[hrtimer] Enforce resolution as lower limit of intervals
[deliverable/linux.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
6 *
7 * High-resolution kernel timers
8 *
9 * In contrast to the low-resolution timeout API implemented in
10 * kernel/timer.c, hrtimers provide finer resolution and accuracy
11 * depending on system configuration and capabilities.
12 *
13 * These timers are currently used for:
14 * - itimers
15 * - POSIX timers
16 * - nanosleep
17 * - precise in-kernel timing
18 *
19 * Started by: Thomas Gleixner and Ingo Molnar
20 *
21 * Credits:
22 * based on kernel/timer.c
23 *
24 * For licencing details see kernel-base/COPYING
25 */
26
27 #include <linux/cpu.h>
28 #include <linux/module.h>
29 #include <linux/percpu.h>
30 #include <linux/hrtimer.h>
31 #include <linux/notifier.h>
32 #include <linux/syscalls.h>
33 #include <linux/interrupt.h>
34
35 #include <asm/uaccess.h>
36
37 /**
38 * ktime_get - get the monotonic time in ktime_t format
39 *
40 * returns the time in ktime_t format
41 */
42 static ktime_t ktime_get(void)
43 {
44 struct timespec now;
45
46 ktime_get_ts(&now);
47
48 return timespec_to_ktime(now);
49 }
50
51 /**
52 * ktime_get_real - get the real (wall-) time in ktime_t format
53 *
54 * returns the time in ktime_t format
55 */
56 static ktime_t ktime_get_real(void)
57 {
58 struct timespec now;
59
60 getnstimeofday(&now);
61
62 return timespec_to_ktime(now);
63 }
64
65 EXPORT_SYMBOL_GPL(ktime_get_real);
66
67 /*
68 * The timer bases:
69 */
70
71 #define MAX_HRTIMER_BASES 2
72
73 static DEFINE_PER_CPU(struct hrtimer_base, hrtimer_bases[MAX_HRTIMER_BASES]) =
74 {
75 {
76 .index = CLOCK_REALTIME,
77 .get_time = &ktime_get_real,
78 .resolution = KTIME_REALTIME_RES,
79 },
80 {
81 .index = CLOCK_MONOTONIC,
82 .get_time = &ktime_get,
83 .resolution = KTIME_MONOTONIC_RES,
84 },
85 };
86
87 /**
88 * ktime_get_ts - get the monotonic clock in timespec format
89 *
90 * @ts: pointer to timespec variable
91 *
92 * The function calculates the monotonic clock from the realtime
93 * clock and the wall_to_monotonic offset and stores the result
94 * in normalized timespec format in the variable pointed to by ts.
95 */
96 void ktime_get_ts(struct timespec *ts)
97 {
98 struct timespec tomono;
99 unsigned long seq;
100
101 do {
102 seq = read_seqbegin(&xtime_lock);
103 getnstimeofday(ts);
104 tomono = wall_to_monotonic;
105
106 } while (read_seqretry(&xtime_lock, seq));
107
108 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
109 ts->tv_nsec + tomono.tv_nsec);
110 }
111 EXPORT_SYMBOL_GPL(ktime_get_ts);
112
113 /*
114 * Functions and macros which are different for UP/SMP systems are kept in a
115 * single place
116 */
117 #ifdef CONFIG_SMP
118
119 #define set_curr_timer(b, t) do { (b)->curr_timer = (t); } while (0)
120
121 /*
122 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
123 * means that all timers which are tied to this base via timer->base are
124 * locked, and the base itself is locked too.
125 *
126 * So __run_timers/migrate_timers can safely modify all timers which could
127 * be found on the lists/queues.
128 *
129 * When the timer's base is locked, and the timer removed from list, it is
130 * possible to set timer->base = NULL and drop the lock: the timer remains
131 * locked.
