futex: Split out the waiter check from lookup_pi_state()
[deliverable/linux.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67
68 #include <asm/futex.h>
69
70 #include "locking/rtmutex_common.h"
71
72 /*
73 * READ this before attempting to hack on futexes!
74 *
75 * Basic futex operation and ordering guarantees
76 * =============================================
77 *
78 * The waiter reads the futex value in user space and calls
79 * futex_wait(). This function computes the hash bucket and acquires
80 * the hash bucket lock. After that it reads the futex user space value
81 * again and verifies that the data has not changed. If it has not changed
82 * it enqueues itself into the hash bucket, releases the hash bucket lock
83 * and schedules.
84 *
85 * The waker side modifies the user space value of the futex and calls
86 * futex_wake(). This function computes the hash bucket and acquires the
87 * hash bucket lock. Then it looks for waiters on that futex in the hash
88 * bucket and wakes them.
89 *
90 * In futex wake up scenarios where no tasks are blocked on a futex, taking
91 * the hb spinlock can be avoided and simply return. In order for this
92 * optimization to work, ordering guarantees must exist so that the waiter
93 * being added to the list is acknowledged when the list is concurrently being
94 * checked by the waker, avoiding scenarios like the following:
95 *
96 * CPU 0 CPU 1
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 * futex_wait(futex, val);
100 * uval = *futex;
101 * *futex = newval;
102 * sys_futex(WAKE, futex);
103 * futex_wake(futex);
104 * if (queue_empty())
105 * return;
106 * if (uval == val)
107 * lock(hash_bucket(futex));
108 * queue();
109 * unlock(hash_bucket(futex));
110 * schedule();
111 *
112 * This would cause the waiter on CPU 0 to wait forever because it
113 * missed the transition of the user space value from val to newval
114 * and the waker did not find the waiter in the hash bucket queue.
115 *
116 * The correct serialization ensures that a waiter either observes
117 * the changed user space value before blocking or is woken by a
118 * concurrent waker:
119 *
120 * CPU 0 CPU 1
121 * val = *futex;
122 * sys_futex(WAIT, futex, val);
123 * futex_wait(futex, val);
124 *
125 * waiters++; (a)
126 * mb(); (A) <-- paired with -.
127 * |
128 * lock(hash_bucket(futex)); |
129 * |
130 * uval = *futex; |
131 * | *futex = newval;
132 * | sys_futex(WAKE, futex);
133 * | futex_wake(futex);
134 * |
135 * `-------> mb(); (B)
136 * if (uval == val)
137 * queue();
138 * unlock(hash_bucket(futex));
139 * schedule(); if (waiters)
140 * lock(hash_bucket(futex));
141 * else wake_waiters(futex);
142 * waiters--; (b) unlock(hash_bucket(futex));
143 *
144 * Where (A) orders the waiters increment and the futex value read through
145 * atomic operations (see hb_waiters_inc) and where (B) orders the write
146 * to futex and the waiters read -- this is done by the barriers in
147 * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
148 * futex type.
149 *
150 * This yields the following case (where X:=waiters, Y:=futex):
151 *
152 * X = Y = 0
153 *
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
157 *
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
161 *
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
165 *
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
172 */
173
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
177
178 /*
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
181 */
182 #define FLAGS_SHARED 0x01
183 #define FLAGS_CLOCKRT 0x02
184 #define FLAGS_HAS_TIMEOUT 0x04
185
186 /*
187 * Priority Inheritance state:
188 */
189 struct futex_pi_state {
190 /*
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
193 */
194 struct list_head list;
195
196 /*
197 * The PI object:
198 */
199 struct rt_mutex pi_mutex;
200
201 struct task_struct *owner;
202 atomic_t refcount;
203
204 union futex_key key;
205 };
206
207 /**
208 * struct futex_q - The hashed futex queue entry, one per waiting task
209 * @list: priority-sorted list of tasks waiting on this futex
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
217 *
218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
219 * we can wake only the relevant ones (hashed queues may be shared).
220 *
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223 * The order of wakeup is always to make the first condition true, then
224 * the second.
225 *
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
228 */
229 struct futex_q {
230 struct plist_node list;
231
232 struct task_struct *task;
233 spinlock_t *lock_ptr;
234 union futex_key key;
235 struct futex_pi_state *pi_state;
236 struct rt_mutex_waiter *rt_waiter;
237 union futex_key *requeue_pi_key;
238 u32 bitset;
239 };
240
241 static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
245 };
246
247 /*
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
251 */
252 struct futex_hash_bucket {
253 atomic_t waiters;
254 spinlock_t lock;
255 struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
257
258 static unsigned long __read_mostly futex_hashsize;
259
260 static struct futex_hash_bucket *futex_queues;
261
262 static inline void futex_get_mm(union futex_key *key)
263 {
264 atomic_inc(&key->private.mm->mm_count);
265 /*
266 * Ensure futex_get_mm() implies a full barrier such that
267 * get_futex_key() implies a full barrier. This is relied upon
268 * as full barrier (B), see the ordering comment above.
269 */
270 smp_mb__after_atomic();
271 }
272
273 /*
274 * Reflects a new waiter being added to the waitqueue.
275 */
276 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
277 {
278 #ifdef CONFIG_SMP
279 atomic_inc(&hb->waiters);
280 /*
281 * Full barrier (A), see the ordering comment above.
282 */
283 smp_mb__after_atomic();
284 #endif
285 }
286
287 /*
288 * Reflects a waiter being removed from the waitqueue by wakeup
289 * paths.
290 */
291 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
292 {
293 #ifdef CONFIG_SMP
294 atomic_dec(&hb->waiters);
295 #endif
296 }
297
298 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
299 {
300 #ifdef CONFIG_SMP
301 return atomic_read(&hb->waiters);
302 #else
303 return 1;
304 #endif
305 }
306
307 /*
308 * We hash on the keys returned from get_futex_key (see below).
309 */
310 static struct futex_hash_bucket *hash_futex(union futex_key *key)
311 {
312 u32 hash = jhash2((u32*)&key->both.word,
313 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
314 key->both.offset);
315 return &futex_queues[hash & (futex_hashsize - 1)];
316 }
317
318 /*
319 * Return 1 if two futex_keys are equal, 0 otherwise.
320 */
321 static inline int match_futex(union futex_key *key1, union futex_key *key2)
322 {
323 return (key1 && key2
324 && key1->both.word == key2->both.word
325 && key1->both.ptr == key2->both.ptr
326 && key1->both.offset == key2->both.offset);
327 }
328
329 /*
330 * Take a reference to the resource addressed by a key.
331 * Can be called while holding spinlocks.
332 *
333 */
334 static void get_futex_key_refs(union futex_key *key)
335 {
336 if (!key->both.ptr)
337 return;
338
339 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
340 case FUT_OFF_INODE:
341 ihold(key->shared.inode); /* implies MB (B) */
342 break;
343 case FUT_OFF_MMSHARED:
344 futex_get_mm(key); /* implies MB (B) */
345 break;
346 }
347 }
348
349 /*
350 * Drop a reference to the resource addressed by a key.
351 * The hash bucket spinlock must not be held.
352 */
353 static void drop_futex_key_refs(union futex_key *key)
354 {
355 if (!key->both.ptr) {
356 /* If we're here then we tried to put a key we failed to get */
357 WARN_ON_ONCE(1);
358 return;
359 }
360
361 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
362 case FUT_OFF_INODE:
363 iput(key->shared.inode);
364 break;
365 case FUT_OFF_MMSHARED:
366 mmdrop(key->private.mm);
367 break;
368 }
369 }
370
371 /**
372 * get_futex_key() - Get parameters which are the keys for a futex
373 * @uaddr: virtual address of the futex
374 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
375 * @key: address where result is stored.
376 * @rw: mapping needs to be read/write (values: VERIFY_READ,
377 * VERIFY_WRITE)
378 *
379 * Return: a negative error code or 0
380 *
381 * The key words are stored in *key on success.
382 *
383 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
384 * offset_within_page). For private mappings, it's (uaddr, current->mm).
385 * We can usually work out the index without swapping in the page.
386 *
387 * lock_page() might sleep, the caller should not hold a spinlock.
388 */
389 static int
390 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
391 {
392 unsigned long address = (unsigned long)uaddr;
393 struct mm_struct *mm = current->mm;
394 struct page *page, *page_head;
395 int err, ro = 0;
396
397 /*
398 * The futex address must be "naturally" aligned.
399 */
400 key->both.offset = address % PAGE_SIZE;
401 if (unlikely((address % sizeof(u32)) != 0))
402 return -EINVAL;
403 address -= key->both.offset;
404
405 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
406 return -EFAULT;
407
408 /*
409 * PROCESS_PRIVATE futexes are fast.
410 * As the mm cannot disappear under us and the 'key' only needs
411 * virtual address, we dont even have to find the underlying vma.
412 * Note : We do have to check 'uaddr' is a valid user address,
413 * but access_ok() should be faster than find_vma()
414 */
415 if (!fshared) {
416 key->private.mm = mm;
417 key->private.address = address;
418 get_futex_key_refs(key); /* implies MB (B) */
419 return 0;
420 }
421
422 again:
423 err = get_user_pages_fast(address, 1, 1, &page);
424 /*
425 * If write access is not required (eg. FUTEX_WAIT), try
426 * and get read-only access.
427 */
428 if (err == -EFAULT && rw == VERIFY_READ) {
429 err = get_user_pages_fast(address, 1, 0, &page);
430 ro = 1;
431 }
432 if (err < 0)
433 return err;
434 else
435 err = 0;
436
437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
438 page_head = page;
439 if (unlikely(PageTail(page))) {
440 put_page(page);
441 /* serialize against __split_huge_page_splitting() */
442 local_irq_disable();
443 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
444 page_head = compound_head(page);
445 /*
446 * page_head is valid pointer but we must pin
447 * it before taking the PG_lock and/or
448 * PG_compound_lock. The moment we re-enable
449 * irqs __split_huge_page_splitting() can
450 * return and the head page can be freed from
451 * under us. We can't take the PG_lock and/or
452 * PG_compound_lock on a page that could be
453 * freed from under us.
454 */
455 if (page != page_head) {
456 get_page(page_head);
457 put_page(page);
458 }
459 local_irq_enable();
460 } else {
461 local_irq_enable();
462 goto again;
463 }
464 }
465 #else
466 page_head = compound_head(page);
467 if (page != page_head) {
468 get_page(page_head);
469 put_page(page);
470 }
471 #endif
472
473 lock_page(page_head);
474
475 /*
476 * If page_head->mapping is NULL, then it cannot be a PageAnon
477 * page; but it might be the ZERO_PAGE or in the gate area or
478 * in a special mapping (all cases which we are happy to fail);
479 * or it may have been a good file page when get_user_pages_fast
480 * found it, but truncated or holepunched or subjected to
481 * invalidate_complete_page2 before we got the page lock (also
482 * cases which we are happy to fail). And we hold a reference,
483 * so refcount care in invalidate_complete_page's remove_mapping
484 * prevents drop_caches from setting mapping to NULL beneath us.
