hrtimer/trivial: Fix comment text in hrtimer.c
[deliverable/linux.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/timer.h>
50
51 #include <asm/uaccess.h>
52
53 #include <trace/events/timer.h>
54
55 /*
56 * The timer bases:
57 *
58 * There are more clockids then hrtimer bases. Thus, we index
59 * into the timer bases by the hrtimer_base_type enum. When trying
60 * to reach a base using a clockid, hrtimer_clockid_to_base()
61 * is used to convert from clockid to the proper hrtimer_base_type.
62 */
63 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
64 {
65
66 .clock_base =
67 {
68 {
69 .index = HRTIMER_BASE_MONOTONIC,
70 .clockid = CLOCK_MONOTONIC,
71 .get_time = &ktime_get,
72 .resolution = KTIME_LOW_RES,
73 },
74 {
75 .index = HRTIMER_BASE_REALTIME,
76 .clockid = CLOCK_REALTIME,
77 .get_time = &ktime_get_real,
78 .resolution = KTIME_LOW_RES,
79 },
80 {
81 .index = HRTIMER_BASE_BOOTTIME,
82 .clockid = CLOCK_BOOTTIME,
83 .get_time = &ktime_get_boottime,
84 .resolution = KTIME_LOW_RES,
85 },
86 }
87 };
88
89 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
90 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
91 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
92 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
93 };
94
95 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
96 {
97 return hrtimer_clock_to_base_table[clock_id];
98 }
99
100
101 /*
102 * Get the coarse grained time at the softirq based on xtime and
103 * wall_to_monotonic.
104 */
105 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
106 {
107 ktime_t xtim, mono, boot;
108 struct timespec xts, tom, slp;
109
110 get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
111
112 xtim = timespec_to_ktime(xts);
113 mono = ktime_add(xtim, timespec_to_ktime(tom));
114 boot = ktime_add(mono, timespec_to_ktime(slp));
115 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
116 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
117 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
118 }
119
120 /*
121 * Functions and macros which are different for UP/SMP systems are kept in a
122 * single place
123 */
124 #ifdef CONFIG_SMP
125
126 /*
127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
128 * means that all timers which are tied to this base via timer->base are
129 * locked, and the base itself is locked too.
130 *
131 * So __run_timers/migrate_timers can safely modify all timers which could
132 * be found on the lists/queues.
133 *
134 * When the timer's base is locked, and the timer removed from list, it is
135 * possible to set timer->base = NULL and drop the lock: the timer remains
136 * locked.
137 */
138 static
139 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
140 unsigned long *flags)
141 {
142 struct hrtimer_clock_base *base;
143
144 for (;;) {
145 base = timer->base;
146 if (likely(base != NULL)) {
147 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 if (likely(base == timer->base))
149 return base;
150 /* The timer has migrated to another CPU: */
151 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 }
153 cpu_relax();
154 }
155 }
156
157
158 /*
159 * Get the preferred target CPU for NOHZ
160 */
161 static int hrtimer_get_target(int this_cpu, int pinned)
162 {
163 #ifdef CONFIG_NO_HZ
164 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
165 return get_nohz_timer_target();
166 #endif
167 return this_cpu;
168 }
169
170 /*
171 * With HIGHRES=y we do not migrate the timer when it is expiring
172 * before the next event on the target cpu because we cannot reprogram
173 * the target cpu hardware and we would cause it to fire late.
174 *
175 * Called with cpu_base->lock of target cpu held.
176 */
177 static int
178 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
179 {
180 #ifdef CONFIG_HIGH_RES_TIMERS
181 ktime_t expires;
182
183 if (!new_base->cpu_base->hres_active)
184 return 0;
185
186 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
187 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
188 #else
189 return 0;
190 #endif
191 }
192
193 /*
194 * Switch the timer base to the current CPU when possible.
195 */
196 static inline struct hrtimer_clock_base *
197 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
198 int pinned)
199 {
200 struct hrtimer_clock_base *new_base;
201 struct hrtimer_cpu_base *new_cpu_base;
202 int this_cpu = smp_processor_id();
203 int cpu = hrtimer_get_target(this_cpu, pinned);
204 int basenum = base->index;
205
206 again:
207 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
208 new_base = &new_cpu_base->clock_base[basenum];
209
210 if (base != new_base) {
211 /*
212 * We are trying to move timer to new_base.
213 * However we can't change timer's base while it is running,
214 * so we keep it on the same CPU. No hassle vs. reprogramming
215 * the event source in the high resolution case. The softirq
216 * code will take care of this when the timer function has
217 * completed. There is no conflict as we hold the lock until
218 * the timer is enqueued.
219 */
220 if (unlikely(hrtimer_callback_running(timer)))
221 return base;
222
223 /* See the comment in lock_timer_base() */
224 timer->base = NULL;
225 raw_spin_unlock(&base->cpu_base->lock);
226 raw_spin_lock(&new_base->cpu_base->lock);
227
228 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
229 cpu = this_cpu;
230 raw_spin_unlock(&new_base->cpu_base->lock);
231 raw_spin_lock(&base->cpu_base->lock);
232 timer->base = base;
233 goto again;
234 }
235 timer->base = new_base;
236 }
237 return new_base;
238 }
239
240 #else /* CONFIG_SMP */
241
242 static inline struct hrtimer_clock_base *
243 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
244 {
245 struct hrtimer_clock_base *base = timer->base;
246
247 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
248
249 return base;
250 }
251
252 # define switch_hrtimer_base(t, b, p) (b)
253
254 #endif /* !CONFIG_SMP */
255
256 /*
257 * Functions for the union type storage format of ktime_t which are
258 * too large for inlining:
259 */
260 #if BITS_PER_LONG < 64
261 # ifndef CONFIG_KTIME_SCALAR
262 /**
263 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
