futex: catch certain assymetric (get|put)_futex_key calls
[deliverable/linux.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43 #include <linux/slab.h>
44 #include <linux/poll.h>
45 #include <linux/fs.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
58
59 #include <asm/futex.h>
60
61 #include "rtmutex_common.h"
62
63 int __read_mostly futex_cmpxchg_enabled;
64
65 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
67 /*
68 * Priority Inheritance state:
69 */
70 struct futex_pi_state {
71 /*
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
74 */
75 struct list_head list;
76
77 /*
78 * The PI object:
79 */
80 struct rt_mutex pi_mutex;
81
82 struct task_struct *owner;
83 atomic_t refcount;
84
85 union futex_key key;
86 };
87
88 /*
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
91 *
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
94 * The order of wakup is always to make the first condition true, then
95 * wake up q->waiter, then make the second condition true.
96 */
97 struct futex_q {
98 struct plist_node list;
99 /* There can only be a single waiter */
100 wait_queue_head_t waiter;
101
102 /* Which hash list lock to use: */
103 spinlock_t *lock_ptr;
104
105 /* Key which the futex is hashed on: */
106 union futex_key key;
107
108 /* Optional priority inheritance state: */
109 struct futex_pi_state *pi_state;
110 struct task_struct *task;
111
112 /* Bitset for the optional bitmasked wakeup */
113 u32 bitset;
114 };
115
116 /*
117 * Split the global futex_lock into every hash list lock.
118 */
119 struct futex_hash_bucket {
120 spinlock_t lock;
121 struct plist_head chain;
122 };
123
124 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
125
126 /*
127 * We hash on the keys returned from get_futex_key (see below).
128 */
129 static struct futex_hash_bucket *hash_futex(union futex_key *key)
130 {
131 u32 hash = jhash2((u32*)&key->both.word,
132 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
133 key->both.offset);
134 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
135 }
136
137 /*
138 * Return 1 if two futex_keys are equal, 0 otherwise.
139 */
140 static inline int match_futex(union futex_key *key1, union futex_key *key2)
141 {
142 return (key1->both.word == key2->both.word
143 && key1->both.ptr == key2->both.ptr
144 && key1->both.offset == key2->both.offset);
145 }
146
147 /*
148 * Take a reference to the resource addressed by a key.
149 * Can be called while holding spinlocks.
150 *
151 */
152 static void get_futex_key_refs(union futex_key *key)
153 {
154 if (!key->both.ptr)
155 return;
156
157 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
158 case FUT_OFF_INODE:
159 atomic_inc(&key->shared.inode->i_count);
160 break;
161 case FUT_OFF_MMSHARED:
162 atomic_inc(&key->private.mm->mm_count);
163 break;
164 }
165 }
166
167 /*
168 * Drop a reference to the resource addressed by a key.
169 * The hash bucket spinlock must not be held.
170 */
171 static void drop_futex_key_refs(union futex_key *key)
172 {
173 if (!key->both.ptr) {
174 /* If we're here then we tried to put a key we failed to get */
175 WARN_ON_ONCE(1);
176 return;
177 }
178
179 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
180 case FUT_OFF_INODE:
181 iput(key->shared.inode);
182 break;
183 case FUT_OFF_MMSHARED:
184 mmdrop(key->private.mm);
185 break;
186 }
187 }
188
189 /**
190 * get_futex_key - Get parameters which are the keys for a futex.
191 * @uaddr: virtual address of the futex
192 * @shared: NULL for a PROCESS_PRIVATE futex,
193 * &current->mm->mmap_sem for a PROCESS_SHARED futex
194 * @key: address where result is stored.
195 *
196 * Returns a negative error code or 0
197 * The key words are stored in *key on success.
198 *
199 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
200 * offset_within_page). For private mappings, it's (uaddr, current->mm).
201 * We can usually work out the index without swapping in the page.
202 *
203 * fshared is NULL for PROCESS_PRIVATE futexes
204 * For other futexes, it points to &current->mm->mmap_sem and
205 * caller must have taken the reader lock. but NOT any spinlocks.
206 */
207 static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
208 {
209 unsigned long address = (unsigned long)uaddr;
210 struct mm_struct *mm = current->mm;
211 struct page *page;
212 int err;
213
214 /*
215 * The futex address must be "naturally" aligned.
216 */
217 key->both.offset = address % PAGE_SIZE;
218 if (unlikely((address % sizeof(u32)) != 0))
219 return -EINVAL;
220 address -= key->both.offset;
221
222 /*
223 * PROCESS_PRIVATE futexes are fast.
224 * As the mm cannot disappear under us and the 'key' only needs
225 * virtual address, we dont even have to find the underlying vma.
226 * Note : We do have to check 'uaddr' is a valid user address,
227 * but access_ok() should be faster than find_vma()
228 */
229 if (!fshared) {
230 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
231 return -EFAULT;
232 key->private.mm = mm;
233 key->private.address = address;
234 get_futex_key_refs(key);
235 return 0;
236 }
237
238 again:
239 err = get_user_pages_fast(address, 1, 0, &page);
240 if (err < 0)
241 return err;
242
243 lock_page(page);
244 if (!page->mapping) {
245 unlock_page(page);
246 put_page(page);
247 goto again;
248 }
249
250 /*
251 * Private mappings are handled in a simple way.
252 *
253 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
254 * it's a read-only handle, it's expected that futexes attach to
255 * the object not the particular process.
256 */
257 if (PageAnon(page)) {
258 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
259 key->private.mm = mm;
260 key->private.address = address;
261 } else {
262 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
263 key->shared.inode = page->mapping->host;
264 key->shared.pgoff = page->index;
265 }
266
267 get_futex_key_refs(key);
268
269 unlock_page(page);
270 put_page(page);
271 return 0;
272 }
273
274 static inline
275 void put_futex_key(int fshared, union futex_key *key)
276 {
277 drop_futex_key_refs(key);
278 }
279
280 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
281 {
282 u32 curval;
283
284 pagefault_disable();
285 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
286 pagefault_enable();
287
288 return curval;
289 }
290
291 static int get_futex_value_locked(u32 *dest, u32 __user *from)
292 {
293 int ret;
294
295 pagefault_disable();
296 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
297 pagefault_enable();
298
299 return ret ? -EFAULT : 0;
300 }
301
302 /*
303 * Fault handling.