485 *
486 * The case we do have to guard against is when memory pressure made
487 * shmem_writepage move it from filecache to swapcache beneath us:
488 * an unlikely race, but we do need to retry for page_head->mapping.
489 */
490 if (!page_head->mapping) {
491 int shmem_swizzled = PageSwapCache(page_head);
492 unlock_page(page_head);
493 put_page(page_head);
494 if (shmem_swizzled)
495 goto again;
496 return -EFAULT;
497 }
498
499 /*
500 * Private mappings are handled in a simple way.
501 *
502 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
503 * it's a read-only handle, it's expected that futexes attach to
504 * the object not the particular process.
505 */
506 if (PageAnon(page_head)) {
507 /*
508 * A RO anonymous page will never change and thus doesn't make
509 * sense for futex operations.
510 */
511 if (ro) {
512 err = -EFAULT;
513 goto out;
514 }
515
516 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
517 key->private.mm = mm;
518 key->private.address = address;
519 } else {
520 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
521 key->shared.inode = page_head->mapping->host;
522 key->shared.pgoff = basepage_index(page);
523 }
524
525 get_futex_key_refs(key); /* implies MB (B) */
526
527 out:
528 unlock_page(page_head);
529 put_page(page_head);
530 return err;
531 }
532
533 static inline void put_futex_key(union futex_key *key)
534 {
535 drop_futex_key_refs(key);
536 }
537
538 /**
539 * fault_in_user_writeable() - Fault in user address and verify RW access
540 * @uaddr: pointer to faulting user space address
541 *
542 * Slow path to fixup the fault we just took in the atomic write
543 * access to @uaddr.
544 *
545 * We have no generic implementation of a non-destructive write to the
546 * user address. We know that we faulted in the atomic pagefault
547 * disabled section so we can as well avoid the #PF overhead by
548 * calling get_user_pages() right away.
549 */
550 static int fault_in_user_writeable(u32 __user *uaddr)
551 {
552 struct mm_struct *mm = current->mm;
553 int ret;
554
555 down_read(&mm->mmap_sem);
556 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
557 FAULT_FLAG_WRITE);
558 up_read(&mm->mmap_sem);
559
560 return ret < 0 ? ret : 0;
561 }
562
563 /**
564 * futex_top_waiter() - Return the highest priority waiter on a futex
565 * @hb: the hash bucket the futex_q's reside in
566 * @key: the futex key (to distinguish it from other futex futex_q's)
567 *
568 * Must be called with the hb lock held.
569 */
570 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
571 union futex_key *key)
572 {
573 struct futex_q *this;
574
575 plist_for_each_entry(this, &hb->chain, list) {
576 if (match_futex(&this->key, key))
577 return this;
578 }
579 return NULL;
580 }
581
582 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
583 u32 uval, u32 newval)
584 {
585 int ret;
586
587 pagefault_disable();
588 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
589 pagefault_enable();
590
591 return ret;
592 }
593
594 static int get_futex_value_locked(u32 *dest, u32 __user *from)
595 {
596 int ret;
597
598 pagefault_disable();
599 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
600 pagefault_enable();
601
602 return ret ? -EFAULT : 0;
603 }
604
605
606 /*
607 * PI code:
608 */
609 static int refill_pi_state_cache(void)
610 {
611 struct futex_pi_state *pi_state;
612
613 if (likely(current->pi_state_cache))
614 return 0;
615
616 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
617
618 if (!pi_state)
619 return -ENOMEM;
620
621 INIT_LIST_HEAD(&pi_state->list);
622 /* pi_mutex gets initialized later */
623 pi_state->owner = NULL;
624 atomic_set(&pi_state->refcount, 1);
625 pi_state->key = FUTEX_KEY_INIT;
626
627 current->pi_state_cache = pi_state;
628
629 return 0;
630 }
631
632 static struct futex_pi_state * alloc_pi_state(void)
633 {
634 struct futex_pi_state *pi_state = current->pi_state_cache;
635
636 WARN_ON(!pi_state);
637 current->pi_state_cache = NULL;
638
639 return pi_state;
640 }
641
642 static void free_pi_state(struct futex_pi_state *pi_state)
643 {
644 if (!atomic_dec_and_test(&pi_state->refcount))
645 return;
646
647 /*
648 * If pi_state->owner is NULL, the owner is most probably dying
649 * and has cleaned up the pi_state already
650 */
651 if (pi_state->owner) {
652 raw_spin_lock_irq(&pi_state->owner->pi_lock);
653 list_del_init(&pi_state->list);
654 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
655
656 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
657 }
658
659 if (current->pi_state_cache)
660 kfree(pi_state);
661 else {
662 /*
663 * pi_state->list is already empty.
664 * clear pi_state->owner.
665 * refcount is at 0 - put it back to 1.
666 */
667 pi_state->owner = NULL;
668 atomic_set(&pi_state->refcount, 1);
669 current->pi_state_cache = pi_state;
670 }
671 }
672
673 /*
674 * Look up the task based on what TID userspace gave us.
675 * We dont trust it.
676 */
677 static struct task_struct * futex_find_get_task(pid_t pid)
678 {
679 struct task_struct *p;
680
681 rcu_read_lock();
682 p = find_task_by_vpid(pid);
683 if (p)
684 get_task_struct(p);
685
686 rcu_read_unlock();
687
688 return p;
689 }
690
691 /*
692 * This task is holding PI mutexes at exit time => bad.
693 * Kernel cleans up PI-state, but userspace is likely hosed.
694 * (Robust-futex cleanup is separate and might save the day for userspace.)
695 */
696 void exit_pi_state_list(struct task_struct *curr)
697 {
698 struct list_head *next, *head = &curr->pi_state_list;
699 struct futex_pi_state *pi_state;
700 struct futex_hash_bucket *hb;
701 union futex_key key = FUTEX_KEY_INIT;
702
703 if (!futex_cmpxchg_enabled)
704 return;
705 /*
706 * We are a ZOMBIE and nobody can enqueue itself on
707 * pi_state_list anymore, but we have to be careful
708 * versus waiters unqueueing themselves:
709 */
710 raw_spin_lock_irq(&curr->pi_lock);
711 while (!list_empty(head)) {
712
713 next = head->next;
714 pi_state = list_entry(next, struct futex_pi_state, list);
715 key = pi_state->key;
716 hb = hash_futex(&key);
717 raw_spin_unlock_irq(&curr->pi_lock);
718
719 spin_lock(&hb->lock);
720
721 raw_spin_lock_irq(&curr->pi_lock);
722 /*
723 * We dropped the pi-lock, so re-check whether this
724 * task still owns the PI-state:
725 */
726 if (head->next != next) {
727 spin_unlock(&hb->lock);
728 continue;
729 }
730
731 WARN_ON(pi_state->owner != curr);
732 WARN_ON(list_empty(&pi_state->list));
733 list_del_init(&pi_state->list);
734 pi_state->owner = NULL;
735 raw_spin_unlock_irq(&curr->pi_lock);
736
737 rt_mutex_unlock(&pi_state->pi_mutex);
738
739 spin_unlock(&hb->lock);
740
741 raw_spin_lock_irq(&curr->pi_lock);
742 }
743 raw_spin_unlock_irq(&curr->pi_lock);
744 }
745
746 /*
747 * We need to check the following states:
748 *
749 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
750 *
751 * [1] NULL | --- | --- | 0 | 0/1 | Valid
752 * [2] NULL | --- | --- | >0 | 0/1 | Valid
753 *
754 * [3] Found | NULL | -- | Any | 0/1 | Invalid
755 *
756 * [4] Found | Found | NULL | 0 | 1 | Valid
757 * [5] Found | Found | NULL | >0 | 1 | Invalid
758 *
759 * [6] Found | Found | task | 0 | 1 | Valid
760 *
761 * [7] Found | Found | NULL | Any | 0 | Invalid
762 *
763 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
764 * [9] Found | Found | task | 0 | 0 | Invalid
765 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
766 *
767 * [1] Indicates that the kernel can acquire the futex atomically. We
768 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
769 *
770 * [2] Valid, if TID does not belong to a kernel thread. If no matching
771 * thread is found then it indicates that the owner TID has died.
772 *
773 * [3] Invalid. The waiter is queued on a non PI futex
774 *
775 * [4] Valid state after exit_robust_list(), which sets the user space
776 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
777 *
778 * [5] The user space value got manipulated between exit_robust_list()
779 * and exit_pi_state_list()
780 *
781 * [6] Valid state after exit_pi_state_list() which sets the new owner in
782 * the pi_state but cannot access the user space value.
783 *
784 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
785 *
786 * [8] Owner and user space value match
787 *
788 * [9] There is no transient state which sets the user space TID to 0
789 * except exit_robust_list(), but this is indicated by the
790 * FUTEX_OWNER_DIED bit. See [4]
791 *
792 * [10] There is no transient state which leaves owner and user space
793 * TID out of sync.
794 */
795
796 /*
797 * Validate that the existing waiter has a pi_state and sanity check
798 * the pi_state against the user space value. If correct, attach to
799 * it.
800 */
801 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
802 struct futex_pi_state **ps)
803 {
804 pid_t pid = uval & FUTEX_TID_MASK;
805
806 /*
807 * Userspace might have messed up non-PI and PI futexes [3]
808 */
809 if (unlikely(!pi_state))
810 return -EINVAL;
811
812 WARN_ON(!atomic_read(&pi_state->refcount));
813
814 /*
815 * Handle the owner died case:
816 */
817 if (uval & FUTEX_OWNER_DIED) {
818 /*
819 * exit_pi_state_list sets owner to NULL and wakes the
820 * topmost waiter. The task which acquires the
821 * pi_state->rt_mutex will fixup owner.
822 */
823 if (!pi_state->owner) {
824 /*
825 * No pi state owner, but the user space TID
826 * is not 0. Inconsistent state. [5]
827 */
828 if (pid)
829 return -EINVAL;
830 /*
831 * Take a ref on the state and return success. [4]
832 */
833 goto out_state;
834 }
835
836 /*
837 * If TID is 0, then either the dying owner has not
838 * yet executed exit_pi_state_list() or some waiter
839 * acquired the rtmutex in the pi state, but did not
840 * yet fixup the TID in user space.
841 *
842 * Take a ref on the state and return success. [6]
843 */
844 if (!pid)
845 goto out_state;
846 } else {
847 /*
848 * If the owner died bit is not set, then the pi_state
849 * must have an owner. [7]
850 */
851 if (!pi_state->owner)
852 return -EINVAL;
853 }
854
855 /*
856 * Bail out if user space manipulated the futex value. If pi
857 * state exists then the owner TID must be the same as the
858 * user space TID. [9/10]
859 */
860 if (pid != task_pid_vnr(pi_state->owner))
861 return -EINVAL;
862 out_state:
863 atomic_inc(&pi_state->refcount);
864 *ps = pi_state;
865 return 0;
866 }
867
868 static int
869 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
870 union futex_key *key, struct futex_pi_state **ps)
871 {
872 struct futex_q *match = futex_top_waiter(hb, key);
873 struct futex_pi_state *pi_state = NULL;
874 struct task_struct *p;
875 pid_t pid = uval & FUTEX_TID_MASK;
876
877 /*
878 * If there is a waiter on that futex, validate it and
879 * attach to the pi_state when the validation succeeds.
