futex: Use futex_top_waiter() in lookup_pi_state()
[deliverable/linux.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67
68 #include <asm/futex.h>
69
70 #include "locking/rtmutex_common.h"
71
72 /*
73 * READ this before attempting to hack on futexes!
74 *
75 * Basic futex operation and ordering guarantees
76 * =============================================
77 *
78 * The waiter reads the futex value in user space and calls
79 * futex_wait(). This function computes the hash bucket and acquires
80 * the hash bucket lock. After that it reads the futex user space value
81 * again and verifies that the data has not changed. If it has not changed
82 * it enqueues itself into the hash bucket, releases the hash bucket lock
83 * and schedules.
84 *
85 * The waker side modifies the user space value of the futex and calls
86 * futex_wake(). This function computes the hash bucket and acquires the
87 * hash bucket lock. Then it looks for waiters on that futex in the hash
88 * bucket and wakes them.
89 *
90 * In futex wake up scenarios where no tasks are blocked on a futex, taking
91 * the hb spinlock can be avoided and simply return. In order for this
92 * optimization to work, ordering guarantees must exist so that the waiter
93 * being added to the list is acknowledged when the list is concurrently being
94 * checked by the waker, avoiding scenarios like the following:
95 *
96 * CPU 0 CPU 1
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 * futex_wait(futex, val);
100 * uval = *futex;
101 * *futex = newval;
102 * sys_futex(WAKE, futex);
103 * futex_wake(futex);
104 * if (queue_empty())
105 * return;
106 * if (uval == val)
107 * lock(hash_bucket(futex));
108 * queue();
109 * unlock(hash_bucket(futex));
110 * schedule();
111 *
112 * This would cause the waiter on CPU 0 to wait forever because it
113 * missed the transition of the user space value from val to newval
114 * and the waker did not find the waiter in the hash bucket queue.
115 *
116 * The correct serialization ensures that a waiter either observes
117 * the changed user space value before blocking or is woken by a
118 * concurrent waker:
119 *
120 * CPU 0 CPU 1
121 * val = *futex;
122 * sys_futex(WAIT, futex, val);
123 * futex_wait(futex, val);
124 *
125 * waiters++; (a)
126 * mb(); (A) <-- paired with -.
127 * |
128 * lock(hash_bucket(futex)); |
129 * |
130 * uval = *futex; |
131 * | *futex = newval;
132 * | sys_futex(WAKE, futex);
133 * | futex_wake(futex);
134 * |
135 * `-------> mb(); (B)
136 * if (uval == val)
137 * queue();
138 * unlock(hash_bucket(futex));
139 * schedule(); if (waiters)
140 * lock(hash_bucket(futex));
141 * else wake_waiters(futex);
142 * waiters--; (b) unlock(hash_bucket(futex));
143 *
144 * Where (A) orders the waiters increment and the futex value read through
145 * atomic operations (see hb_waiters_inc) and where (B) orders the write
146 * to futex and the waiters read -- this is done by the barriers in
147 * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
148 * futex type.
149 *
150 * This yields the following case (where X:=waiters, Y:=futex):
151 *
152 * X = Y = 0
153 *
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
157 *
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
161 *
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
165 *
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
172 */
173
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
177
178 /*
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
181 */
182 #define FLAGS_SHARED 0x01
183 #define FLAGS_CLOCKRT 0x02
184 #define FLAGS_HAS_TIMEOUT 0x04
185
186 /*
187 * Priority Inheritance state:
188 */
189 struct futex_pi_state {
190 /*
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
193 */
194 struct list_head list;
195
196 /*
197 * The PI object:
198 */
199 struct rt_mutex pi_mutex;
200
201 struct task_struct *owner;
202 atomic_t refcount;
203
204 union futex_key key;
205 };
206
207 /**
208 * struct futex_q - The hashed futex queue entry, one per waiting task
209 * @list: priority-sorted list of tasks waiting on this futex
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
217 *
218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
219 * we can wake only the relevant ones (hashed queues may be shared).
220 *
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223 * The order of wakeup is always to make the first condition true, then
224 * the second.
225 *
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
228 */
229 struct futex_q {
230 struct plist_node list;
231
232 struct task_struct *task;
233 spinlock_t *lock_ptr;
234 union futex_key key;
235 struct futex_pi_state *pi_state;
236 struct rt_mutex_waiter *rt_waiter;
237 union futex_key *requeue_pi_key;
238 u32 bitset;
239 };
240
241 static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
245 };
246
247 /*
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
251 */
252 struct futex_hash_bucket {
253 atomic_t waiters;
254 spinlock_t lock;
255 struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
257
258 static unsigned long __read_mostly futex_hashsize;
259
260 static struct futex_hash_bucket *futex_queues;
261
262 static inline void futex_get_mm(union futex_key *key)
263 {
264 atomic_inc(&key->private.mm->mm_count);
265 /*
266 * Ensure futex_get_mm() implies a full barrier such that
267 * get_futex_key() implies a full barrier. This is relied upon
268 * as full barrier (B), see the ordering comment above.
269 */
270 smp_mb__after_atomic();
271 }
272
273 /*
274 * Reflects a new waiter being added to the waitqueue.
275 */
276 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
277 {
278 #ifdef CONFIG_SMP
279 atomic_inc(&hb->waiters);
280 /*
281 * Full barrier (A), see the ordering comment above.
282 */
283 smp_mb__after_atomic();
284 #endif
285 }
286
287 /*
288 * Reflects a waiter being removed from the waitqueue by wakeup
289 * paths.
290 */
291 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
292 {
293 #ifdef CONFIG_SMP
294 atomic_dec(&hb->waiters);
295 #endif
296 }
297
298 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
299 {
300 #ifdef CONFIG_SMP
301 return atomic_read(&hb->waiters);
302 #else
303 return 1;
304 #endif
305 }
306
307 /*
308 * We hash on the keys returned from get_futex_key (see below).
309 */
310 static struct futex_hash_bucket *hash_futex(union futex_key *key)
311 {
312 u32 hash = jhash2((u32*)&key->both.word,
313 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
314 key->both.offset);
315 return &futex_queues[hash & (futex_hashsize - 1)];
316 }
317
318 /*
319 * Return 1 if two futex_keys are equal, 0 otherwise.
320 */
321 static inline int match_futex(union futex_key *key1, union futex_key *key2)
322 {
323 return (key1 && key2
324 && key1->both.word == key2->both.word
325 && key1->both.ptr == key2->both.ptr
326 && key1->both.offset == key2->both.offset);
327 }
328
329 /*
330 * Take a reference to the resource addressed by a key.
331 * Can be called while holding spinlocks.
332 *
333 */
334 static void get_futex_key_refs(union futex_key *key)
335 {
336 if (!key->both.ptr)
337 return;
338
339 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
340 case FUT_OFF_INODE:
341 ihold(key->shared.inode); /* implies MB (B) */
342 break;
343 case FUT_OFF_MMSHARED:
344 futex_get_mm(key); /* implies MB (B) */
345 break;
346 }
347 }
348
349 /*
350 * Drop a reference to the resource addressed by a key.
351 * The hash bucket spinlock must not be held.
352 */
353 static void drop_futex_key_refs(union futex_key *key)
354 {
355 if (!key->both.ptr) {
356 /* If we're here then we tried to put a key we failed to get */
357 WARN_ON_ONCE(1);
358 return;
359 }
360
361 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
362 case FUT_OFF_INODE:
363 iput(key->shared.inode);
364 break;
365 case FUT_OFF_MMSHARED:
366 mmdrop(key->private.mm);
367 break;
368 }
369 }
370
371 /**
372 * get_futex_key() - Get parameters which are the keys for a futex
373 * @uaddr: virtual address of the futex
374 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
375 * @key: address where result is stored.
376 * @rw: mapping needs to be read/write (values: VERIFY_READ,
377 * VERIFY_WRITE)
378 *
379 * Return: a negative error code or 0
380 *
381 * The key words are stored in *key on success.
382 *
383 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
384 * offset_within_page). For private mappings, it's (uaddr, current->mm).
385 * We can usually work out the index without swapping in the page.
386 *
387 * lock_page() might sleep, the caller should not hold a spinlock.
388 */
389 static int
390 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
391 {
392 unsigned long address = (unsigned long)uaddr;
393 struct mm_struct *mm = current->mm;
394 struct page *page, *page_head;
395 int err, ro = 0;
396
397 /*
398 * The futex address must be "naturally" aligned.
399 */
400 key->both.offset = address % PAGE_SIZE;
401 if (unlikely((address % sizeof(u32)) != 0))
402 return -EINVAL;
403 address -= key->both.offset;
404
405 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
406 return -EFAULT;
407
408 /*
409 * PROCESS_PRIVATE futexes are fast.
410 * As the mm cannot disappear under us and the 'key' only needs
411 * virtual address, we dont even have to find the underlying vma.
412 * Note : We do have to check 'uaddr' is a valid user address,
413 * but access_ok() should be faster than find_vma()
414 */
415 if (!fshared) {
416 key->private.mm = mm;
417 key->private.address = address;
418 get_futex_key_refs(key); /* implies MB (B) */
419 return 0;
420 }
421
422 again:
423 err = get_user_pages_fast(address, 1, 1, &page);
424 /*
425 * If write access is not required (eg. FUTEX_WAIT), try
426 * and get read-only access.
427 */
428 if (err == -EFAULT && rw == VERIFY_READ) {
429 err = get_user_pages_fast(address, 1, 0, &page);
430 ro = 1;
431 }
432 if (err < 0)
433 return err;
434 else
435 err = 0;
436
437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
438 page_head = page;
439 if (unlikely(PageTail(page))) {
440 put_page(page);
441 /* serialize against __split_huge_page_splitting() */
442 local_irq_disable();
443 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
444 page_head = compound_head(page);
445 /*
446 * page_head is valid pointer but we must pin
447 * it before taking the PG_lock and/or
448 * PG_compound_lock. The moment we re-enable
449 * irqs __split_huge_page_splitting() can
450 * return and the head page can be freed from
451 * under us. We can't take the PG_lock and/or
452 * PG_compound_lock on a page that could be
453 * freed from under us.
454 */
455 if (page != page_head) {
456 get_page(page_head);
457 put_page(page);
458 }
459 local_irq_enable();
460 } else {
461 local_irq_enable();
462 goto again;
463 }
464 }
465 #else
466 page_head = compound_head(page);
467 if (page != page_head) {
468 get_page(page_head);
469 put_page(page);
470 }
471 #endif
472
473 lock_page(page_head);
474
475 /*
476 * If page_head->mapping is NULL, then it cannot be a PageAnon
477 * page; but it might be the ZERO_PAGE or in the gate area or
478 * in a special mapping (all cases which we are happy to fail);
479 * or it may have been a good file page when get_user_pages_fast
480 * found it, but truncated or holepunched or subjected to
481 * invalidate_complete_page2 before we got the page lock (also
482 * cases which we are happy to fail). And we hold a reference,
483 * so refcount care in invalidate_complete_page's remove_mapping
484 * prevents drop_caches from setting mapping to NULL beneath us.