264 * @kt: addend
265 * @nsec: the scalar nsec value to add
266 *
267 * Returns the sum of kt and nsec in ktime_t format
268 */
269 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
270 {
271 ktime_t tmp;
272
273 if (likely(nsec < NSEC_PER_SEC)) {
274 tmp.tv64 = nsec;
275 } else {
276 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
277
278 tmp = ktime_set((long)nsec, rem);
279 }
280
281 return ktime_add(kt, tmp);
282 }
283
284 EXPORT_SYMBOL_GPL(ktime_add_ns);
285
286 /**
287 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
288 * @kt: minuend
289 * @nsec: the scalar nsec value to subtract
290 *
291 * Returns the subtraction of @nsec from @kt in ktime_t format
292 */
293 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
294 {
295 ktime_t tmp;
296
297 if (likely(nsec < NSEC_PER_SEC)) {
298 tmp.tv64 = nsec;
299 } else {
300 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
301
302 tmp = ktime_set((long)nsec, rem);
303 }
304
305 return ktime_sub(kt, tmp);
306 }
307
308 EXPORT_SYMBOL_GPL(ktime_sub_ns);
309 # endif /* !CONFIG_KTIME_SCALAR */
310
311 /*
312 * Divide a ktime value by a nanosecond value
313 */
314 u64 ktime_divns(const ktime_t kt, s64 div)
315 {
316 u64 dclc;
317 int sft = 0;
318
319 dclc = ktime_to_ns(kt);
320 /* Make sure the divisor is less than 2^32: */
321 while (div >> 32) {
322 sft++;
323 div >>= 1;
324 }
325 dclc >>= sft;
326 do_div(dclc, (unsigned long) div);
327
328 return dclc;
329 }
330 #endif /* BITS_PER_LONG >= 64 */
331
332 /*
333 * Add two ktime values and do a safety check for overflow:
334 */
335 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
336 {
337 ktime_t res = ktime_add(lhs, rhs);
338
339 /*
340 * We use KTIME_SEC_MAX here, the maximum timeout which we can
341 * return to user space in a timespec:
342 */
343 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
344 res = ktime_set(KTIME_SEC_MAX, 0);
345
346 return res;
347 }
348
349 EXPORT_SYMBOL_GPL(ktime_add_safe);
350
351 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
352
353 static struct debug_obj_descr hrtimer_debug_descr;
354
355 static void *hrtimer_debug_hint(void *addr)
356 {
357 return ((struct hrtimer *) addr)->function;
358 }
359
360 /*
361 * fixup_init is called when:
362 * - an active object is initialized
363 */
364 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
365 {
366 struct hrtimer *timer = addr;
367
368 switch (state) {
369 case ODEBUG_STATE_ACTIVE:
370 hrtimer_cancel(timer);
371 debug_object_init(timer, &hrtimer_debug_descr);
372 return 1;
373 default:
374 return 0;
375 }
376 }
377
378 /*
379 * fixup_activate is called when:
380 * - an active object is activated
381 * - an unknown object is activated (might be a statically initialized object)
382 */
383 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
384 {
385 switch (state) {
386
387 case ODEBUG_STATE_NOTAVAILABLE:
388 WARN_ON_ONCE(1);
389 return 0;
390
391 case ODEBUG_STATE_ACTIVE:
392 WARN_ON(1);
393
394 default:
395 return 0;
396 }
397 }
398
399 /*
400 * fixup_free is called when:
401 * - an active object is freed
402 */
403 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
404 {
405 struct hrtimer *timer = addr;
406
407 switch (state) {
408 case ODEBUG_STATE_ACTIVE:
409 hrtimer_cancel(timer);
410 debug_object_free(timer, &hrtimer_debug_descr);
411 return 1;
412 default:
413 return 0;
414 }
415 }
416
417 static struct debug_obj_descr hrtimer_debug_descr = {
418 .name = "hrtimer",
419 .debug_hint = hrtimer_debug_hint,
420 .fixup_init = hrtimer_fixup_init,
421 .fixup_activate = hrtimer_fixup_activate,
422 .fixup_free = hrtimer_fixup_free,
423 };
424
425 static inline void debug_hrtimer_init(struct hrtimer *timer)
426 {
427 debug_object_init(timer, &hrtimer_debug_descr);
428 }
429
430 static inline void debug_hrtimer_activate(struct hrtimer *timer)
431 {
432 debug_object_activate(timer, &hrtimer_debug_descr);
433 }
434
435 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
436 {
437 debug_object_deactivate(timer, &hrtimer_debug_descr);
438 }
439
440 static inline void debug_hrtimer_free(struct hrtimer *timer)
441 {
442 debug_object_free(timer, &hrtimer_debug_descr);
443 }
444
445 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
446 enum hrtimer_mode mode);
447
448 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
449 enum hrtimer_mode mode)
450 {
451 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
452 __hrtimer_init(timer, clock_id, mode);
453 }
454 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
455
456 void destroy_hrtimer_on_stack(struct hrtimer *timer)
457 {
458 debug_object_free(timer, &hrtimer_debug_descr);
459 }
460
461 #else
462 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
463 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
464 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
465 #endif
466
467 static inline void
468 debug_init(struct hrtimer *timer, clockid_t clockid,
469 enum hrtimer_mode mode)
470 {
471 debug_hrtimer_init(timer);
472 trace_hrtimer_init(timer, clockid, mode);
473 }
474
475 static inline void debug_activate(struct hrtimer *timer)
476 {
477 debug_hrtimer_activate(timer);
478 trace_hrtimer_start(timer);
479 }
480
481 static inline void debug_deactivate(struct hrtimer *timer)
482 {
483 debug_hrtimer_deactivate(timer);
484 trace_hrtimer_cancel(timer);
485 }
486
487 /* High resolution timer related functions */
488 #ifdef CONFIG_HIGH_RES_TIMERS
489
490 /*
491 * High resolution timer enabled ?
492 */
493 static int hrtimer_hres_enabled __read_mostly = 1;
494
495 /*
496 * Enable / Disable high resolution mode
497 */
498 static int __init setup_hrtimer_hres(char *str)
499 {
500 if (!strcmp(str, "off"))
501 hrtimer_hres_enabled = 0;
502 else if (!strcmp(str, "on"))
503 hrtimer_hres_enabled = 1;
504 else
505 return 0;
506 return 1;
507 }
508
509 __setup("highres=", setup_hrtimer_hres);
510
511 /*
512 * hrtimer_high_res_enabled - query, if the highres mode is enabled
513 */
514 static inline int hrtimer_is_hres_enabled(void)
515 {
516 return hrtimer_hres_enabled;
517 }
518
519 /*
520 * Is the high resolution mode active ?
