle_fault;
1084
1085 while (1) {
1086 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1087
1088 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1089
1090 if (curval == -EFAULT)
1091 goto handle_fault;
1092 if (curval == uval)
1093 break;
1094 uval = curval;
1095 }
1096
1097 /*
1098 * We fixed up user space. Now we need to fix the pi_state
1099 * itself.
1100 */
1101 if (pi_state->owner != NULL) {
1102 spin_lock_irq(&pi_state->owner->pi_lock);
1103 WARN_ON(list_empty(&pi_state->list));
1104 list_del_init(&pi_state->list);
1105 spin_unlock_irq(&pi_state->owner->pi_lock);
1106 }
1107
1108 pi_state->owner = newowner;
1109
1110 spin_lock_irq(&newowner->pi_lock);
1111 WARN_ON(!list_empty(&pi_state->list));
1112 list_add(&pi_state->list, &newowner->pi_state_list);
1113 spin_unlock_irq(&newowner->pi_lock);
1114 return 0;
1115
1116 /*
1117 * To handle the page fault we need to drop the hash bucket
1118 * lock here. That gives the other task (either the pending
1119 * owner itself or the task which stole the rtmutex) the
1120 * chance to try the fixup of the pi_state. So once we are
1121 * back from handling the fault we need to check the pi_state
1122 * after reacquiring the hash bucket lock and before trying to
1123 * do another fixup. When the fixup has been done already we
1124 * simply return.
1125 */
1126 handle_fault:
1127 spin_unlock(q->lock_ptr);
1128
1129 ret = futex_handle_fault((unsigned long)uaddr, attempt++);
1130
1131 spin_lock(q->lock_ptr);
1132
1133 /*
1134 * Check if someone else fixed it for us:
1135 */
1136 if (pi_state->owner != oldowner)
1137 return 0;
1138
1139 if (ret)
1140 return ret;
1141
1142 goto retry;
1143 }
1144
1145 /*
1146 * In case we must use restart_block to restart a futex_wait,
1147 * we encode in the 'flags' shared capability
1148 */
1149 #define FLAGS_SHARED 0x01
1150 #define FLAGS_CLOCKRT 0x02
1151
1152 static long futex_wait_restart(struct restart_block *restart);
1153
1154 static int futex_wait(u32 __user *uaddr, int fshared,
1155 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1156 {
1157 struct task_struct *curr = current;
1158 DECLARE_WAITQUEUE(wait, curr);
1159 struct futex_hash_bucket *hb;
1160 struct futex_q q;
1161 u32 uval;
1162 int ret;
1163 struct hrtimer_sleeper t;
1164 int rem = 0;
1165
1166 if (!bitset)
1167 return -EINVAL;
1168
1169 q.pi_state = NULL;
1170 q.bitset = bitset;
1171 retry:
1172 q.key = FUTEX_KEY_INIT;
1173 ret = get_futex_key(uaddr, fshared, &q.key);
1174 if (unlikely(ret != 0))
1175 goto out;
1176
1177 hb = queue_lock(&q);
1178
1179 /*
1180 * Access the page AFTER the futex is queued.
1181 * Order is important:
1182 *
1183 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1184 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1185 *
1186 * The basic logical guarantee of a futex is that it blocks ONLY
1187 * if cond(var) is known to be true at the time of blocking, for
1188 * any cond. If we queued after testing *uaddr, that would open
1189 * a race condition where we could block indefinitely with
1190 * cond(var) false, which would violate the guarantee.
1191 *
1192 * A consequence is that futex_wait() can return zero and absorb
1193 * a wakeup when *uaddr != val on entry to the syscall. This is
1194 * rare, but normal.
1195 *
1196 * for shared futexes, we hold the mmap semaphore, so the mapping
1197 * cannot have changed since we looked it up in get_futex_key.