485 *
486 * The case we do have to guard against is when memory pressure made
487 * shmem_writepage move it from filecache to swapcache beneath us:
488 * an unlikely race, but we do need to retry for page_head->mapping.
489 */
490 if (!page_head->mapping) {
491 int shmem_swizzled = PageSwapCache(page_head);
492 unlock_page(page_head);
493 put_page(page_head);
494 if (shmem_swizzled)
495 goto again;
496 return -EFAULT;
497 }
498
499 /*
500 * Private mappings are handled in a simple way.
501 *
502 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
503 * it's a read-only handle, it's expected that futexes attach to
504 * the object not the particular process.
505 */
506 if (PageAnon(page_head)) {
507 /*
508 * A RO anonymous page will never change and thus doesn't make
509 * sense for futex operations.
510 */
511 if (ro) {
512 err = -EFAULT;
513 goto out;
514 }
515
516 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
517 key->private.mm = mm;
518 key->private.address = address;
519 } else {
520 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
521 key->shared.inode = page_head->mapping->host;
522 key->shared.pgoff = basepage_index(page);
523 }
524
525 get_futex_key_refs(key); /* implies MB (B) */
526
527 out:
528 unlock_page(page_head);
529 put_page(page_head);
530 return err;
531 }
532
533 static inline void put_futex_key(union futex_key *key)
534 {
535 drop_futex_key_refs(key);
536 }
537
538 /**
539 * fault_in_user_writeable() - Fault in user address and verify RW access
540 * @uaddr: pointer to faulting user space address
541 *
542 * Slow path to fixup the fault we just took in the atomic write
543 * access to @uaddr.
544 *
545 * We have no generic implementation of a non-destructive write to the
546 * user address. We know that we faulted in the atomic pagefault
547 * disabled section so we can as well avoid the #PF overhead by
548 * calling get_user_pages() right away.
549 */
550 static int fault_in_user_writeable(u32 __user *uaddr)
551 {
552 struct mm_struct *mm = current->mm;
553 int ret;
554
555 down_read(&mm->mmap_sem);
556 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
557 FAULT_FLAG_WRITE);
558 up_read(&mm->mmap_sem);
559
560 return ret < 0 ? ret : 0;
561 }
562
563 /**
564 * futex_top_waiter() - Return the highest priority waiter on a futex
565 * @hb: the hash bucket the futex_q's reside in
566 * @key: the futex key (to distinguish it from other futex futex_q's)
567 *
568 * Must be called with the hb lock held.
569 */
570 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
571 union futex_key *key)
572 {
573 struct futex_q *this;
574
575 plist_for_each_entry(this, &hb->chain, list) {
576 if (match_futex(&this->key, key))
577 return this;
578 }
579 return NULL;
580 }
581
582 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
583 u32 uval, u32 newval)
584 {
585 int ret;
586
587 pagefault_disable();
588 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
589 pagefault_enable();
590
591 return ret;
592 }
593
594 static int get_futex_value_locked(u32 *dest, u32 __user *from)
595 {
596 int ret;
597
598 pagefault_disable();
599 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
600 pagefault_enable();
601
602 return ret ? -EFAULT : 0;
603 }
604
605
606 /*
607 * PI code:
608 */
609 static int refill_pi_state_cache(void)
610 {
611 struct futex_pi_state *pi_state;
612
613 if (likely(current->pi_state_cache))
614 return 0;
615
616 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
617
618 if (!pi_state)
619 return -ENOMEM;
620
621 INIT_LIST_HEAD(&pi_state->list);
622 /* pi_mutex gets initialized later */
623 pi_state->owner = NULL;
624 atomic_set(&pi_state->refcount, 1);
625 pi_state->key = FUTEX_KEY_INIT;
626
627 current->pi_state_cache = pi_state;
628
629 return 0;
630 }
631
632 static struct futex_pi_state * alloc_pi_state(void)
633 {
634 struct futex_pi_state *pi_state = current->pi_state_cache;
635
636 WARN_ON(!pi_state);
637 current->pi_state_cache = NULL;
638
639 return pi_state;
640 }
641
642 static void free_pi_state(struct futex_pi_state *pi_state)
643 {
644 if (!atomic_dec_and_test(&pi_state->refcount))
645 return;
646
647 /*
648 * If pi_state->owner is NULL, the owner is most probably dying
649 * and has cleaned up the pi_state already
650 */
651 if (pi_state->owner) {
652 raw_spin_lock_irq(&pi_state->owner->pi_lock);
653 list_del_init(&pi_state->list);
654 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
655
656 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
657 }
658
659 if (current->pi_state_cache)
660 kfree(pi_state);
661 else {
662 /*
663 * pi_state->list is already empty.
664 * clear pi_state->owner.
665 * refcount is at 0 - put it back to 1.
666 */
667 pi_state->owner = NULL;
668 atomic_set(&pi_state->refcount, 1);
669 current->pi_state_cache = pi_state;
670 }
671 }
672
673 /*
674 * Look up the task based on what TID userspace gave us.
675 * We dont trust it.
676 */
677 static struct task_struct * futex_find_get_task(pid_t pid)
678 {
679 struct task_struct *p;
680
681 rcu_read_lock();
682 p = find_task_by_vpid(pid);
683 if (p)
684 get_task_struct(p);
685
686 rcu_read_unlock();
687
688 return p;
689 }
690
691 /*
692 * This task is holding PI mutexes at exit time => bad.
693 * Kernel cleans up PI-state, but userspace is likely hosed.
694 * (Robust-futex cleanup is separate and might save the day for userspace.)
695 */
696 void exit_pi_state_list(struct task_struct *curr)
697 {
698 struct list_head *next, *head = &curr->pi_state_list;
699 struct futex_pi_state *pi_state;
700 struct futex_hash_bucket *hb;
701 union futex_key key = FUTEX_KEY_INIT;
702
703 if (!futex_cmpxchg_enabled)
704 return;
705 /*
706 * We are a ZOMBIE and nobody can enqueue itself on
707 * pi_state_list anymore, but we have to be careful
708 * versus waiters unqueueing themselves:
709 */
710 raw_spin_lock_irq(&curr->pi_lock);
711 while (!list_empty(head)) {
712
713 next = head->next;
714 pi_state = list_entry(next, struct futex_pi_state, list);
715 key = pi_state->key;
716 hb = hash_futex(&key);
717 raw_spin_unlock_irq(&curr->pi_lock);
718
719 spin_lock(&hb->lock);
720
721 raw_spin_lock_irq(&curr->pi_lock);
722 /*
723 * We dropped the pi-lock, so re-check whether this
724 * task still owns the PI-state:
725 */
726 if (head->next != next) {
727 spin_unlock(&hb->lock);
728 continue;
729 }
730
731 WARN_ON(pi_state->owner != curr);
732 WARN_ON(list_empty(&pi_state->list));
733 list_del_init(&pi_state->list);
734 pi_state->owner = NULL;
735 raw_spin_unlock_irq(&curr->pi_lock);
736
737 rt_mutex_unlock(&pi_state->pi_mutex);
738
739 spin_unlock(&hb->lock);
740
741 raw_spin_lock_irq(&curr->pi_lock);
742 }
743 raw_spin_unlock_irq(&curr->pi_lock);
744 }
745
746 /*
747 * We need to check the following states:
748 *
749 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
750 *
751 * [1] NULL | --- | --- | 0 | 0/1 | Valid
752 * [2] NULL | --- | --- | >0 | 0/1 | Valid
753 *
754 * [3] Found | NULL | -- | Any | 0/1 | Invalid
755 *
756 * [4] Found | Found | NULL | 0 | 1 | Valid
757 * [5] Found | Found | NULL | >0 | 1 | Invalid
758 *
759 * [6] Found | Found | task | 0 | 1 | Valid
760 *
761 * [7] Found | Found | NULL | Any | 0 | Invalid
762 *
763 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
764 * [9] Found | Found | task | 0 | 0 | Invalid
765 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
766 *
767 * [1] Indicates that the kernel can acquire the futex atomically. We
768 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
769 *
770 * [2] Valid, if TID does not belong to a kernel thread. If no matching
771 * thread is found then it indicates that the owner TID has died.
772 *
773 * [3] Invalid. The waiter is queued on a non PI futex
774 *
775 * [4] Valid state after exit_robust_list(), which sets the user space
776 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
777 *
778 * [5] The user space value got manipulated between exit_robust_list()
779 * and exit_pi_state_list()
780 *
781 * [6] Valid state after exit_pi_state_list() which sets the new owner in
782 * the pi_state but cannot access the user space value.
783 *
784 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
785 *
786 * [8] Owner and user space value match
787 *
788 * [9] There is no transient state which sets the user space TID to 0
789 * except exit_robust_list(), but this is indicated by the
790 * FUTEX_OWNER_DIED bit. See [4]
791 *
792 * [10] There is no transient state which leaves owner and user space
793 * TID out of sync.
794 */
795 static int
796 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
797 union futex_key *key, struct futex_pi_state **ps)
798 {
799 struct futex_q *match = futex_top_waiter(hb, key);
800 struct futex_pi_state *pi_state = NULL;
801 struct task_struct *p;
802 pid_t pid = uval & FUTEX_TID_MASK;
803
804 if (match) {
805 /*
806 * Sanity check the waiter before increasing the
807 * refcount and attaching to it.
808 */
809 pi_state = match->pi_state;
810 /*
811 * Userspace might have messed up non-PI and PI
812 * futexes [3]
813 */
814 if (unlikely(!pi_state))
815 return -EINVAL;
816
817 WARN_ON(!atomic_read(&pi_state->refcount));
818
819 /*
820 * Handle the owner died case:
821 */
822 if (uval & FUTEX_OWNER_DIED) {
823 /*
824 * exit_pi_state_list sets owner to NULL and
825 * wakes the topmost waiter. The task which
826 * acquires the pi_state->rt_mutex will fixup
827 * owner.
828 */
829 if (!pi_state->owner) {
830 /*
831 * No pi state owner, but the user
832 * space TID is not 0. Inconsistent
833 * state. [5]
834 */
835 if (pid)
836 return -EINVAL;
837 /*
838 * Take a ref on the state and
839 * return. [4]
840 */
841 goto out_state;
842 }
843
844 /*
845 * If TID is 0, then either the dying owner
846 * has not yet executed exit_pi_state_list()
847 * or some waiter acquired the rtmutex in the
848 * pi state, but did not yet fixup the TID in
849 * user space.