304 */
305 static int futex_handle_fault(unsigned long address, int attempt)
306 {
307 struct vm_area_struct * vma;
308 struct mm_struct *mm = current->mm;
309 int ret = -EFAULT;
310
311 if (attempt > 2)
312 return ret;
313
314 down_read(&mm->mmap_sem);
315 vma = find_vma(mm, address);
316 if (vma && address >= vma->vm_start &&
317 (vma->vm_flags & VM_WRITE)) {
318 int fault;
319 fault = handle_mm_fault(mm, vma, address, 1);
320 if (unlikely((fault & VM_FAULT_ERROR))) {
321 #if 0
322 /* XXX: let's do this when we verify it is OK */
323 if (ret & VM_FAULT_OOM)
324 ret = -ENOMEM;
325 #endif
326 } else {
327 ret = 0;
328 if (fault & VM_FAULT_MAJOR)
329 current->maj_flt++;
330 else
331 current->min_flt++;
332 }
333 }
334 up_read(&mm->mmap_sem);
335 return ret;
336 }
337
338 /*
339 * PI code:
340 */
341 static int refill_pi_state_cache(void)
342 {
343 struct futex_pi_state *pi_state;
344
345 if (likely(current->pi_state_cache))
346 return 0;
347
348 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
349
350 if (!pi_state)
351 return -ENOMEM;
352
353 INIT_LIST_HEAD(&pi_state->list);
354 /* pi_mutex gets initialized later */
355 pi_state->owner = NULL;
356 atomic_set(&pi_state->refcount, 1);
357 pi_state->key = FUTEX_KEY_INIT;
358
359 current->pi_state_cache = pi_state;
360
361 return 0;
362 }
363
364 static struct futex_pi_state * alloc_pi_state(void)
365 {
366 struct futex_pi_state *pi_state = current->pi_state_cache;
367
368 WARN_ON(!pi_state);
369 current->pi_state_cache = NULL;
370
371 return pi_state;
372 }
373
374 static void free_pi_state(struct futex_pi_state *pi_state)
375 {
376 if (!atomic_dec_and_test(&pi_state->refcount))
377 return;
378
379 /*
380 * If pi_state->owner is NULL, the owner is most probably dying
381 * and has cleaned up the pi_state already
382 */
383 if (pi_state->owner) {
384 spin_lock_irq(&pi_state->owner->pi_lock);
385 list_del_init(&pi_state->list);
386 spin_unlock_irq(&pi_state->owner->pi_lock);
387
388 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
389 }
390
391 if (current->pi_state_cache)
392 kfree(pi_state);
393 else {
394 /*
395 * pi_state->list is already empty.
396 * clear pi_state->owner.
397 * refcount is at 0 - put it back to 1.
398 */
399 pi_state->owner = NULL;
400 atomic_set(&pi_state->refcount, 1);
401 current->pi_state_cache = pi_state;
402 }
403 }
404
405 /*
406 * Look up the task based on what TID userspace gave us.
407 * We dont trust it.
408 */
409 static struct task_struct * futex_find_get_task(pid_t pid)
410 {
411 struct task_struct *p;
412
413 rcu_read_lock();
414 p = find_task_by_vpid(pid);
415 if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
416 p = ERR_PTR(-ESRCH);
417 else
418 get_task_struct(p);
419
420 rcu_read_unlock();
421
422 return p;
423 }
424
425 /*
426 * This task is holding PI mutexes at exit time => bad.
427 * Kernel cleans up PI-state, but userspace is likely hosed.
428 * (Robust-futex cleanup is separate and might save the day for userspace.)
429 */
430 void exit_pi_state_list(struct task_struct *curr)
431 {
432 struct list_head *next, *head = &curr->pi_state_list;
433 struct futex_pi_state *pi_state;
434 struct futex_hash_bucket *hb;
435 union futex_key key = FUTEX_KEY_INIT;
436
437 if (!futex_cmpxchg_enabled)
438 return;
439 /*
440 * We are a ZOMBIE and nobody can enqueue itself on
441 * pi_state_list anymore, but we have to be careful
442 * versus waiters unqueueing themselves:
443 */
444 spin_lock_irq(&curr->pi_lock);
445 while (!list_empty(head)) {
446
447 next = head->next;
448 pi_state = list_entry(next, struct futex_pi_state, list);
449 key = pi_state->key;
450 hb = hash_futex(&key);
451 spin_unlock_irq(&curr->pi_lock);
452
453 spin_lock(&hb->lock);
454
455 spin_lock_irq(&curr->pi_lock);
456 /*
457 * We dropped the pi-lock, so re-check whether this
458 * task still owns the PI-state:
459 */
460 if (head->next != next) {
461 spin_unlock(&hb->lock);
462 continue;
463 }
464
465 WARN_ON(pi_state->owner != curr);
466 WARN_ON(list_empty(&pi_state->list));
467 list_del_init(&pi_state->list);
468 pi_state->owner = NULL;
469 spin_unlock_irq(&curr->pi_lock);
470
471 rt_mutex_unlock(&pi_state->pi_mutex);
472
473 spin_unlock(&hb->lock);
474
475 spin_lock_irq(&curr->pi_lock);
476 }
477 spin_unlock_irq(&curr->pi_lock);
478 }
479
480 static int
481 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
482 union futex_key *key, struct futex_pi_state **ps)
483 {
484 struct futex_pi_state *pi_state = NULL;
485 struct futex_q *this, *next;
486 struct plist_head *head;
487 struct task_struct *p;
488 pid_t pid = uval & FUTEX_TID_MASK;
489
490 head = &hb->chain;
491
492 plist_for_each_entry_safe(this, next, head, list) {
493 if (match_futex(&this->key, key)) {
494 /*
495 * Another waiter already exists - bump up
496 * the refcount and return its pi_state:
497 */
498 pi_state = this->pi_state;
499 /*
500 * Userspace might have messed up non PI and PI futexes
501 */
502 if (unlikely(!pi_state))
503 return -EINVAL;
504
505 WARN_ON(!atomic_read(&pi_state->refcount));
506 WARN_ON(pid && pi_state->owner &&
507 pi_state->owner->pid != pid);
508
509 atomic_inc(&pi_state->refcount);
510 *ps = pi_state;
511
512 return 0;
513 }
514 }
515
516 /*
517 * We are the first waiter - try to look up the real owner and attach
518 * the new pi_state to it, but bail out when TID = 0
519 */
520 if (!pid)
521 return -ESRCH;
522 p = futex_find_get_task(pid);
523 if (IS_ERR(p))
524 return PTR_ERR(p);
525
526 /*
527 * We need to look at the task state flags to figure out,
528 * whether the task is exiting. To protect against the do_exit
529 * change of the task flags, we do this protected by
530 * p->pi_lock:
531 */
532 spin_lock_irq(&p->pi_lock);
533 if (unlikely(p->flags & PF_EXITING)) {
534 /*
535 * The task is on the way out. When PF_EXITPIDONE is
536 * set, we know that the task has finished the
537 * cleanup:
538 */
539 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
540
541 spin_unlock_irq(&p->pi_lock);
542 put_task_struct(p);
543 return ret;
544 }
545
546 pi_state = alloc_pi_state();
547
548 /*
549 * Initialize the pi_mutex in locked state and make 'p'
550 * the owner of it:
551 */
552 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
553
554 /* Store the key for possible exit cleanups: */
555 pi_state->key = *key;
556
557 WARN_ON(!list_empty(&pi_state->list));
558 list_add(&pi_state->list, &p->pi_state_list);
559 pi_state->owner = p;
560 spin_unlock_irq(&p->pi_lock);
561
562 put_task_struct(p);
563
564 *ps = pi_state;
565
566 return 0;
567 }
568
569 /*
570 * The hash bucket lock must be held when this is called.
571 * Afterwards, the futex_q must not be accessed.
572 */
573 static void wake_futex(struct futex_q *q)
574 {
575 plist_del(&q->list, &q->list.plist);
576 /*
577 * The lock in wake_up_all() is a crucial memory barrier after the
578 * plist_del() and also before assigning to q->lock_ptr.
579 */
580 wake_up(&q->waiter);
581 /*
582 * The waiting task can free the futex_q as soon as this is written,
583 * without taking any locks. This must come last.