1198 */
1199 ret = get_futex_value_locked(&uval, uaddr);
1200
1201 if (unlikely(ret)) {
1202 queue_unlock(&q, hb);
1203 put_futex_key(fshared, &q.key);
1204
1205 ret = get_user(uval, uaddr);
1206
1207 if (!ret)
1208 goto retry;
1209 return ret;
1210 }
1211 ret = -EWOULDBLOCK;
1212 if (uval != val)
1213 goto out_unlock_put_key;
1214
1215 /* Only actually queue if *uaddr contained val. */
1216 queue_me(&q, hb);
1217
1218 /*
1219 * There might have been scheduling since the queue_me(), as we
1220 * cannot hold a spinlock across the get_user() in case it
1221 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1222 * queueing ourselves into the futex hash. This code thus has to
1223 * rely on the futex_wake() code removing us from hash when it
1224 * wakes us up.
1225 */
1226
1227 /* add_wait_queue is the barrier after __set_current_state. */
1228 __set_current_state(TASK_INTERRUPTIBLE);
1229 add_wait_queue(&q.waiter, &wait);
1230 /*
1231 * !plist_node_empty() is safe here without any lock.
1232 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1233 */
1234 if (likely(!plist_node_empty(&q.list))) {
1235 if (!abs_time)
1236 schedule();
1237 else {
1238 unsigned long slack;
1239 slack = current->timer_slack_ns;
1240 if (rt_task(current))
1241 slack = 0;
1242 hrtimer_init_on_stack(&t.timer,
1243 clockrt ? CLOCK_REALTIME :
1244 CLOCK_MONOTONIC,
1245 HRTIMER_MODE_ABS);
1246 hrtimer_init_sleeper(&t, current);
1247 hrtimer_set_expires_range_ns(&t.timer, *abs_time, slack);
1248
1249 hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS);
1250 if (!hrtimer_active(&t.timer))
1251 t.task = NULL;
1252
1253 /*
1254 * the timer could have already expired, in which
1255 * case current would be flagged for rescheduling.
1256 * Don't bother calling schedule.
1257 */
1258 if (likely(t.task))
1259 schedule();
1260
1261 hrtimer_cancel(&t.timer);
1262
1263 /* Flag if a timeout occured */
1264 rem = (t.task == NULL);
1265
1266 destroy_hrtimer_on_stack(&t.timer);
1267 }
1268 }
1269 __set_current_state(TASK_RUNNING);
1270
1271 /*
1272 * NOTE: we don't remove ourselves from the waitqueue because
1273 * we are the only user of it.
1274 */
1275
1276 /* If we were woken (and unqueued), we succeeded, whatever. */
1277 if (!unqueue_me(&q))
1278 return 0;
1279 if (rem)
1280 return -ETIMEDOUT;
1281
1282 /*
1283 * We expect signal_pending(current), but another thread may
1284 * have handled it for us already.
1285 */
1286 if (!abs_time)
1287 return -ERESTARTSYS;
1288 else {
1289 struct restart_block *restart;
1290 restart = &current_thread_info()->restart_block;
1291 restart->fn = futex_wait_restart;
1292 restart->futex.uaddr = (u32 *)uaddr;
1293 restart->futex.val = val;
1294 restart->futex.time = abs_time->tv64;
1295 restart->futex.bitset = bitset;
1296 restart->futex.flags = 0;
1297
1298 if (fshared)
1299 restart->futex.flags |= FLAGS_SHARED;
1300 if (clockrt)
1301 restart->futex.flags |= FLAGS_CLOCKRT;
1302 return -ERESTART_RESTARTBLOCK;
1303 }
1304
1305 out_unlock_put_key:
1306 queue_unlock(&q, hb);
1307 put_futex_key(fshared, &q.key);
1308
1309 out:
1310 return ret;
1311 }
1312
1313
1314 static long futex_wait_restart(struct restart_block *restart)
1315 {
1316 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1317 int fshared = 0;
1318 ktime_t t;
1319
1320 t.tv64 = restart->futex.time;
1321 restart->fn = do_no_restart_syscall;
1322 if (restart->futex.flags & FLAGS_SHARED)
1323 fshared = 1;
1324 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1325 restart->futex.bitset,
1326 restart->futex.flags & FLAGS_CLOCKRT);
1327 }
1328
1329
1330 /*
1331 * Userspace tried a 0 -> TID atomic transition of the futex value
1332 * and failed. The kernel side here does the whole locking operation:
1333 * if there are waiters then it will block, it does PI, etc. (Due to
1334 * races the kernel might see a 0 value of the futex too.)