850 *
851 * Take a ref on the state and return. [6]
852 */
853 if (!pid)
854 goto out_state;
855 } else {
856 /*
857 * If the owner died bit is not set,
858 * then the pi_state must have an
859 * owner. [7]
860 */
861 if (!pi_state->owner)
862 return -EINVAL;
863 }
864
865 /*
866 * Bail out if user space manipulated the
867 * futex value. If pi state exists then the
868 * owner TID must be the same as the user
869 * space TID. [9/10]
870 */
871 if (pid != task_pid_vnr(pi_state->owner))
872 return -EINVAL;
873
874 out_state:
875 atomic_inc(&pi_state->refcount);
876 *ps = pi_state;
877 return 0;
878 }
879
880 /*
881 * We are the first waiter - try to look up the real owner and attach
882 * the new pi_state to it, but bail out when TID = 0 [1]
883 */
884 if (!pid)
885 return -ESRCH;
886 p = futex_find_get_task(pid);
887 if (!p)
888 return -ESRCH;
889
890 if (!p->mm) {
891 put_task_struct(p);
892 return -EPERM;
893 }
894
895 /*
896 * We need to look at the task state flags to figure out,
897 * whether the task is exiting. To protect against the do_exit
898 * change of the task flags, we do this protected by
899 * p->pi_lock:
900 */
901 raw_spin_lock_irq(&p->pi_lock);
902 if (unlikely(p->flags & PF_EXITING)) {
903 /*
904 * The task is on the way out. When PF_EXITPIDONE is
905 * set, we know that the task has finished the
906 * cleanup:
907 */
908 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
909
910 raw_spin_unlock_irq(&p->pi_lock);
911 put_task_struct(p);
912 return ret;
913 }
914
915 /*
916 * No existing pi state. First waiter. [2]
917 */
918 pi_state = alloc_pi_state();
919
920 /*
921 * Initialize the pi_mutex in locked state and make 'p'
922 * the owner of it:
923 */
924 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
925
926 /* Store the key for possible exit cleanups: */
927 pi_state->key = *key;
928
929 WARN_ON(!list_empty(&pi_state->list));
930 list_add(&pi_state->list, &p->pi_state_list);
931 pi_state->owner = p;
932 raw_spin_unlock_irq(&p->pi_lock);
933
934 put_task_struct(p);
935
936 *ps = pi_state;
937
938 return 0;
939 }
940
941 /**
942 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
943 * @uaddr: the pi futex user address
944 * @hb: the pi futex hash bucket
945 * @key: the futex key associated with uaddr and hb
946 * @ps: the pi_state pointer where we store the result of the
947 * lookup
948 * @task: the task to perform the atomic lock work for. This will
949 * be "current" except in the case of requeue pi.
950 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
951 *
952 * Return:
953 * 0 - ready to wait;
954 * 1 - acquired the lock;
955 * <0 - error
956 *
957 * The hb->lock and futex_key refs shall be held by the caller.
958 */
959 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
960 union futex_key *key,
961 struct futex_pi_state **ps,
962 struct task_struct *task, int set_waiters)
963 {
964 int lock_taken, ret, force_take = 0;
965 u32 uval, newval, curval, vpid = task_pid_vnr(task);
966
967 retry:
968 ret = lock_taken = 0;
969
970 /*
971 * To avoid races, we attempt to take the lock here again
972 * (by doing a 0 -> TID atomic cmpxchg), while holding all
973 * the locks. It will most likely not succeed.
974 */
975 newval = vpid;
976 if (set_waiters)
977 newval |= FUTEX_WAITERS;
978
979 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
980 return -EFAULT;
981
982 /*
983 * Detect deadlocks.
984 */
985 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
986 return -EDEADLK;
987
988 /*
989 * Surprise - we got the lock, but we do not trust user space at all.
990 */
991 if (unlikely(!curval)) {
992 /*
993 * We verify whether there is kernel state for this
994 * futex. If not, we can safely assume, that the 0 ->
995 * TID transition is correct. If state exists, we do
996 * not bother to fixup the user space state as it was
997 * corrupted already.
998 */
999 return futex_top_waiter(hb, key) ? -EINVAL : 1;
1000 }
1001
1002 uval = curval;
1003
1004 /*
1005 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
1006 * to wake at the next unlock.
1007 */
1008 newval = curval | FUTEX_WAITERS;
1009
1010 /*
1011 * Should we force take the futex? See below.
1012 */
1013 if (unlikely(force_take)) {
1014 /*
1015 * Keep the OWNER_DIED and the WAITERS bit and set the
1016 * new TID value.
1017 */
1018 newval = (curval & ~FUTEX_TID_MASK) | vpid;
1019 force_take = 0;
1020 lock_taken = 1;
1021 }
1022
1023 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1024 return -EFAULT;
1025 if (unlikely(curval != uval))
1026 goto retry;
1027
1028 /*
1029 * We took the lock due to forced take over.
1030 */
1031 if (unlikely(lock_taken))
1032 return 1;
1033
1034 /*
1035 * We dont have the lock. Look up the PI state (or create it if
1036 * we are the first waiter):
1037 */
1038 ret = lookup_pi_state(uval, hb, key, ps);
1039
1040 if (unlikely(ret)) {
1041 switch (ret) {
1042 case -ESRCH:
1043 /*
1044 * We failed to find an owner for this
1045 * futex. So we have no pi_state to block
1046 * on. This can happen in two cases:
1047 *
1048 * 1) The owner died
1049 * 2) A stale FUTEX_WAITERS bit
1050 *
1051 * Re-read the futex value.
1052 */
1053 if (get_futex_value_locked(&curval, uaddr))
1054 return -EFAULT;
1055
1056 /*
1057 * If the owner died or we have a stale
1058 * WAITERS bit the owner TID in the user space
1059 * futex is 0.
1060 */
1061 if (!(curval & FUTEX_TID_MASK)) {
1062 force_take = 1;
1063 goto retry;
1064 }
1065 default:
1066 break;
1067 }
1068 }
1069
1070 return ret;
1071 }
1072
1073 /**
1074 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1075 * @q: The futex_q to unqueue
1076 *
1077 * The q->lock_ptr must not be NULL and must be held by the caller.
1078 */
1079 static void __unqueue_futex(struct futex_q *q)
1080 {
1081 struct futex_hash_bucket *hb;
1082
1083 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1084 || WARN_ON(plist_node_empty(&q->list)))
1085 return;
1086
1087 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1088 plist_del(&q->list, &hb->chain);
1089 hb_waiters_dec(hb);
1090 }
1091
1092 /*
1093 * The hash bucket lock must be held when this is called.
1094 * Afterwards, the futex_q must not be accessed.
1095 */
1096 static void wake_futex(struct futex_q *q)
1097 {
1098 struct task_struct *p = q->task;
1099
1100 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1101 return;
1102
1103 /*
1104 * We set q->lock_ptr = NULL _before_ we wake up the task. If
1105 * a non-futex wake up happens on another CPU then the task
1106 * might exit and p would dereference a non-existing task
1107 * struct. Prevent this by holding a reference on p across the
1108 * wake up.
1109 */
1110 get_task_struct(p);
1111
1112 __unqueue_futex(q);
1113 /*
1114 * The waiting task can free the futex_q as soon as
1115 * q->lock_ptr = NULL is written, without taking any locks. A
1116 * memory barrier is required here to prevent the following
1117 * store to lock_ptr from getting ahead of the plist_del.
1118 */
1119 smp_wmb();
1120 q->lock_ptr = NULL;
1121
1122 wake_up_state(p, TASK_NORMAL);
1123 put_task_struct(p);
1124 }
1125
1126 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1127 {
1128 struct task_struct *new_owner;
1129 struct futex_pi_state *pi_state = this->pi_state;
1130 u32 uninitialized_var(curval), newval;
1131 int ret = 0;
1132
1133 if (!pi_state)
1134 return -EINVAL;
1135
1136 /*
1137 * If current does not own the pi_state then the futex is
1138 * inconsistent and user space fiddled with the futex value.
1139 */
1140 if (pi_state->owner != current)
1141 return -EINVAL;
1142
1143 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1144 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1145
1146 /*
1147 * It is possible that the next waiter (the one that brought
1148 * this owner to the kernel) timed out and is no longer
1149 * waiting on the lock.
1150 */
1151 if (!new_owner)
1152 new_owner = this->task;
1153
1154 /*
1155 * We pass it to the next owner. The WAITERS bit is always
1156 * kept enabled while there is PI state around. We cleanup the
1157 * owner died bit, because we are the owner.
1158 */
1159 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1160
1161 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1162 ret = -EFAULT;
1163 else if (curval != uval)
1164 ret = -EINVAL;
1165 if (ret) {
1166 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1167 return ret;
1168 }
1169
1170 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1171 WARN_ON(list_empty(&pi_state->list));
1172 list_del_init(&pi_state->list);
1173 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1174
1175 raw_spin_lock_irq(&new_owner->pi_lock);
1176 WARN_ON(!list_empty(&pi_state->list));
1177 list_add(&pi_state->list, &new_owner->pi_state_list);
1178 pi_state->owner = new_owner;
1179 raw_spin_unlock_irq(&new_owner->pi_lock);
1180
1181 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1182 rt_mutex_unlock(&pi_state->pi_mutex);
1183
1184 return 0;
1185 }
1186
1187 /*
1188 * Express the locking dependencies for lockdep:
1189 */
1190 static inline void
1191 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1192 {
1193 if (hb1 <= hb2) {
1194 spin_lock(&hb1->lock);
1195 if (hb1 < hb2)
1196 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1197 } else { /* hb1 > hb2 */
1198 spin_lock(&hb2->lock);
1199 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1200 }
1201 }
1202
1203 static inline void
1204 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1205 {
1206 spin_unlock(&hb1->lock);
1207 if (hb1 != hb2)
1208 spin_unlock(&hb2->lock);
1209 }
1210
1211 /*
1212 * Wake up waiters matching bitset queued on this futex (uaddr).