132 */
133 static struct hrtimer_base *lock_hrtimer_base(const struct hrtimer *timer,
134 unsigned long *flags)
135 {
136 struct hrtimer_base *base;
137
138 for (;;) {
139 base = timer->base;
140 if (likely(base != NULL)) {
141 spin_lock_irqsave(&base->lock, *flags);
142 if (likely(base == timer->base))
143 return base;
144 /* The timer has migrated to another CPU: */
145 spin_unlock_irqrestore(&base->lock, *flags);
146 }
147 cpu_relax();
148 }
149 }
150
151 /*
152 * Switch the timer base to the current CPU when possible.
153 */
154 static inline struct hrtimer_base *
155 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_base *base)
156 {
157 struct hrtimer_base *new_base;
158
159 new_base = &__get_cpu_var(hrtimer_bases[base->index]);
160
161 if (base != new_base) {
162 /*
163 * We are trying to schedule the timer on the local CPU.
164 * However we can't change timer's base while it is running,
165 * so we keep it on the same CPU. No hassle vs. reprogramming
166 * the event source in the high resolution case. The softirq
167 * code will take care of this when the timer function has
168 * completed. There is no conflict as we hold the lock until
169 * the timer is enqueued.
170 */
171 if (unlikely(base->curr_timer == timer))
172 return base;
173
174 /* See the comment in lock_timer_base() */
175 timer->base = NULL;
176 spin_unlock(&base->lock);
177 spin_lock(&new_base->lock);
178 timer->base = new_base;
179 }
180 return new_base;
181 }
182
183 #else /* CONFIG_SMP */
184
185 #define set_curr_timer(b, t) do { } while (0)
186
187 static inline struct hrtimer_base *
188 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
189 {
190 struct hrtimer_base *base = timer->base;
191
192 spin_lock_irqsave(&base->lock, *flags);
193
194 return base;
195 }
196
197 #define switch_hrtimer_base(t, b) (b)
198
199 #endif /* !CONFIG_SMP */
200
201 /*
202 * Functions for the union type storage format of ktime_t which are
203 * too large for inlining:
204 */
205 #if BITS_PER_LONG < 64
206 # ifndef CONFIG_KTIME_SCALAR
207 /**
208 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
209 *
210 * @kt: addend
211 * @nsec: the scalar nsec value to add
212 *
213 * Returns the sum of kt and nsec in ktime_t format
214 */
215 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
216 {
217 ktime_t tmp;
218
219 if (likely(nsec < NSEC_PER_SEC)) {
220 tmp.tv64 = nsec;
221 } else {
222 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
223
224 tmp = ktime_set((long)nsec, rem);
225 }
226
227 return ktime_add(kt, tmp);
228 }
229
230 #else /* CONFIG_KTIME_SCALAR */
231
232 # endif /* !CONFIG_KTIME_SCALAR */
233
234 /*
235 * Divide a ktime value by a nanosecond value
236 */
237 static unsigned long ktime_divns(const ktime_t kt, nsec_t div)
238 {
239 u64 dclc, inc, dns;
240 int sft = 0;
241
242 dclc = dns = ktime_to_ns(kt);
243 inc = div;
244 /* Make sure the divisor is less than 2^32: */
245 while (div >> 32) {
246 sft++;
247 div >>= 1;
248 }
249 dclc >>= sft;
250 do_div(dclc, (unsigned long) div);
251
252 return (unsigned long) dclc;
253 }
254
255 #else /* BITS_PER_LONG < 64 */
256 # define ktime_divns(kt, div) (unsigned long)((kt).tv64 / (div))
257 #endif /* BITS_PER_LONG >= 64 */
258
259 /*
260 * Counterpart to lock_timer_base above:
261 */
262 static inline
263 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
264 {
265 spin_unlock_irqrestore(&timer->base->lock, *flags);
266 }
267
268 /**
269 * hrtimer_forward - forward the timer expiry
270 *
271 * @timer: hrtimer to forward
272 * @interval: the interval to forward
273 *
274 * Forward the timer expiry so it will expire in the future.
275 * The number of overruns is added to the overrun field.