584 *
585 * A memory barrier is required here to prevent the following store
586 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
587 * at the end of wake_up_all() does not prevent this store from
588 * moving.
589 */
590 smp_wmb();
591 q->lock_ptr = NULL;
592 }
593
594 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
595 {
596 struct task_struct *new_owner;
597 struct futex_pi_state *pi_state = this->pi_state;
598 u32 curval, newval;
599
600 if (!pi_state)
601 return -EINVAL;
602
603 spin_lock(&pi_state->pi_mutex.wait_lock);
604 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
605
606 /*
607 * This happens when we have stolen the lock and the original
608 * pending owner did not enqueue itself back on the rt_mutex.
609 * Thats not a tragedy. We know that way, that a lock waiter
610 * is on the fly. We make the futex_q waiter the pending owner.
611 */
612 if (!new_owner)
613 new_owner = this->task;
614
615 /*
616 * We pass it to the next owner. (The WAITERS bit is always
617 * kept enabled while there is PI state around. We must also
618 * preserve the owner died bit.)
619 */
620 if (!(uval & FUTEX_OWNER_DIED)) {
621 int ret = 0;
622
623 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
624
625 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
626
627 if (curval == -EFAULT)
628 ret = -EFAULT;
629 else if (curval != uval)
630 ret = -EINVAL;
631 if (ret) {
632 spin_unlock(&pi_state->pi_mutex.wait_lock);
633 return ret;
634 }
635 }
636
637 spin_lock_irq(&pi_state->owner->pi_lock);
638 WARN_ON(list_empty(&pi_state->list));
639 list_del_init(&pi_state->list);
640 spin_unlock_irq(&pi_state->owner->pi_lock);
641
642 spin_lock_irq(&new_owner->pi_lock);
643 WARN_ON(!list_empty(&pi_state->list));
644 list_add(&pi_state->list, &new_owner->pi_state_list);
645 pi_state->owner = new_owner;
646 spin_unlock_irq(&new_owner->pi_lock);
647
648 spin_unlock(&pi_state->pi_mutex.wait_lock);
649 rt_mutex_unlock(&pi_state->pi_mutex);
650
651 return 0;
652 }
653
654 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
655 {
656 u32 oldval;
657
658 /*
659 * There is no waiter, so we unlock the futex. The owner died
660 * bit has not to be preserved here. We are the owner:
661 */
662 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
663
664 if (oldval == -EFAULT)
665 return oldval;
666 if (oldval != uval)
667 return -EAGAIN;
668
669 return 0;
670 }
671
672 /*
673 * Express the locking dependencies for lockdep:
674 */
675 static inline void
676 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
677 {
678 if (hb1 <= hb2) {
679 spin_lock(&hb1->lock);
680 if (hb1 < hb2)
681 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
682 } else { /* hb1 > hb2 */
683 spin_lock(&hb2->lock);
684 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
685 }
686 }
687
688 /*
689 * Wake up all waiters hashed on the physical page that is mapped
690 * to this virtual address:
691 */
692 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
693 {
694 struct futex_hash_bucket *hb;
695 struct futex_q *this, *next;
696 struct plist_head *head;
697 union futex_key key = FUTEX_KEY_INIT;
698 int ret;
699
700 if (!bitset)
701 return -EINVAL;
702
703 ret = get_futex_key(uaddr, fshared, &key);
704 if (unlikely(ret != 0))
705 goto out;
706
707 hb = hash_futex(&key);
708 spin_lock(&hb->lock);
709 head = &hb->chain;
710
711 plist_for_each_entry_safe(this, next, head, list) {
712 if (match_futex (&this->key, &key)) {
713 if (this->pi_state) {
714 ret = -EINVAL;
715 break;
716 }
717
718 /* Check if one of the bits is set in both bitsets */
719 if (!(this->bitset & bitset))
720 continue;
721
722 wake_futex(this);
723 if (++ret >= nr_wake)
724 break;
725 }
726 }
727
728 spin_unlock(&hb->lock);
729 put_futex_key(fshared, &key);
730 out:
731 return ret;
732 }
733
734 /*
735 * Wake up all waiters hashed on the physical page that is mapped
736 * to this virtual address:
737 */
738 static int
739 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
740 int nr_wake, int nr_wake2, int op)
741 {
742 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
743 struct futex_hash_bucket *hb1, *hb2;
744 struct plist_head *head;
745 struct futex_q *this, *next;
746 int ret, op_ret, attempt = 0;
747
748 retryfull:
749 ret = get_futex_key(uaddr1, fshared, &key1);
750 if (unlikely(ret != 0))
751 goto out;
752 ret = get_futex_key(uaddr2, fshared, &key2);
753 if (unlikely(ret != 0))
754 goto out_put_key1;
755
756 hb1 = hash_futex(&key1);
757 hb2 = hash_futex(&key2);
758
759 retry:
760 double_lock_hb(hb1, hb2);
761
762 op_ret = futex_atomic_op_inuser(op, uaddr2);
763 if (unlikely(op_ret < 0)) {
764 u32 dummy;
765
766 spin_unlock(&hb1->lock);
767 if (hb1 != hb2)
768 spin_unlock(&hb2->lock);
769
770 #ifndef CONFIG_MMU
771 /*
772 * we don't get EFAULT from MMU faults if we don't have an MMU,
773 * but we might get them from range checking
774 */
775 ret = op_ret;
776 goto out_put_keys;
777 #endif
778
779 if (unlikely(op_ret != -EFAULT)) {
780 ret = op_ret;
781 goto out_put_keys;
782 }
783
784 /*
785 * futex_atomic_op_inuser needs to both read and write
786 * *(int __user *)uaddr2, but we can't modify it
787 * non-atomically. Therefore, if get_user below is not
788 * enough, we need to handle the fault ourselves, while
789 * still holding the mmap_sem.
790 */
791 if (attempt++) {
792 ret = futex_handle_fault((unsigned long)uaddr2,
793 attempt);
794 if (ret)
795 goto out_put_keys;
796 goto retry;
797 }
798
799 ret = get_user(dummy, uaddr2);
800 if (ret)
801 return ret;
802
803 goto retryfull;
804 }
805
806 head = &hb1->chain;
807
808 plist_for_each_entry_safe(this, next, head, list) {
809 if (match_futex (&this->key, &key1)) {
810 wake_futex(this);
811 if (++ret >= nr_wake)
812 break;
813 }
814 }
815
816 if (op_ret > 0) {
817 head = &hb2->chain;
818
819 op_ret = 0;
820 plist_for_each_entry_safe(this, next, head, list) {
821 if (match_futex (&this->key, &key2)) {
822 wake_futex(this);
823 if (++op_ret >= nr_wake2)
824 break;
825 }
826 }
827 ret += op_ret;
828 }
829
830 spin_unlock(&hb1->lock);
831 if (hb1 != hb2)
832 spin_unlock(&hb2->lock);
833 out_put_keys:
834 put_futex_key(fshared, &key2);
835 out_put_key1:
836 put_futex_key(fshared, &key1);
837 out:
838 return ret;
839 }
840
841 /*
842 * Requeue all waiters hashed on one physical page to another
843 * physical page.