1213 */
1214 static int
1215 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1216 {
1217 struct futex_hash_bucket *hb;
1218 struct futex_q *this, *next;
1219 union futex_key key = FUTEX_KEY_INIT;
1220 int ret;
1221
1222 if (!bitset)
1223 return -EINVAL;
1224
1225 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1226 if (unlikely(ret != 0))
1227 goto out;
1228
1229 hb = hash_futex(&key);
1230
1231 /* Make sure we really have tasks to wakeup */
1232 if (!hb_waiters_pending(hb))
1233 goto out_put_key;
1234
1235 spin_lock(&hb->lock);
1236
1237 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1238 if (match_futex (&this->key, &key)) {
1239 if (this->pi_state || this->rt_waiter) {
1240 ret = -EINVAL;
1241 break;
1242 }
1243
1244 /* Check if one of the bits is set in both bitsets */
1245 if (!(this->bitset & bitset))
1246 continue;
1247
1248 wake_futex(this);
1249 if (++ret >= nr_wake)
1250 break;
1251 }
1252 }
1253
1254 spin_unlock(&hb->lock);
1255 out_put_key:
1256 put_futex_key(&key);
1257 out:
1258 return ret;
1259 }
1260
1261 /*
1262 * Wake up all waiters hashed on the physical page that is mapped
1263 * to this virtual address:
1264 */
1265 static int
1266 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1267 int nr_wake, int nr_wake2, int op)
1268 {
1269 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1270 struct futex_hash_bucket *hb1, *hb2;
1271 struct futex_q *this, *next;
1272 int ret, op_ret;
1273
1274 retry:
1275 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1276 if (unlikely(ret != 0))
1277 goto out;
1278 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1279 if (unlikely(ret != 0))
1280 goto out_put_key1;
1281
1282 hb1 = hash_futex(&key1);
1283 hb2 = hash_futex(&key2);
1284
1285 retry_private:
1286 double_lock_hb(hb1, hb2);
1287 op_ret = futex_atomic_op_inuser(op, uaddr2);
1288 if (unlikely(op_ret < 0)) {
1289
1290 double_unlock_hb(hb1, hb2);
1291
1292 #ifndef CONFIG_MMU
1293 /*
1294 * we don't get EFAULT from MMU faults if we don't have an MMU,
1295 * but we might get them from range checking
1296 */
1297 ret = op_ret;
1298 goto out_put_keys;
1299 #endif
1300
1301 if (unlikely(op_ret != -EFAULT)) {
1302 ret = op_ret;
1303 goto out_put_keys;
1304 }
1305
1306 ret = fault_in_user_writeable(uaddr2);
1307 if (ret)
1308 goto out_put_keys;
1309
1310 if (!(flags & FLAGS_SHARED))
1311 goto retry_private;
1312
1313 put_futex_key(&key2);
1314 put_futex_key(&key1);
1315 goto retry;
1316 }
1317
1318 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1319 if (match_futex (&this->key, &key1)) {
1320 if (this->pi_state || this->rt_waiter) {
1321 ret = -EINVAL;
1322 goto out_unlock;
1323 }
1324 wake_futex(this);
1325 if (++ret >= nr_wake)
1326 break;
1327 }
1328 }
1329
1330 if (op_ret > 0) {
1331 op_ret = 0;
1332 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1333 if (match_futex (&this->key, &key2)) {
1334 if (this->pi_state || this->rt_waiter) {
1335 ret = -EINVAL;
1336 goto out_unlock;
1337 }
1338 wake_futex(this);
1339 if (++op_ret >= nr_wake2)
1340 break;
1341 }
1342 }
1343 ret += op_ret;
1344 }
1345
1346 out_unlock:
1347 double_unlock_hb(hb1, hb2);
1348 out_put_keys:
1349 put_futex_key(&key2);
1350 out_put_key1:
1351 put_futex_key(&key1);
1352 out:
1353 return ret;
1354 }
1355
1356 /**
1357 * requeue_futex() - Requeue a futex_q from one hb to another
1358 * @q: the futex_q to requeue
1359 * @hb1: the source hash_bucket
1360 * @hb2: the target hash_bucket
1361 * @key2: the new key for the requeued futex_q
1362 */
1363 static inline
1364 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1365 struct futex_hash_bucket *hb2, union futex_key *key2)
1366 {
1367
1368 /*
1369 * If key1 and key2 hash to the same bucket, no need to
1370 * requeue.
1371 */
1372 if (likely(&hb1->chain != &hb2->chain)) {
1373 plist_del(&q->list, &hb1->chain);
1374 hb_waiters_dec(hb1);
1375 plist_add(&q->list, &hb2->chain);
1376 hb_waiters_inc(hb2);
1377 q->lock_ptr = &hb2->lock;
1378 }
1379 get_futex_key_refs(key2);
1380 q->key = *key2;
1381 }
1382
1383 /**
1384 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1385 * @q: the futex_q
1386 * @key: the key of the requeue target futex
1387 * @hb: the hash_bucket of the requeue target futex
1388 *
1389 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1390 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1391 * to the requeue target futex so the waiter can detect the wakeup on the right
1392 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1393 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1394 * to protect access to the pi_state to fixup the owner later. Must be called
1395 * with both q->lock_ptr and hb->lock held.
1396 */
1397 static inline
1398 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1399 struct futex_hash_bucket *hb)
1400 {
1401 get_futex_key_refs(key);
1402 q->key = *key;
1403
1404 __unqueue_futex(q);
1405
1406 WARN_ON(!q->rt_waiter);
1407 q->rt_waiter = NULL;
1408
1409 q->lock_ptr = &hb->lock;
1410
1411 wake_up_state(q->task, TASK_NORMAL);
1412 }
1413
1414 /**
1415 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1416 * @pifutex: the user address of the to futex
1417 * @hb1: the from futex hash bucket, must be locked by the caller
1418 * @hb2: the to futex hash bucket, must be locked by the caller
1419 * @key1: the from futex key
1420 * @key2: the to futex key
1421 * @ps: address to store the pi_state pointer
1422 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1423 *
1424 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1425 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1426 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1427 * hb1 and hb2 must be held by the caller.
1428 *
1429 * Return:
1430 * 0 - failed to acquire the lock atomically;
1431 * >0 - acquired the lock, return value is vpid of the top_waiter
1432 * <0 - error
1433 */
1434 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1435 struct futex_hash_bucket *hb1,
1436 struct futex_hash_bucket *hb2,
1437 union futex_key *key1, union futex_key *key2,
1438 struct futex_pi_state **ps, int set_waiters)
1439 {
1440 struct futex_q *top_waiter = NULL;
1441 u32 curval;
1442 int ret, vpid;
1443
1444 if (get_futex_value_locked(&curval, pifutex))
1445 return -EFAULT;
1446
1447 /*
1448 * Find the top_waiter and determine if there are additional waiters.
1449 * If the caller intends to requeue more than 1 waiter to pifutex,
1450 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1451 * as we have means to handle the possible fault. If not, don't set
1452 * the bit unecessarily as it will force the subsequent unlock to enter
1453 * the kernel.
1454 */
1455 top_waiter = futex_top_waiter(hb1, key1);
1456
1457 /* There are no waiters, nothing for us to do. */
1458 if (!top_waiter)
1459 return 0;
1460
1461 /* Ensure we requeue to the expected futex. */
1462 if (!match_futex(top_waiter->requeue_pi_key, key2))
1463 return -EINVAL;
1464
1465 /*
1466 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1467 * the contended case or if set_waiters is 1. The pi_state is returned
1468 * in ps in contended cases.
1469 */
1470 vpid = task_pid_vnr(top_waiter->task);
1471 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1472 set_waiters);
1473 if (ret == 1) {
1474 requeue_pi_wake_futex(top_waiter, key2, hb2);
1475 return vpid;
1476 }
1477 return ret;
1478 }
1479
1480 /**
1481 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1482 * @uaddr1: source futex user address
1483 * @flags: futex flags (FLAGS_SHARED, etc.)
1484 * @uaddr2: target futex user address
1485 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1486 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1487 * @cmpval: @uaddr1 expected value (or %NULL)
1488 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1489 * pi futex (pi to pi requeue is not supported)
1490 *
1491 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1492 * uaddr2 atomically on behalf of the top waiter.
1493 *
1494 * Return:
1495 * >=0 - on success, the number of tasks requeued or woken;
1496 * <0 - on error
1497 */
1498 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1499 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1500 u32 *cmpval, int requeue_pi)
1501 {
1502 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1503 int drop_count = 0, task_count = 0, ret;
1504 struct futex_pi_state *pi_state = NULL;
1505 struct futex_hash_bucket *hb1, *hb2;
1506 struct futex_q *this, *next;
1507
1508 if (requeue_pi) {
1509 /*
1510 * Requeue PI only works on two distinct uaddrs. This
1511 * check is only valid for private futexes. See below.
1512 */
1513 if (uaddr1 == uaddr2)
1514 return -EINVAL;
1515
1516 /*
1517 * requeue_pi requires a pi_state, try to allocate it now
1518 * without any locks in case it fails.
1519 */
1520 if (refill_pi_state_cache())
1521 return -ENOMEM;
1522 /*
1523 * requeue_pi must wake as many tasks as it can, up to nr_wake
1524 * + nr_requeue, since it acquires the rt_mutex prior to
1525 * returning to userspace, so as to not leave the rt_mutex with
1526 * waiters and no owner. However, second and third wake-ups
1527 * cannot be predicted as they involve race conditions with the
1528 * first wake and a fault while looking up the pi_state. Both
1529 * pthread_cond_signal() and pthread_cond_broadcast() should
1530 * use nr_wake=1.
1531 */
1532 if (nr_wake != 1)
1533 return -EINVAL;
1534 }
1535
1536 retry:
1537 if (pi_state != NULL) {
1538 /*
1539 * We will have to lookup the pi_state again, so free this one
1540 * to keep the accounting correct.
1541 */
1542 free_pi_state(pi_state);
1543 pi_state = NULL;
1544 }
1545
1546 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1547 if (unlikely(ret != 0))
1548 goto out;
1549 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1550 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1551 if (unlikely(ret != 0))
1552 goto out_put_key1;
1553
1554 /*
1555 * The check above which compares uaddrs is not sufficient for
1556 * shared futexes. We need to compare the keys:
1557 */
1558 if (requeue_pi && match_futex(&key1, &key2)) {
1559 ret = -EINVAL;
1560 goto out_put_keys;
1561 }
1562
1563 hb1 = hash_futex(&key1);
1564 hb2 = hash_futex(&key2);
1565
1566 retry_private:
1567 hb_waiters_inc(hb2);
1568 double_lock_hb(hb1, hb2);
1569
1570 if (likely(cmpval != NULL)) {
1571 u32 curval;
1572
1573 ret = get_futex_value_locked(&curval, uaddr1);
1574
1575 if (unlikely(ret)) {
1576 double_unlock_hb(hb1, hb2);
1577 hb_waiters_dec(hb2);
1578
1579 ret = get_user(curval, uaddr1);
1580 if (ret)
1581 goto out_put_keys;
1582
1583 if (!(flags & FLAGS_SHARED))
1584 goto retry_private;
1585
1586 put_futex_key(&key2);
1587 put_futex_key(&key1);
1588 goto retry;
1589 }
1590 if (curval != *cmpval) {
1591 ret = -EAGAIN;
1592 goto out_unlock;
1593 }
1594 }
1595
1596 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1597 /*
1598 * Attempt to acquire uaddr2 and wake the top waiter. If we
1599 * intend to requeue waiters, force setting the FUTEX_WAITERS
1600 * bit. We force this here where we are able to easily handle
1601 * faults rather in the requeue loop below.
1602 */
1603 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1604 &key2, &pi_state, nr_requeue);
1605
1606 /*
1607 * At this point the top_waiter has either taken uaddr2 or is
1608 * waiting on it. If the former, then the pi_state will not
1609 * exist yet, look it up one more time to ensure we have a
1610 * reference to it. If the lock was taken, ret contains the
1611 * vpid of the top waiter task.
1612 */
1613 if (ret > 0) {
1614 WARN_ON(pi_state);
1615 drop_count++;
1616 task_count++;
1617 /*
1618 * If we acquired the lock, then the user
1619 * space value of uaddr2 should be vpid. It
1620 * cannot be changed by the top waiter as it
1621 * is blocked on hb2 lock if it tries to do
1622 * so. If something fiddled with it behind our
1623 * back the pi state lookup might unearth
1624 * it. So we rather use the known value than
1625 * rereading and handing potential crap to
1626 * lookup_pi_state.
