Merge branch 'for-linus/i2c/2636-rc5' of git://git.fluff.org/bjdooks/linux
[deliverable/linux.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
48
49 #include <asm/uaccess.h>
50
51 #include <trace/events/timer.h>
52
53 /*
54 * The timer bases:
55 *
56 * Note: If we want to add new timer bases, we have to skip the two
57 * clock ids captured by the cpu-timers. We do this by holding empty
58 * entries rather than doing math adjustment of the clock ids.
59 * This ensures that we capture erroneous accesses to these clock ids
60 * rather than moving them into the range of valid clock id's.
61 */
62 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
63 {
64
65 .clock_base =
66 {
67 {
68 .index = CLOCK_REALTIME,
69 .get_time = &ktime_get_real,
70 .resolution = KTIME_LOW_RES,
71 },
72 {
73 .index = CLOCK_MONOTONIC,
74 .get_time = &ktime_get,
75 .resolution = KTIME_LOW_RES,
76 },
77 }
78 };
79
80 /*
81 * Get the coarse grained time at the softirq based on xtime and
82 * wall_to_monotonic.
83 */
84 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
85 {
86 ktime_t xtim, tomono;
87 struct timespec xts, tom;
88 unsigned long seq;
89
90 do {
91 seq = read_seqbegin(&xtime_lock);
92 xts = __current_kernel_time();
93 tom = __get_wall_to_monotonic();
94 } while (read_seqretry(&xtime_lock, seq));
95
96 xtim = timespec_to_ktime(xts);
97 tomono = timespec_to_ktime(tom);
98 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
99 base->clock_base[CLOCK_MONOTONIC].softirq_time =
100 ktime_add(xtim, tomono);
101 }
102
103 /*
104 * Functions and macros which are different for UP/SMP systems are kept in a
105 * single place
106 */
107 #ifdef CONFIG_SMP
108
109 /*
110 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
111 * means that all timers which are tied to this base via timer->base are
112 * locked, and the base itself is locked too.
113 *
114 * So __run_timers/migrate_timers can safely modify all timers which could
115 * be found on the lists/queues.
116 *
117 * When the timer's base is locked, and the timer removed from list, it is
118 * possible to set timer->base = NULL and drop the lock: the timer remains
119 * locked.
120 */
121 static
122 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
123 unsigned long *flags)
124 {
125 struct hrtimer_clock_base *base;
126
127 for (;;) {
128 base = timer->base;
129 if (likely(base != NULL)) {
130 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
131 if (likely(base == timer->base))
132 return base;
133 /* The timer has migrated to another CPU: */
134 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
135 }
136 cpu_relax();
137 }
138 }
139
140
141 /*
142 * Get the preferred target CPU for NOHZ
143 */
144 static int hrtimer_get_target(int this_cpu, int pinned)
145 {
146 #ifdef CONFIG_NO_HZ
147 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
148 return get_nohz_timer_target();
149 #endif
150 return this_cpu;
151 }
152
153 /*
154 * With HIGHRES=y we do not migrate the timer when it is expiring
155 * before the next event on the target cpu because we cannot reprogram
156 * the target cpu hardware and we would cause it to fire late.
157 *
158 * Called with cpu_base->lock of target cpu held.
159 */
160 static int
161 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
162 {
163 #ifdef CONFIG_HIGH_RES_TIMERS
164 ktime_t expires;
165
166 if (!new_base->cpu_base->hres_active)
167 return 0;
168
169 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
170 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
171 #else
172 return 0;
173 #endif
174 }
175
176 /*
177 * Switch the timer base to the current CPU when possible.
178 */
179 static inline struct hrtimer_clock_base *
180 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
181 int pinned)
182 {
183 struct hrtimer_clock_base *new_base;
184 struct hrtimer_cpu_base *new_cpu_base;
185 int this_cpu = smp_processor_id();
186 int cpu = hrtimer_get_target(this_cpu, pinned);
187
188 again:
189 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
190 new_base = &new_cpu_base->clock_base[base->index];
191
192 if (base != new_base) {
193 /*
194 * We are trying to move timer to new_base.