521 */
522 static inline int hrtimer_hres_active(void)
523 {
524 return __this_cpu_read(hrtimer_bases.hres_active);
525 }
526
527 /*
528 * Reprogram the event source with checking both queues for the
529 * next event
530 * Called with interrupts disabled and base->lock held
531 */
532 static void
533 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
534 {
535 int i;
536 struct hrtimer_clock_base *base = cpu_base->clock_base;
537 ktime_t expires, expires_next;
538
539 expires_next.tv64 = KTIME_MAX;
540
541 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
542 struct hrtimer *timer;
543 struct timerqueue_node *next;
544
545 next = timerqueue_getnext(&base->active);
546 if (!next)
547 continue;
548 timer = container_of(next, struct hrtimer, node);
549
550 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
551 /*
552 * clock_was_set() has changed base->offset so the
553 * result might be negative. Fix it up to prevent a
554 * false positive in clockevents_program_event()
555 */
556 if (expires.tv64 < 0)
557 expires.tv64 = 0;
558 if (expires.tv64 < expires_next.tv64)
559 expires_next = expires;
560 }
561
562 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
563 return;
564
565 cpu_base->expires_next.tv64 = expires_next.tv64;
566
567 if (cpu_base->expires_next.tv64 != KTIME_MAX)
568 tick_program_event(cpu_base->expires_next, 1);
569 }
570
571 /*
572 * Shared reprogramming for clock_realtime and clock_monotonic
573 *
574 * When a timer is enqueued and expires earlier than the already enqueued
575 * timers, we have to check, whether it expires earlier than the timer for
576 * which the clock event device was armed.
577 *
578 * Called with interrupts disabled and base->cpu_base.lock held
579 */
580 static int hrtimer_reprogram(struct hrtimer *timer,
581 struct hrtimer_clock_base *base)
582 {
583 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
584 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
585 int res;
586
587 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
588
589 /*
590 * When the callback is running, we do not reprogram the clock event
591 * device. The timer callback is either running on a different CPU or
592 * the callback is executed in the hrtimer_interrupt context. The
593 * reprogramming is handled either by the softirq, which called the
594 * callback or at the end of the hrtimer_interrupt.
595 */
596 if (hrtimer_callback_running(timer))
597 return 0;
598
599 /*
600 * CLOCK_REALTIME timer might be requested with an absolute
601 * expiry time which is less than base->offset. Nothing wrong
602 * about that, just avoid to call into the tick code, which
603 * has now objections against negative expiry values.
604 */
605 if (expires.tv64 < 0)
606 return -ETIME;
607
608 if (expires.tv64 >= cpu_base->expires_next.tv64)
609 return 0;
610
611 /*
612 * If a hang was detected in the last timer interrupt then we
613 * do not schedule a timer which is earlier than the expiry
614 * which we enforced in the hang detection. We want the system
615 * to make progress.
616 */
617 if (cpu_base->hang_detected)
618 return 0;
619
620 /*
621 * Clockevents returns -ETIME, when the event was in the past.
622 */
623 res = tick_program_event(expires, 0);
624 if (!IS_ERR_VALUE(res))
625 cpu_base->expires_next = expires;
626 return res;
627 }
628
629 /*
630 * Initialize the high resolution related parts of cpu_base
631 */
632 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
633 {
634 base->expires_next.tv64 = KTIME_MAX;
635 base->hres_active = 0;
636 }
637
638 /*
639 * When High resolution timers are active, try to reprogram. Note, that in case
640 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
641 * check happens. The timer gets enqueued into the rbtree. The reprogramming
642 * and expiry check is done in the hrtimer_interrupt or in the softirq.
643 */
644 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
645 struct hrtimer_clock_base *base)
646 {
647 return base->cpu_base->hres_active && hrtimer_reprogram(timer, base);
648 }
649
650 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
651 {
652 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
653 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
654
655 return ktime_get_update_offsets(offs_real, offs_boot);
656 }
657
658 /*
659 * Retrigger next event is called after clock was set
660 *
661 * Called with interrupts disabled via on_each_cpu()
662 */
663 static void retrigger_next_event(void *arg)
664 {
665 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
666
667 if (!hrtimer_hres_active())
668 return;
669
670 raw_spin_lock(&base->lock);
671 hrtimer_update_base(base);
672 hrtimer_force_reprogram(base, 0);
673 raw_spin_unlock(&base->lock);
674 }
675
676 /*
677 * Switch to high resolution mode
678 */
679 static int hrtimer_switch_to_hres(void)
680 {
681 int i, cpu = smp_processor_id();
682 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
683 unsigned long flags;
684
685 if (base->hres_active)
686 return 1;
687
688 local_irq_save(flags);
689
690 if (tick_init_highres()) {
691 local_irq_restore(flags);
692 printk(KERN_WARNING "Could not switch to high resolution "
693 "mode on CPU %d\n", cpu);
694 return 0;
695 }
696 base->hres_active = 1;
697 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
698 base->clock_base[i].resolution = KTIME_HIGH_RES;
699
700 tick_setup_sched_timer();
701 /* "Retrigger" the interrupt to get things going */
702 retrigger_next_event(NULL);
703 local_irq_restore(flags);
704 return 1;
705 }
706
707 /*
708 * Called from timekeeping code to reprogramm the hrtimer interrupt
709 * device. If called from the timer interrupt context we defer it to
710 * softirq context.
711 */
712 void clock_was_set_delayed(void)
713 {
714 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
715
716 cpu_base->clock_was_set = 1;
717 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
718 }
719
720 #else
721
722 static inline int hrtimer_hres_active(void) { return 0; }
723 static inline int hrtimer_is_hres_enabled(void) { return 0; }
724 static inline int hrtimer_switch_to_hres(void) { return 0; }
725 static inline void
726 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
727 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
728 struct hrtimer_clock_base *base)
729 {
730 return 0;
731 }
732 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
733 static inline void retrigger_next_event(void *arg) { }
734
735 #endif /* CONFIG_HIGH_RES_TIMERS */
736
737 /*
738 * Clock realtime was set
739 *
740 * Change the offset of the realtime clock vs. the monotonic
741 * clock.
742 *
743 * We might have to reprogram the high resolution timer interrupt. On
744 * SMP we call the architecture specific code to retrigger _all_ high
745 * resolution timer interrupts. On UP we just disable interrupts and
746 * call the high resolution interrupt code.
747 */
748 void clock_was_set(void)
749 {
750 #ifdef CONFIG_HIGH_RES_TIMERS
751 /* Retrigger the CPU local events everywhere */
752 on_each_cpu(retrigger_next_event, NULL, 1);
753 #endif
754 timerfd_clock_was_set();
755 }
756
757 /*
758 * During resume we might have to reprogram the high resolution timer
759 * interrupt (on the local CPU):
760 */
761 void hrtimers_resume(void)
762 {
763 WARN_ONCE(!irqs_disabled(),
764 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
765
766 retrigger_next_event(NULL);
767 timerfd_clock_was_set();
768 }
769
770 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
771 {
772 #ifdef CONFIG_TIMER_STATS
773 if (timer->start_site)
774 return;
775 timer->start_site = __builtin_return_address(0);
776 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
777 timer->start_pid = current->pid;
778 #endif
779 }
780
781 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
782 {
783 #ifdef CONFIG_TIMER_STATS
784 timer->start_site = NULL;
785 #endif
786 }
787
788 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
789 {
790 #ifdef CONFIG_TIMER_STATS
791 if (likely(!timer_stats_active))
792 return;
793 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
794 timer->function, timer->start_comm, 0);
795 #endif
796 }
797
798 /*
799 * Counterpart to lock_hrtimer_base above:
800 */
801 static inline
802 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
803 {
804 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
805 }
806
807 /**
808 * hrtimer_forward - forward the timer expiry
809 * @timer: hrtimer to forward
810 * @now: forward past this time
811 * @interval: the interval to forward
812 *
813 * Forward the timer expiry so it will expire in the future.