276 */
277 unsigned long
278 hrtimer_forward(struct hrtimer *timer, ktime_t interval)
279 {
280 unsigned long orun = 1;
281 ktime_t delta, now;
282
283 now = timer->base->get_time();
284
285 delta = ktime_sub(now, timer->expires);
286
287 if (delta.tv64 < 0)
288 return 0;
289
290 if (interval.tv64 < timer->base->resolution.tv64)
291 interval.tv64 = timer->base->resolution.tv64;
292
293 if (unlikely(delta.tv64 >= interval.tv64)) {
294 nsec_t incr = ktime_to_ns(interval);
295
296 orun = ktime_divns(delta, incr);
297 timer->expires = ktime_add_ns(timer->expires, incr * orun);
298 if (timer->expires.tv64 > now.tv64)
299 return orun;
300 /*
301 * This (and the ktime_add() below) is the
302 * correction for exact:
303 */
304 orun++;
305 }
306 timer->expires = ktime_add(timer->expires, interval);
307
308 return orun;
309 }
310
311 /*
312 * enqueue_hrtimer - internal function to (re)start a timer
313 *
314 * The timer is inserted in expiry order. Insertion into the
315 * red black tree is O(log(n)). Must hold the base lock.
316 */
317 static void enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
318 {
319 struct rb_node **link = &base->active.rb_node;
320 struct rb_node *parent = NULL;
321 struct hrtimer *entry;
322
323 /*
324 * Find the right place in the rbtree:
325 */
326 while (*link) {
327 parent = *link;
328 entry = rb_entry(parent, struct hrtimer, node);
329 /*
330 * We dont care about collisions. Nodes with
331 * the same expiry time stay together.
332 */
333 if (timer->expires.tv64 < entry->expires.tv64)
334 link = &(*link)->rb_left;
335 else
336 link = &(*link)->rb_right;
337 }
338
339 /*
340 * Insert the timer to the rbtree and check whether it
341 * replaces the first pending timer
342 */
343 rb_link_node(&timer->node, parent, link);
344 rb_insert_color(&timer->node, &base->active);
345
346 timer->state = HRTIMER_PENDING;
347
348 if (!base->first || timer->expires.tv64 <
349 rb_entry(base->first, struct hrtimer, node)->expires.tv64)
350 base->first = &timer->node;
351 }
352
353 /*
354 * __remove_hrtimer - internal function to remove a timer
355 *
356 * Caller must hold the base lock.
357 */
358 static void __remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
359 {
360 /*
361 * Remove the timer from the rbtree and replace the
362 * first entry pointer if necessary.
363 */
364 if (base->first == &timer->node)
365 base->first = rb_next(&timer->node);
366 rb_erase(&timer->node, &base->active);
367 }
368
369 /*
370 * remove hrtimer, called with base lock held
371 */
372 static inline int
373 remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
374 {
375 if (hrtimer_active(timer)) {
376 __remove_hrtimer(timer, base);
377 timer->state = HRTIMER_INACTIVE;
378 return 1;
379 }
380 return 0;
381 }
382
383 /**
384 * hrtimer_start - (re)start an relative timer on the current CPU
385 *
386 * @timer: the timer to be added
387 * @tim: expiry time
388 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
389 *
390 * Returns:
391 * 0 on success
392 * 1 when the timer was active
393 */
394 int
395 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
396 {
397 struct hrtimer_base *base, *new_base;
398 unsigned long flags;
399 int ret;
400
401 base = lock_hrtimer_base(timer, &flags);
402
403 /* Remove an active timer from the queue: */
404 ret = remove_hrtimer(timer, base);
405
406 /* Switch the timer base, if necessary: */
407 new_base = switch_hrtimer_base(timer, base);
408
409 if (mode == HRTIMER_REL)
410 tim = ktime_add(tim, new_base->get_time());
411 timer->expires = tim;
412
413 enqueue_hrtimer(timer, new_base);
414
415 unlock_hrtimer_base(timer, &flags);
416
417 return ret;
418 }
419
420 /**
421 * hrtimer_try_to_cancel - try to deactivate a timer
422 *
423 * @timer: hrtimer to stop
424 *
425 * Returns:
426 * 0 when the timer was not active
427 * 1 when the timer was active
428 * -1 when the timer is currently excuting the callback function and
429 * can not be stopped
430 */
431 int hrtimer_try_to_cancel(struct hrtimer *timer)
432 {