1335 */
1336 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1337 int detect, ktime_t *time, int trylock)
1338 {
1339 struct hrtimer_sleeper timeout, *to = NULL;
1340 struct task_struct *curr = current;
1341 struct futex_hash_bucket *hb;
1342 u32 uval, newval, curval;
1343 struct futex_q q;
1344 int ret, lock_taken, ownerdied = 0, attempt = 0;
1345
1346 if (refill_pi_state_cache())
1347 return -ENOMEM;
1348
1349 if (time) {
1350 to = &timeout;
1351 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1352 HRTIMER_MODE_ABS);
1353 hrtimer_init_sleeper(to, current);
1354 hrtimer_set_expires(&to->timer, *time);
1355 }
1356
1357 q.pi_state = NULL;
1358 retry:
1359 q.key = FUTEX_KEY_INIT;
1360 ret = get_futex_key(uaddr, fshared, &q.key);
1361 if (unlikely(ret != 0))
1362 goto out;
1363
1364 retry_unlocked:
1365 hb = queue_lock(&q);
1366
1367 retry_locked:
1368 ret = lock_taken = 0;
1369
1370 /*
1371 * To avoid races, we attempt to take the lock here again
1372 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1373 * the locks. It will most likely not succeed.
1374 */
1375 newval = task_pid_vnr(current);
1376
1377 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1378
1379 if (unlikely(curval == -EFAULT))
1380 goto uaddr_faulted;
1381
1382 /*
1383 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1384 * situation and we return success to user space.
1385 */
1386 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
1387 ret = -EDEADLK;
1388 goto out_unlock_put_key;
1389 }
1390
1391 /*
1392 * Surprise - we got the lock. Just return to userspace:
1393 */
1394 if (unlikely(!curval))
1395 goto out_unlock_put_key;
1396
1397 uval = curval;
1398
1399 /*
1400 * Set the WAITERS flag, so the owner will know it has someone
1401 * to wake at next unlock
1402 */
1403 newval = curval | FUTEX_WAITERS;
1404
1405 /*
1406 * There are two cases, where a futex might have no owner (the
1407 * owner TID is 0): OWNER_DIED. We take over the futex in this
1408 * case. We also do an unconditional take over, when the owner
1409 * of the futex died.
1410 *
1411 * This is safe as we are protected by the hash bucket lock !
1412 */
1413 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1414 /* Keep the OWNER_DIED bit */
1415 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
1416 ownerdied = 0;
1417 lock_taken = 1;
1418 }
1419
1420 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1421
1422 if (unlikely(curval == -EFAULT))
1423 goto uaddr_faulted;
1424 if (unlikely(curval != uval))
1425 goto retry_locked;
1426
1427 /*
1428 * We took the lock due to owner died take over.
1429 */
1430 if (unlikely(lock_taken))
1431 goto out_unlock_put_key;
1432
1433 /*
1434 * We dont have the lock. Look up the PI state (or create it if
1435 * we are the first waiter):
1436 */
1437 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1438
1439 if (unlikely(ret)) {
1440 switch (ret) {
1441
1442 case -EAGAIN:
1443 /*
1444 * Task is exiting and we just wait for the
1445 * exit to complete.
1446 */
1447 queue_unlock(&q, hb);
1448 cond_resched();
1449 goto retry;
1450
1451 case -ESRCH:
1452 /*
1453 * No owner found for this futex. Check if the
1454 * OWNER_DIED bit is set to figure out whether
1455 * this is a robust futex or not.
1456 */
1457 if (get_futex_value_locked(&curval, uaddr))
1458 goto uaddr_faulted;
1459
1460 /*
1461 * We simply start over in case of a robust
1462 * futex. The code above will take the futex
1463 * and return happy.