880 */
881 if (match)
882 return attach_to_pi_state(uval, match->pi_state, ps);
883
884 /*
885 * We are the first waiter - try to look up the real owner and attach
886 * the new pi_state to it, but bail out when TID = 0 [1]
887 */
888 if (!pid)
889 return -ESRCH;
890 p = futex_find_get_task(pid);
891 if (!p)
892 return -ESRCH;
893
894 if (!p->mm) {
895 put_task_struct(p);
896 return -EPERM;
897 }
898
899 /*
900 * We need to look at the task state flags to figure out,
901 * whether the task is exiting. To protect against the do_exit
902 * change of the task flags, we do this protected by
903 * p->pi_lock:
904 */
905 raw_spin_lock_irq(&p->pi_lock);
906 if (unlikely(p->flags & PF_EXITING)) {
907 /*
908 * The task is on the way out. When PF_EXITPIDONE is
909 * set, we know that the task has finished the
910 * cleanup:
911 */
912 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
913
914 raw_spin_unlock_irq(&p->pi_lock);
915 put_task_struct(p);
916 return ret;
917 }
918
919 /*
920 * No existing pi state. First waiter. [2]
921 */
922 pi_state = alloc_pi_state();
923
924 /*
925 * Initialize the pi_mutex in locked state and make 'p'
926 * the owner of it:
927 */
928 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
929
930 /* Store the key for possible exit cleanups: */
931 pi_state->key = *key;
932
933 WARN_ON(!list_empty(&pi_state->list));
934 list_add(&pi_state->list, &p->pi_state_list);
935 pi_state->owner = p;
936 raw_spin_unlock_irq(&p->pi_lock);
937
938 put_task_struct(p);
939
940 *ps = pi_state;
941
942 return 0;
943 }
944
945 /**
946 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
947 * @uaddr: the pi futex user address
948 * @hb: the pi futex hash bucket
949 * @key: the futex key associated with uaddr and hb
950 * @ps: the pi_state pointer where we store the result of the
951 * lookup
952 * @task: the task to perform the atomic lock work for. This will
953 * be "current" except in the case of requeue pi.
954 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
955 *
956 * Return:
957 * 0 - ready to wait;
958 * 1 - acquired the lock;
959 * <0 - error
960 *
961 * The hb->lock and futex_key refs shall be held by the caller.
962 */
963 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
964 union futex_key *key,
965 struct futex_pi_state **ps,
966 struct task_struct *task, int set_waiters)
967 {
968 int lock_taken, ret, force_take = 0;
969 u32 uval, newval, curval, vpid = task_pid_vnr(task);
970
971 retry:
972 ret = lock_taken = 0;
973
974 /*
975 * To avoid races, we attempt to take the lock here again
976 * (by doing a 0 -> TID atomic cmpxchg), while holding all
977 * the locks. It will most likely not succeed.
978 */
979 newval = vpid;
980 if (set_waiters)
981 newval |= FUTEX_WAITERS;
982
983 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
984 return -EFAULT;
985
986 /*
987 * Detect deadlocks.
988 */
989 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
990 return -EDEADLK;
991
992 /*
993 * Surprise - we got the lock, but we do not trust user space at all.
994 */
995 if (unlikely(!curval)) {
996 /*
997 * We verify whether there is kernel state for this
998 * futex. If not, we can safely assume, that the 0 ->
999 * TID transition is correct. If state exists, we do
1000 * not bother to fixup the user space state as it was
1001 * corrupted already.
1002 */
1003 return futex_top_waiter(hb, key) ? -EINVAL : 1;
1004 }
1005
1006 uval = curval;
1007
1008 /*
1009 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
1010 * to wake at the next unlock.
1011 */
1012 newval = curval | FUTEX_WAITERS;
1013
1014 /*
1015 * Should we force take the futex? See below.
1016 */
1017 if (unlikely(force_take)) {
1018 /*
1019 * Keep the OWNER_DIED and the WAITERS bit and set the
1020 * new TID value.
1021 */
1022 newval = (curval & ~FUTEX_TID_MASK) | vpid;
1023 force_take = 0;
1024 lock_taken = 1;
1025 }
1026
1027 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1028 return -EFAULT;
1029 if (unlikely(curval != uval))
1030 goto retry;
1031
1032 /*
1033 * We took the lock due to forced take over.
1034 */
1035 if (unlikely(lock_taken))
1036 return 1;
1037
1038 /*
1039 * We dont have the lock. Look up the PI state (or create it if
1040 * we are the first waiter):
1041 */
1042 ret = lookup_pi_state(uval, hb, key, ps);
1043
1044 if (unlikely(ret)) {
1045 switch (ret) {
1046 case -ESRCH:
1047 /*
1048 * We failed to find an owner for this
1049 * futex. So we have no pi_state to block
1050 * on. This can happen in two cases:
1051 *
1052 * 1) The owner died
1053 * 2) A stale FUTEX_WAITERS bit
1054 *
1055 * Re-read the futex value.
1056 */
1057 if (get_futex_value_locked(&curval, uaddr))
1058 return -EFAULT;
1059
1060 /*
1061 * If the owner died or we have a stale
1062 * WAITERS bit the owner TID in the user space
1063 * futex is 0.
1064 */
1065 if (!(curval & FUTEX_TID_MASK)) {
1066 force_take = 1;
1067 goto retry;
1068 }
1069 default:
1070 break;
1071 }
1072 }
1073
1074 return ret;
1075 }
1076
1077 /**
1078 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1079 * @q: The futex_q to unqueue
1080 *
1081 * The q->lock_ptr must not be NULL and must be held by the caller.
1082 */
1083 static void __unqueue_futex(struct futex_q *q)
1084 {
1085 struct futex_hash_bucket *hb;
1086
1087 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1088 || WARN_ON(plist_node_empty(&q->list)))
1089 return;
1090
1091 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1092 plist_del(&q->list, &hb->chain);
1093 hb_waiters_dec(hb);
1094 }
1095
1096 /*
1097 * The hash bucket lock must be held when this is called.
1098 * Afterwards, the futex_q must not be accessed.
1099 */
1100 static void wake_futex(struct futex_q *q)
1101 {
1102 struct task_struct *p = q->task;
1103
1104 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1105 return;
1106
1107 /*
1108 * We set q->lock_ptr = NULL _before_ we wake up the task. If
1109 * a non-futex wake up happens on another CPU then the task
1110 * might exit and p would dereference a non-existing task
1111 * struct. Prevent this by holding a reference on p across the
1112 * wake up.
1113 */
1114 get_task_struct(p);
1115
1116 __unqueue_futex(q);
1117 /*
1118 * The waiting task can free the futex_q as soon as
1119 * q->lock_ptr = NULL is written, without taking any locks. A
1120 * memory barrier is required here to prevent the following
1121 * store to lock_ptr from getting ahead of the plist_del.
1122 */
1123 smp_wmb();
1124 q->lock_ptr = NULL;
1125
1126 wake_up_state(p, TASK_NORMAL);
1127 put_task_struct(p);
1128 }
1129
1130 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1131 {
1132 struct task_struct *new_owner;
1133 struct futex_pi_state *pi_state = this->pi_state;
1134 u32 uninitialized_var(curval), newval;
1135 int ret = 0;
1136
1137 if (!pi_state)
1138 return -EINVAL;
1139
1140 /*
1141 * If current does not own the pi_state then the futex is
1142 * inconsistent and user space fiddled with the futex value.
1143 */
1144 if (pi_state->owner != current)
1145 return -EINVAL;
1146
1147 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1148 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1149
1150 /*
1151 * It is possible that the next waiter (the one that brought
1152 * this owner to the kernel) timed out and is no longer
1153 * waiting on the lock.
1154 */
1155 if (!new_owner)
1156 new_owner = this->task;
1157
1158 /*
1159 * We pass it to the next owner. The WAITERS bit is always
1160 * kept enabled while there is PI state around. We cleanup the
1161 * owner died bit, because we are the owner.
1162 */
1163 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1164
1165 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1166 ret = -EFAULT;
1167 else if (curval != uval)
1168 ret = -EINVAL;
1169 if (ret) {
1170 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1171 return ret;
1172 }
1173
1174 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1175 WARN_ON(list_empty(&pi_state->list));
1176 list_del_init(&pi_state->list);
1177 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1178
1179 raw_spin_lock_irq(&new_owner->pi_lock);
1180 WARN_ON(!list_empty(&pi_state->list));
1181 list_add(&pi_state->list, &new_owner->pi_state_list);
1182 pi_state->owner = new_owner;
1183 raw_spin_unlock_irq(&new_owner->pi_lock);
1184
1185 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1186 rt_mutex_unlock(&pi_state->pi_mutex);
1187
1188 return 0;
1189 }
1190
1191 /*
1192 * Express the locking dependencies for lockdep:
1193 */
1194 static inline void
1195 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1196 {
1197 if (hb1 <= hb2) {
1198 spin_lock(&hb1->lock);
1199 if (hb1 < hb2)
1200 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1201 } else { /* hb1 > hb2 */
1202 spin_lock(&hb2->lock);
1203 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1204 }
1205 }
1206
1207 static inline void
1208 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1209 {
1210 spin_unlock(&hb1->lock);
1211 if (hb1 != hb2)
1212 spin_unlock(&hb2->lock);
1213 }
1214
1215 /*
1216 * Wake up waiters matching bitset queued on this futex (uaddr).