433 struct hrtimer_base *base;
434 unsigned long flags;
435 int ret = -1;
436
437 base = lock_hrtimer_base(timer, &flags);
438
439 if (base->curr_timer != timer)
440 ret = remove_hrtimer(timer, base);
441
442 unlock_hrtimer_base(timer, &flags);
443
444 return ret;
445
446 }
447
448 /**
449 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
450 *
451 * @timer: the timer to be cancelled
452 *
453 * Returns:
454 * 0 when the timer was not active
455 * 1 when the timer was active
456 */
457 int hrtimer_cancel(struct hrtimer *timer)
458 {
459 for (;;) {
460 int ret = hrtimer_try_to_cancel(timer);
461
462 if (ret >= 0)
463 return ret;
464 }
465 }
466
467 /**
468 * hrtimer_get_remaining - get remaining time for the timer
469 *
470 * @timer: the timer to read
471 */
472 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
473 {
474 struct hrtimer_base *base;
475 unsigned long flags;
476 ktime_t rem;
477
478 base = lock_hrtimer_base(timer, &flags);
479 rem = ktime_sub(timer->expires, timer->base->get_time());
480 unlock_hrtimer_base(timer, &flags);
481
482 return rem;
483 }
484
485 /**
486 * hrtimer_rebase - rebase an initialized hrtimer to a different base
487 *
488 * @timer: the timer to be rebased
489 * @clock_id: the clock to be used
490 */
491 void hrtimer_rebase(struct hrtimer *timer, const clockid_t clock_id)
492 {
493 struct hrtimer_base *bases;
494
495 bases = per_cpu(hrtimer_bases, raw_smp_processor_id());
496 timer->base = &bases[clock_id];
497 }
498
499 /**
500 * hrtimer_init - initialize a timer to the given clock
501 *
502 * @timer: the timer to be initialized
503 * @clock_id: the clock to be used
504 */
505 void hrtimer_init(struct hrtimer *timer, const clockid_t clock_id)
506 {
507 memset(timer, 0, sizeof(struct hrtimer));
508 hrtimer_rebase(timer, clock_id);
509 }
510
511 /**
512 * hrtimer_get_res - get the timer resolution for a clock
513 *
514 * @which_clock: which clock to query
515 * @tp: pointer to timespec variable to store the resolution
516 *
517 * Store the resolution of the clock selected by which_clock in the
518 * variable pointed to by tp.
519 */
520 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
521 {
522 struct hrtimer_base *bases;
523
524 bases = per_cpu(hrtimer_bases, raw_smp_processor_id());
525 *tp = ktime_to_timespec(bases[which_clock].resolution);
526
527 return 0;
528 }
529
530 /*
531 * Expire the per base hrtimer-queue:
532 */
533 static inline void run_hrtimer_queue(struct hrtimer_base *base)
534 {
535 ktime_t now = base->get_time();
536 struct rb_node *node;
537
538 spin_lock_irq(&base->lock);
539
540 while ((node = base->first)) {
541 struct hrtimer *timer;
542 int (*fn)(void *);
543 int restart;
544 void *data;
545
546 timer = rb_entry(node, struct hrtimer, node);
547 if (now.tv64 <= timer->expires.tv64)
548 break;
549
550 fn = timer->function;
551 data = timer->data;
552 set_curr_timer(base, timer);
553 __remove_hrtimer(timer, base);
554 spin_unlock_irq(&base->lock);
555
556 /*
557 * fn == NULL is special case for the simplest timer
558 * variant - wake up process and do not restart:
559 */
560 if (!fn) {
561 wake_up_process(data);
562 restart = HRTIMER_NORESTART;
563 } else
564 restart = fn(data);
565
566 spin_lock_irq(&base->lock);
567
568 if (restart == HRTIMER_RESTART)
569 enqueue_hrtimer(timer, base);
570 else
571 timer->state = HRTIMER_EXPIRED;
572 }
573 set_curr_timer(base, NULL);
574 spin_unlock_irq(&base->lock);
575 }
576
577 /*
578 * Called from timer softirq every jiffy, expire hrtimers:
579 */
580 void hrtimer_run_queues(void)
581 {
582 struct hrtimer_base *base = __get_cpu_var(hrtimer_bases);
583 int i;
584
585 for (i = 0; i < MAX_HRTIMER_BASES; i++)
586 run_hrtimer_queue(&base[i]);
587 }
588
589 /*
590 * Sleep related functions:
591 */
592
593 /**
594 * schedule_hrtimer - sleep until timeout
595 *
596 * @timer: hrtimer variable initialized with the correct clock base
597 * @mode: timeout value is abs/rel
598 *
599 * Make the current task sleep until @timeout is
600 * elapsed.