1627 */
1628 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1629 }
1630
1631 switch (ret) {
1632 case 0:
1633 break;
1634 case -EFAULT:
1635 double_unlock_hb(hb1, hb2);
1636 hb_waiters_dec(hb2);
1637 put_futex_key(&key2);
1638 put_futex_key(&key1);
1639 ret = fault_in_user_writeable(uaddr2);
1640 if (!ret)
1641 goto retry;
1642 goto out;
1643 case -EAGAIN:
1644 /* The owner was exiting, try again. */
1645 double_unlock_hb(hb1, hb2);
1646 hb_waiters_dec(hb2);
1647 put_futex_key(&key2);
1648 put_futex_key(&key1);
1649 cond_resched();
1650 goto retry;
1651 default:
1652 goto out_unlock;
1653 }
1654 }
1655
1656 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1657 if (task_count - nr_wake >= nr_requeue)
1658 break;
1659
1660 if (!match_futex(&this->key, &key1))
1661 continue;
1662
1663 /*
1664 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1665 * be paired with each other and no other futex ops.
1666 *
1667 * We should never be requeueing a futex_q with a pi_state,
1668 * which is awaiting a futex_unlock_pi().
1669 */
1670 if ((requeue_pi && !this->rt_waiter) ||
1671 (!requeue_pi && this->rt_waiter) ||
1672 this->pi_state) {
1673 ret = -EINVAL;
1674 break;
1675 }
1676
1677 /*
1678 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1679 * lock, we already woke the top_waiter. If not, it will be
1680 * woken by futex_unlock_pi().
1681 */
1682 if (++task_count <= nr_wake && !requeue_pi) {
1683 wake_futex(this);
1684 continue;
1685 }
1686
1687 /* Ensure we requeue to the expected futex for requeue_pi. */
1688 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1689 ret = -EINVAL;
1690 break;
1691 }
1692
1693 /*
1694 * Requeue nr_requeue waiters and possibly one more in the case
1695 * of requeue_pi if we couldn't acquire the lock atomically.
1696 */
1697 if (requeue_pi) {
1698 /* Prepare the waiter to take the rt_mutex. */
1699 atomic_inc(&pi_state->refcount);
1700 this->pi_state = pi_state;
1701 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1702 this->rt_waiter,
1703 this->task);
1704 if (ret == 1) {
1705 /* We got the lock. */
1706 requeue_pi_wake_futex(this, &key2, hb2);
1707 drop_count++;
1708 continue;
1709 } else if (ret) {
1710 /* -EDEADLK */
1711 this->pi_state = NULL;
1712 free_pi_state(pi_state);
1713 goto out_unlock;
1714 }
1715 }
1716 requeue_futex(this, hb1, hb2, &key2);
1717 drop_count++;
1718 }
1719
1720 out_unlock:
1721 double_unlock_hb(hb1, hb2);
1722 hb_waiters_dec(hb2);
1723
1724 /*
1725 * drop_futex_key_refs() must be called outside the spinlocks. During
1726 * the requeue we moved futex_q's from the hash bucket at key1 to the
1727 * one at key2 and updated their key pointer. We no longer need to
1728 * hold the references to key1.
1729 */
1730 while (--drop_count >= 0)
1731 drop_futex_key_refs(&key1);
1732
1733 out_put_keys:
1734 put_futex_key(&key2);
1735 out_put_key1:
1736 put_futex_key(&key1);
1737 out:
1738 if (pi_state != NULL)
1739 free_pi_state(pi_state);
1740 return ret ? ret : task_count;
1741 }
1742
1743 /* The key must be already stored in q->key. */
1744 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1745 __acquires(&hb->lock)
1746 {
1747 struct futex_hash_bucket *hb;
1748
1749 hb = hash_futex(&q->key);
1750
1751 /*
1752 * Increment the counter before taking the lock so that
1753 * a potential waker won't miss a to-be-slept task that is
1754 * waiting for the spinlock. This is safe as all queue_lock()
1755 * users end up calling queue_me(). Similarly, for housekeeping,
1756 * decrement the counter at queue_unlock() when some error has
1757 * occurred and we don't end up adding the task to the list.
1758 */
1759 hb_waiters_inc(hb);
1760
1761 q->lock_ptr = &hb->lock;
1762
1763 spin_lock(&hb->lock); /* implies MB (A) */
1764 return hb;
1765 }
1766
1767 static inline void
1768 queue_unlock(struct futex_hash_bucket *hb)
1769 __releases(&hb->lock)
1770 {
1771 spin_unlock(&hb->lock);
1772 hb_waiters_dec(hb);
1773 }
1774
1775 /**
1776 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1777 * @q: The futex_q to enqueue
1778 * @hb: The destination hash bucket
1779 *
1780 * The hb->lock must be held by the caller, and is released here. A call to
1781 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1782 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1783 * or nothing if the unqueue is done as part of the wake process and the unqueue
1784 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1785 * an example).
1786 */
1787 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1788 __releases(&hb->lock)
1789 {
1790 int prio;
1791
1792 /*
1793 * The priority used to register this element is
1794 * - either the real thread-priority for the real-time threads
1795 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1796 * - or MAX_RT_PRIO for non-RT threads.
1797 * Thus, all RT-threads are woken first in priority order, and
1798 * the others are woken last, in FIFO order.
1799 */
1800 prio = min(current->normal_prio, MAX_RT_PRIO);
1801
1802 plist_node_init(&q->list, prio);
1803 plist_add(&q->list, &hb->chain);
1804 q->task = current;
1805 spin_unlock(&hb->lock);
1806 }
1807
1808 /**
1809 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1810 * @q: The futex_q to unqueue
1811 *
1812 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1813 * be paired with exactly one earlier call to queue_me().
1814 *
1815 * Return:
1816 * 1 - if the futex_q was still queued (and we removed unqueued it);
1817 * 0 - if the futex_q was already removed by the waking thread
1818 */
1819 static int unqueue_me(struct futex_q *q)
1820 {
1821 spinlock_t *lock_ptr;
1822 int ret = 0;
1823
1824 /* In the common case we don't take the spinlock, which is nice. */
1825 retry:
1826 lock_ptr = q->lock_ptr;
1827 barrier();
1828 if (lock_ptr != NULL) {
1829 spin_lock(lock_ptr);
1830 /*
1831 * q->lock_ptr can change between reading it and
1832 * spin_lock(), causing us to take the wrong lock. This
1833 * corrects the race condition.
1834 *
1835 * Reasoning goes like this: if we have the wrong lock,
1836 * q->lock_ptr must have changed (maybe several times)
1837 * between reading it and the spin_lock(). It can
1838 * change again after the spin_lock() but only if it was
1839 * already changed before the spin_lock(). It cannot,
1840 * however, change back to the original value. Therefore
1841 * we can detect whether we acquired the correct lock.
1842 */
1843 if (unlikely(lock_ptr != q->lock_ptr)) {
1844 spin_unlock(lock_ptr);
1845 goto retry;
1846 }
1847 __unqueue_futex(q);
1848
1849 BUG_ON(q->pi_state);
1850
1851 spin_unlock(lock_ptr);
1852 ret = 1;
1853 }
1854
1855 drop_futex_key_refs(&q->key);
1856 return ret;
1857 }
1858
1859 /*
1860 * PI futexes can not be requeued and must remove themself from the
1861 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1862 * and dropped here.
1863 */
1864 static void unqueue_me_pi(struct futex_q *q)
1865 __releases(q->lock_ptr)
1866 {
1867 __unqueue_futex(q);
1868
1869 BUG_ON(!q->pi_state);
1870 free_pi_state(q->pi_state);
1871 q->pi_state = NULL;
1872
1873 spin_unlock(q->lock_ptr);
1874 }
1875
1876 /*
1877 * Fixup the pi_state owner with the new owner.
1878 *
1879 * Must be called with hash bucket lock held and mm->sem held for non
1880 * private futexes.
1881 */
1882 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1883 struct task_struct *newowner)
1884 {
1885 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1886 struct futex_pi_state *pi_state = q->pi_state;
1887 struct task_struct *oldowner = pi_state->owner;
1888 u32 uval, uninitialized_var(curval), newval;
1889 int ret;
1890
1891 /* Owner died? */
1892 if (!pi_state->owner)
1893 newtid |= FUTEX_OWNER_DIED;
1894
1895 /*
1896 * We are here either because we stole the rtmutex from the
1897 * previous highest priority waiter or we are the highest priority
1898 * waiter but failed to get the rtmutex the first time.
1899 * We have to replace the newowner TID in the user space variable.
1900 * This must be atomic as we have to preserve the owner died bit here.
1901 *
1902 * Note: We write the user space value _before_ changing the pi_state
1903 * because we can fault here. Imagine swapped out pages or a fork
1904 * that marked all the anonymous memory readonly for cow.
1905 *
1906 * Modifying pi_state _before_ the user space value would
1907 * leave the pi_state in an inconsistent state when we fault
1908 * here, because we need to drop the hash bucket lock to
1909 * handle the fault. This might be observed in the PID check
1910 * in lookup_pi_state.
1911 */
1912 retry:
1913 if (get_futex_value_locked(&uval, uaddr))
1914 goto handle_fault;
1915
1916 while (1) {
1917 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1918
1919 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1920 goto handle_fault;
1921 if (curval == uval)
1922 break;
1923 uval = curval;
1924 }
1925
1926 /*
1927 * We fixed up user space. Now we need to fix the pi_state
1928 * itself.
1929 */
1930 if (pi_state->owner != NULL) {
1931 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1932 WARN_ON(list_empty(&pi_state->list));
1933 list_del_init(&pi_state->list);
1934 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1935 }
1936
1937 pi_state->owner = newowner;
1938
1939 raw_spin_lock_irq(&newowner->pi_lock);
1940 WARN_ON(!list_empty(&pi_state->list));
1941 list_add(&pi_state->list, &newowner->pi_state_list);
1942 raw_spin_unlock_irq(&newowner->pi_lock);
1943 return 0;
1944
1945 /*
1946 * To handle the page fault we need to drop the hash bucket
1947 * lock here. That gives the other task (either the highest priority
1948 * waiter itself or the task which stole the rtmutex) the
1949 * chance to try the fixup of the pi_state. So once we are
1950 * back from handling the fault we need to check the pi_state
1951 * after reacquiring the hash bucket lock and before trying to
1952 * do another fixup. When the fixup has been done already we
1953 * simply return.