814 * Returns the number of overruns.
815 */
816 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
817 {
818 u64 orun = 1;
819 ktime_t delta;
820
821 delta = ktime_sub(now, hrtimer_get_expires(timer));
822
823 if (delta.tv64 < 0)
824 return 0;
825
826 if (interval.tv64 < timer->base->resolution.tv64)
827 interval.tv64 = timer->base->resolution.tv64;
828
829 if (unlikely(delta.tv64 >= interval.tv64)) {
830 s64 incr = ktime_to_ns(interval);
831
832 orun = ktime_divns(delta, incr);
833 hrtimer_add_expires_ns(timer, incr * orun);
834 if (hrtimer_get_expires_tv64(timer) > now.tv64)
835 return orun;
836 /*
837 * This (and the ktime_add() below) is the
838 * correction for exact:
839 */
840 orun++;
841 }
842 hrtimer_add_expires(timer, interval);
843
844 return orun;
845 }
846 EXPORT_SYMBOL_GPL(hrtimer_forward);
847
848 /*
849 * enqueue_hrtimer - internal function to (re)start a timer
850 *
851 * The timer is inserted in expiry order. Insertion into the
852 * red black tree is O(log(n)). Must hold the base lock.
853 *
854 * Returns 1 when the new timer is the leftmost timer in the tree.
855 */
856 static int enqueue_hrtimer(struct hrtimer *timer,
857 struct hrtimer_clock_base *base)
858 {
859 debug_activate(timer);
860
861 timerqueue_add(&base->active, &timer->node);
862 base->cpu_base->active_bases |= 1 << base->index;
863
864 /*
865 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
866 * state of a possibly running callback.
867 */
868 timer->state |= HRTIMER_STATE_ENQUEUED;
869
870 return (&timer->node == base->active.next);
871 }
872
873 /*
874 * __remove_hrtimer - internal function to remove a timer
875 *
876 * Caller must hold the base lock.
877 *
878 * High resolution timer mode reprograms the clock event device when the
879 * timer is the one which expires next. The caller can disable this by setting
880 * reprogram to zero. This is useful, when the context does a reprogramming
881 * anyway (e.g. timer interrupt)
882 */
883 static void __remove_hrtimer(struct hrtimer *timer,
884 struct hrtimer_clock_base *base,
885 unsigned long newstate, int reprogram)
886 {
887 struct timerqueue_node *next_timer;
888 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
889 goto out;
890
891 next_timer = timerqueue_getnext(&base->active);
892 timerqueue_del(&base->active, &timer->node);
893 if (&timer->node == next_timer) {
894 #ifdef CONFIG_HIGH_RES_TIMERS
895 /* Reprogram the clock event device. if enabled */
896 if (reprogram && hrtimer_hres_active()) {
897 ktime_t expires;
898
899 expires = ktime_sub(hrtimer_get_expires(timer),
900 base->offset);
901 if (base->cpu_base->expires_next.tv64 == expires.tv64)
902 hrtimer_force_reprogram(base->cpu_base, 1);
903 }
904 #endif
905 }
906 if (!timerqueue_getnext(&base->active))
907 base->cpu_base->active_bases &= ~(1 << base->index);
908 out:
909 timer->state = newstate;
910 }
911
912 /*
913 * remove hrtimer, called with base lock held
914 */
915 static inline int
916 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
917 {
918 if (hrtimer_is_queued(timer)) {
919 unsigned long state;
920 int reprogram;
921
922 /*
923 * Remove the timer and force reprogramming when high
924 * resolution mode is active and the timer is on the current
925 * CPU. If we remove a timer on another CPU, reprogramming is
926 * skipped. The interrupt event on this CPU is fired and
927 * reprogramming happens in the interrupt handler. This is a
928 * rare case and less expensive than a smp call.
929 */
930 debug_deactivate(timer);
931 timer_stats_hrtimer_clear_start_info(timer);
932 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
933 /*
934 * We must preserve the CALLBACK state flag here,
935 * otherwise we could move the timer base in
936 * switch_hrtimer_base.
937 */
938 state = timer->state & HRTIMER_STATE_CALLBACK;
939 __remove_hrtimer(timer, base, state, reprogram);
940 return 1;
941 }
942 return 0;
943 }
944
945 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
946 unsigned long delta_ns, const enum hrtimer_mode mode,
947 int wakeup)
948 {
949 struct hrtimer_clock_base *base, *new_base;
950 unsigned long flags;
951 int ret, leftmost;
952
953 base = lock_hrtimer_base(timer, &flags);
954
955 /* Remove an active timer from the queue: */
956 ret = remove_hrtimer(timer, base);
957
958 /* Switch the timer base, if necessary: */
959 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
960
961 if (mode & HRTIMER_MODE_REL) {
962 tim = ktime_add_safe(tim, new_base->get_time());
963 /*
964 * CONFIG_TIME_LOW_RES is a temporary way for architectures
965 * to signal that they simply return xtime in
966 * do_gettimeoffset(). In this case we want to round up by
967 * resolution when starting a relative timer, to avoid short
968 * timeouts. This will go away with the GTOD framework.
969 */
970 #ifdef CONFIG_TIME_LOW_RES
971 tim = ktime_add_safe(tim, base->resolution);
972 #endif
973 }
974
975 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
976
977 timer_stats_hrtimer_set_start_info(timer);
978
979 leftmost = enqueue_hrtimer(timer, new_base);
980
981 /*
982 * Only allow reprogramming if the new base is on this CPU.
983 * (it might still be on another CPU if the timer was pending)
984 *
985 * XXX send_remote_softirq() ?
986 */
987 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)
988 && hrtimer_enqueue_reprogram(timer, new_base)) {
989 if (wakeup) {
990 /*
991 * We need to drop cpu_base->lock to avoid a
992 * lock ordering issue vs. rq->lock.