195 * However we can't change timer's base while it is running,
196 * so we keep it on the same CPU. No hassle vs. reprogramming
197 * the event source in the high resolution case. The softirq
198 * code will take care of this when the timer function has
199 * completed. There is no conflict as we hold the lock until
200 * the timer is enqueued.
201 */
202 if (unlikely(hrtimer_callback_running(timer)))
203 return base;
204
205 /* See the comment in lock_timer_base() */
206 timer->base = NULL;
207 raw_spin_unlock(&base->cpu_base->lock);
208 raw_spin_lock(&new_base->cpu_base->lock);
209
210 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
211 cpu = this_cpu;
212 raw_spin_unlock(&new_base->cpu_base->lock);
213 raw_spin_lock(&base->cpu_base->lock);
214 timer->base = base;
215 goto again;
216 }
217 timer->base = new_base;
218 }
219 return new_base;
220 }
221
222 #else /* CONFIG_SMP */
223
224 static inline struct hrtimer_clock_base *
225 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
226 {
227 struct hrtimer_clock_base *base = timer->base;
228
229 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
230
231 return base;
232 }
233
234 # define switch_hrtimer_base(t, b, p) (b)
235
236 #endif /* !CONFIG_SMP */
237
238 /*
239 * Functions for the union type storage format of ktime_t which are
240 * too large for inlining:
241 */
242 #if BITS_PER_LONG < 64
243 # ifndef CONFIG_KTIME_SCALAR
244 /**
245 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
246 * @kt: addend
247 * @nsec: the scalar nsec value to add
248 *
249 * Returns the sum of kt and nsec in ktime_t format
250 */
251 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
252 {
253 ktime_t tmp;
254
255 if (likely(nsec < NSEC_PER_SEC)) {
256 tmp.tv64 = nsec;
257 } else {
258 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
259
260 tmp = ktime_set((long)nsec, rem);
261 }
262
263 return ktime_add(kt, tmp);
264 }
265
266 EXPORT_SYMBOL_GPL(ktime_add_ns);
267
268 /**
269 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
270 * @kt: minuend
271 * @nsec: the scalar nsec value to subtract
272 *
273 * Returns the subtraction of @nsec from @kt in ktime_t format
274 */
275 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
276 {
277 ktime_t tmp;
278
279 if (likely(nsec < NSEC_PER_SEC)) {
280 tmp.tv64 = nsec;
281 } else {
282 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
283
284 tmp = ktime_set((long)nsec, rem);
285 }
286
287 return ktime_sub(kt, tmp);
288 }
289
290 EXPORT_SYMBOL_GPL(ktime_sub_ns);
291 # endif /* !CONFIG_KTIME_SCALAR */
292
293 /*
294 * Divide a ktime value by a nanosecond value
295 */
296 u64 ktime_divns(const ktime_t kt, s64 div)
297 {
298 u64 dclc;
299 int sft = 0;
300
301 dclc = ktime_to_ns(kt);
302 /* Make sure the divisor is less than 2^32: */
303 while (div >> 32) {
304 sft++;
305 div >>= 1;
306 }
307 dclc >>= sft;
308 do_div(dclc, (unsigned long) div);
309
310 return dclc;
311 }
312 #endif /* BITS_PER_LONG >= 64 */
313
314 /*
315 * Add two ktime values and do a safety check for overflow:
316 */
317 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
318 {
319 ktime_t res = ktime_add(lhs, rhs);
320
321 /*
322 * We use KTIME_SEC_MAX here, the maximum timeout which we can
323 * return to user space in a timespec:
324 */
325 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
326 res = ktime_set(KTIME_SEC_MAX, 0);
327
328 return res;
329 }
330
331 EXPORT_SYMBOL_GPL(ktime_add_safe);
332
333 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
334
335 static struct debug_obj_descr hrtimer_debug_descr;
336
337 /*
338 * fixup_init is called when:
339 * - an active object is initialized
340 */
341 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
342 {
343 struct hrtimer *timer = addr;
344
345 switch (state) {
346 case ODEBUG_STATE_ACTIVE:
347 hrtimer_cancel(timer);
348 debug_object_init(timer, &hrtimer_debug_descr);
349 return 1;
350 default:
351 return 0;
352 }
353 }
354