1464 */
1465 if (curval & FUTEX_OWNER_DIED) {
1466 ownerdied = 1;
1467 goto retry_locked;
1468 }
1469 default:
1470 goto out_unlock_put_key;
1471 }
1472 }
1473
1474 /*
1475 * Only actually queue now that the atomic ops are done:
1476 */
1477 queue_me(&q, hb);
1478
1479 WARN_ON(!q.pi_state);
1480 /*
1481 * Block on the PI mutex:
1482 */
1483 if (!trylock)
1484 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1485 else {
1486 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1487 /* Fixup the trylock return value: */
1488 ret = ret ? 0 : -EWOULDBLOCK;
1489 }
1490
1491 spin_lock(q.lock_ptr);
1492
1493 if (!ret) {
1494 /*
1495 * Got the lock. We might not be the anticipated owner
1496 * if we did a lock-steal - fix up the PI-state in
1497 * that case:
1498 */
1499 if (q.pi_state->owner != curr)
1500 ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
1501 } else {
1502 /*
1503 * Catch the rare case, where the lock was released
1504 * when we were on the way back before we locked the
1505 * hash bucket.
1506 */
1507 if (q.pi_state->owner == curr) {
1508 /*
1509 * Try to get the rt_mutex now. This might
1510 * fail as some other task acquired the
1511 * rt_mutex after we removed ourself from the
1512 * rt_mutex waiters list.
1513 */
1514 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1515 ret = 0;
1516 else {
1517 /*
1518 * pi_state is incorrect, some other
1519 * task did a lock steal and we
1520 * returned due to timeout or signal
1521 * without taking the rt_mutex. Too
1522 * late. We can access the
1523 * rt_mutex_owner without locking, as
1524 * the other task is now blocked on
1525 * the hash bucket lock. Fix the state
1526 * up.
1527 */
1528 struct task_struct *owner;
1529 int res;
1530
1531 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1532 res = fixup_pi_state_owner(uaddr, &q, owner,
1533 fshared);
1534
1535 /* propagate -EFAULT, if the fixup failed */
1536 if (res)
1537 ret = res;
1538 }
1539 } else {
1540 /*
1541 * Paranoia check. If we did not take the lock
1542 * in the trylock above, then we should not be
1543 * the owner of the rtmutex, neither the real
1544 * nor the pending one:
1545 */
1546 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1547 printk(KERN_ERR "futex_lock_pi: ret = %d "
1548 "pi-mutex: %p pi-state %p\n", ret,
1549 q.pi_state->pi_mutex.owner,
1550 q.pi_state->owner);
1551 }
1552 }
1553
1554 /* Unqueue and drop the lock */
1555 unqueue_me_pi(&q);
1556
1557 if (to)
1558 destroy_hrtimer_on_stack(&to->timer);
1559 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1560
1561 out_unlock_put_key:
1562 queue_unlock(&q, hb);
1563
1564 out_put_key:
1565 put_futex_key(fshared, &q.key);
1566 out:
1567 if (to)
1568 destroy_hrtimer_on_stack(&to->timer);
1569 return ret;
1570
1571 uaddr_faulted:
1572 /*
1573 * We have to r/w *(int __user *)uaddr, and we have to modify it
1574 * atomically. Therefore, if we continue to fault after get_user()
1575 * below, we need to handle the fault ourselves, while still holding
1576 * the mmap_sem. This can occur if the uaddr is under contention as
1577 * we have to drop the mmap_sem in order to call get_user().
1578 */
1579 queue_unlock(&q, hb);
1580
1581 if (attempt++) {
1582 ret = futex_handle_fault((unsigned long)uaddr, attempt);
1583 if (ret)
1584 goto out_put_key;
1585 goto retry_unlocked;
1586 }
1587
1588 ret = get_user(uval, uaddr);
1589 if (!ret)
1590 goto retry;
1591
1592 if (to)
1593 destroy_hrtimer_on_stack(&to->timer);
1594 return ret;
1595 }
1596
1597 /*
1598 * Userspace attempted a TID -> 0 atomic transition, and failed.
1599 * This is the in-kernel slowpath: we look up the PI state (if any),
1600 * and do the rt-mutex unlock.