993 */
994 raw_spin_unlock(&new_base->cpu_base->lock);
995 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
996 local_irq_restore(flags);
997 return ret;
998 } else {
999 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1000 }
1001 }
1002
1003 unlock_hrtimer_base(timer, &flags);
1004
1005 return ret;
1006 }
1007
1008 /**
1009 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1010 * @timer: the timer to be added
1011 * @tim: expiry time
1012 * @delta_ns: "slack" range for the timer
1013 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1014 * relative (HRTIMER_MODE_REL)
1015 *
1016 * Returns:
1017 * 0 on success
1018 * 1 when the timer was active
1019 */
1020 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1021 unsigned long delta_ns, const enum hrtimer_mode mode)
1022 {
1023 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1024 }
1025 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1026
1027 /**
1028 * hrtimer_start - (re)start an hrtimer on the current CPU
1029 * @timer: the timer to be added
1030 * @tim: expiry time
1031 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1032 * relative (HRTIMER_MODE_REL)
1033 *
1034 * Returns:
1035 * 0 on success
1036 * 1 when the timer was active
1037 */
1038 int
1039 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1040 {
1041 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1042 }
1043 EXPORT_SYMBOL_GPL(hrtimer_start);
1044
1045
1046 /**
1047 * hrtimer_try_to_cancel - try to deactivate a timer
1048 * @timer: hrtimer to stop
1049 *
1050 * Returns:
1051 * 0 when the timer was not active
1052 * 1 when the timer was active
1053 * -1 when the timer is currently excuting the callback function and
1054 * cannot be stopped
1055 */
1056 int hrtimer_try_to_cancel(struct hrtimer *timer)
1057 {
1058 struct hrtimer_clock_base *base;
1059 unsigned long flags;
1060 int ret = -1;
1061
1062 base = lock_hrtimer_base(timer, &flags);
1063
1064 if (!hrtimer_callback_running(timer))
1065 ret = remove_hrtimer(timer, base);
1066
1067 unlock_hrtimer_base(timer, &flags);
1068
1069 return ret;
1070
1071 }
1072 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1073
1074 /**
1075 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1076 * @timer: the timer to be cancelled
1077 *
1078 * Returns:
1079 * 0 when the timer was not active
1080 * 1 when the timer was active
1081 */
1082 int hrtimer_cancel(struct hrtimer *timer)
1083 {
1084 for (;;) {
1085 int ret = hrtimer_try_to_cancel(timer);
1086
1087 if (ret >= 0)
1088 return ret;
1089 cpu_relax();
1090 }
1091 }
1092 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1093
1094 /**
1095 * hrtimer_get_remaining - get remaining time for the timer
1096 * @timer: the timer to read
1097 */
1098 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1099 {
1100 unsigned long flags;
1101 ktime_t rem;
1102
1103 lock_hrtimer_base(timer, &flags);
1104 rem = hrtimer_expires_remaining(timer);
1105 unlock_hrtimer_base(timer, &flags);
1106
1107 return rem;
1108 }
1109 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1110
1111 #ifdef CONFIG_NO_HZ
1112 /**
1113 * hrtimer_get_next_event - get the time until next expiry event
1114 *
1115 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1116 * is pending.
1117 */
1118 ktime_t hrtimer_get_next_event(void)
1119 {
1120 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1121 struct hrtimer_clock_base *base = cpu_base->clock_base;
1122 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1123 unsigned long flags;
1124 int i;
1125
1126 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1127
1128 if (!hrtimer_hres_active()) {
1129 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1130 struct hrtimer *timer;
1131 struct timerqueue_node *next;
1132
1133 next = timerqueue_getnext(&base->active);
1134 if (!next)
1135 continue;
1136
1137 timer = container_of(next, struct hrtimer, node);
1138 delta.tv64 = hrtimer_get_expires_tv64(timer);
1139 delta = ktime_sub(delta, base->get_time());
1140 if (delta.tv64 < mindelta.tv64)
1141 mindelta.tv64 = delta.tv64;
1142 }
1143 }
1144
1145 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1146
1147 if (mindelta.tv64 < 0)
1148 mindelta.tv64 = 0;
1149 return mindelta;
1150 }
1151 #endif
1152
1153 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1154 enum hrtimer_mode mode)
1155 {
1156 struct hrtimer_cpu_base *cpu_base;
1157 int base;
1158
1159 memset(timer, 0, sizeof(struct hrtimer));
1160
1161 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1162
1163 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1164 clock_id = CLOCK_MONOTONIC;
1165
1166 base = hrtimer_clockid_to_base(clock_id);
1167 timer->base = &cpu_base->clock_base[base];
1168 timerqueue_init(&timer->node);
1169
1170 #ifdef CONFIG_TIMER_STATS
1171 timer->start_site = NULL;
1172 timer->start_pid = -1;
1173 memset(timer->start_comm, 0, TASK_COMM_LEN);
1174 #endif
1175 }
1176
1177 /**
1178 * hrtimer_init - initialize a timer to the given clock
1179 * @timer: the timer to be initialized
1180 * @clock_id: the clock to be used
1181 * @mode: timer mode abs/rel
1182 */
1183 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1184 enum hrtimer_mode mode)
1185 {
1186 debug_init(timer, clock_id, mode);
1187 __hrtimer_init(timer, clock_id, mode);
1188 }
1189 EXPORT_SYMBOL_GPL(hrtimer_init);
1190
1191 /**
1192 * hrtimer_get_res - get the timer resolution for a clock
1193 * @which_clock: which clock to query
1194 * @tp: pointer to timespec variable to store the resolution
1195 *
1196 * Store the resolution of the clock selected by @which_clock in the
1197 * variable pointed to by @tp.
1198 */
1199 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1200 {
1201 struct hrtimer_cpu_base *cpu_base;
1202 int base = hrtimer_clockid_to_base(which_clock);
1203
1204 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1205 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1206
1207 return 0;
1208 }
1209 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1210
1211 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1212 {
1213 struct hrtimer_clock_base *base = timer->base;
1214 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1215 enum hrtimer_restart (*fn)(struct hrtimer *);
1216 int restart;
1217
1218 WARN_ON(!irqs_disabled());
1219
1220 debug_deactivate(timer);
1221 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1222 timer_stats_account_hrtimer(timer);
1223 fn = timer->function;
1224
1225 /*
1226 * Because we run timers from hardirq context, there is no chance
1227 * they get migrated to another cpu, therefore its safe to unlock
1228 * the timer base.