844 */
845 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
846 int nr_wake, int nr_requeue, u32 *cmpval)
847 {
848 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
849 struct futex_hash_bucket *hb1, *hb2;
850 struct plist_head *head1;
851 struct futex_q *this, *next;
852 int ret, drop_count = 0;
853
854 retry:
855 ret = get_futex_key(uaddr1, fshared, &key1);
856 if (unlikely(ret != 0))
857 goto out;
858 ret = get_futex_key(uaddr2, fshared, &key2);
859 if (unlikely(ret != 0))
860 goto out_put_key1;
861
862 hb1 = hash_futex(&key1);
863 hb2 = hash_futex(&key2);
864
865 double_lock_hb(hb1, hb2);
866
867 if (likely(cmpval != NULL)) {
868 u32 curval;
869
870 ret = get_futex_value_locked(&curval, uaddr1);
871
872 if (unlikely(ret)) {
873 spin_unlock(&hb1->lock);
874 if (hb1 != hb2)
875 spin_unlock(&hb2->lock);
876
877 ret = get_user(curval, uaddr1);
878
879 if (!ret)
880 goto retry;
881
882 goto out_put_keys;
883 }
884 if (curval != *cmpval) {
885 ret = -EAGAIN;
886 goto out_unlock;
887 }
888 }
889
890 head1 = &hb1->chain;
891 plist_for_each_entry_safe(this, next, head1, list) {
892 if (!match_futex (&this->key, &key1))
893 continue;
894 if (++ret <= nr_wake) {
895 wake_futex(this);
896 } else {
897 /*
898 * If key1 and key2 hash to the same bucket, no need to
899 * requeue.
900 */
901 if (likely(head1 != &hb2->chain)) {
902 plist_del(&this->list, &hb1->chain);
903 plist_add(&this->list, &hb2->chain);
904 this->lock_ptr = &hb2->lock;
905 #ifdef CONFIG_DEBUG_PI_LIST
906 this->list.plist.lock = &hb2->lock;
907 #endif
908 }
909 this->key = key2;
910 get_futex_key_refs(&key2);
911 drop_count++;
912
913 if (ret - nr_wake >= nr_requeue)
914 break;
915 }
916 }
917
918 out_unlock:
919 spin_unlock(&hb1->lock);
920 if (hb1 != hb2)
921 spin_unlock(&hb2->lock);
922
923 /* drop_futex_key_refs() must be called outside the spinlocks. */
924 while (--drop_count >= 0)
925 drop_futex_key_refs(&key1);
926
927 out_put_keys:
928 put_futex_key(fshared, &key2);
929 out_put_key1:
930 put_futex_key(fshared, &key1);
931 out:
932 return ret;
933 }
934
935 /* The key must be already stored in q->key. */
936 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
937 {
938 struct futex_hash_bucket *hb;
939
940 init_waitqueue_head(&q->waiter);
941
942 get_futex_key_refs(&q->key);
943 hb = hash_futex(&q->key);
944 q->lock_ptr = &hb->lock;
945
946 spin_lock(&hb->lock);
947 return hb;
948 }
949
950 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
951 {
952 int prio;
953
954 /*
955 * The priority used to register this element is
956 * - either the real thread-priority for the real-time threads
957 * (i.e. threads with a priority lower than MAX_RT_PRIO)
958 * - or MAX_RT_PRIO for non-RT threads.
959 * Thus, all RT-threads are woken first in priority order, and
960 * the others are woken last, in FIFO order.
961 */
962 prio = min(current->normal_prio, MAX_RT_PRIO);
963
964 plist_node_init(&q->list, prio);
965 #ifdef CONFIG_DEBUG_PI_LIST
966 q->list.plist.lock = &hb->lock;
967 #endif
968 plist_add(&q->list, &hb->chain);
969 q->task = current;
970 spin_unlock(&hb->lock);
971 }
972
973 static inline void
974 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
975 {
976 spin_unlock(&hb->lock);
977 drop_futex_key_refs(&q->key);
978 }
979
980 /*
981 * queue_me and unqueue_me must be called as a pair, each
982 * exactly once. They are called with the hashed spinlock held.
983 */
984
985 /* Return 1 if we were still queued (ie. 0 means we were woken) */
986 static int unqueue_me(struct futex_q *q)
987 {
988 spinlock_t *lock_ptr;
989 int ret = 0;
990
991 /* In the common case we don't take the spinlock, which is nice. */
992 retry:
993 lock_ptr = q->lock_ptr;
994 barrier();
995 if (lock_ptr != NULL) {
996 spin_lock(lock_ptr);
997 /*
998 * q->lock_ptr can change between reading it and
999 * spin_lock(), causing us to take the wrong lock. This
1000 * corrects the race condition.
1001 *
1002 * Reasoning goes like this: if we have the wrong lock,
1003 * q->lock_ptr must have changed (maybe several times)
1004 * between reading it and the spin_lock(). It can
1005 * change again after the spin_lock() but only if it was
1006 * already changed before the spin_lock(). It cannot,
1007 * however, change back to the original value. Therefore
1008 * we can detect whether we acquired the correct lock.
1009 */
1010 if (unlikely(lock_ptr != q->lock_ptr)) {
1011 spin_unlock(lock_ptr);
1012 goto retry;
1013 }
1014 WARN_ON(plist_node_empty(&q->list));
1015 plist_del(&q->list, &q->list.plist);
1016
1017 BUG_ON(q->pi_state);
1018
1019 spin_unlock(lock_ptr);
1020 ret = 1;
1021 }
1022
1023 drop_futex_key_refs(&q->key);
1024 return ret;
1025 }
1026
1027 /*
1028 * PI futexes can not be requeued and must remove themself from the
1029 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1030 * and dropped here.
1031 */
1032 static void unqueue_me_pi(struct futex_q *q)
1033 {
1034 WARN_ON(plist_node_empty(&q->list));
1035 plist_del(&q->list, &q->list.plist);
1036
1037 BUG_ON(!q->pi_state);
1038 free_pi_state(q->pi_state);
1039 q->pi_state = NULL;
1040
1041 spin_unlock(q->lock_ptr);
1042
1043 drop_futex_key_refs(&q->key);
1044 }
1045
1046 /*
1047 * Fixup the pi_state owner with the new owner.
1048 *
1049 * Must be called with hash bucket lock held and mm->sem held for non
1050 * private futexes.
1051 */
1052 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1053 struct task_struct *newowner, int fshared)
1054 {
1055 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1056 struct futex_pi_state *pi_state = q->pi_state;
1057 struct task_struct *oldowner = pi_state->owner;
1058 u32 uval, curval, newval;
1059 int ret, attempt = 0;
1060
1061 /* Owner died? */
1062 if (!pi_state->owner)
1063 newtid |= FUTEX_OWNER_DIED;
1064
1065 /*
1066 * We are here either because we stole the rtmutex from the
1067 * pending owner or we are the pending owner which failed to
1068 * get the rtmutex. We have to replace the pending owner TID
1069 * in the user space variable. This must be atomic as we have
1070 * to preserve the owner died bit here.
1071 *
1072 * Note: We write the user space value _before_ changing the
1073 * pi_state because we can fault here. Imagine swapped out
1074 * pages or a fork, which was running right before we acquired
1075 * mmap_sem, that marked all the anonymous memory readonly for
1076 * cow.