1601 */
1602 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
1603 {
1604 struct futex_hash_bucket *hb;
1605 struct futex_q *this, *next;
1606 u32 uval;
1607 struct plist_head *head;
1608 union futex_key key = FUTEX_KEY_INIT;
1609 int ret, attempt = 0;
1610
1611 retry:
1612 if (get_user(uval, uaddr))
1613 return -EFAULT;
1614 /*
1615 * We release only a lock we actually own:
1616 */
1617 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1618 return -EPERM;
1619
1620 ret = get_futex_key(uaddr, fshared, &key);
1621 if (unlikely(ret != 0))
1622 goto out;
1623
1624 hb = hash_futex(&key);
1625 retry_unlocked:
1626 spin_lock(&hb->lock);
1627
1628 /*
1629 * To avoid races, try to do the TID -> 0 atomic transition
1630 * again. If it succeeds then we can return without waking
1631 * anyone else up:
1632 */
1633 if (!(uval & FUTEX_OWNER_DIED))
1634 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1635
1636
1637 if (unlikely(uval == -EFAULT))
1638 goto pi_faulted;
1639 /*
1640 * Rare case: we managed to release the lock atomically,
1641 * no need to wake anyone else up:
1642 */
1643 if (unlikely(uval == task_pid_vnr(current)))
1644 goto out_unlock;
1645
1646 /*
1647 * Ok, other tasks may need to be woken up - check waiters
1648 * and do the wakeup if necessary:
1649 */
1650 head = &hb->chain;
1651
1652 plist_for_each_entry_safe(this, next, head, list) {
1653 if (!match_futex (&this->key, &key))
1654 continue;
1655 ret = wake_futex_pi(uaddr, uval, this);
1656 /*
1657 * The atomic access to the futex value
1658 * generated a pagefault, so retry the
1659 * user-access and the wakeup:
1660 */
1661 if (ret == -EFAULT)
1662 goto pi_faulted;
1663 goto out_unlock;
1664 }
1665 /*
1666 * No waiters - kernel unlocks the futex:
1667 */
1668 if (!(uval & FUTEX_OWNER_DIED)) {
1669 ret = unlock_futex_pi(uaddr, uval);
1670 if (ret == -EFAULT)
1671 goto pi_faulted;
1672 }
1673
1674 out_unlock:
1675 spin_unlock(&hb->lock);
1676 put_futex_key(fshared, &key);
1677
1678 out:
1679 return ret;
1680
1681 pi_faulted:
1682 /*
1683 * We have to r/w *(int __user *)uaddr, and we have to modify it
1684 * atomically. Therefore, if we continue to fault after get_user()
1685 * below, we need to handle the fault ourselves, while still holding
1686 * the mmap_sem. This can occur if the uaddr is under contention as
1687 * we have to drop the mmap_sem in order to call get_user().
1688 */
1689 spin_unlock(&hb->lock);
1690
1691 if (attempt++) {
1692 ret = futex_handle_fault((unsigned long)uaddr, attempt);
1693 if (ret)
1694 goto out;
1695 uval = 0;
1696 goto retry_unlocked;
1697 }
1698
1699 ret = get_user(uval, uaddr);
1700 if (!ret)
1701 goto retry;
1702
1703 return ret;
1704 }
1705
1706 /*
1707 * Support for robust futexes: the kernel cleans up held futexes at
1708 * thread exit time.
1709 *
1710 * Implementation: user-space maintains a per-thread list of locks it
1711 * is holding. Upon do_exit(), the kernel carefully walks this list,
1712 * and marks all locks that are owned by this thread with the
1713 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1714 * always manipulated with the lock held, so the list is private and
1715 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1716 * field, to allow the kernel to clean up if the thread dies after
1717 * acquiring the lock, but just before it could have added itself to
1718 * the list. There can only be one such pending lock.