1229 */
1230 raw_spin_unlock(&cpu_base->lock);
1231 trace_hrtimer_expire_entry(timer, now);
1232 restart = fn(timer);
1233 trace_hrtimer_expire_exit(timer);
1234 raw_spin_lock(&cpu_base->lock);
1235
1236 /*
1237 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1238 * we do not reprogramm the event hardware. Happens either in
1239 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1240 */
1241 if (restart != HRTIMER_NORESTART) {
1242 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1243 enqueue_hrtimer(timer, base);
1244 }
1245
1246 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1247
1248 timer->state &= ~HRTIMER_STATE_CALLBACK;
1249 }
1250
1251 #ifdef CONFIG_HIGH_RES_TIMERS
1252
1253 /*
1254 * High resolution timer interrupt
1255 * Called with interrupts disabled
1256 */
1257 void hrtimer_interrupt(struct clock_event_device *dev)
1258 {
1259 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1260 ktime_t expires_next, now, entry_time, delta;
1261 int i, retries = 0;
1262
1263 BUG_ON(!cpu_base->hres_active);
1264 cpu_base->nr_events++;
1265 dev->next_event.tv64 = KTIME_MAX;
1266
1267 raw_spin_lock(&cpu_base->lock);
1268 entry_time = now = hrtimer_update_base(cpu_base);
1269 retry:
1270 expires_next.tv64 = KTIME_MAX;
1271 /*
1272 * We set expires_next to KTIME_MAX here with cpu_base->lock
1273 * held to prevent that a timer is enqueued in our queue via
1274 * the migration code. This does not affect enqueueing of
1275 * timers which run their callback and need to be requeued on
1276 * this CPU.
1277 */
1278 cpu_base->expires_next.tv64 = KTIME_MAX;
1279
1280 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1281 struct hrtimer_clock_base *base;
1282 struct timerqueue_node *node;
1283 ktime_t basenow;
1284
1285 if (!(cpu_base->active_bases & (1 << i)))
1286 continue;
1287
1288 base = cpu_base->clock_base + i;
1289 basenow = ktime_add(now, base->offset);
1290
1291 while ((node = timerqueue_getnext(&base->active))) {
1292 struct hrtimer *timer;
1293
1294 timer = container_of(node, struct hrtimer, node);
1295
1296 /*
1297 * The immediate goal for using the softexpires is
1298 * minimizing wakeups, not running timers at the
1299 * earliest interrupt after their soft expiration.
1300 * This allows us to avoid using a Priority Search
1301 * Tree, which can answer a stabbing querry for
1302 * overlapping intervals and instead use the simple
1303 * BST we already have.
1304 * We don't add extra wakeups by delaying timers that
1305 * are right-of a not yet expired timer, because that
1306 * timer will have to trigger a wakeup anyway.
1307 */
1308
1309 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1310 ktime_t expires;
1311
1312 expires = ktime_sub(hrtimer_get_expires(timer),
1313 base->offset);
1314 if (expires.tv64 < expires_next.tv64)
1315 expires_next = expires;
1316 break;
1317 }
1318
1319 __run_hrtimer(timer, &basenow);
1320 }
1321 }
1322
1323 /*
1324 * Store the new expiry value so the migration code can verify
1325 * against it.
1326 */
1327 cpu_base->expires_next = expires_next;
1328 raw_spin_unlock(&cpu_base->lock);
1329
1330 /* Reprogramming necessary ? */
1331 if (expires_next.tv64 == KTIME_MAX ||
1332 !tick_program_event(expires_next, 0)) {
1333 cpu_base->hang_detected = 0;
1334 return;
1335 }
1336
1337 /*
1338 * The next timer was already expired due to:
1339 * - tracing
1340 * - long lasting callbacks
1341 * - being scheduled away when running in a VM
1342 *
1343 * We need to prevent that we loop forever in the hrtimer
1344 * interrupt routine. We give it 3 attempts to avoid
1345 * overreacting on some spurious event.
1346 *
1347 * Acquire base lock for updating the offsets and retrieving
1348 * the current time.
1349 */
1350 raw_spin_lock(&cpu_base->lock);
1351 now = hrtimer_update_base(cpu_base);
1352 cpu_base->nr_retries++;
1353 if (++retries < 3)
1354 goto retry;
1355 /*
1356 * Give the system a chance to do something else than looping
1357 * here. We stored the entry time, so we know exactly how long
1358 * we spent here. We schedule the next event this amount of
1359 * time away.
1360 */
1361 cpu_base->nr_hangs++;
1362 cpu_base->hang_detected = 1;
1363 raw_spin_unlock(&cpu_base->lock);
1364 delta = ktime_sub(now, entry_time);
1365 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1366 cpu_base->max_hang_time = delta;
1367 /*
1368 * Limit it to a sensible value as we enforce a longer
1369 * delay. Give the CPU at least 100ms to catch up.
1370 */
1371 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1372 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1373 else
1374 expires_next = ktime_add(now, delta);
1375 tick_program_event(expires_next, 1);
1376 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1377 ktime_to_ns(delta));
1378 }
1379
1380 /*
1381 * local version of hrtimer_peek_ahead_timers() called with interrupts
1382 * disabled.
1383 */
1384 static void __hrtimer_peek_ahead_timers(void)
1385 {
1386 struct tick_device *td;
1387
1388 if (!hrtimer_hres_active())
1389 return;
1390
1391 td = &__get_cpu_var(tick_cpu_device);
1392 if (td && td->evtdev)
1393 hrtimer_interrupt(td->evtdev);
1394 }
1395
1396 /**
1397 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1398 *
1399 * hrtimer_peek_ahead_timers will peek at the timer queue of
1400 * the current cpu and check if there are any timers for which
1401 * the soft expires time has passed. If any such timers exist,
1402 * they are run immediately and then removed from the timer queue.
1403 *
1404 */
1405 void hrtimer_peek_ahead_timers(void)
1406 {
1407 unsigned long flags;
1408
1409 local_irq_save(flags);
1410 __hrtimer_peek_ahead_timers();
1411 local_irq_restore(flags);
1412 }
1413
1414 static void run_hrtimer_softirq(struct softirq_action *h)
1415 {
1416 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1417
1418 if (cpu_base->clock_was_set) {
1419 cpu_base->clock_was_set = 0;
1420 clock_was_set();
1421 }
1422
1423 hrtimer_peek_ahead_timers();
1424 }
1425
1426 #else /* CONFIG_HIGH_RES_TIMERS */
1427
1428 static inline void __hrtimer_peek_ahead_timers(void) { }
1429
1430 #endif /* !CONFIG_HIGH_RES_TIMERS */
1431
1432 /*
1433 * Called from timer softirq every jiffy, expire hrtimers:
1434 *
1435 * For HRT its the fall back code to run the softirq in the timer
1436 * softirq context in case the hrtimer initialization failed or has
1437 * not been done yet.