1077 *
1078 * Modifying pi_state _before_ the user space value would
1079 * leave the pi_state in an inconsistent state when we fault
1080 * here, because we need to drop the hash bucket lock to
1081 * handle the fault. This might be observed in the PID check
1082 * in lookup_pi_state.
1083 */
1084 retry:
1085 if (get_futex_value_locked(&uval, uaddr))
1086 goto handle_fault;
1087
1088 while (1) {
1089 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1090
1091 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1092
1093 if (curval == -EFAULT)
1094 goto handle_fault;
1095 if (curval == uval)
1096 break;
1097 uval = curval;
1098 }
1099
1100 /*
1101 * We fixed up user space. Now we need to fix the pi_state
1102 * itself.
1103 */
1104 if (pi_state->owner != NULL) {
1105 spin_lock_irq(&pi_state->owner->pi_lock);
1106 WARN_ON(list_empty(&pi_state->list));
1107 list_del_init(&pi_state->list);
1108 spin_unlock_irq(&pi_state->owner->pi_lock);
1109 }
1110
1111 pi_state->owner = newowner;
1112
1113 spin_lock_irq(&newowner->pi_lock);
1114 WARN_ON(!list_empty(&pi_state->list));
1115 list_add(&pi_state->list, &newowner->pi_state_list);
1116 spin_unlock_irq(&newowner->pi_lock);
1117 return 0;
1118
1119 /*
1120 * To handle the page fault we need to drop the hash bucket
1121 * lock here. That gives the other task (either the pending
1122 * owner itself or the task which stole the rtmutex) the
1123 * chance to try the fixup of the pi_state. So once we are
1124 * back from handling the fault we need to check the pi_state
1125 * after reacquiring the hash bucket lock and before trying to
1126 * do another fixup. When the fixup has been done already we
1127 * simply return.
1128 */
1129 handle_fault:
1130 spin_unlock(q->lock_ptr);
1131
1132 ret = futex_handle_fault((unsigned long)uaddr, attempt++);
1133
1134 spin_lock(q->lock_ptr);
1135
1136 /*
1137 * Check if someone else fixed it for us:
1138 */
1139 if (pi_state->owner != oldowner)
1140 return 0;
1141
1142 if (ret)
1143 return ret;
1144
1145 goto retry;
1146 }
1147
1148 /*
1149 * In case we must use restart_block to restart a futex_wait,
1150 * we encode in the 'flags' shared capability
1151 */
1152 #define FLAGS_SHARED 0x01
1153 #define FLAGS_CLOCKRT 0x02
1154
1155 static long futex_wait_restart(struct restart_block *restart);
1156
1157 static int futex_wait(u32 __user *uaddr, int fshared,
1158 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1159 {
1160 struct task_struct *curr = current;
1161 DECLARE_WAITQUEUE(wait, curr);
1162 struct futex_hash_bucket *hb;
1163 struct futex_q q;
1164 u32 uval;
1165 int ret;
1166 struct hrtimer_sleeper t;
1167 int rem = 0;
1168
1169 if (!bitset)
1170 return -EINVAL;
1171
1172 q.pi_state = NULL;
1173 q.bitset = bitset;
1174 retry:
1175 q.key = FUTEX_KEY_INIT;
1176 ret = get_futex_key(uaddr, fshared, &q.key);
1177 if (unlikely(ret != 0))
1178 goto out;
1179
1180 hb = queue_lock(&q);
1181
1182 /*
1183 * Access the page AFTER the futex is queued.
1184 * Order is important:
1185 *
1186 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1187 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1188 *
1189 * The basic logical guarantee of a futex is that it blocks ONLY
1190 * if cond(var) is known to be true at the time of blocking, for
1191 * any cond. If we queued after testing *uaddr, that would open
1192 * a race condition where we could block indefinitely with
1193 * cond(var) false, which would violate the guarantee.
1194 *
1195 * A consequence is that futex_wait() can return zero and absorb
1196 * a wakeup when *uaddr != val on entry to the syscall. This is
1197 * rare, but normal.
1198 *
1199 * for shared futexes, we hold the mmap semaphore, so the mapping
1200 * cannot have changed since we looked it up in get_futex_key.
1201 */
1202 ret = get_futex_value_locked(&uval, uaddr);
1203
1204 if (unlikely(ret)) {
1205 queue_unlock(&q, hb);
1206 put_futex_key(fshared, &q.key);
1207
1208 ret = get_user(uval, uaddr);
1209
1210 if (!ret)
1211 goto retry;
1212 return ret;
1213 }
1214 ret = -EWOULDBLOCK;
1215 if (uval != val)
1216 goto out_unlock_put_key;
1217
1218 /* Only actually queue if *uaddr contained val. */
1219 queue_me(&q, hb);
1220
1221 /*
1222 * There might have been scheduling since the queue_me(), as we
1223 * cannot hold a spinlock across the get_user() in case it
1224 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1225 * queueing ourselves into the futex hash. This code thus has to
1226 * rely on the futex_wake() code removing us from hash when it
1227 * wakes us up.
1228 */
1229
1230 /* add_wait_queue is the barrier after __set_current_state. */
1231 __set_current_state(TASK_INTERRUPTIBLE);
1232 add_wait_queue(&q.waiter, &wait);
1233 /*
1234 * !plist_node_empty() is safe here without any lock.
1235 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1236 */
1237 if (likely(!plist_node_empty(&q.list))) {
1238 if (!abs_time)
1239 schedule();
1240 else {
1241 unsigned long slack;
1242 slack = current->timer_slack_ns;
1243 if (rt_task(current))
1244 slack = 0;
1245 hrtimer_init_on_stack(&t.timer,
1246 clockrt ? CLOCK_REALTIME :
1247 CLOCK_MONOTONIC,
1248 HRTIMER_MODE_ABS);
1249 hrtimer_init_sleeper(&t, current);
1250 hrtimer_set_expires_range_ns(&t.timer, *abs_time, slack);
1251
1252 hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS);
1253 if (!hrtimer_active(&t.timer))
1254 t.task = NULL;
1255
1256 /*
1257 * the timer could have already expired, in which
1258 * case current would be flagged for rescheduling.
1259 * Don't bother calling schedule.
1260 */
1261 if (likely(t.task))
1262 schedule();
1263
1264 hrtimer_cancel(&t.timer);
1265
1266 /* Flag if a timeout occured */
1267 rem = (t.task == NULL);
1268
1269 destroy_hrtimer_on_stack(&t.timer);
1270 }
1271 }
1272 __set_current_state(TASK_RUNNING);
1273
1274 /*
1275 * NOTE: we don't remove ourselves from the waitqueue because
1276 * we are the only user of it.
1277 */
1278
1279 /* If we were woken (and unqueued), we succeeded, whatever. */
1280 if (!unqueue_me(&q))
1281 return 0;
1282 if (rem)
1283 return -ETIMEDOUT;
1284
1285 /*
1286 * We expect signal_pending(current), but another thread may
1287 * have handled it for us already.