1954 */
1955 handle_fault:
1956 spin_unlock(q->lock_ptr);
1957
1958 ret = fault_in_user_writeable(uaddr);
1959
1960 spin_lock(q->lock_ptr);
1961
1962 /*
1963 * Check if someone else fixed it for us:
1964 */
1965 if (pi_state->owner != oldowner)
1966 return 0;
1967
1968 if (ret)
1969 return ret;
1970
1971 goto retry;
1972 }
1973
1974 static long futex_wait_restart(struct restart_block *restart);
1975
1976 /**
1977 * fixup_owner() - Post lock pi_state and corner case management
1978 * @uaddr: user address of the futex
1979 * @q: futex_q (contains pi_state and access to the rt_mutex)
1980 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1981 *
1982 * After attempting to lock an rt_mutex, this function is called to cleanup
1983 * the pi_state owner as well as handle race conditions that may allow us to
1984 * acquire the lock. Must be called with the hb lock held.
1985 *
1986 * Return:
1987 * 1 - success, lock taken;
1988 * 0 - success, lock not taken;
1989 * <0 - on error (-EFAULT)
1990 */
1991 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1992 {
1993 struct task_struct *owner;
1994 int ret = 0;
1995
1996 if (locked) {
1997 /*
1998 * Got the lock. We might not be the anticipated owner if we
1999 * did a lock-steal - fix up the PI-state in that case:
2000 */
2001 if (q->pi_state->owner != current)
2002 ret = fixup_pi_state_owner(uaddr, q, current);
2003 goto out;
2004 }
2005
2006 /*
2007 * Catch the rare case, where the lock was released when we were on the
2008 * way back before we locked the hash bucket.
2009 */
2010 if (q->pi_state->owner == current) {
2011 /*
2012 * Try to get the rt_mutex now. This might fail as some other
2013 * task acquired the rt_mutex after we removed ourself from the
2014 * rt_mutex waiters list.
2015 */
2016 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2017 locked = 1;
2018 goto out;
2019 }
2020
2021 /*
2022 * pi_state is incorrect, some other task did a lock steal and
2023 * we returned due to timeout or signal without taking the
2024 * rt_mutex. Too late.
2025 */
2026 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2027 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2028 if (!owner)
2029 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2030 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2031 ret = fixup_pi_state_owner(uaddr, q, owner);
2032 goto out;
2033 }
2034
2035 /*
2036 * Paranoia check. If we did not take the lock, then we should not be
2037 * the owner of the rt_mutex.
2038 */
2039 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2040 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2041 "pi-state %p\n", ret,
2042 q->pi_state->pi_mutex.owner,
2043 q->pi_state->owner);
2044
2045 out:
2046 return ret ? ret : locked;
2047 }
2048
2049 /**
2050 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2051 * @hb: the futex hash bucket, must be locked by the caller
2052 * @q: the futex_q to queue up on
2053 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2054 */
2055 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2056 struct hrtimer_sleeper *timeout)
2057 {
2058 /*
2059 * The task state is guaranteed to be set before another task can
2060 * wake it. set_current_state() is implemented using set_mb() and
2061 * queue_me() calls spin_unlock() upon completion, both serializing
2062 * access to the hash list and forcing another memory barrier.
2063 */
2064 set_current_state(TASK_INTERRUPTIBLE);
2065 queue_me(q, hb);
2066
2067 /* Arm the timer */
2068 if (timeout) {
2069 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2070 if (!hrtimer_active(&timeout->timer))
2071 timeout->task = NULL;
2072 }
2073
2074 /*
2075 * If we have been removed from the hash list, then another task
2076 * has tried to wake us, and we can skip the call to schedule().
2077 */
2078 if (likely(!plist_node_empty(&q->list))) {
2079 /*
2080 * If the timer has already expired, current will already be
2081 * flagged for rescheduling. Only call schedule if there
2082 * is no timeout, or if it has yet to expire.
2083 */
2084 if (!timeout || timeout->task)
2085 freezable_schedule();
2086 }
2087 __set_current_state(TASK_RUNNING);
2088 }
2089
2090 /**
2091 * futex_wait_setup() - Prepare to wait on a futex
2092 * @uaddr: the futex userspace address
2093 * @val: the expected value
2094 * @flags: futex flags (FLAGS_SHARED, etc.)
2095 * @q: the associated futex_q
2096 * @hb: storage for hash_bucket pointer to be returned to caller
2097 *
2098 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2099 * compare it with the expected value. Handle atomic faults internally.
2100 * Return with the hb lock held and a q.key reference on success, and unlocked
2101 * with no q.key reference on failure.
2102 *
2103 * Return:
2104 * 0 - uaddr contains val and hb has been locked;
2105 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2106 */
2107 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2108 struct futex_q *q, struct futex_hash_bucket **hb)
2109 {
2110 u32 uval;
2111 int ret;
2112
2113 /*
2114 * Access the page AFTER the hash-bucket is locked.
2115 * Order is important:
2116 *
2117 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2118 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2119 *
2120 * The basic logical guarantee of a futex is that it blocks ONLY
2121 * if cond(var) is known to be true at the time of blocking, for
2122 * any cond. If we locked the hash-bucket after testing *uaddr, that
2123 * would open a race condition where we could block indefinitely with
2124 * cond(var) false, which would violate the guarantee.
2125 *
2126 * On the other hand, we insert q and release the hash-bucket only
2127 * after testing *uaddr. This guarantees that futex_wait() will NOT
2128 * absorb a wakeup if *uaddr does not match the desired values
2129 * while the syscall executes.
2130 */
2131 retry:
2132 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2133 if (unlikely(ret != 0))
2134 return ret;
2135
2136 retry_private:
2137 *hb = queue_lock(q);
2138
2139 ret = get_futex_value_locked(&uval, uaddr);
2140
2141 if (ret) {
2142 queue_unlock(*hb);
2143
2144 ret = get_user(uval, uaddr);
2145 if (ret)
2146 goto out;
2147
2148 if (!(flags & FLAGS_SHARED))
2149 goto retry_private;
2150
2151 put_futex_key(&q->key);
2152 goto retry;
2153 }
2154
2155 if (uval != val) {
2156 queue_unlock(*hb);
2157 ret = -EWOULDBLOCK;
2158 }
2159
2160 out:
2161 if (ret)
2162 put_futex_key(&q->key);
2163 return ret;
2164 }
2165
2166 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2167 ktime_t *abs_time, u32 bitset)
2168 {
2169 struct hrtimer_sleeper timeout, *to = NULL;
2170 struct restart_block *restart;
2171 struct futex_hash_bucket *hb;
2172 struct futex_q q = futex_q_init;
2173 int ret;
2174
2175 if (!bitset)
2176 return -EINVAL;
2177 q.bitset = bitset;
2178
2179 if (abs_time) {
2180 to = &timeout;
2181
2182 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2183 CLOCK_REALTIME : CLOCK_MONOTONIC,
2184 HRTIMER_MODE_ABS);
2185 hrtimer_init_sleeper(to, current);
2186 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2187 current->timer_slack_ns);
2188 }
2189
2190 retry:
2191 /*
2192 * Prepare to wait on uaddr. On success, holds hb lock and increments
2193 * q.key refs.
2194 */
2195 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2196 if (ret)
2197 goto out;
2198
2199 /* queue_me and wait for wakeup, timeout, or a signal. */
2200 futex_wait_queue_me(hb, &q, to);
2201
2202 /* If we were woken (and unqueued), we succeeded, whatever. */
2203 ret = 0;
2204 /* unqueue_me() drops q.key ref */
2205 if (!unqueue_me(&q))
2206 goto out;
2207 ret = -ETIMEDOUT;
2208 if (to && !to->task)
2209 goto out;
2210
2211 /*
2212 * We expect signal_pending(current), but we might be the
2213 * victim of a spurious wakeup as well.
2214 */
2215 if (!signal_pending(current))
2216 goto retry;
2217
2218 ret = -ERESTARTSYS;
2219 if (!abs_time)
2220 goto out;
2221
2222 restart = &current_thread_info()->restart_block;
2223 restart->fn = futex_wait_restart;
2224 restart->futex.uaddr = uaddr;
2225 restart->futex.val = val;
2226 restart->futex.time = abs_time->tv64;
2227 restart->futex.bitset = bitset;
2228 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2229
2230 ret = -ERESTART_RESTARTBLOCK;
2231
2232 out:
2233 if (to) {
2234 hrtimer_cancel(&to->timer);
2235 destroy_hrtimer_on_stack(&to->timer);
2236 }
2237 return ret;
2238 }
2239
2240
2241 static long futex_wait_restart(struct restart_block *restart)
2242 {
2243 u32 __user *uaddr = restart->futex.uaddr;
2244 ktime_t t, *tp = NULL;
2245
2246 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2247 t.tv64 = restart->futex.time;
2248 tp = &t;
2249 }
2250 restart->fn = do_no_restart_syscall;
2251
2252 return (long)futex_wait(uaddr, restart->futex.flags,
2253 restart->futex.val, tp, restart->futex.bitset);
2254 }
2255
2256
2257 /*
2258 * Userspace tried a 0 -> TID atomic transition of the futex value
2259 * and failed. The kernel side here does the whole locking operation:
2260 * if there are waiters then it will block, it does PI, etc. (Due to
2261 * races the kernel might see a 0 value of the futex too.)
2262 */
2263 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2264 ktime_t *time, int trylock)
2265 {
2266 struct hrtimer_sleeper timeout, *to = NULL;
2267 struct futex_hash_bucket *hb;
2268 struct futex_q q = futex_q_init;
2269 int res, ret;
2270
2271 if (refill_pi_state_cache())
2272 return -ENOMEM;
2273
2274 if (time) {
2275 to = &timeout;
2276 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2277 HRTIMER_MODE_ABS);
2278 hrtimer_init_sleeper(to, current);
2279 hrtimer_set_expires(&to->timer, *time);
2280 }
2281
2282 retry:
2283 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2284 if (unlikely(ret != 0))
2285 goto out;
2286
2287 retry_private:
2288 hb = queue_lock(&q);
2289
2290 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2291 if (unlikely(ret)) {
2292 switch (ret) {
2293 case 1:
2294 /* We got the lock. */
2295 ret = 0;
2296 goto out_unlock_put_key;
2297 case -EFAULT:
2298 goto uaddr_faulted;
2299 case -EAGAIN:
2300 /*
2301 * Task is exiting and we just wait for the
2302 * exit to complete.
2303 */
2304 queue_unlock(hb);
2305 put_futex_key(&q.key);
2306 cond_resched();
2307 goto retry;
2308 default:
2309 goto out_unlock_put_key;
2310 }
2311 }
2312
2313 /*
2314 * Only actually queue now that the atomic ops are done:
2315 */
2316 queue_me(&q, hb);
2317
2318 WARN_ON(!q.pi_state);
2319 /*
2320 * Block on the PI mutex:
2321 */
2322 if (!trylock) {
2323 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2324 } else {
2325 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2326 /* Fixup the trylock return value: */
2327 ret = ret ? 0 : -EWOULDBLOCK;
2328 }
2329
2330 spin_lock(q.lock_ptr);
2331 /*
2332 * Fixup the pi_state owner and possibly acquire the lock if we
2333 * haven't already.
2334 */
2335 res = fixup_owner(uaddr, &q, !ret);
2336 /*
2337 * If fixup_owner() returned an error, proprogate that. If it acquired
2338 * the lock, clear our -ETIMEDOUT or -EINTR.