1438 */
1439 void hrtimer_run_pending(void)
1440 {
1441 if (hrtimer_hres_active())
1442 return;
1443
1444 /*
1445 * This _is_ ugly: We have to check in the softirq context,
1446 * whether we can switch to highres and / or nohz mode. The
1447 * clocksource switch happens in the timer interrupt with
1448 * xtime_lock held. Notification from there only sets the
1449 * check bit in the tick_oneshot code, otherwise we might
1450 * deadlock vs. xtime_lock.
1451 */
1452 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1453 hrtimer_switch_to_hres();
1454 }
1455
1456 /*
1457 * Called from hardirq context every jiffy
1458 */
1459 void hrtimer_run_queues(void)
1460 {
1461 struct timerqueue_node *node;
1462 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1463 struct hrtimer_clock_base *base;
1464 int index, gettime = 1;
1465
1466 if (hrtimer_hres_active())
1467 return;
1468
1469 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1470 base = &cpu_base->clock_base[index];
1471 if (!timerqueue_getnext(&base->active))
1472 continue;
1473
1474 if (gettime) {
1475 hrtimer_get_softirq_time(cpu_base);
1476 gettime = 0;
1477 }
1478
1479 raw_spin_lock(&cpu_base->lock);
1480
1481 while ((node = timerqueue_getnext(&base->active))) {
1482 struct hrtimer *timer;
1483
1484 timer = container_of(node, struct hrtimer, node);
1485 if (base->softirq_time.tv64 <=
1486 hrtimer_get_expires_tv64(timer))
1487 break;
1488
1489 __run_hrtimer(timer, &base->softirq_time);
1490 }
1491 raw_spin_unlock(&cpu_base->lock);
1492 }
1493 }
1494
1495 /*
1496 * Sleep related functions:
1497 */
1498 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1499 {
1500 struct hrtimer_sleeper *t =
1501 container_of(timer, struct hrtimer_sleeper, timer);
1502 struct task_struct *task = t->task;
1503
1504 t->task = NULL;
1505 if (task)
1506 wake_up_process(task);
1507
1508 return HRTIMER_NORESTART;
1509 }
1510
1511 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1512 {
1513 sl->timer.function = hrtimer_wakeup;
1514 sl->task = task;
1515 }
1516 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1517
1518 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1519 {
1520 hrtimer_init_sleeper(t, current);
1521
1522 do {
1523 set_current_state(TASK_INTERRUPTIBLE);
1524 hrtimer_start_expires(&t->timer, mode);
1525 if (!hrtimer_active(&t->timer))
1526 t->task = NULL;
1527
1528 if (likely(t->task))
1529 schedule();
1530
1531 hrtimer_cancel(&t->timer);
1532 mode = HRTIMER_MODE_ABS;
1533
1534 } while (t->task && !signal_pending(current));
1535
1536 __set_current_state(TASK_RUNNING);
1537
1538 return t->task == NULL;
1539 }
1540
1541 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1542 {
1543 struct timespec rmt;
1544 ktime_t rem;
1545
1546 rem = hrtimer_expires_remaining(timer);
1547 if (rem.tv64 <= 0)
1548 return 0;
1549 rmt = ktime_to_timespec(rem);
1550
1551 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1552 return -EFAULT;
1553
1554 return 1;
1555 }
1556
1557 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1558 {
1559 struct hrtimer_sleeper t;
1560 struct timespec __user *rmtp;
1561 int ret = 0;
1562
1563 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1564 HRTIMER_MODE_ABS);
1565 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1566
1567 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1568 goto out;
1569
1570 rmtp = restart->nanosleep.rmtp;
1571 if (rmtp) {
1572 ret = update_rmtp(&t.timer, rmtp);
1573 if (ret <= 0)
1574 goto out;
1575 }
1576
1577 /* The other values in restart are already filled in */
1578 ret = -ERESTART_RESTARTBLOCK;
1579 out:
1580 destroy_hrtimer_on_stack(&t.timer);
1581 return ret;
1582 }
1583
1584 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1585 const enum hrtimer_mode mode, const clockid_t clockid)
1586 {
1587 struct restart_block *restart;
1588 struct hrtimer_sleeper t;
1589 int ret = 0;
1590 unsigned long slack;
1591
1592 slack = current->timer_slack_ns;
1593 if (rt_task(current))
1594 slack = 0;
1595
1596 hrtimer_init_on_stack(&t.timer, clockid, mode);
1597 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1598 if (do_nanosleep(&t, mode))
1599 goto out;
1600
1601 /* Absolute timers do not update the rmtp value and restart: */
1602 if (mode == HRTIMER_MODE_ABS) {
1603 ret = -ERESTARTNOHAND;
1604 goto out;
1605 }
1606
1607 if (rmtp) {
1608 ret = update_rmtp(&t.timer, rmtp);
1609 if (ret <= 0)
1610 goto out;
1611 }
1612
1613 restart = &current_thread_info()->restart_block;
1614 restart->fn = hrtimer_nanosleep_restart;
1615 restart->nanosleep.clockid = t.timer.base->clockid;
1616 restart->nanosleep.rmtp = rmtp;
1617 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1618
1619 ret = -ERESTART_RESTARTBLOCK;
1620 out:
1621 destroy_hrtimer_on_stack(&t.timer);
1622 return ret;
1623 }
1624
1625 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1626 struct timespec __user *, rmtp)
1627 {
1628 struct timespec tu;
1629
1630 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1631 return -EFAULT;
1632
1633 if (!timespec_valid(&tu))
1634 return -EINVAL;
1635
1636 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1637 }
1638
1639 /*
1640 * Functions related to boot-time initialization:
1641 */
1642 static void __cpuinit init_hrtimers_cpu(int cpu)
1643 {
1644 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1645 int i;
1646
1647 raw_spin_lock_init(&cpu_base->lock);
1648
1649 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1650 cpu_base->clock_base[i].cpu_base = cpu_base;
1651 timerqueue_init_head(&cpu_base->clock_base[i].active);
1652 }
1653
1654 hrtimer_init_hres(cpu_base);
1655 }
1656
1657 #ifdef CONFIG_HOTPLUG_CPU
1658
1659 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1660 struct hrtimer_clock_base *new_base)
1661 {
1662 struct hrtimer *timer;
1663 struct timerqueue_node *node;
1664
1665 while ((node = timerqueue_getnext(&old_base->active))) {
1666 timer = container_of(node, struct hrtimer, node);
1667 BUG_ON(hrtimer_callback_running(timer));
1668 debug_deactivate(timer);
1669
1670 /*
1671 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1672 * timer could be seen as !active and just vanish away
1673 * under us on another CPU
1674 */
1675 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1676 timer->base = new_base;
1677 /*
1678 * Enqueue the timers on the new cpu. This does not
1679 * reprogram the event device in case the timer
1680 * expires before the earliest on this CPU, but we run
1681 * hrtimer_interrupt after we migrated everything to
1682 * sort out already expired timers and reprogram the
1683 * event device.