1288 */
1289 if (!abs_time)
1290 return -ERESTARTSYS;
1291 else {
1292 struct restart_block *restart;
1293 restart = &current_thread_info()->restart_block;
1294 restart->fn = futex_wait_restart;
1295 restart->futex.uaddr = (u32 *)uaddr;
1296 restart->futex.val = val;
1297 restart->futex.time = abs_time->tv64;
1298 restart->futex.bitset = bitset;
1299 restart->futex.flags = 0;
1300
1301 if (fshared)
1302 restart->futex.flags |= FLAGS_SHARED;
1303 if (clockrt)
1304 restart->futex.flags |= FLAGS_CLOCKRT;
1305 return -ERESTART_RESTARTBLOCK;
1306 }
1307
1308 out_unlock_put_key:
1309 queue_unlock(&q, hb);
1310 put_futex_key(fshared, &q.key);
1311
1312 out:
1313 return ret;
1314 }
1315
1316
1317 static long futex_wait_restart(struct restart_block *restart)
1318 {
1319 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1320 int fshared = 0;
1321 ktime_t t;
1322
1323 t.tv64 = restart->futex.time;
1324 restart->fn = do_no_restart_syscall;
1325 if (restart->futex.flags & FLAGS_SHARED)
1326 fshared = 1;
1327 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1328 restart->futex.bitset,
1329 restart->futex.flags & FLAGS_CLOCKRT);
1330 }
1331
1332
1333 /*
1334 * Userspace tried a 0 -> TID atomic transition of the futex value
1335 * and failed. The kernel side here does the whole locking operation:
1336 * if there are waiters then it will block, it does PI, etc. (Due to
1337 * races the kernel might see a 0 value of the futex too.)
1338 */
1339 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1340 int detect, ktime_t *time, int trylock)
1341 {
1342 struct hrtimer_sleeper timeout, *to = NULL;
1343 struct task_struct *curr = current;
1344 struct futex_hash_bucket *hb;
1345 u32 uval, newval, curval;
1346 struct futex_q q;
1347 int ret, lock_taken, ownerdied = 0, attempt = 0;
1348
1349 if (refill_pi_state_cache())
1350 return -ENOMEM;
1351
1352 if (time) {
1353 to = &timeout;
1354 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1355 HRTIMER_MODE_ABS);
1356 hrtimer_init_sleeper(to, current);
1357 hrtimer_set_expires(&to->timer, *time);
1358 }
1359
1360 q.pi_state = NULL;
1361 retry:
1362 q.key = FUTEX_KEY_INIT;
1363 ret = get_futex_key(uaddr, fshared, &q.key);
1364 if (unlikely(ret != 0))
1365 goto out;
1366
1367 retry_unlocked:
1368 hb = queue_lock(&q);
1369
1370 retry_locked:
1371 ret = lock_taken = 0;
1372
1373 /*
1374 * To avoid races, we attempt to take the lock here again
1375 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1376 * the locks. It will most likely not succeed.
1377 */
1378 newval = task_pid_vnr(current);
1379
1380 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1381
1382 if (unlikely(curval == -EFAULT))
1383 goto uaddr_faulted;
1384
1385 /*
1386 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1387 * situation and we return success to user space.
1388 */
1389 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
1390 ret = -EDEADLK;
1391 goto out_unlock_put_key;
1392 }
1393
1394 /*
1395 * Surprise - we got the lock. Just return to userspace:
1396 */
1397 if (unlikely(!curval))
1398 goto out_unlock_put_key;
1399
1400 uval = curval;
1401
1402 /*
1403 * Set the WAITERS flag, so the owner will know it has someone
1404 * to wake at next unlock
1405 */
1406 newval = curval | FUTEX_WAITERS;
1407
1408 /*
1409 * There are two cases, where a futex might have no owner (the
1410 * owner TID is 0): OWNER_DIED. We take over the futex in this
1411 * case. We also do an unconditional take over, when the owner
1412 * of the futex died.
1413 *
1414 * This is safe as we are protected by the hash bucket lock !
1415 */
1416 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1417 /* Keep the OWNER_DIED bit */
1418 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
1419 ownerdied = 0;
1420 lock_taken = 1;
1421 }
1422
1423 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1424
1425 if (unlikely(curval == -EFAULT))
1426 goto uaddr_faulted;
1427 if (unlikely(curval != uval))
1428 goto retry_locked;
1429
1430 /*
1431 * We took the lock due to owner died take over.
1432 */
1433 if (unlikely(lock_taken))
1434 goto out_unlock_put_key;
1435
1436 /*
1437 * We dont have the lock. Look up the PI state (or create it if
1438 * we are the first waiter):
1439 */
1440 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1441
1442 if (unlikely(ret)) {
1443 switch (ret) {
1444
1445 case -EAGAIN:
1446 /*
1447 * Task is exiting and we just wait for the
1448 * exit to complete.
1449 */
1450 queue_unlock(&q, hb);
1451 cond_resched();
1452 goto retry;
1453
1454 case -ESRCH:
1455 /*
1456 * No owner found for this futex. Check if the
1457 * OWNER_DIED bit is set to figure out whether
1458 * this is a robust futex or not.
1459 */
1460 if (get_futex_value_locked(&curval, uaddr))
1461 goto uaddr_faulted;
1462
1463 /*
1464 * We simply start over in case of a robust
1465 * futex. The code above will take the futex
1466 * and return happy.
1467 */
1468 if (curval & FUTEX_OWNER_DIED) {
1469 ownerdied = 1;
1470 goto retry_locked;
1471 }
1472 default:
1473 goto out_unlock_put_key;
1474 }
1475 }
1476
1477 /*
1478 * Only actually queue now that the atomic ops are done:
1479 */
1480 queue_me(&q, hb);
1481
1482 WARN_ON(!q.pi_state);
1483 /*
1484 * Block on the PI mutex:
1485 */
1486 if (!trylock)
1487 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1488 else {
1489 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1490 /* Fixup the trylock return value: */
1491 ret = ret ? 0 : -EWOULDBLOCK;
1492 }
1493
1494 spin_lock(q.lock_ptr);
1495
1496 if (!ret) {
1497 /*
1498 * Got the lock. We might not be the anticipated owner
1499 * if we did a lock-steal - fix up the PI-state in
1500 * that case:
1501 */
1502 if (q.pi_state->owner != curr)
1503 ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
1504 } else {
1505 /*
1506 * Catch the rare case, where the lock was released
1507 * when we were on the way back before we locked the
1508 * hash bucket.
1509 */
1510 if (q.pi_state->owner == curr) {
1511 /*
1512 * Try to get the rt_mutex now. This might
1513 * fail as some other task acquired the
1514 * rt_mutex after we removed ourself from the
1515 * rt_mutex waiters list.
1516 */
1517 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1518 ret = 0;
1519 else {
1520 /*
1521 * pi_state is incorrect, some other
1522 * task did a lock steal and we
1523 * returned due to timeout or signal
1524 * without taking the rt_mutex. Too
1525 * late. We can access the
1526 * rt_mutex_owner without locking, as
1527 * the other task is now blocked on
1528 * the hash bucket lock. Fix the state
1529 * up.