1719 */
1720
1721 /**
1722 * sys_set_robust_list - set the robust-futex list head of a task
1723 * @head: pointer to the list-head
1724 * @len: length of the list-head, as userspace expects
1725 */
1726 asmlinkage long
1727 sys_set_robust_list(struct robust_list_head __user *head,
1728 size_t len)
1729 {
1730 if (!futex_cmpxchg_enabled)
1731 return -ENOSYS;
1732 /*
1733 * The kernel knows only one size for now:
1734 */
1735 if (unlikely(len != sizeof(*head)))
1736 return -EINVAL;
1737
1738 current->robust_list = head;
1739
1740 return 0;
1741 }
1742
1743 /**
1744 * sys_get_robust_list - get the robust-futex list head of a task
1745 * @pid: pid of the process [zero for current task]
1746 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1747 * @len_ptr: pointer to a length field, the kernel fills in the header size
1748 */
1749 asmlinkage long
1750 sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
1751 size_t __user *len_ptr)
1752 {
1753 struct robust_list_head __user *head;
1754 unsigned long ret;
1755
1756 if (!futex_cmpxchg_enabled)
1757 return -ENOSYS;
1758
1759 if (!pid)
1760 head = current->robust_list;
1761 else {
1762 struct task_struct *p;
1763
1764 ret = -ESRCH;
1765 rcu_read_lock();
1766 p = find_task_by_vpid(pid);
1767 if (!p)
1768 goto err_unlock;
1769 ret = -EPERM;
1770 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1771 !capable(CAP_SYS_PTRACE))
1772 goto err_unlock;
1773 head = p->robust_list;
1774 rcu_read_unlock();
1775 }
1776
1777 if (put_user(sizeof(*head), len_ptr))
1778 return -EFAULT;
1779 return put_user(head, head_ptr);
1780
1781 err_unlock:
1782 rcu_read_unlock();
1783
1784 return ret;
1785 }
1786
1787 /*
1788 * Process a futex-list entry, check whether it's owned by the
1789 * dying task, and do notification if so:
1790 */
1791 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1792 {
1793 u32 uval, nval, mval;
1794
1795 retry:
1796 if (get_user(uval, uaddr))
1797 return -1;
1798
1799 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
1800 /*
1801 * Ok, this dying thread is truly holding a futex
1802 * of interest. Set the OWNER_DIED bit atomically
1803 * via cmpxchg, and if the value had FUTEX_WAITERS
1804 * set, wake up a waiter (if any). (We have to do a
1805 * futex_wake() even if OWNER_DIED is already set -
1806 * to handle the rare but possible case of recursive
1807 * thread-death.) The rest of the cleanup is done in
1808 * userspace.
1809 */
1810 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1811 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1812
1813 if (nval == -EFAULT)
1814 return -1;
1815
1816 if (nval != uval)
1817 goto retry;
1818
1819 /*
1820 * Wake robust non-PI futexes here. The wakeup of
1821 * PI futexes happens in exit_pi_state():
1822 */
1823 if (!pi && (uval & FUTEX_WAITERS))
1824 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
1825 }
1826 return 0;
1827 }
1828
1829 /*
1830 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1831 */
1832 static inline int fetch_robust_entry(struct robust_list __user **entry,
1833 struct robust_list __user * __user *head,
1834 int *pi)
1835 {
1836 unsigned long uentry;
1837
1838 if (get_user(uentry, (unsigned long __user *)head))
1839 return -EFAULT;
1840
1841 *entry = (void __user *)(uentry & ~1UL);
1842 *pi = uentry & 1;
1843
1844 return 0;
1845 }
1846
1847 /*
1848 * Walk curr->robust_list (very carefully, it's a userspace list!)
1849 * and mark any locks found there dead, and notify any waiters.
1850 *
1851 * We silently return on any sign of list-walking problem.