1684 */
1685 enqueue_hrtimer(timer, new_base);
1686
1687 /* Clear the migration state bit */
1688 timer->state &= ~HRTIMER_STATE_MIGRATE;
1689 }
1690 }
1691
1692 static void migrate_hrtimers(int scpu)
1693 {
1694 struct hrtimer_cpu_base *old_base, *new_base;
1695 int i;
1696
1697 BUG_ON(cpu_online(scpu));
1698 tick_cancel_sched_timer(scpu);
1699
1700 local_irq_disable();
1701 old_base = &per_cpu(hrtimer_bases, scpu);
1702 new_base = &__get_cpu_var(hrtimer_bases);
1703 /*
1704 * The caller is globally serialized and nobody else
1705 * takes two locks at once, deadlock is not possible.
1706 */
1707 raw_spin_lock(&new_base->lock);
1708 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1709
1710 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1711 migrate_hrtimer_list(&old_base->clock_base[i],
1712 &new_base->clock_base[i]);
1713 }
1714
1715 raw_spin_unlock(&old_base->lock);
1716 raw_spin_unlock(&new_base->lock);
1717
1718 /* Check, if we got expired work to do */
1719 __hrtimer_peek_ahead_timers();
1720 local_irq_enable();
1721 }
1722
1723 #endif /* CONFIG_HOTPLUG_CPU */
1724
1725 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1726 unsigned long action, void *hcpu)
1727 {
1728 int scpu = (long)hcpu;
1729
1730 switch (action) {
1731
1732 case CPU_UP_PREPARE:
1733 case CPU_UP_PREPARE_FROZEN:
1734 init_hrtimers_cpu(scpu);
1735 break;
1736
1737 #ifdef CONFIG_HOTPLUG_CPU
1738 case CPU_DYING:
1739 case CPU_DYING_FROZEN:
1740 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1741 break;
1742 case CPU_DEAD:
1743 case CPU_DEAD_FROZEN:
1744 {
1745 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1746 migrate_hrtimers(scpu);
1747 break;
1748 }
1749 #endif
1750
1751 default:
1752 break;
1753 }
1754
1755 return NOTIFY_OK;
1756 }
1757
1758 static struct notifier_block __cpuinitdata hrtimers_nb = {
1759 .notifier_call = hrtimer_cpu_notify,
1760 };
1761
1762 void __init hrtimers_init(void)
1763 {
1764 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1765 (void *)(long)smp_processor_id());
1766 register_cpu_notifier(&hrtimers_nb);
1767 #ifdef CONFIG_HIGH_RES_TIMERS
1768 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1769 #endif
1770 }
1771
1772 /**
1773 * schedule_hrtimeout_range_clock - sleep until timeout
1774 * @expires: timeout value (ktime_t)
1775 * @delta: slack in expires timeout (ktime_t)
1776 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1777 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1778 */
1779 int __sched
1780 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1781 const enum hrtimer_mode mode, int clock)
1782 {
1783 struct hrtimer_sleeper t;
1784
1785 /*
1786 * Optimize when a zero timeout value is given. It does not
1787 * matter whether this is an absolute or a relative time.
1788 */
1789 if (expires && !expires->tv64) {
1790 __set_current_state(TASK_RUNNING);
1791 return 0;
1792 }
1793
1794 /*
1795 * A NULL parameter means "infinite"
1796 */
1797 if (!expires) {
1798 schedule();
1799 __set_current_state(TASK_RUNNING);
1800 return -EINTR;
1801 }
1802
1803 hrtimer_init_on_stack(&t.timer, clock, mode);
1804 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1805
1806 hrtimer_init_sleeper(&t, current);
1807
1808 hrtimer_start_expires(&t.timer, mode);
1809 if (!hrtimer_active(&t.timer))
1810 t.task = NULL;
1811
1812 if (likely(t.task))
1813 schedule();
1814
1815 hrtimer_cancel(&t.timer);
1816 destroy_hrtimer_on_stack(&t.timer);
1817
1818 __set_current_state(TASK_RUNNING);
1819
1820 return !t.task ? 0 : -EINTR;
1821 }
1822
1823 /**
1824 * schedule_hrtimeout_range - sleep until timeout
1825 * @expires: timeout value (ktime_t)
1826 * @delta: slack in expires timeout (ktime_t)
1827 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1828 *
1829 * Make the current task sleep until the given expiry time has
1830 * elapsed. The routine will return immediately unless
1831 * the current task state has been set (see set_current_state()).
1832 *
1833 * The @delta argument gives the kernel the freedom to schedule the
1834 * actual wakeup to a time that is both power and performance friendly.
1835 * The kernel give the normal best effort behavior for "@expires+@delta",
1836 * but may decide to fire the timer earlier, but no earlier than @expires.
1837 *
1838 * You can set the task state as follows -
1839 *
1840 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1841 * pass before the routine returns.
1842 *
1843 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1844 * delivered to the current task.
1845 *
1846 * The current task state is guaranteed to be TASK_RUNNING when this
1847 * routine returns.
1848 *
1849 * Returns 0 when the timer has expired otherwise -EINTR
1850 */
1851 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1852 const enum hrtimer_mode mode)
1853 {
1854 return schedule_hrtimeout_range_clock(expires, delta, mode,
1855 CLOCK_MONOTONIC);
1856 }
1857 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1858
1859 /**
1860 * schedule_hrtimeout - sleep until timeout
1861 * @expires: timeout value (ktime_t)
1862 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1863 *
1864 * Make the current task sleep until the given expiry time has
1865 * elapsed. The routine will return immediately unless
1866 * the current task state has been set (see set_current_state()).
1867 *
1868 * You can set the task state as follows -
1869 *
1870 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1871 * pass before the routine returns.
1872 *
1873 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1874 * delivered to the current task.
1875 *
1876 * The current task state is guaranteed to be TASK_RUNNING when this
1877 * routine returns.
1878 *
1879 * Returns 0 when the timer has expired otherwise -EINTR
1880 */
1881 int __sched schedule_hrtimeout(ktime_t *expires,
1882 const enum hrtimer_mode mode)
1883 {
1884 return schedule_hrtimeout_range(expires, 0, mode);
1885 }
1886 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 0.094309 seconds and 5 git commands to generate.