601 *
602 * You can set the task state as follows -
603 *
604 * %TASK_UNINTERRUPTIBLE - at least @timeout is guaranteed to
605 * pass before the routine returns. The routine will return 0
606 *
607 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
608 * delivered to the current task. In this case the remaining time
609 * will be returned
610 *
611 * The current task state is guaranteed to be TASK_RUNNING when this
612 * routine returns.
613 */
614 static ktime_t __sched
615 schedule_hrtimer(struct hrtimer *timer, const enum hrtimer_mode mode)
616 {
617 /* fn stays NULL, meaning single-shot wakeup: */
618 timer->data = current;
619
620 hrtimer_start(timer, timer->expires, mode);
621
622 schedule();
623 hrtimer_cancel(timer);
624
625 /* Return the remaining time: */
626 if (timer->state != HRTIMER_EXPIRED)
627 return ktime_sub(timer->expires, timer->base->get_time());
628 else
629 return (ktime_t) {.tv64 = 0 };
630 }
631
632 static inline ktime_t __sched
633 schedule_hrtimer_interruptible(struct hrtimer *timer,
634 const enum hrtimer_mode mode)
635 {
636 set_current_state(TASK_INTERRUPTIBLE);
637
638 return schedule_hrtimer(timer, mode);
639 }
640
641 static long __sched
642 nanosleep_restart(struct restart_block *restart, clockid_t clockid)
643 {
644 struct timespec __user *rmtp, tu;
645 void *rfn_save = restart->fn;
646 struct hrtimer timer;
647 ktime_t rem;
648
649 restart->fn = do_no_restart_syscall;
650
651 hrtimer_init(&timer, clockid);
652
653 timer.expires.tv64 = ((u64)restart->arg1 << 32) | (u64) restart->arg0;
654
655 rem = schedule_hrtimer_interruptible(&timer, HRTIMER_ABS);
656
657 if (rem.tv64 <= 0)
658 return 0;
659
660 rmtp = (struct timespec __user *) restart->arg2;
661 tu = ktime_to_timespec(rem);
662 if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu)))
663 return -EFAULT;
664
665 restart->fn = rfn_save;
666
667 /* The other values in restart are already filled in */
668 return -ERESTART_RESTARTBLOCK;
669 }
670
671 static long __sched nanosleep_restart_mono(struct restart_block *restart)
672 {
673 return nanosleep_restart(restart, CLOCK_MONOTONIC);
674 }
675
676 static long __sched nanosleep_restart_real(struct restart_block *restart)
677 {
678 return nanosleep_restart(restart, CLOCK_REALTIME);
679 }
680
681 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
682 const enum hrtimer_mode mode, const clockid_t clockid)
683 {
684 struct restart_block *restart;
685 struct hrtimer timer;
686 struct timespec tu;
687 ktime_t rem;
688
689 hrtimer_init(&timer, clockid);
690
691 timer.expires = timespec_to_ktime(*rqtp);
692
693 rem = schedule_hrtimer_interruptible(&timer, mode);
694 if (rem.tv64 <= 0)
695 return 0;
696
697 /* Absolute timers do not update the rmtp value: */
698 if (mode == HRTIMER_ABS)
699 return -ERESTARTNOHAND;
700
701 tu = ktime_to_timespec(rem);
702
703 if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu)))
704 return -EFAULT;
705
706 restart = &current_thread_info()->restart_block;
707 restart->fn = (clockid == CLOCK_MONOTONIC) ?