1217 */
1218 static int
1219 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1220 {
1221 struct futex_hash_bucket *hb;
1222 struct futex_q *this, *next;
1223 union futex_key key = FUTEX_KEY_INIT;
1224 int ret;
1225
1226 if (!bitset)
1227 return -EINVAL;
1228
1229 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1230 if (unlikely(ret != 0))
1231 goto out;
1232
1233 hb = hash_futex(&key);
1234
1235 /* Make sure we really have tasks to wakeup */
1236 if (!hb_waiters_pending(hb))
1237 goto out_put_key;
1238
1239 spin_lock(&hb->lock);
1240
1241 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1242 if (match_futex (&this->key, &key)) {
1243 if (this->pi_state || this->rt_waiter) {
1244 ret = -EINVAL;
1245 break;
1246 }
1247
1248 /* Check if one of the bits is set in both bitsets */
1249 if (!(this->bitset & bitset))
1250 continue;
1251
1252 wake_futex(this);
1253 if (++ret >= nr_wake)
1254 break;
1255 }
1256 }
1257
1258 spin_unlock(&hb->lock);
1259 out_put_key:
1260 put_futex_key(&key);
1261 out:
1262 return ret;
1263 }
1264
1265 /*
1266 * Wake up all waiters hashed on the physical page that is mapped
1267 * to this virtual address:
1268 */
1269 static int
1270 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1271 int nr_wake, int nr_wake2, int op)
1272 {
1273 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1274 struct futex_hash_bucket *hb1, *hb2;
1275 struct futex_q *this, *next;
1276 int ret, op_ret;
1277
1278 retry:
1279 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1280 if (unlikely(ret != 0))
1281 goto out;
1282 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1283 if (unlikely(ret != 0))
1284 goto out_put_key1;
1285
1286 hb1 = hash_futex(&key1);
1287 hb2 = hash_futex(&key2);
1288
1289 retry_private:
1290 double_lock_hb(hb1, hb2);
1291 op_ret = futex_atomic_op_inuser(op, uaddr2);
1292 if (unlikely(op_ret < 0)) {
1293
1294 double_unlock_hb(hb1, hb2);
1295
1296 #ifndef CONFIG_MMU
1297 /*
1298 * we don't get EFAULT from MMU faults if we don't have an MMU,
1299 * but we might get them from range checking
1300 */
1301 ret = op_ret;
1302 goto out_put_keys;
1303 #endif
1304
1305 if (unlikely(op_ret != -EFAULT)) {
1306 ret = op_ret;
1307 goto out_put_keys;
1308 }
1309
1310 ret = fault_in_user_writeable(uaddr2);
1311 if (ret)
1312 goto out_put_keys;
1313
1314 if (!(flags & FLAGS_SHARED))
1315 goto retry_private;
1316
1317 put_futex_key(&key2);
1318 put_futex_key(&key1);
1319 goto retry;
1320 }
1321
1322 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1323 if (match_futex (&this->key, &key1)) {
1324 if (this->pi_state || this->rt_waiter) {
1325 ret = -EINVAL;
1326 goto out_unlock;
1327 }
1328 wake_futex(this);
1329 if (++ret >= nr_wake)
1330 break;
1331 }
1332 }
1333
1334 if (op_ret > 0) {
1335 op_ret = 0;
1336 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1337 if (match_futex (&this->key, &key2)) {
1338 if (this->pi_state || this->rt_waiter) {
1339 ret = -EINVAL;
1340 goto out_unlock;
1341 }
1342 wake_futex(this);
1343 if (++op_ret >= nr_wake2)
1344 break;
1345 }
1346 }
1347 ret += op_ret;
1348 }
1349
1350 out_unlock:
1351 double_unlock_hb(hb1, hb2);
1352 out_put_keys:
1353 put_futex_key(&key2);
1354 out_put_key1:
1355 put_futex_key(&key1);
1356 out:
1357 return ret;
1358 }
1359
1360 /**
1361 * requeue_futex() - Requeue a futex_q from one hb to another
1362 * @q: the futex_q to requeue
1363 * @hb1: the source hash_bucket
1364 * @hb2: the target hash_bucket
1365 * @key2: the new key for the requeued futex_q
1366 */
1367 static inline
1368 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1369 struct futex_hash_bucket *hb2, union futex_key *key2)
1370 {
1371
1372 /*
1373 * If key1 and key2 hash to the same bucket, no need to
1374 * requeue.
1375 */
1376 if (likely(&hb1->chain != &hb2->chain)) {
1377 plist_del(&q->list, &hb1->chain);
1378 hb_waiters_dec(hb1);
1379 plist_add(&q->list, &hb2->chain);
1380 hb_waiters_inc(hb2);
1381 q->lock_ptr = &hb2->lock;
1382 }
1383 get_futex_key_refs(key2);
1384 q->key = *key2;
1385 }
1386
1387 /**
1388 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1389 * @q: the futex_q
1390 * @key: the key of the requeue target futex
1391 * @hb: the hash_bucket of the requeue target futex
1392 *
1393 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1394 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1395 * to the requeue target futex so the waiter can detect the wakeup on the right
1396 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1397 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1398 * to protect access to the pi_state to fixup the owner later. Must be called
1399 * with both q->lock_ptr and hb->lock held.
1400 */
1401 static inline
1402 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1403 struct futex_hash_bucket *hb)
1404 {
1405 get_futex_key_refs(key);
1406 q->key = *key;
1407
1408 __unqueue_futex(q);
1409
1410 WARN_ON(!q->rt_waiter);
1411 q->rt_waiter = NULL;
1412
1413 q->lock_ptr = &hb->lock;
1414
1415 wake_up_state(q->task, TASK_NORMAL);
1416 }
1417
1418 /**
1419 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1420 * @pifutex: the user address of the to futex
1421 * @hb1: the from futex hash bucket, must be locked by the caller
1422 * @hb2: the to futex hash bucket, must be locked by the caller
1423 * @key1: the from futex key
1424 * @key2: the to futex key
1425 * @ps: address to store the pi_state pointer
1426 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1427 *
1428 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1429 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1430 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1431 * hb1 and hb2 must be held by the caller.
1432 *
1433 * Return:
1434 * 0 - failed to acquire the lock atomically;
1435 * >0 - acquired the lock, return value is vpid of the top_waiter
1436 * <0 - error
1437 */
1438 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1439 struct futex_hash_bucket *hb1,
1440 struct futex_hash_bucket *hb2,
1441 union futex_key *key1, union futex_key *key2,
1442 struct futex_pi_state **ps, int set_waiters)
1443 {
1444 struct futex_q *top_waiter = NULL;
1445 u32 curval;
1446 int ret, vpid;
1447
1448 if (get_futex_value_locked(&curval, pifutex))
1449 return -EFAULT;
1450
1451 /*
1452 * Find the top_waiter and determine if there are additional waiters.
1453 * If the caller intends to requeue more than 1 waiter to pifutex,
1454 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1455 * as we have means to handle the possible fault. If not, don't set
1456 * the bit unecessarily as it will force the subsequent unlock to enter
1457 * the kernel.
1458 */
1459 top_waiter = futex_top_waiter(hb1, key1);
1460
1461 /* There are no waiters, nothing for us to do. */
1462 if (!top_waiter)
1463 return 0;
1464
1465 /* Ensure we requeue to the expected futex. */
1466 if (!match_futex(top_waiter->requeue_pi_key, key2))
1467 return -EINVAL;
1468
1469 /*
1470 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1471 * the contended case or if set_waiters is 1. The pi_state is returned
1472 * in ps in contended cases.
1473 */
1474 vpid = task_pid_vnr(top_waiter->task);
1475 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1476 set_waiters);
1477 if (ret == 1) {
1478 requeue_pi_wake_futex(top_waiter, key2, hb2);
1479 return vpid;
1480 }
1481 return ret;
1482 }
1483
1484 /**
1485 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1486 * @uaddr1: source futex user address
1487 * @flags: futex flags (FLAGS_SHARED, etc.)
1488 * @uaddr2: target futex user address
1489 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1490 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1491 * @cmpval: @uaddr1 expected value (or %NULL)
1492 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1493 * pi futex (pi to pi requeue is not supported)
1494 *
1495 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1496 * uaddr2 atomically on behalf of the top waiter.
1497 *
1498 * Return:
1499 * >=0 - on success, the number of tasks requeued or woken;
1500 * <0 - on error
1501 */
1502 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1503 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1504 u32 *cmpval, int requeue_pi)
1505 {
1506 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1507 int drop_count = 0, task_count = 0, ret;
1508 struct futex_pi_state *pi_state = NULL;
1509 struct futex_hash_bucket *hb1, *hb2;
1510 struct futex_q *this, *next;
1511
1512 if (requeue_pi) {
1513 /*
1514 * Requeue PI only works on two distinct uaddrs. This
1515 * check is only valid for private futexes. See below.
1516 */
1517 if (uaddr1 == uaddr2)
1518 return -EINVAL;
1519
1520 /*
1521 * requeue_pi requires a pi_state, try to allocate it now
1522 * without any locks in case it fails.
1523 */
1524 if (refill_pi_state_cache())
1525 return -ENOMEM;
1526 /*
1527 * requeue_pi must wake as many tasks as it can, up to nr_wake
1528 * + nr_requeue, since it acquires the rt_mutex prior to
1529 * returning to userspace, so as to not leave the rt_mutex with
1530 * waiters and no owner. However, second and third wake-ups
1531 * cannot be predicted as they involve race conditions with the
1532 * first wake and a fault while looking up the pi_state. Both
1533 * pthread_cond_signal() and pthread_cond_broadcast() should
1534 * use nr_wake=1.
1535 */
1536 if (nr_wake != 1)
1537 return -EINVAL;
1538 }
1539
1540 retry:
1541 if (pi_state != NULL) {
1542 /*
1543 * We will have to lookup the pi_state again, so free this one
1544 * to keep the accounting correct.
1545 */
1546 free_pi_state(pi_state);
1547 pi_state = NULL;
1548 }
1549
1550 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1551 if (unlikely(ret != 0))
1552 goto out;
1553 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1554 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1555 if (unlikely(ret != 0))
1556 goto out_put_key1;
1557
1558 /*
1559 * The check above which compares uaddrs is not sufficient for
1560 * shared futexes. We need to compare the keys:
1561 */
1562 if (requeue_pi && match_futex(&key1, &key2)) {
1563 ret = -EINVAL;
1564 goto out_put_keys;
1565 }
1566
1567 hb1 = hash_futex(&key1);
1568 hb2 = hash_futex(&key2);
1569
1570 retry_private:
1571 hb_waiters_inc(hb2);
1572 double_lock_hb(hb1, hb2);
1573
1574 if (likely(cmpval != NULL)) {
1575 u32 curval;
1576
1577 ret = get_futex_value_locked(&curval, uaddr1);
1578
1579 if (unlikely(ret)) {
1580 double_unlock_hb(hb1, hb2);
1581 hb_waiters_dec(hb2);
1582
1583 ret = get_user(curval, uaddr1);
1584 if (ret)
1585 goto out_put_keys;
1586
1587 if (!(flags & FLAGS_SHARED))
1588 goto retry_private;
1589
1590 put_futex_key(&key2);
1591 put_futex_key(&key1);
1592 goto retry;
1593 }
1594 if (curval != *cmpval) {
1595 ret = -EAGAIN;
1596 goto out_unlock;
1597 }
1598 }
1599
1600 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1601 /*
1602 * Attempt to acquire uaddr2 and wake the top waiter. If we
1603 * intend to requeue waiters, force setting the FUTEX_WAITERS
1604 * bit. We force this here where we are able to easily handle
1605 * faults rather in the requeue loop below.
1606 */
1607 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1608 &key2, &pi_state, nr_requeue);
1609
1610 /*
1611 * At this point the top_waiter has either taken uaddr2 or is
1612 * waiting on it. If the former, then the pi_state will not
1613 * exist yet, look it up one more time to ensure we have a
1614 * reference to it. If the lock was taken, ret contains the
1615 * vpid of the top waiter task.
1616 */
1617 if (ret > 0) {
1618 WARN_ON(pi_state);
1619 drop_count++;
1620 task_count++;
1621 /*
1622 * If we acquired the lock, then the user
1623 * space value of uaddr2 should be vpid. It
1624 * cannot be changed by the top waiter as it
1625 * is blocked on hb2 lock if it tries to do
1626 * so. If something fiddled with it behind our
1627 * back the pi state lookup might unearth
1628 * it. So we rather use the known value than
1629 * rereading and handing potential crap to
1630 * lookup_pi_state.