2339 */
2340 if (res)
2341 ret = (res < 0) ? res : 0;
2342
2343 /*
2344 * If fixup_owner() faulted and was unable to handle the fault, unlock
2345 * it and return the fault to userspace.
2346 */
2347 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2348 rt_mutex_unlock(&q.pi_state->pi_mutex);
2349
2350 /* Unqueue and drop the lock */
2351 unqueue_me_pi(&q);
2352
2353 goto out_put_key;
2354
2355 out_unlock_put_key:
2356 queue_unlock(hb);
2357
2358 out_put_key:
2359 put_futex_key(&q.key);
2360 out:
2361 if (to)
2362 destroy_hrtimer_on_stack(&to->timer);
2363 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2364
2365 uaddr_faulted:
2366 queue_unlock(hb);
2367
2368 ret = fault_in_user_writeable(uaddr);
2369 if (ret)
2370 goto out_put_key;
2371
2372 if (!(flags & FLAGS_SHARED))
2373 goto retry_private;
2374
2375 put_futex_key(&q.key);
2376 goto retry;
2377 }
2378
2379 /*
2380 * Userspace attempted a TID -> 0 atomic transition, and failed.
2381 * This is the in-kernel slowpath: we look up the PI state (if any),
2382 * and do the rt-mutex unlock.
2383 */
2384 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2385 {
2386 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2387 union futex_key key = FUTEX_KEY_INIT;
2388 struct futex_hash_bucket *hb;
2389 struct futex_q *match;
2390 int ret;
2391
2392 retry:
2393 if (get_user(uval, uaddr))
2394 return -EFAULT;
2395 /*
2396 * We release only a lock we actually own:
2397 */
2398 if ((uval & FUTEX_TID_MASK) != vpid)
2399 return -EPERM;
2400
2401 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2402 if (ret)
2403 return ret;
2404
2405 hb = hash_futex(&key);
2406 spin_lock(&hb->lock);
2407
2408 /*
2409 * Check waiters first. We do not trust user space values at
2410 * all and we at least want to know if user space fiddled
2411 * with the futex value instead of blindly unlocking.
2412 */
2413 match = futex_top_waiter(hb, &key);
2414 if (match) {
2415 ret = wake_futex_pi(uaddr, uval, match);
2416 /*
2417 * The atomic access to the futex value generated a
2418 * pagefault, so retry the user-access and the wakeup:
2419 */
2420 if (ret == -EFAULT)
2421 goto pi_faulted;
2422 goto out_unlock;
2423 }
2424
2425 /*
2426 * We have no kernel internal state, i.e. no waiters in the
2427 * kernel. Waiters which are about to queue themselves are stuck
2428 * on hb->lock. So we can safely ignore them. We do neither
2429 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2430 * owner.
2431 */
2432 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2433 goto pi_faulted;
2434
2435 /*
2436 * If uval has changed, let user space handle it.
2437 */
2438 ret = (curval == uval) ? 0 : -EAGAIN;
2439
2440 out_unlock:
2441 spin_unlock(&hb->lock);
2442 put_futex_key(&key);
2443 return ret;
2444
2445 pi_faulted:
2446 spin_unlock(&hb->lock);
2447 put_futex_key(&key);
2448
2449 ret = fault_in_user_writeable(uaddr);
2450 if (!ret)
2451 goto retry;
2452
2453 return ret;
2454 }
2455
2456 /**
2457 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2458 * @hb: the hash_bucket futex_q was original enqueued on
2459 * @q: the futex_q woken while waiting to be requeued
2460 * @key2: the futex_key of the requeue target futex
2461 * @timeout: the timeout associated with the wait (NULL if none)
2462 *
2463 * Detect if the task was woken on the initial futex as opposed to the requeue
2464 * target futex. If so, determine if it was a timeout or a signal that caused
2465 * the wakeup and return the appropriate error code to the caller. Must be
2466 * called with the hb lock held.
2467 *
2468 * Return:
2469 * 0 = no early wakeup detected;
2470 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2471 */
2472 static inline
2473 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2474 struct futex_q *q, union futex_key *key2,
2475 struct hrtimer_sleeper *timeout)
2476 {
2477 int ret = 0;
2478
2479 /*
2480 * With the hb lock held, we avoid races while we process the wakeup.
2481 * We only need to hold hb (and not hb2) to ensure atomicity as the
2482 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2483 * It can't be requeued from uaddr2 to something else since we don't
2484 * support a PI aware source futex for requeue.
2485 */
2486 if (!match_futex(&q->key, key2)) {
2487 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2488 /*
2489 * We were woken prior to requeue by a timeout or a signal.
2490 * Unqueue the futex_q and determine which it was.
2491 */
2492 plist_del(&q->list, &hb->chain);
2493 hb_waiters_dec(hb);
2494
2495 /* Handle spurious wakeups gracefully */
2496 ret = -EWOULDBLOCK;
2497 if (timeout && !timeout->task)
2498 ret = -ETIMEDOUT;
2499 else if (signal_pending(current))
2500 ret = -ERESTARTNOINTR;
2501 }
2502 return ret;
2503 }
2504
2505 /**
2506 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2507 * @uaddr: the futex we initially wait on (non-pi)
2508 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2509 * the same type, no requeueing from private to shared, etc.
2510 * @val: the expected value of uaddr
2511 * @abs_time: absolute timeout
2512 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2513 * @uaddr2: the pi futex we will take prior to returning to user-space
2514 *
2515 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2516 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2517 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2518 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2519 * without one, the pi logic would not know which task to boost/deboost, if
2520 * there was a need to.
2521 *
2522 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2523 * via the following--
2524 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2525 * 2) wakeup on uaddr2 after a requeue
2526 * 3) signal
2527 * 4) timeout
2528 *
2529 * If 3, cleanup and return -ERESTARTNOINTR.
2530 *
2531 * If 2, we may then block on trying to take the rt_mutex and return via:
2532 * 5) successful lock
2533 * 6) signal
2534 * 7) timeout
2535 * 8) other lock acquisition failure
2536 *
2537 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2538 *
2539 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2540 *
2541 * Return:
2542 * 0 - On success;
2543 * <0 - On error
2544 */
2545 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2546 u32 val, ktime_t *abs_time, u32 bitset,
2547 u32 __user *uaddr2)
2548 {
2549 struct hrtimer_sleeper timeout, *to = NULL;
2550 struct rt_mutex_waiter rt_waiter;
2551 struct rt_mutex *pi_mutex = NULL;
2552 struct futex_hash_bucket *hb;
2553 union futex_key key2 = FUTEX_KEY_INIT;
2554 struct futex_q q = futex_q_init;
2555 int res, ret;
2556
2557 if (uaddr == uaddr2)
2558 return -EINVAL;
2559
2560 if (!bitset)
2561 return -EINVAL;
2562
2563 if (abs_time) {
2564 to = &timeout;
2565 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2566 CLOCK_REALTIME : CLOCK_MONOTONIC,
2567 HRTIMER_MODE_ABS);
2568 hrtimer_init_sleeper(to, current);
2569 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2570 current->timer_slack_ns);
2571 }
2572
2573 /*
2574 * The waiter is allocated on our stack, manipulated by the requeue
2575 * code while we sleep on uaddr.
2576 */
2577 debug_rt_mutex_init_waiter(&rt_waiter);
2578 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2579 RB_CLEAR_NODE(&rt_waiter.tree_entry);
2580 rt_waiter.task = NULL;
2581
2582 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2583 if (unlikely(ret != 0))
2584 goto out;
2585
2586 q.bitset = bitset;
2587 q.rt_waiter = &rt_waiter;
2588 q.requeue_pi_key = &key2;
2589
2590 /*
2591 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2592 * count.
2593 */
2594 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2595 if (ret)
2596 goto out_key2;
2597
2598 /*
2599 * The check above which compares uaddrs is not sufficient for
2600 * shared futexes. We need to compare the keys:
2601 */
2602 if (match_futex(&q.key, &key2)) {
2603 ret = -EINVAL;
2604 goto out_put_keys;
2605 }
2606
2607 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2608 futex_wait_queue_me(hb, &q, to);
2609
2610 spin_lock(&hb->lock);
2611 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2612 spin_unlock(&hb->lock);
2613 if (ret)
2614 goto out_put_keys;
2615
2616 /*
2617 * In order for us to be here, we know our q.key == key2, and since
2618 * we took the hb->lock above, we also know that futex_requeue() has
2619 * completed and we no longer have to concern ourselves with a wakeup
2620 * race with the atomic proxy lock acquisition by the requeue code. The
2621 * futex_requeue dropped our key1 reference and incremented our key2
2622 * reference count.
2623 */
2624
2625 /* Check if the requeue code acquired the second futex for us. */
2626 if (!q.rt_waiter) {
2627 /*
2628 * Got the lock. We might not be the anticipated owner if we
2629 * did a lock-steal - fix up the PI-state in that case.
2630 */
2631 if (q.pi_state && (q.pi_state->owner != current)) {
2632 spin_lock(q.lock_ptr);
2633 ret = fixup_pi_state_owner(uaddr2, &q, current);
2634 spin_unlock(q.lock_ptr);
2635 }
2636 } else {
2637 /*
2638 * We have been woken up by futex_unlock_pi(), a timeout, or a
2639 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2640 * the pi_state.
2641 */
2642 WARN_ON(!q.pi_state);
2643 pi_mutex = &q.pi_state->pi_mutex;
2644 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2645 debug_rt_mutex_free_waiter(&rt_waiter);
2646
2647 spin_lock(q.lock_ptr);
2648 /*
2649 * Fixup the pi_state owner and possibly acquire the lock if we
2650 * haven't already.
2651 */
2652 res = fixup_owner(uaddr2, &q, !ret);
2653 /*
2654 * If fixup_owner() returned an error, proprogate that. If it
2655 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2656 */
2657 if (res)
2658 ret = (res < 0) ? res : 0;
2659
2660 /* Unqueue and drop the lock. */
2661 unqueue_me_pi(&q);
2662 }
2663
2664 /*
2665 * If fixup_pi_state_owner() faulted and was unable to handle the
2666 * fault, unlock the rt_mutex and return the fault to userspace.
2667 */
2668 if (ret == -EFAULT) {
2669 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2670 rt_mutex_unlock(pi_mutex);
2671 } else if (ret == -EINTR) {
2672 /*
2673 * We've already been requeued, but cannot restart by calling
2674 * futex_lock_pi() directly. We could restart this syscall, but
2675 * it would detect that the user space "val" changed and return
2676 * -EWOULDBLOCK. Save the overhead of the restart and return
2677 * -EWOULDBLOCK directly.
2678 */
2679 ret = -EWOULDBLOCK;
2680 }
2681
2682 out_put_keys:
2683 put_futex_key(&q.key);
2684 out_key2:
2685 put_futex_key(&key2);
2686
2687 out:
2688 if (to) {
2689 hrtimer_cancel(&to->timer);
2690 destroy_hrtimer_on_stack(&to->timer);
2691 }
2692 return ret;
2693 }
2694
2695 /*
2696 * Support for robust futexes: the kernel cleans up held futexes at
2697 * thread exit time.