1530 */
1531 struct task_struct *owner;
1532 int res;
1533
1534 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1535 res = fixup_pi_state_owner(uaddr, &q, owner,
1536 fshared);
1537
1538 /* propagate -EFAULT, if the fixup failed */
1539 if (res)
1540 ret = res;
1541 }
1542 } else {
1543 /*
1544 * Paranoia check. If we did not take the lock
1545 * in the trylock above, then we should not be
1546 * the owner of the rtmutex, neither the real
1547 * nor the pending one:
1548 */
1549 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1550 printk(KERN_ERR "futex_lock_pi: ret = %d "
1551 "pi-mutex: %p pi-state %p\n", ret,
1552 q.pi_state->pi_mutex.owner,
1553 q.pi_state->owner);
1554 }
1555 }
1556
1557 /* Unqueue and drop the lock */
1558 unqueue_me_pi(&q);
1559
1560 if (to)
1561 destroy_hrtimer_on_stack(&to->timer);
1562 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1563
1564 out_unlock_put_key:
1565 queue_unlock(&q, hb);
1566
1567 out_put_key:
1568 put_futex_key(fshared, &q.key);
1569 out:
1570 if (to)
1571 destroy_hrtimer_on_stack(&to->timer);
1572 return ret;
1573
1574 uaddr_faulted:
1575 /*
1576 * We have to r/w *(int __user *)uaddr, and we have to modify it
1577 * atomically. Therefore, if we continue to fault after get_user()
1578 * below, we need to handle the fault ourselves, while still holding
1579 * the mmap_sem. This can occur if the uaddr is under contention as
1580 * we have to drop the mmap_sem in order to call get_user().
1581 */
1582 queue_unlock(&q, hb);
1583
1584 if (attempt++) {
1585 ret = futex_handle_fault((unsigned long)uaddr, attempt);
1586 if (ret)
1587 goto out_put_key;
1588 goto retry_unlocked;
1589 }
1590
1591 ret = get_user(uval, uaddr);
1592 if (!ret)
1593 goto retry;
1594
1595 if (to)
1596 destroy_hrtimer_on_stack(&to->timer);
1597 return ret;
1598 }
1599
1600 /*
1601 * Userspace attempted a TID -> 0 atomic transition, and failed.
1602 * This is the in-kernel slowpath: we look up the PI state (if any),
1603 * and do the rt-mutex unlock.
1604 */
1605 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
1606 {
1607 struct futex_hash_bucket *hb;
1608 struct futex_q *this, *next;
1609 u32 uval;
1610 struct plist_head *head;
1611 union futex_key key = FUTEX_KEY_INIT;
1612 int ret, attempt = 0;
1613
1614 retry:
1615 if (get_user(uval, uaddr))
1616 return -EFAULT;
1617 /*
1618 * We release only a lock we actually own:
1619 */
1620 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1621 return -EPERM;
1622
1623 ret = get_futex_key(uaddr, fshared, &key);
1624 if (unlikely(ret != 0))
1625 goto out;
1626
1627 hb = hash_futex(&key);
1628 retry_unlocked:
1629 spin_lock(&hb->lock);
1630
1631 /*
1632 * To avoid races, try to do the TID -> 0 atomic transition
1633 * again. If it succeeds then we can return without waking
1634 * anyone else up:
1635 */
1636 if (!(uval & FUTEX_OWNER_DIED))
1637 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1638
1639
1640 if (unlikely(uval == -EFAULT))
1641 goto pi_faulted;
1642 /*
1643 * Rare case: we managed to release the lock atomically,
1644 * no need to wake anyone else up:
1645 */
1646 if (unlikely(uval == task_pid_vnr(current)))
1647 goto out_unlock;
1648
1649 /*
1650 * Ok, other tasks may need to be woken up - check waiters
1651 * and do the wakeup if necessary:
1652 */
1653 head = &hb->chain;
1654
1655 plist_for_each_entry_safe(this, next, head, list) {
1656 if (!match_futex (&this->key, &key))
1657 continue;
1658 ret = wake_futex_pi(uaddr, uval, this);
1659 /*
1660 * The atomic access to the futex value
1661 * generated a pagefault, so retry the
1662 * user-access and the wakeup:
1663 */
1664 if (ret == -EFAULT)
1665 goto pi_faulted;
1666 goto out_unlock;
1667 }
1668 /*
1669 * No waiters - kernel unlocks the futex:
1670 */
1671 if (!(uval & FUTEX_OWNER_DIED)) {
1672 ret = unlock_futex_pi(uaddr, uval);
1673 if (ret == -EFAULT)
1674 goto pi_faulted;
1675 }
1676
1677 out_unlock:
1678 spin_unlock(&hb->lock);
1679 put_futex_key(fshared, &key);
1680
1681 out:
1682 return ret;
1683
1684 pi_faulted:
1685 /*
1686 * We have to r/w *(int __user *)uaddr, and we have to modify it
1687 * atomically. Therefore, if we continue to fault after get_user()
1688 * below, we need to handle the fault ourselves, while still holding
1689 * the mmap_sem. This can occur if the uaddr is under contention as
1690 * we have to drop the mmap_sem in order to call get_user().
1691 */
1692 spin_unlock(&hb->lock);
1693
1694 if (attempt++) {
1695 ret = futex_handle_fault((unsigned long)uaddr, attempt);
1696 if (ret)
1697 goto out;
1698 uval = 0;
1699 goto retry_unlocked;
1700 }
1701
1702 ret = get_user(uval, uaddr);
1703 if (!ret)
1704 goto retry;
1705
1706 return ret;
1707 }
1708
1709 /*
1710 * Support for robust futexes: the kernel cleans up held futexes at
1711 * thread exit time.
1712 *
1713 * Implementation: user-space maintains a per-thread list of locks it
1714 * is holding. Upon do_exit(), the kernel carefully walks this list,
1715 * and marks all locks that are owned by this thread with the
1716 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1717 * always manipulated with the lock held, so the list is private and
1718 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1719 * field, to allow the kernel to clean up if the thread dies after
1720 * acquiring the lock, but just before it could have added itself to
1721 * the list. There can only be one such pending lock.
1722 */
1723
1724 /**
1725 * sys_set_robust_list - set the robust-futex list head of a task
1726 * @head: pointer to the list-head
1727 * @len: length of the list-head, as userspace expects
1728 */
1729 asmlinkage long
1730 sys_set_robust_list(struct robust_list_head __user *head,
1731 size_t len)
1732 {
1733 if (!futex_cmpxchg_enabled)
1734 return -ENOSYS;
1735 /*
1736 * The kernel knows only one size for now:
1737 */
1738 if (unlikely(len != sizeof(*head)))
1739 return -EINVAL;
1740
1741 current->robust_list = head;
1742
1743 return 0;
1744 }
1745
1746 /**
1747 * sys_get_robust_list - get the robust-futex list head of a task
1748 * @pid: pid of the process [zero for current task]
1749 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1750 * @len_ptr: pointer to a length field, the kernel fills in the header size
1751 */
1752 asmlinkage long
1753 sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
1754 size_t __user *len_ptr)
1755 {
1756 struct robust_list_head __user *head;
1757 unsigned long ret;
1758
1759 if (!futex_cmpxchg_enabled)
1760 return -ENOSYS;
1761
1762 if (!pid)
1763 head = current->robust_list;
1764 else {
1765 struct task_struct *p;
1766
1767 ret = -ESRCH;
1768 rcu_read_lock();
1769 p = find_task_by_vpid(pid);
1770 if (!p)
1771 goto err_unlock;
1772 ret = -EPERM;
1773 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1774 !capable(CAP_SYS_PTRACE))
1775 goto err_unlock;
1776 head = p->robust_list;
1777 rcu_read_unlock();
1778 }
1779
1780 if (put_user(sizeof(*head), len_ptr))
1781 return -EFAULT;
1782 return put_user(head, head_ptr);
1783
1784 err_unlock:
1785 rcu_read_unlock();
1786
1787 return ret;
1788 }
1789
1790 /*
1791 * Process a futex-list entry, check whether it's owned by the
1792 * dying task, and do notification if so:
1793 */
1794 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1795 {
1796 u32 uval, nval, mval;
1797
1798 retry:
1799 if (get_user(uval, uaddr))
1800 return -1;
1801
1802 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
1803 /*
1804 * Ok, this dying thread is truly holding a futex
1805 * of interest. Set the OWNER_DIED bit atomically
1806 * via cmpxchg, and if the value had FUTEX_WAITERS
1807 * set, wake up a waiter (if any). (We have to do a
1808 * futex_wake() even if OWNER_DIED is already set -
1809 * to handle the rare but possible case of recursive
1810 * thread-death.) The rest of the cleanup is done in
1811 * userspace.