1631 */
1632 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1633 }
1634
1635 switch (ret) {
1636 case 0:
1637 break;
1638 case -EFAULT:
1639 double_unlock_hb(hb1, hb2);
1640 hb_waiters_dec(hb2);
1641 put_futex_key(&key2);
1642 put_futex_key(&key1);
1643 ret = fault_in_user_writeable(uaddr2);
1644 if (!ret)
1645 goto retry;
1646 goto out;
1647 case -EAGAIN:
1648 /* The owner was exiting, try again. */
1649 double_unlock_hb(hb1, hb2);
1650 hb_waiters_dec(hb2);
1651 put_futex_key(&key2);
1652 put_futex_key(&key1);
1653 cond_resched();
1654 goto retry;
1655 default:
1656 goto out_unlock;
1657 }
1658 }
1659
1660 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1661 if (task_count - nr_wake >= nr_requeue)
1662 break;
1663
1664 if (!match_futex(&this->key, &key1))
1665 continue;
1666
1667 /*
1668 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1669 * be paired with each other and no other futex ops.
1670 *
1671 * We should never be requeueing a futex_q with a pi_state,
1672 * which is awaiting a futex_unlock_pi().
1673 */
1674 if ((requeue_pi && !this->rt_waiter) ||
1675 (!requeue_pi && this->rt_waiter) ||
1676 this->pi_state) {
1677 ret = -EINVAL;
1678 break;
1679 }
1680
1681 /*
1682 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1683 * lock, we already woke the top_waiter. If not, it will be
1684 * woken by futex_unlock_pi().
1685 */
1686 if (++task_count <= nr_wake && !requeue_pi) {
1687 wake_futex(this);
1688 continue;
1689 }
1690
1691 /* Ensure we requeue to the expected futex for requeue_pi. */
1692 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1693 ret = -EINVAL;
1694 break;
1695 }
1696
1697 /*
1698 * Requeue nr_requeue waiters and possibly one more in the case
1699 * of requeue_pi if we couldn't acquire the lock atomically.
1700 */
1701 if (requeue_pi) {
1702 /* Prepare the waiter to take the rt_mutex. */
1703 atomic_inc(&pi_state->refcount);
1704 this->pi_state = pi_state;
1705 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1706 this->rt_waiter,
1707 this->task);
1708 if (ret == 1) {
1709 /* We got the lock. */
1710 requeue_pi_wake_futex(this, &key2, hb2);
1711 drop_count++;
1712 continue;
1713 } else if (ret) {
1714 /* -EDEADLK */
1715 this->pi_state = NULL;
1716 free_pi_state(pi_state);
1717 goto out_unlock;
1718 }
1719 }
1720 requeue_futex(this, hb1, hb2, &key2);
1721 drop_count++;
1722 }
1723
1724 out_unlock:
1725 double_unlock_hb(hb1, hb2);
1726 hb_waiters_dec(hb2);
1727
1728 /*
1729 * drop_futex_key_refs() must be called outside the spinlocks. During
1730 * the requeue we moved futex_q's from the hash bucket at key1 to the
1731 * one at key2 and updated their key pointer. We no longer need to
1732 * hold the references to key1.
1733 */
1734 while (--drop_count >= 0)
1735 drop_futex_key_refs(&key1);
1736
1737 out_put_keys:
1738 put_futex_key(&key2);
1739 out_put_key1:
1740 put_futex_key(&key1);
1741 out:
1742 if (pi_state != NULL)
1743 free_pi_state(pi_state);
1744 return ret ? ret : task_count;
1745 }
1746
1747 /* The key must be already stored in q->key. */
1748 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1749 __acquires(&hb->lock)
1750 {
1751 struct futex_hash_bucket *hb;
1752
1753 hb = hash_futex(&q->key);
1754
1755 /*
1756 * Increment the counter before taking the lock so that
1757 * a potential waker won't miss a to-be-slept task that is
1758 * waiting for the spinlock. This is safe as all queue_lock()
1759 * users end up calling queue_me(). Similarly, for housekeeping,
1760 * decrement the counter at queue_unlock() when some error has
1761 * occurred and we don't end up adding the task to the list.
1762 */
1763 hb_waiters_inc(hb);
1764
1765 q->lock_ptr = &hb->lock;
1766
1767 spin_lock(&hb->lock); /* implies MB (A) */
1768 return hb;
1769 }
1770
1771 static inline void
1772 queue_unlock(struct futex_hash_bucket *hb)
1773 __releases(&hb->lock)
1774 {
1775 spin_unlock(&hb->lock);
1776 hb_waiters_dec(hb);
1777 }
1778
1779 /**
1780 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1781 * @q: The futex_q to enqueue
1782 * @hb: The destination hash bucket
1783 *
1784 * The hb->lock must be held by the caller, and is released here. A call to
1785 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1786 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1787 * or nothing if the unqueue is done as part of the wake process and the unqueue
1788 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1789 * an example).
1790 */
1791 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1792 __releases(&hb->lock)
1793 {
1794 int prio;
1795
1796 /*
1797 * The priority used to register this element is
1798 * - either the real thread-priority for the real-time threads
1799 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1800 * - or MAX_RT_PRIO for non-RT threads.
1801 * Thus, all RT-threads are woken first in priority order, and
1802 * the others are woken last, in FIFO order.
1803 */
1804 prio = min(current->normal_prio, MAX_RT_PRIO);
1805
1806 plist_node_init(&q->list, prio);
1807 plist_add(&q->list, &hb->chain);
1808 q->task = current;
1809 spin_unlock(&hb->lock);
1810 }
1811
1812 /**
1813 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1814 * @q: The futex_q to unqueue
1815 *
1816 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1817 * be paired with exactly one earlier call to queue_me().
1818 *
1819 * Return:
1820 * 1 - if the futex_q was still queued (and we removed unqueued it);
1821 * 0 - if the futex_q was already removed by the waking thread
1822 */
1823 static int unqueue_me(struct futex_q *q)
1824 {
1825 spinlock_t *lock_ptr;
1826 int ret = 0;
1827
1828 /* In the common case we don't take the spinlock, which is nice. */
1829 retry:
1830 lock_ptr = q->lock_ptr;
1831 barrier();
1832 if (lock_ptr != NULL) {
1833 spin_lock(lock_ptr);
1834 /*
1835 * q->lock_ptr can change between reading it and
1836 * spin_lock(), causing us to take the wrong lock. This
1837 * corrects the race condition.
1838 *
1839 * Reasoning goes like this: if we have the wrong lock,
1840 * q->lock_ptr must have changed (maybe several times)
1841 * between reading it and the spin_lock(). It can
1842 * change again after the spin_lock() but only if it was
1843 * already changed before the spin_lock(). It cannot,
1844 * however, change back to the original value. Therefore
1845 * we can detect whether we acquired the correct lock.
1846 */
1847 if (unlikely(lock_ptr != q->lock_ptr)) {
1848 spin_unlock(lock_ptr);
1849 goto retry;
1850 }
1851 __unqueue_futex(q);
1852
1853 BUG_ON(q->pi_state);
1854
1855 spin_unlock(lock_ptr);
1856 ret = 1;
1857 }
1858
1859 drop_futex_key_refs(&q->key);
1860 return ret;
1861 }
1862
1863 /*
1864 * PI futexes can not be requeued and must remove themself from the
1865 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1866 * and dropped here.
1867 */
1868 static void unqueue_me_pi(struct futex_q *q)
1869 __releases(q->lock_ptr)
1870 {
1871 __unqueue_futex(q);
1872
1873 BUG_ON(!q->pi_state);
1874 free_pi_state(q->pi_state);
1875 q->pi_state = NULL;
1876
1877 spin_unlock(q->lock_ptr);
1878 }
1879
1880 /*
1881 * Fixup the pi_state owner with the new owner.
1882 *
1883 * Must be called with hash bucket lock held and mm->sem held for non
1884 * private futexes.
1885 */
1886 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1887 struct task_struct *newowner)
1888 {
1889 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1890 struct futex_pi_state *pi_state = q->pi_state;
1891 struct task_struct *oldowner = pi_state->owner;
1892 u32 uval, uninitialized_var(curval), newval;
1893 int ret;
1894
1895 /* Owner died? */
1896 if (!pi_state->owner)
1897 newtid |= FUTEX_OWNER_DIED;
1898
1899 /*
1900 * We are here either because we stole the rtmutex from the
1901 * previous highest priority waiter or we are the highest priority
1902 * waiter but failed to get the rtmutex the first time.
1903 * We have to replace the newowner TID in the user space variable.
1904 * This must be atomic as we have to preserve the owner died bit here.
1905 *
1906 * Note: We write the user space value _before_ changing the pi_state
1907 * because we can fault here. Imagine swapped out pages or a fork
1908 * that marked all the anonymous memory readonly for cow.
1909 *
1910 * Modifying pi_state _before_ the user space value would
1911 * leave the pi_state in an inconsistent state when we fault
1912 * here, because we need to drop the hash bucket lock to
1913 * handle the fault. This might be observed in the PID check
1914 * in lookup_pi_state.
1915 */
1916 retry:
1917 if (get_futex_value_locked(&uval, uaddr))
1918 goto handle_fault;
1919
1920 while (1) {
1921 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1922
1923 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1924 goto handle_fault;
1925 if (curval == uval)
1926 break;
1927 uval = curval;
1928 }
1929
1930 /*
1931 * We fixed up user space. Now we need to fix the pi_state
1932 * itself.
1933 */
1934 if (pi_state->owner != NULL) {
1935 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1936 WARN_ON(list_empty(&pi_state->list));
1937 list_del_init(&pi_state->list);
1938 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1939 }
1940
1941 pi_state->owner = newowner;
1942
1943 raw_spin_lock_irq(&newowner->pi_lock);
1944 WARN_ON(!list_empty(&pi_state->list));
1945 list_add(&pi_state->list, &newowner->pi_state_list);
1946 raw_spin_unlock_irq(&newowner->pi_lock);
1947 return 0;
1948
1949 /*
1950 * To handle the page fault we need to drop the hash bucket
1951 * lock here. That gives the other task (either the highest priority
1952 * waiter itself or the task which stole the rtmutex) the
1953 * chance to try the fixup of the pi_state. So once we are
1954 * back from handling the fault we need to check the pi_state
1955 * after reacquiring the hash bucket lock and before trying to
1956 * do another fixup. When the fixup has been done already we
1957 * simply return.