1852 */
1853 void exit_robust_list(struct task_struct *curr)
1854 {
1855 struct robust_list_head __user *head = curr->robust_list;
1856 struct robust_list __user *entry, *next_entry, *pending;
1857 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
1858 unsigned long futex_offset;
1859 int rc;
1860
1861 if (!futex_cmpxchg_enabled)
1862 return;
1863
1864 /*
1865 * Fetch the list head (which was registered earlier, via
1866 * sys_set_robust_list()):
1867 */
1868 if (fetch_robust_entry(&entry, &head->list.next, &pi))
1869 return;
1870 /*
1871 * Fetch the relative futex offset:
1872 */
1873 if (get_user(futex_offset, &head->futex_offset))
1874 return;
1875 /*
1876 * Fetch any possibly pending lock-add first, and handle it
1877 * if it exists:
1878 */
1879 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1880 return;
1881
1882 next_entry = NULL; /* avoid warning with gcc */
1883 while (entry != &head->list) {
1884 /*
1885 * Fetch the next entry in the list before calling
1886 * handle_futex_death:
1887 */
1888 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
1889 /*
1890 * A pending lock might already be on the list, so
1891 * don't process it twice:
1892 */
1893 if (entry != pending)
1894 if (handle_futex_death((void __user *)entry + futex_offset,
1895 curr, pi))
1896 return;
1897 if (rc)
1898 return;
1899 entry = next_entry;
1900 pi = next_pi;
1901 /*
1902 * Avoid excessively long or circular lists:
1903 */
1904 if (!--limit)
1905 break;
1906
1907 cond_resched();
1908 }
1909
1910 if (pending)
1911 handle_futex_death((void __user *)pending + futex_offset,
1912 curr, pip);
1913 }
1914
1915 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
1916 u32 __user *uaddr2, u32 val2, u32 val3)
1917 {
1918 int clockrt, ret = -ENOSYS;
1919 int cmd = op & FUTEX_CMD_MASK;
1920 int fshared = 0;
1921
1922 if (!(op & FUTEX_PRIVATE_FLAG))
1923 fshared = 1;
1924
1925 clockrt = op & FUTEX_CLOCK_REALTIME;
1926 if (clockrt && cmd != FUTEX_WAIT_BITSET)
1927 return -ENOSYS;
1928
1929 switch (cmd) {
1930 case FUTEX_WAIT:
1931 val3 = FUTEX_BITSET_MATCH_ANY;
1932 case FUTEX_WAIT_BITSET:
1933 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
1934 break;
1935 case FUTEX_WAKE:
1936 val3 = FUTEX_BITSET_MATCH_ANY;
1937 case FUTEX_WAKE_BITSET:
1938 ret = futex_wake(uaddr, fshared, val, val3);
1939 break;
1940 case FUTEX_REQUEUE:
1941 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1942 break;
1943 case FUTEX_CMP_REQUEUE:
1944 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1945 break;
1946 case FUTEX_WAKE_OP:
1947 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
1948 break;
1949 case FUTEX_LOCK_PI:
1950 if (futex_cmpxchg_enabled)
1951 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
1952 break;
1953 case FUTEX_UNLOCK_PI:
1954 if (futex_cmpxchg_enabled)
1955 ret = futex_unlock_pi(uaddr, fshared);
1956 break;
1957 case FUTEX_TRYLOCK_PI:
1958 if (futex_cmpxchg_enabled)
1959 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
1960 break;
1961 default:
1962 ret = -ENOSYS;
1963 }
1964 return ret;
1965 }
1966
1967
1968 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1969 struct timespec __user *utime, u32 __user *uaddr2,
1970 u32 val3)
1971 {
1972 struct timespec ts;
1973 ktime_t t, *tp = NULL;
1974 u32 val2 = 0;
1975 int cmd = op & FUTEX_CMD_MASK;
1976
1977 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
1978 cmd == FUTEX_WAIT_BITSET)) {
1979 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1980 return -EFAULT;
1981 if (!timespec_valid(&ts))
1982 return -EINVAL;
1983
1984 t = timespec_to_ktime(ts);
1985 if (cmd == FUTEX_WAIT)
1986 t = ktime_add_safe(ktime_get(), t);
1987 tp = &t;
1988 }
1989 /*
1990 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
1991 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1992 */
1993 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
1994 cmd == FUTEX_WAKE_OP)
1995 val2 = (u32) (unsigned long) utime;
1996
1997 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1998 }
1999
2000 static int __init futex_init(void)
2001 {
2002 u32 curval;
2003 int i;
2004
2005 /*
2006 * This will fail and we want it. Some arch implementations do
2007 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2008 * functionality. We want to know that before we call in any
2009 * of the complex code paths. Also we want to prevent
2010 * registration of robust lists in that case. NULL is
2011 * guaranteed to fault and we get -EFAULT on functional
2012 * implementation, the non functional ones will return
2013 * -ENOSYS.
2014 */
2015 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2016 if (curval == -EFAULT)
2017 futex_cmpxchg_enabled = 1;
2018
2019 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2020 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2021 spin_lock_init(&futex_queues[i].lock);
2022 }
2023
2024 return 0;
2025 }
2026 __initcall(futex_init);
This page took 0.073204 seconds and 6 git commands to generate.