708 nanosleep_restart_mono : nanosleep_restart_real;
709 restart->arg0 = timer.expires.tv64 & 0xFFFFFFFF;
710 restart->arg1 = timer.expires.tv64 >> 32;
711 restart->arg2 = (unsigned long) rmtp;
712
713 return -ERESTART_RESTARTBLOCK;
714 }
715
716 asmlinkage long
717 sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
718 {
719 struct timespec tu;
720
721 if (copy_from_user(&tu, rqtp, sizeof(tu)))
722 return -EFAULT;
723
724 if (!timespec_valid(&tu))
725 return -EINVAL;
726
727 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_REL, CLOCK_MONOTONIC);
728 }
729
730 /*
731 * Functions related to boot-time initialization:
732 */
733 static void __devinit init_hrtimers_cpu(int cpu)
734 {
735 struct hrtimer_base *base = per_cpu(hrtimer_bases, cpu);
736 int i;
737
738 for (i = 0; i < MAX_HRTIMER_BASES; i++) {
739 spin_lock_init(&base->lock);
740 base++;
741 }
742 }
743
744 #ifdef CONFIG_HOTPLUG_CPU
745
746 static void migrate_hrtimer_list(struct hrtimer_base *old_base,
747 struct hrtimer_base *new_base)
748 {
749 struct hrtimer *timer;
750 struct rb_node *node;
751
752 while ((node = rb_first(&old_base->active))) {
753 timer = rb_entry(node, struct hrtimer, node);
754 __remove_hrtimer(timer, old_base);
755 timer->base = new_base;
756 enqueue_hrtimer(timer, new_base);
757 }
758 }
759
760 static void migrate_hrtimers(int cpu)
761 {
762 struct hrtimer_base *old_base, *new_base;
763 int i;
764
765 BUG_ON(cpu_online(cpu));
766 old_base = per_cpu(hrtimer_bases, cpu);
767 new_base = get_cpu_var(hrtimer_bases);
768
769 local_irq_disable();
770
771 for (i = 0; i < MAX_HRTIMER_BASES; i++) {
772
773 spin_lock(&new_base->lock);
774 spin_lock(&old_base->lock);
775
776 BUG_ON(old_base->curr_timer);
777
778 migrate_hrtimer_list(old_base, new_base);
779
780 spin_unlock(&old_base->lock);
781 spin_unlock(&new_base->lock);
782 old_base++;
783 new_base++;
784 }
785
786 local_irq_enable();
787 put_cpu_var(hrtimer_bases);
788 }
789 #endif /* CONFIG_HOTPLUG_CPU */
790
791 static int __devinit hrtimer_cpu_notify(struct notifier_block *self,
792 unsigned long action, void *hcpu)
793 {
794 long cpu = (long)hcpu;
795
796 switch (action) {
797
798 case CPU_UP_PREPARE:
799 init_hrtimers_cpu(cpu);
800 break;
801
802 #ifdef CONFIG_HOTPLUG_CPU
803 case CPU_DEAD:
804 migrate_hrtimers(cpu);
805 break;
806 #endif
807
808 default:
809 break;
810 }
811
812 return NOTIFY_OK;
813 }
814
815 static struct notifier_block __devinitdata hrtimers_nb = {
816 .notifier_call = hrtimer_cpu_notify,
817 };
818
819 void __init hrtimers_init(void)
820 {
821 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
822 (void *)(long)smp_processor_id());
823 register_cpu_notifier(&hrtimers_nb);
824 }
825
This page took 0.110834 seconds and 5 git commands to generate.