1958 */
1959 handle_fault:
1960 spin_unlock(q->lock_ptr);
1961
1962 ret = fault_in_user_writeable(uaddr);
1963
1964 spin_lock(q->lock_ptr);
1965
1966 /*
1967 * Check if someone else fixed it for us:
1968 */
1969 if (pi_state->owner != oldowner)
1970 return 0;
1971
1972 if (ret)
1973 return ret;
1974
1975 goto retry;
1976 }
1977
1978 static long futex_wait_restart(struct restart_block *restart);
1979
1980 /**
1981 * fixup_owner() - Post lock pi_state and corner case management
1982 * @uaddr: user address of the futex
1983 * @q: futex_q (contains pi_state and access to the rt_mutex)
1984 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1985 *
1986 * After attempting to lock an rt_mutex, this function is called to cleanup
1987 * the pi_state owner as well as handle race conditions that may allow us to
1988 * acquire the lock. Must be called with the hb lock held.
1989 *
1990 * Return:
1991 * 1 - success, lock taken;
1992 * 0 - success, lock not taken;
1993 * <0 - on error (-EFAULT)
1994 */
1995 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1996 {
1997 struct task_struct *owner;
1998 int ret = 0;
1999
2000 if (locked) {
2001 /*
2002 * Got the lock. We might not be the anticipated owner if we
2003 * did a lock-steal - fix up the PI-state in that case:
2004 */
2005 if (q->pi_state->owner != current)
2006 ret = fixup_pi_state_owner(uaddr, q, current);
2007 goto out;
2008 }
2009
2010 /*
2011 * Catch the rare case, where the lock was released when we were on the
2012 * way back before we locked the hash bucket.
2013 */
2014 if (q->pi_state->owner == current) {
2015 /*
2016 * Try to get the rt_mutex now. This might fail as some other
2017 * task acquired the rt_mutex after we removed ourself from the
2018 * rt_mutex waiters list.
2019 */
2020 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2021 locked = 1;
2022 goto out;
2023 }
2024
2025 /*
2026 * pi_state is incorrect, some other task did a lock steal and
2027 * we returned due to timeout or signal without taking the
2028 * rt_mutex. Too late.
2029 */
2030 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2031 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2032 if (!owner)
2033 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2034 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2035 ret = fixup_pi_state_owner(uaddr, q, owner);
2036 goto out;
2037 }
2038
2039 /*
2040 * Paranoia check. If we did not take the lock, then we should not be
2041 * the owner of the rt_mutex.
2042 */
2043 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2044 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2045 "pi-state %p\n", ret,
2046 q->pi_state->pi_mutex.owner,
2047 q->pi_state->owner);
2048
2049 out:
2050 return ret ? ret : locked;
2051 }
2052
2053 /**
2054 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2055 * @hb: the futex hash bucket, must be locked by the caller
2056 * @q: the futex_q to queue up on
2057 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2058 */
2059 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2060 struct hrtimer_sleeper *timeout)
2061 {
2062 /*
2063 * The task state is guaranteed to be set before another task can
2064 * wake it. set_current_state() is implemented using set_mb() and
2065 * queue_me() calls spin_unlock() upon completion, both serializing
2066 * access to the hash list and forcing another memory barrier.
2067 */
2068 set_current_state(TASK_INTERRUPTIBLE);
2069 queue_me(q, hb);
2070
2071 /* Arm the timer */
2072 if (timeout) {
2073 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2074 if (!hrtimer_active(&timeout->timer))
2075 timeout->task = NULL;
2076 }
2077
2078 /*
2079 * If we have been removed from the hash list, then another task
2080 * has tried to wake us, and we can skip the call to schedule().
2081 */
2082 if (likely(!plist_node_empty(&q->list))) {
2083 /*
2084 * If the timer has already expired, current will already be
2085 * flagged for rescheduling. Only call schedule if there
2086 * is no timeout, or if it has yet to expire.
2087 */
2088 if (!timeout || timeout->task)
2089 freezable_schedule();
2090 }
2091 __set_current_state(TASK_RUNNING);
2092 }
2093
2094 /**
2095 * futex_wait_setup() - Prepare to wait on a futex
2096 * @uaddr: the futex userspace address
2097 * @val: the expected value
2098 * @flags: futex flags (FLAGS_SHARED, etc.)
2099 * @q: the associated futex_q
2100 * @hb: storage for hash_bucket pointer to be returned to caller
2101 *
2102 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2103 * compare it with the expected value. Handle atomic faults internally.
2104 * Return with the hb lock held and a q.key reference on success, and unlocked
2105 * with no q.key reference on failure.
2106 *
2107 * Return:
2108 * 0 - uaddr contains val and hb has been locked;
2109 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2110 */
2111 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2112 struct futex_q *q, struct futex_hash_bucket **hb)
2113 {
2114 u32 uval;
2115 int ret;
2116
2117 /*
2118 * Access the page AFTER the hash-bucket is locked.
2119 * Order is important:
2120 *
2121 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2122 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2123 *
2124 * The basic logical guarantee of a futex is that it blocks ONLY
2125 * if cond(var) is known to be true at the time of blocking, for
2126 * any cond. If we locked the hash-bucket after testing *uaddr, that
2127 * would open a race condition where we could block indefinitely with
2128 * cond(var) false, which would violate the guarantee.
2129 *
2130 * On the other hand, we insert q and release the hash-bucket only
2131 * after testing *uaddr. This guarantees that futex_wait() will NOT
2132 * absorb a wakeup if *uaddr does not match the desired values
2133 * while the syscall executes.
2134 */
2135 retry:
2136 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2137 if (unlikely(ret != 0))
2138 return ret;
2139
2140 retry_private:
2141 *hb = queue_lock(q);
2142
2143 ret = get_futex_value_locked(&uval, uaddr);
2144
2145 if (ret) {
2146 queue_unlock(*hb);
2147
2148 ret = get_user(uval, uaddr);
2149 if (ret)
2150 goto out;
2151
2152 if (!(flags & FLAGS_SHARED))
2153 goto retry_private;
2154
2155 put_futex_key(&q->key);
2156 goto retry;
2157 }
2158
2159 if (uval != val) {
2160 queue_unlock(*hb);
2161 ret = -EWOULDBLOCK;
2162 }
2163
2164 out:
2165 if (ret)
2166 put_futex_key(&q->key);
2167 return ret;
2168 }
2169
2170 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2171 ktime_t *abs_time, u32 bitset)
2172 {
2173 struct hrtimer_sleeper timeout, *to = NULL;
2174 struct restart_block *restart;
2175 struct futex_hash_bucket *hb;
2176 struct futex_q q = futex_q_init;
2177 int ret;
2178
2179 if (!bitset)
2180 return -EINVAL;
2181 q.bitset = bitset;
2182
2183 if (abs_time) {
2184 to = &timeout;
2185
2186 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2187 CLOCK_REALTIME : CLOCK_MONOTONIC,
2188 HRTIMER_MODE_ABS);
2189 hrtimer_init_sleeper(to, current);
2190 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2191 current->timer_slack_ns);
2192 }
2193
2194 retry:
2195 /*
2196 * Prepare to wait on uaddr. On success, holds hb lock and increments
2197 * q.key refs.
2198 */
2199 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2200 if (ret)
2201 goto out;
2202
2203 /* queue_me and wait for wakeup, timeout, or a signal. */
2204 futex_wait_queue_me(hb, &q, to);
2205
2206 /* If we were woken (and unqueued), we succeeded, whatever. */
2207 ret = 0;
2208 /* unqueue_me() drops q.key ref */
2209 if (!unqueue_me(&q))
2210 goto out;
2211 ret = -ETIMEDOUT;
2212 if (to && !to->task)
2213 goto out;
2214
2215 /*
2216 * We expect signal_pending(current), but we might be the
2217 * victim of a spurious wakeup as well.
2218 */
2219 if (!signal_pending(current))
2220 goto retry;
2221
2222 ret = -ERESTARTSYS;
2223 if (!abs_time)
2224 goto out;
2225
2226 restart = &current_thread_info()->restart_block;
2227 restart->fn = futex_wait_restart;
2228 restart->futex.uaddr = uaddr;
2229 restart->futex.val = val;
2230 restart->futex.time = abs_time->tv64;
2231 restart->futex.bitset = bitset;
2232 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2233
2234 ret = -ERESTART_RESTARTBLOCK;
2235
2236 out:
2237 if (to) {
2238 hrtimer_cancel(&to->timer);
2239 destroy_hrtimer_on_stack(&to->timer);
2240 }
2241 return ret;
2242 }
2243
2244
2245 static long futex_wait_restart(struct restart_block *restart)
2246 {
2247 u32 __user *uaddr = restart->futex.uaddr;
2248 ktime_t t, *tp = NULL;
2249
2250 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2251 t.tv64 = restart->futex.time;
2252 tp = &t;
2253 }
2254 restart->fn = do_no_restart_syscall;
2255
2256 return (long)futex_wait(uaddr, restart->futex.flags,
2257 restart->futex.val, tp, restart->futex.bitset);
2258 }
2259
2260
2261 /*
2262 * Userspace tried a 0 -> TID atomic transition of the futex value
2263 * and failed. The kernel side here does the whole locking operation:
2264 * if there are waiters then it will block, it does PI, etc. (Due to
2265 * races the kernel might see a 0 value of the futex too.)
2266 */
2267 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2268 ktime_t *time, int trylock)
2269 {
2270 struct hrtimer_sleeper timeout, *to = NULL;
2271 struct futex_hash_bucket *hb;
2272 struct futex_q q = futex_q_init;
2273 int res, ret;
2274
2275 if (refill_pi_state_cache())
2276 return -ENOMEM;
2277
2278 if (time) {
2279 to = &timeout;
2280 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2281 HRTIMER_MODE_ABS);
2282 hrtimer_init_sleeper(to, current);
2283 hrtimer_set_expires(&to->timer, *time);
2284 }
2285
2286 retry:
2287 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2288 if (unlikely(ret != 0))
2289 goto out;
2290
2291 retry_private:
2292 hb = queue_lock(&q);
2293
2294 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2295 if (unlikely(ret)) {
2296 switch (ret) {
2297 case 1:
2298 /* We got the lock. */
2299 ret = 0;
2300 goto out_unlock_put_key;
2301 case -EFAULT:
2302 goto uaddr_faulted;
2303 case -EAGAIN:
2304 /*
2305 * Task is exiting and we just wait for the
2306 * exit to complete.
2307 */
2308 queue_unlock(hb);
2309 put_futex_key(&q.key);
2310 cond_resched();
2311 goto retry;
2312 default:
2313 goto out_unlock_put_key;
2314 }
2315 }
2316
2317 /*
2318 * Only actually queue now that the atomic ops are done:
2319 */
2320 queue_me(&q, hb);
2321
2322 WARN_ON(!q.pi_state);
2323 /*
2324 * Block on the PI mutex:
2325 */
2326 if (!trylock) {
2327 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2328 } else {
2329 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2330 /* Fixup the trylock return value: */
2331 ret = ret ? 0 : -EWOULDBLOCK;
2332 }
2333
2334 spin_lock(q.lock_ptr);
2335 /*
2336 * Fixup the pi_state owner and possibly acquire the lock if we
2337 * haven't already.
2338 */
2339 res = fixup_owner(uaddr, &q, !ret);
2340 /*
2341 * If fixup_owner() returned an error, proprogate that. If it acquired
2342 * the lock, clear our -ETIMEDOUT or -EINTR.