1812 */
1813 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1814 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1815
1816 if (nval == -EFAULT)
1817 return -1;
1818
1819 if (nval != uval)
1820 goto retry;
1821
1822 /*
1823 * Wake robust non-PI futexes here. The wakeup of
1824 * PI futexes happens in exit_pi_state():
1825 */
1826 if (!pi && (uval & FUTEX_WAITERS))
1827 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
1828 }
1829 return 0;
1830 }
1831
1832 /*
1833 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1834 */
1835 static inline int fetch_robust_entry(struct robust_list __user **entry,
1836 struct robust_list __user * __user *head,
1837 int *pi)
1838 {
1839 unsigned long uentry;
1840
1841 if (get_user(uentry, (unsigned long __user *)head))
1842 return -EFAULT;
1843
1844 *entry = (void __user *)(uentry & ~1UL);
1845 *pi = uentry & 1;
1846
1847 return 0;
1848 }
1849
1850 /*
1851 * Walk curr->robust_list (very carefully, it's a userspace list!)
1852 * and mark any locks found there dead, and notify any waiters.
1853 *
1854 * We silently return on any sign of list-walking problem.
1855 */
1856 void exit_robust_list(struct task_struct *curr)
1857 {
1858 struct robust_list_head __user *head = curr->robust_list;
1859 struct robust_list __user *entry, *next_entry, *pending;
1860 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
1861 unsigned long futex_offset;
1862 int rc;
1863
1864 if (!futex_cmpxchg_enabled)
1865 return;
1866
1867 /*
1868 * Fetch the list head (which was registered earlier, via
1869 * sys_set_robust_list()):
1870 */
1871 if (fetch_robust_entry(&entry, &head->list.next, &pi))
1872 return;
1873 /*
1874 * Fetch the relative futex offset:
1875 */
1876 if (get_user(futex_offset, &head->futex_offset))
1877 return;
1878 /*
1879 * Fetch any possibly pending lock-add first, and handle it
1880 * if it exists:
1881 */
1882 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1883 return;
1884
1885 next_entry = NULL; /* avoid warning with gcc */
1886 while (entry != &head->list) {
1887 /*
1888 * Fetch the next entry in the list before calling
1889 * handle_futex_death:
1890 */
1891 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
1892 /*
1893 * A pending lock might already be on the list, so
1894 * don't process it twice:
1895 */
1896 if (entry != pending)
1897 if (handle_futex_death((void __user *)entry + futex_offset,
1898 curr, pi))
1899 return;
1900 if (rc)
1901 return;
1902 entry = next_entry;
1903 pi = next_pi;
1904 /*
1905 * Avoid excessively long or circular lists:
1906 */
1907 if (!--limit)
1908 break;
1909
1910 cond_resched();
1911 }
1912
1913 if (pending)
1914 handle_futex_death((void __user *)pending + futex_offset,
1915 curr, pip);
1916 }
1917
1918 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
1919 u32 __user *uaddr2, u32 val2, u32 val3)
1920 {
1921 int clockrt, ret = -ENOSYS;
1922 int cmd = op & FUTEX_CMD_MASK;
1923 int fshared = 0;
1924
1925 if (!(op & FUTEX_PRIVATE_FLAG))
1926 fshared = 1;
1927
1928 clockrt = op & FUTEX_CLOCK_REALTIME;
1929 if (clockrt && cmd != FUTEX_WAIT_BITSET)
1930 return -ENOSYS;
1931
1932 switch (cmd) {
1933 case FUTEX_WAIT:
1934 val3 = FUTEX_BITSET_MATCH_ANY;
1935 case FUTEX_WAIT_BITSET:
1936 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
1937 break;
1938 case FUTEX_WAKE:
1939 val3 = FUTEX_BITSET_MATCH_ANY;
1940 case FUTEX_WAKE_BITSET:
1941 ret = futex_wake(uaddr, fshared, val, val3);
1942 break;
1943 case FUTEX_REQUEUE:
1944 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1945 break;
1946 case FUTEX_CMP_REQUEUE:
1947 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1948 break;
1949 case FUTEX_WAKE_OP:
1950 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
1951 break;
1952 case FUTEX_LOCK_PI:
1953 if (futex_cmpxchg_enabled)
1954 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
1955 break;
1956 case FUTEX_UNLOCK_PI:
1957 if (futex_cmpxchg_enabled)
1958 ret = futex_unlock_pi(uaddr, fshared);
1959 break;
1960 case FUTEX_TRYLOCK_PI:
1961 if (futex_cmpxchg_enabled)
1962 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
1963 break;
1964 default:
1965 ret = -ENOSYS;
1966 }
1967 return ret;
1968 }
1969
1970
1971 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1972 struct timespec __user *utime, u32 __user *uaddr2,
1973 u32 val3)
1974 {
1975 struct timespec ts;
1976 ktime_t t, *tp = NULL;
1977 u32 val2 = 0;
1978 int cmd = op & FUTEX_CMD_MASK;
1979
1980 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
1981 cmd == FUTEX_WAIT_BITSET)) {
1982 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1983 return -EFAULT;
1984 if (!timespec_valid(&ts))
1985 return -EINVAL;
1986
1987 t = timespec_to_ktime(ts);
1988 if (cmd == FUTEX_WAIT)
1989 t = ktime_add_safe(ktime_get(), t);
1990 tp = &t;
1991 }
1992 /*
1993 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
1994 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1995 */
1996 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
1997 cmd == FUTEX_WAKE_OP)
1998 val2 = (u32) (unsigned long) utime;
1999
2000 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2001 }
2002
2003 static int __init futex_init(void)
2004 {
2005 u32 curval;
2006 int i;
2007
2008 /*
2009 * This will fail and we want it. Some arch implementations do
2010 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2011 * functionality. We want to know that before we call in any
2012 * of the complex code paths. Also we want to prevent
2013 * registration of robust lists in that case. NULL is
2014 * guaranteed to fault and we get -EFAULT on functional
2015 * implementation, the non functional ones will return
2016 * -ENOSYS.
2017 */
2018 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2019 if (curval == -EFAULT)
2020 futex_cmpxchg_enabled = 1;
2021
2022 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2023 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2024 spin_lock_init(&futex_queues[i].lock);
2025 }
2026
2027 return 0;
2028 }
2029 __initcall(futex_init);
This page took 0.068571 seconds and 6 git commands to generate.