2698 *
2699 * Implementation: user-space maintains a per-thread list of locks it
2700 * is holding. Upon do_exit(), the kernel carefully walks this list,
2701 * and marks all locks that are owned by this thread with the
2702 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2703 * always manipulated with the lock held, so the list is private and
2704 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2705 * field, to allow the kernel to clean up if the thread dies after
2706 * acquiring the lock, but just before it could have added itself to
2707 * the list. There can only be one such pending lock.
2708 */
2709
2710 /**
2711 * sys_set_robust_list() - Set the robust-futex list head of a task
2712 * @head: pointer to the list-head
2713 * @len: length of the list-head, as userspace expects
2714 */
2715 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2716 size_t, len)
2717 {
2718 if (!futex_cmpxchg_enabled)
2719 return -ENOSYS;
2720 /*
2721 * The kernel knows only one size for now:
2722 */
2723 if (unlikely(len != sizeof(*head)))
2724 return -EINVAL;
2725
2726 current->robust_list = head;
2727
2728 return 0;
2729 }
2730
2731 /**
2732 * sys_get_robust_list() - Get the robust-futex list head of a task
2733 * @pid: pid of the process [zero for current task]
2734 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2735 * @len_ptr: pointer to a length field, the kernel fills in the header size
2736 */
2737 SYSCALL_DEFINE3(get_robust_list, int, pid,
2738 struct robust_list_head __user * __user *, head_ptr,
2739 size_t __user *, len_ptr)
2740 {
2741 struct robust_list_head __user *head;
2742 unsigned long ret;
2743 struct task_struct *p;
2744
2745 if (!futex_cmpxchg_enabled)
2746 return -ENOSYS;
2747
2748 rcu_read_lock();
2749
2750 ret = -ESRCH;
2751 if (!pid)
2752 p = current;
2753 else {
2754 p = find_task_by_vpid(pid);
2755 if (!p)
2756 goto err_unlock;
2757 }
2758
2759 ret = -EPERM;
2760 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2761 goto err_unlock;
2762
2763 head = p->robust_list;
2764 rcu_read_unlock();
2765
2766 if (put_user(sizeof(*head), len_ptr))
2767 return -EFAULT;
2768 return put_user(head, head_ptr);
2769
2770 err_unlock:
2771 rcu_read_unlock();
2772
2773 return ret;
2774 }
2775
2776 /*
2777 * Process a futex-list entry, check whether it's owned by the
2778 * dying task, and do notification if so:
2779 */
2780 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2781 {
2782 u32 uval, uninitialized_var(nval), mval;
2783
2784 retry:
2785 if (get_user(uval, uaddr))
2786 return -1;
2787
2788 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2789 /*
2790 * Ok, this dying thread is truly holding a futex
2791 * of interest. Set the OWNER_DIED bit atomically
2792 * via cmpxchg, and if the value had FUTEX_WAITERS
2793 * set, wake up a waiter (if any). (We have to do a
2794 * futex_wake() even if OWNER_DIED is already set -
2795 * to handle the rare but possible case of recursive
2796 * thread-death.) The rest of the cleanup is done in
2797 * userspace.
2798 */
2799 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2800 /*
2801 * We are not holding a lock here, but we want to have
2802 * the pagefault_disable/enable() protection because
2803 * we want to handle the fault gracefully. If the
2804 * access fails we try to fault in the futex with R/W
2805 * verification via get_user_pages. get_user() above
2806 * does not guarantee R/W access. If that fails we
2807 * give up and leave the futex locked.
2808 */
2809 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2810 if (fault_in_user_writeable(uaddr))
2811 return -1;
2812 goto retry;
2813 }
2814 if (nval != uval)
2815 goto retry;
2816
2817 /*
2818 * Wake robust non-PI futexes here. The wakeup of
2819 * PI futexes happens in exit_pi_state():
2820 */
2821 if (!pi && (uval & FUTEX_WAITERS))
2822 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2823 }
2824 return 0;
2825 }
2826
2827 /*
2828 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2829 */
2830 static inline int fetch_robust_entry(struct robust_list __user **entry,
2831 struct robust_list __user * __user *head,
2832 unsigned int *pi)
2833 {
2834 unsigned long uentry;
2835
2836 if (get_user(uentry, (unsigned long __user *)head))
2837 return -EFAULT;
2838
2839 *entry = (void __user *)(uentry & ~1UL);
2840 *pi = uentry & 1;
2841
2842 return 0;
2843 }
2844
2845 /*
2846 * Walk curr->robust_list (very carefully, it's a userspace list!)
2847 * and mark any locks found there dead, and notify any waiters.
2848 *
2849 * We silently return on any sign of list-walking problem.
2850 */
2851 void exit_robust_list(struct task_struct *curr)
2852 {
2853 struct robust_list_head __user *head = curr->robust_list;
2854 struct robust_list __user *entry, *next_entry, *pending;
2855 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2856 unsigned int uninitialized_var(next_pi);
2857 unsigned long futex_offset;
2858 int rc;
2859
2860 if (!futex_cmpxchg_enabled)
2861 return;
2862
2863 /*
2864 * Fetch the list head (which was registered earlier, via
2865 * sys_set_robust_list()):
2866 */
2867 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2868 return;
2869 /*
2870 * Fetch the relative futex offset:
2871 */
2872 if (get_user(futex_offset, &head->futex_offset))
2873 return;
2874 /*
2875 * Fetch any possibly pending lock-add first, and handle it
2876 * if it exists:
2877 */
2878 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2879 return;
2880
2881 next_entry = NULL; /* avoid warning with gcc */
2882 while (entry != &head->list) {
2883 /*
2884 * Fetch the next entry in the list before calling
2885 * handle_futex_death:
2886 */
2887 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2888 /*
2889 * A pending lock might already be on the list, so
2890 * don't process it twice:
2891 */
2892 if (entry != pending)
2893 if (handle_futex_death((void __user *)entry + futex_offset,
2894 curr, pi))
2895 return;
2896 if (rc)
2897 return;
2898 entry = next_entry;
2899 pi = next_pi;
2900 /*
2901 * Avoid excessively long or circular lists:
2902 */
2903 if (!--limit)
2904 break;
2905
2906 cond_resched();
2907 }
2908
2909 if (pending)
2910 handle_futex_death((void __user *)pending + futex_offset,
2911 curr, pip);
2912 }
2913
2914 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2915 u32 __user *uaddr2, u32 val2, u32 val3)
2916 {
2917 int cmd = op & FUTEX_CMD_MASK;
2918 unsigned int flags = 0;
2919
2920 if (!(op & FUTEX_PRIVATE_FLAG))
2921 flags |= FLAGS_SHARED;
2922
2923 if (op & FUTEX_CLOCK_REALTIME) {
2924 flags |= FLAGS_CLOCKRT;
2925 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2926 return -ENOSYS;
2927 }
2928
2929 switch (cmd) {
2930 case FUTEX_LOCK_PI:
2931 case FUTEX_UNLOCK_PI:
2932 case FUTEX_TRYLOCK_PI:
2933 case FUTEX_WAIT_REQUEUE_PI:
2934 case FUTEX_CMP_REQUEUE_PI:
2935 if (!futex_cmpxchg_enabled)
2936 return -ENOSYS;
2937 }
2938
2939 switch (cmd) {
2940 case FUTEX_WAIT:
2941 val3 = FUTEX_BITSET_MATCH_ANY;
2942 case FUTEX_WAIT_BITSET:
2943 return futex_wait(uaddr, flags, val, timeout, val3);
2944 case FUTEX_WAKE:
2945 val3 = FUTEX_BITSET_MATCH_ANY;
2946 case FUTEX_WAKE_BITSET:
2947 return futex_wake(uaddr, flags, val, val3);
2948 case FUTEX_REQUEUE:
2949 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2950 case FUTEX_CMP_REQUEUE:
2951 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2952 case FUTEX_WAKE_OP:
2953 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2954 case FUTEX_LOCK_PI:
2955 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2956 case FUTEX_UNLOCK_PI:
2957 return futex_unlock_pi(uaddr, flags);
2958 case FUTEX_TRYLOCK_PI:
2959 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2960 case FUTEX_WAIT_REQUEUE_PI:
2961 val3 = FUTEX_BITSET_MATCH_ANY;
2962 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2963 uaddr2);
2964 case FUTEX_CMP_REQUEUE_PI:
2965 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2966 }
2967 return -ENOSYS;
2968 }
2969
2970
2971 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2972 struct timespec __user *, utime, u32 __user *, uaddr2,
2973 u32, val3)
2974 {
2975 struct timespec ts;
2976 ktime_t t, *tp = NULL;
2977 u32 val2 = 0;
2978 int cmd = op & FUTEX_CMD_MASK;
2979
2980 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2981 cmd == FUTEX_WAIT_BITSET ||
2982 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2983 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2984 return -EFAULT;
2985 if (!timespec_valid(&ts))
2986 return -EINVAL;
2987
2988 t = timespec_to_ktime(ts);
2989 if (cmd == FUTEX_WAIT)
2990 t = ktime_add_safe(ktime_get(), t);
2991 tp = &t;
2992 }
2993 /*
2994 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2995 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2996 */
2997 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2998 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2999 val2 = (u32) (unsigned long) utime;
3000
3001 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3002 }
3003
3004 static void __init futex_detect_cmpxchg(void)
3005 {
3006 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3007 u32 curval;
3008
3009 /*
3010 * This will fail and we want it. Some arch implementations do
3011 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3012 * functionality. We want to know that before we call in any
3013 * of the complex code paths. Also we want to prevent
3014 * registration of robust lists in that case. NULL is
3015 * guaranteed to fault and we get -EFAULT on functional
3016 * implementation, the non-functional ones will return
3017 * -ENOSYS.
3018 */
3019 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3020 futex_cmpxchg_enabled = 1;
3021 #endif
3022 }
3023
3024 static int __init futex_init(void)
3025 {
3026 unsigned int futex_shift;
3027 unsigned long i;
3028
3029 #if CONFIG_BASE_SMALL
3030 futex_hashsize = 16;
3031 #else
3032 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3033 #endif
3034
3035 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3036 futex_hashsize, 0,
3037 futex_hashsize < 256 ? HASH_SMALL : 0,
3038 &futex_shift, NULL,
3039 futex_hashsize, futex_hashsize);
3040 futex_hashsize = 1UL << futex_shift;
3041
3042 futex_detect_cmpxchg();
3043
3044 for (i = 0; i < futex_hashsize; i++) {
3045 atomic_set(&futex_queues[i].waiters, 0);
3046 plist_head_init(&futex_queues[i].chain);
3047 spin_lock_init(&futex_queues[i].lock);
3048 }
3049
3050 return 0;
3051 }
3052 __initcall(futex_init);
This page took 0.090283 seconds and 6 git commands to generate.