2343 */
2344 if (res)
2345 ret = (res < 0) ? res : 0;
2346
2347 /*
2348 * If fixup_owner() faulted and was unable to handle the fault, unlock
2349 * it and return the fault to userspace.
2350 */
2351 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2352 rt_mutex_unlock(&q.pi_state->pi_mutex);
2353
2354 /* Unqueue and drop the lock */
2355 unqueue_me_pi(&q);
2356
2357 goto out_put_key;
2358
2359 out_unlock_put_key:
2360 queue_unlock(hb);
2361
2362 out_put_key:
2363 put_futex_key(&q.key);
2364 out:
2365 if (to)
2366 destroy_hrtimer_on_stack(&to->timer);
2367 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2368
2369 uaddr_faulted:
2370 queue_unlock(hb);
2371
2372 ret = fault_in_user_writeable(uaddr);
2373 if (ret)
2374 goto out_put_key;
2375
2376 if (!(flags & FLAGS_SHARED))
2377 goto retry_private;
2378
2379 put_futex_key(&q.key);
2380 goto retry;
2381 }
2382
2383 /*
2384 * Userspace attempted a TID -> 0 atomic transition, and failed.
2385 * This is the in-kernel slowpath: we look up the PI state (if any),
2386 * and do the rt-mutex unlock.
2387 */
2388 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2389 {
2390 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2391 union futex_key key = FUTEX_KEY_INIT;
2392 struct futex_hash_bucket *hb;
2393 struct futex_q *match;
2394 int ret;
2395
2396 retry:
2397 if (get_user(uval, uaddr))
2398 return -EFAULT;
2399 /*
2400 * We release only a lock we actually own:
2401 */
2402 if ((uval & FUTEX_TID_MASK) != vpid)
2403 return -EPERM;
2404
2405 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2406 if (ret)
2407 return ret;
2408
2409 hb = hash_futex(&key);
2410 spin_lock(&hb->lock);
2411
2412 /*
2413 * Check waiters first. We do not trust user space values at
2414 * all and we at least want to know if user space fiddled
2415 * with the futex value instead of blindly unlocking.
2416 */
2417 match = futex_top_waiter(hb, &key);
2418 if (match) {
2419 ret = wake_futex_pi(uaddr, uval, match);
2420 /*
2421 * The atomic access to the futex value generated a
2422 * pagefault, so retry the user-access and the wakeup:
2423 */
2424 if (ret == -EFAULT)
2425 goto pi_faulted;
2426 goto out_unlock;
2427 }
2428
2429 /*
2430 * We have no kernel internal state, i.e. no waiters in the
2431 * kernel. Waiters which are about to queue themselves are stuck
2432 * on hb->lock. So we can safely ignore them. We do neither
2433 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2434 * owner.
2435 */
2436 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2437 goto pi_faulted;
2438
2439 /*
2440 * If uval has changed, let user space handle it.
2441 */
2442 ret = (curval == uval) ? 0 : -EAGAIN;
2443
2444 out_unlock:
2445 spin_unlock(&hb->lock);
2446 put_futex_key(&key);
2447 return ret;
2448
2449 pi_faulted:
2450 spin_unlock(&hb->lock);
2451 put_futex_key(&key);
2452
2453 ret = fault_in_user_writeable(uaddr);
2454 if (!ret)
2455 goto retry;
2456
2457 return ret;
2458 }
2459
2460 /**
2461 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2462 * @hb: the hash_bucket futex_q was original enqueued on
2463 * @q: the futex_q woken while waiting to be requeued
2464 * @key2: the futex_key of the requeue target futex
2465 * @timeout: the timeout associated with the wait (NULL if none)
2466 *
2467 * Detect if the task was woken on the initial futex as opposed to the requeue
2468 * target futex. If so, determine if it was a timeout or a signal that caused
2469 * the wakeup and return the appropriate error code to the caller. Must be
2470 * called with the hb lock held.
2471 *
2472 * Return:
2473 * 0 = no early wakeup detected;
2474 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2475 */
2476 static inline
2477 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2478 struct futex_q *q, union futex_key *key2,
2479 struct hrtimer_sleeper *timeout)
2480 {
2481 int ret = 0;
2482
2483 /*
2484 * With the hb lock held, we avoid races while we process the wakeup.
2485 * We only need to hold hb (and not hb2) to ensure atomicity as the
2486 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2487 * It can't be requeued from uaddr2 to something else since we don't
2488 * support a PI aware source futex for requeue.
2489 */
2490 if (!match_futex(&q->key, key2)) {
2491 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2492 /*
2493 * We were woken prior to requeue by a timeout or a signal.
2494 * Unqueue the futex_q and determine which it was.
2495 */
2496 plist_del(&q->list, &hb->chain);
2497 hb_waiters_dec(hb);
2498
2499 /* Handle spurious wakeups gracefully */
2500 ret = -EWOULDBLOCK;
2501 if (timeout && !timeout->task)
2502 ret = -ETIMEDOUT;
2503 else if (signal_pending(current))
2504 ret = -ERESTARTNOINTR;
2505 }
2506 return ret;
2507 }
2508
2509 /**
2510 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2511 * @uaddr: the futex we initially wait on (non-pi)
2512 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2513 * the same type, no requeueing from private to shared, etc.
2514 * @val: the expected value of uaddr
2515 * @abs_time: absolute timeout
2516 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2517 * @uaddr2: the pi futex we will take prior to returning to user-space
2518 *
2519 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2520 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2521 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2522 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2523 * without one, the pi logic would not know which task to boost/deboost, if
2524 * there was a need to.
2525 *
2526 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2527 * via the following--
2528 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2529 * 2) wakeup on uaddr2 after a requeue
2530 * 3) signal
2531 * 4) timeout
2532 *
2533 * If 3, cleanup and return -ERESTARTNOINTR.
2534 *
2535 * If 2, we may then block on trying to take the rt_mutex and return via:
2536 * 5) successful lock
2537 * 6) signal
2538 * 7) timeout
2539 * 8) other lock acquisition failure
2540 *
2541 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2542 *
2543 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2544 *
2545 * Return:
2546 * 0 - On success;
2547 * <0 - On error
2548 */
2549 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2550 u32 val, ktime_t *abs_time, u32 bitset,
2551 u32 __user *uaddr2)
2552 {
2553 struct hrtimer_sleeper timeout, *to = NULL;
2554 struct rt_mutex_waiter rt_waiter;
2555 struct rt_mutex *pi_mutex = NULL;
2556 struct futex_hash_bucket *hb;
2557 union futex_key key2 = FUTEX_KEY_INIT;
2558 struct futex_q q = futex_q_init;
2559 int res, ret;
2560
2561 if (uaddr == uaddr2)
2562 return -EINVAL;
2563
2564 if (!bitset)
2565 return -EINVAL;
2566
2567 if (abs_time) {
2568 to = &timeout;
2569 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2570 CLOCK_REALTIME : CLOCK_MONOTONIC,
2571 HRTIMER_MODE_ABS);
2572 hrtimer_init_sleeper(to, current);
2573 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2574 current->timer_slack_ns);
2575 }
2576
2577 /*
2578 * The waiter is allocated on our stack, manipulated by the requeue
2579 * code while we sleep on uaddr.
2580 */
2581 debug_rt_mutex_init_waiter(&rt_waiter);
2582 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2583 RB_CLEAR_NODE(&rt_waiter.tree_entry);
2584 rt_waiter.task = NULL;
2585
2586 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2587 if (unlikely(ret != 0))
2588 goto out;
2589
2590 q.bitset = bitset;
2591 q.rt_waiter = &rt_waiter;
2592 q.requeue_pi_key = &key2;
2593
2594 /*
2595 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2596 * count.
2597 */
2598 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2599 if (ret)
2600 goto out_key2;
2601
2602 /*
2603 * The check above which compares uaddrs is not sufficient for
2604 * shared futexes. We need to compare the keys:
2605 */
2606 if (match_futex(&q.key, &key2)) {
2607 ret = -EINVAL;
2608 goto out_put_keys;
2609 }
2610
2611 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2612 futex_wait_queue_me(hb, &q, to);
2613
2614 spin_lock(&hb->lock);
2615 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2616 spin_unlock(&hb->lock);
2617 if (ret)
2618 goto out_put_keys;
2619
2620 /*
2621 * In order for us to be here, we know our q.key == key2, and since
2622 * we took the hb->lock above, we also know that futex_requeue() has
2623 * completed and we no longer have to concern ourselves with a wakeup
2624 * race with the atomic proxy lock acquisition by the requeue code. The
2625 * futex_requeue dropped our key1 reference and incremented our key2
2626 * reference count.
2627 */
2628
2629 /* Check if the requeue code acquired the second futex for us. */
2630 if (!q.rt_waiter) {
2631 /*
2632 * Got the lock. We might not be the anticipated owner if we
2633 * did a lock-steal - fix up the PI-state in that case.
2634 */
2635 if (q.pi_state && (q.pi_state->owner != current)) {
2636 spin_lock(q.lock_ptr);
2637 ret = fixup_pi_state_owner(uaddr2, &q, current);
2638 spin_unlock(q.lock_ptr);
2639 }
2640 } else {
2641 /*
2642 * We have been woken up by futex_unlock_pi(), a timeout, or a
2643 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2644 * the pi_state.
2645 */
2646 WARN_ON(!q.pi_state);
2647 pi_mutex = &q.pi_state->pi_mutex;
2648 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2649 debug_rt_mutex_free_waiter(&rt_waiter);
2650
2651 spin_lock(q.lock_ptr);
2652 /*
2653 * Fixup the pi_state owner and possibly acquire the lock if we
2654 * haven't already.
2655 */
2656 res = fixup_owner(uaddr2, &q, !ret);
2657 /*
2658 * If fixup_owner() returned an error, proprogate that. If it
2659 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2660 */
2661 if (res)
2662 ret = (res < 0) ? res : 0;
2663
2664 /* Unqueue and drop the lock. */
2665 unqueue_me_pi(&q);
2666 }
2667
2668 /*
2669 * If fixup_pi_state_owner() faulted and was unable to handle the
2670 * fault, unlock the rt_mutex and return the fault to userspace.
2671 */
2672 if (ret == -EFAULT) {
2673 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2674 rt_mutex_unlock(pi_mutex);
2675 } else if (ret == -EINTR) {
2676 /*
2677 * We've already been requeued, but cannot restart by calling
2678 * futex_lock_pi() directly. We could restart this syscall, but
2679 * it would detect that the user space "val" changed and return
2680 * -EWOULDBLOCK. Save the overhead of the restart and return
2681 * -EWOULDBLOCK directly.
2682 */
2683 ret = -EWOULDBLOCK;
2684 }
2685
2686 out_put_keys:
2687 put_futex_key(&q.key);
2688 out_key2:
2689 put_futex_key(&key2);
2690
2691 out:
2692 if (to) {
2693 hrtimer_cancel(&to->timer);
2694 destroy_hrtimer_on_stack(&to->timer);
2695 }
2696 return ret;
2697 }
2698
2699 /*
2700 * Support for robust futexes: the kernel cleans up held futexes at
2701 * thread exit time.
2702 *
2703 * Implementation: user-space maintains a per-thread list of locks it
2704 * is holding. Upon do_exit(), the kernel carefully walks this list,
2705 * and marks all locks that are owned by this thread with the
2706 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2707 * always manipulated with the lock held, so the list is private and
2708 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2709 * field, to allow the kernel to clean up if the thread dies after
2710 * acquiring the lock, but just before it could have added itself to
2711 * the list. There can only be one such pending lock.
2712 */
2713
2714 /**
2715 * sys_set_robust_list() - Set the robust-futex list head of a task
2716 * @head: pointer to the list-head
2717 * @len: length of the list-head, as userspace expects
2718 */
2719 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2720 size_t, len)
2721 {
2722 if (!futex_cmpxchg_enabled)
2723 return -ENOSYS;
2724 /*
2725 * The kernel knows only one size for now:
2726 */
2727 if (unlikely(len != sizeof(*head)))
2728 return -EINVAL;
2729
2730 current->robust_list = head;
2731
2732 return 0;
2733 }
2734
2735 /**
2736 * sys_get_robust_list() - Get the robust-futex list head of a task
2737 * @pid: pid of the process [zero for current task]
2738 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2739 * @len_ptr: pointer to a length field, the kernel fills in the header size
2740 */
2741 SYSCALL_DEFINE3(get_robust_list, int, pid,
2742 struct robust_list_head __user * __user *, head_ptr,
2743 size_t __user *, len_ptr)
2744 {
2745 struct robust_list_head __user *head;
2746 unsigned long ret;
2747 struct task_struct *p;
2748
2749 if (!futex_cmpxchg_enabled)
2750 return -ENOSYS;
2751
2752 rcu_read_lock();
2753
2754 ret = -ESRCH;
2755 if (!pid)
2756 p = current;
2757 else {
2758 p = find_task_by_vpid(pid);
2759 if (!p)
2760 goto err_unlock;
2761 }
2762
2763 ret = -EPERM;
2764 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2765 goto err_unlock;
2766
2767 head = p->robust_list;
2768 rcu_read_unlock();
2769
2770 if (put_user(sizeof(*head), len_ptr))
2771 return -EFAULT;
2772 return put_user(head, head_ptr);
2773
2774 err_unlock:
2775 rcu_read_unlock();
2776
2777 return ret;
2778 }
2779
2780 /*
2781 * Process a futex-list entry, check whether it's owned by the
2782 * dying task, and do notification if so:
2783 */
2784 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2785 {
2786 u32 uval, uninitialized_var(nval), mval;
2787
2788 retry:
2789 if (get_user(uval, uaddr))
2790 return -1;
2791
2792 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2793 /*
2794 * Ok, this dying thread is truly holding a futex
2795 * of interest. Set the OWNER_DIED bit atomically
2796 * via cmpxchg, and if the value had FUTEX_WAITERS
2797 * set, wake up a waiter (if any). (We have to do a
2798 * futex_wake() even if OWNER_DIED is already set -
2799 * to handle the rare but possible case of recursive
2800 * thread-death.) The rest of the cleanup is done in
2801 * userspace.
2802 */
2803 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2804 /*
2805 * We are not holding a lock here, but we want to have
2806 * the pagefault_disable/enable() protection because
2807 * we want to handle the fault gracefully. If the
2808 * access fails we try to fault in the futex with R/W
2809 * verification via get_user_pages. get_user() above
2810 * does not guarantee R/W access. If that fails we
2811 * give up and leave the futex locked.
2812 */
2813 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2814 if (fault_in_user_writeable(uaddr))
2815 return -1;
2816 goto retry;
2817 }
2818 if (nval != uval)
2819 goto retry;
2820
2821 /*
2822 * Wake robust non-PI futexes here. The wakeup of
2823 * PI futexes happens in exit_pi_state():
2824 */
2825 if (!pi && (uval & FUTEX_WAITERS))
2826 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2827 }
2828 return 0;
2829 }
2830
2831 /*
2832 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2833 */
2834 static inline int fetch_robust_entry(struct robust_list __user **entry,
2835 struct robust_list __user * __user *head,
2836 unsigned int *pi)
2837 {
2838 unsigned long uentry;
2839
2840 if (get_user(uentry, (unsigned long __user *)head))
2841 return -EFAULT;
2842
2843 *entry = (void __user *)(uentry & ~1UL);
2844 *pi = uentry & 1;
2845
2846 return 0;
2847 }
2848
2849 /*
2850 * Walk curr->robust_list (very carefully, it's a userspace list!)
2851 * and mark any locks found there dead, and notify any waiters.
2852 *
2853 * We silently return on any sign of list-walking problem.
2854 */
2855 void exit_robust_list(struct task_struct *curr)
2856 {
2857 struct robust_list_head __user *head = curr->robust_list;
2858 struct robust_list __user *entry, *next_entry, *pending;
2859 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2860 unsigned int uninitialized_var(next_pi);
2861 unsigned long futex_offset;
2862 int rc;
2863
2864 if (!futex_cmpxchg_enabled)
2865 return;
2866
2867 /*
2868 * Fetch the list head (which was registered earlier, via
2869 * sys_set_robust_list()):
2870 */
2871 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2872 return;
2873 /*
2874 * Fetch the relative futex offset:
2875 */
2876 if (get_user(futex_offset, &head->futex_offset))
2877 return;
2878 /*
2879 * Fetch any possibly pending lock-add first, and handle it
2880 * if it exists:
2881 */
2882 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2883 return;
2884
2885 next_entry = NULL; /* avoid warning with gcc */
2886 while (entry != &head->list) {
2887 /*
2888 * Fetch the next entry in the list before calling
2889 * handle_futex_death:
2890 */
2891 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2892 /*
2893 * A pending lock might already be on the list, so
2894 * don't process it twice:
2895 */
2896 if (entry != pending)
2897 if (handle_futex_death((void __user *)entry + futex_offset,
2898 curr, pi))
2899 return;
2900 if (rc)
2901 return;
2902 entry = next_entry;
2903 pi = next_pi;
2904 /*
2905 * Avoid excessively long or circular lists:
2906 */
2907 if (!--limit)
2908 break;
2909
2910 cond_resched();
2911 }
2912
2913 if (pending)
2914 handle_futex_death((void __user *)pending + futex_offset,
2915 curr, pip);
2916 }
2917
2918 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2919 u32 __user *uaddr2, u32 val2, u32 val3)
2920 {
2921 int cmd = op & FUTEX_CMD_MASK;
2922 unsigned int flags = 0;
2923
2924 if (!(op & FUTEX_PRIVATE_FLAG))
2925 flags |= FLAGS_SHARED;
2926
2927 if (op & FUTEX_CLOCK_REALTIME) {
2928 flags |= FLAGS_CLOCKRT;
2929 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2930 return -ENOSYS;
2931 }
2932
2933 switch (cmd) {
2934 case FUTEX_LOCK_PI:
2935 case FUTEX_UNLOCK_PI:
2936 case FUTEX_TRYLOCK_PI:
2937 case FUTEX_WAIT_REQUEUE_PI:
2938 case FUTEX_CMP_REQUEUE_PI:
2939 if (!futex_cmpxchg_enabled)
2940 return -ENOSYS;
2941 }
2942
2943 switch (cmd) {
2944 case FUTEX_WAIT:
2945 val3 = FUTEX_BITSET_MATCH_ANY;
2946 case FUTEX_WAIT_BITSET:
2947 return futex_wait(uaddr, flags, val, timeout, val3);
2948 case FUTEX_WAKE:
2949 val3 = FUTEX_BITSET_MATCH_ANY;
2950 case FUTEX_WAKE_BITSET:
2951 return futex_wake(uaddr, flags, val, val3);
2952 case FUTEX_REQUEUE:
2953 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2954 case FUTEX_CMP_REQUEUE:
2955 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2956 case FUTEX_WAKE_OP:
2957 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2958 case FUTEX_LOCK_PI:
2959 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2960 case FUTEX_UNLOCK_PI:
2961 return futex_unlock_pi(uaddr, flags);
2962 case FUTEX_TRYLOCK_PI:
2963 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2964 case FUTEX_WAIT_REQUEUE_PI:
2965 val3 = FUTEX_BITSET_MATCH_ANY;
2966 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2967 uaddr2);
2968 case FUTEX_CMP_REQUEUE_PI:
2969 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2970 }
2971 return -ENOSYS;
2972 }
2973
2974
2975 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2976 struct timespec __user *, utime, u32 __user *, uaddr2,
2977 u32, val3)
2978 {
2979 struct timespec ts;
2980 ktime_t t, *tp = NULL;
2981 u32 val2 = 0;
2982 int cmd = op & FUTEX_CMD_MASK;
2983
2984 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2985 cmd == FUTEX_WAIT_BITSET ||
2986 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2987 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2988 return -EFAULT;
2989 if (!timespec_valid(&ts))
2990 return -EINVAL;
2991
2992 t = timespec_to_ktime(ts);
2993 if (cmd == FUTEX_WAIT)
2994 t = ktime_add_safe(ktime_get(), t);
2995 tp = &t;
2996 }
2997 /*
2998 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2999 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3000 */
3001 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3002 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3003 val2 = (u32) (unsigned long) utime;
3004
3005 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3006 }
3007
3008 static void __init futex_detect_cmpxchg(void)
3009 {
3010 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3011 u32 curval;
3012
3013 /*
3014 * This will fail and we want it. Some arch implementations do
3015 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3016 * functionality. We want to know that before we call in any
3017 * of the complex code paths. Also we want to prevent
3018 * registration of robust lists in that case. NULL is
3019 * guaranteed to fault and we get -EFAULT on functional
3020 * implementation, the non-functional ones will return
3021 * -ENOSYS.
3022 */
3023 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3024 futex_cmpxchg_enabled = 1;
3025 #endif
3026 }
3027
3028 static int __init futex_init(void)
3029 {
3030 unsigned int futex_shift;
3031 unsigned long i;
3032
3033 #if CONFIG_BASE_SMALL
3034 futex_hashsize = 16;
3035 #else
3036 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3037 #endif
3038
3039 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3040 futex_hashsize, 0,
3041 futex_hashsize < 256 ? HASH_SMALL : 0,
3042 &futex_shift, NULL,
3043 futex_hashsize, futex_hashsize);
3044 futex_hashsize = 1UL << futex_shift;
3045
3046 futex_detect_cmpxchg();
3047
3048 for (i = 0; i < futex_hashsize; i++) {
3049 atomic_set(&futex_queues[i].waiters, 0);
3050 plist_head_init(&futex_queues[i].chain);
3051 spin_lock_init(&futex_queues[i].lock);
3052 }
3053
3054 return 0;
3055 }
3056 __initcall(futex_init);
This page took 0.091806 seconds and 6 git commands to generate.