355 /*
356 * fixup_activate is called when:
357 * - an active object is activated
358 * - an unknown object is activated (might be a statically initialized object)
359 */
360 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
361 {
362 switch (state) {
363
364 case ODEBUG_STATE_NOTAVAILABLE:
365 WARN_ON_ONCE(1);
366 return 0;
367
368 case ODEBUG_STATE_ACTIVE:
369 WARN_ON(1);
370
371 default:
372 return 0;
373 }
374 }
375
376 /*
377 * fixup_free is called when:
378 * - an active object is freed
379 */
380 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
381 {
382 struct hrtimer *timer = addr;
383
384 switch (state) {
385 case ODEBUG_STATE_ACTIVE:
386 hrtimer_cancel(timer);
387 debug_object_free(timer, &hrtimer_debug_descr);
388 return 1;
389 default:
390 return 0;
391 }
392 }
393
394 static struct debug_obj_descr hrtimer_debug_descr = {
395 .name = "hrtimer",
396 .fixup_init = hrtimer_fixup_init,
397 .fixup_activate = hrtimer_fixup_activate,
398 .fixup_free = hrtimer_fixup_free,
399 };
400
401 static inline void debug_hrtimer_init(struct hrtimer *timer)
402 {
403 debug_object_init(timer, &hrtimer_debug_descr);
404 }
405
406 static inline void debug_hrtimer_activate(struct hrtimer *timer)
407 {
408 debug_object_activate(timer, &hrtimer_debug_descr);
409 }
410
411 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
412 {
413 debug_object_deactivate(timer, &hrtimer_debug_descr);
414 }
415
416 static inline void debug_hrtimer_free(struct hrtimer *timer)
417 {
418 debug_object_free(timer, &hrtimer_debug_descr);
419 }
420
421 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
422 enum hrtimer_mode mode);
423
424 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
425 enum hrtimer_mode mode)
426 {
427 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
428 __hrtimer_init(timer, clock_id, mode);
429 }
430 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
431
432 void destroy_hrtimer_on_stack(struct hrtimer *timer)
433 {
434 debug_object_free(timer, &hrtimer_debug_descr);
435 }
436
437 #else
438 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
439 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
440 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
441 #endif
442
443 static inline void
444 debug_init(struct hrtimer *timer, clockid_t clockid,
445 enum hrtimer_mode mode)
446 {
447 debug_hrtimer_init(timer);
448 trace_hrtimer_init(timer, clockid, mode);
449 }
450
451 static inline void debug_activate(struct hrtimer *timer)
452 {
453 debug_hrtimer_activate(timer);
454 trace_hrtimer_start(timer);
455 }
456
457 static inline void debug_deactivate(struct hrtimer *timer)
458 {
459 debug_hrtimer_deactivate(timer);
460 trace_hrtimer_cancel(timer);
461 }
462
463 /* High resolution timer related functions */
464 #ifdef CONFIG_HIGH_RES_TIMERS
465
466 /*
467 * High resolution timer enabled ?
468 */
469 static int hrtimer_hres_enabled __read_mostly = 1;
470
471 /*
472 * Enable / Disable high resolution mode
473 */
474 static int __init setup_hrtimer_hres(char *str)
475 {
476 if (!strcmp(str, "off"))
477 hrtimer_hres_enabled = 0;
478 else if (!strcmp(str, "on"))
479 hrtimer_hres_enabled = 1;
480 else
481 return 0;
482 return 1;
483 }
484
485 __setup("highres=", setup_hrtimer_hres);
486
487 /*
488 * hrtimer_high_res_enabled - query, if the highres mode is enabled
489 */
490 static inline int hrtimer_is_hres_enabled(void)
491 {
492 return hrtimer_hres_enabled;
493 }
494
495 /*
496 * Is the high resolution mode active ?
497 */
498 static inline int hrtimer_hres_active(void)
499 {
500 return __get_cpu_var(hrtimer_bases).hres_active;
501 }
502
503 /*
504 * Reprogram the event source with checking both queues for the
505 * next event
506 * Called with interrupts disabled and base->lock held
507 */
508 static void
509 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
510 {
511 int i;
512 struct hrtimer_clock_base *base = cpu_base->clock_base;
513 ktime_t expires, expires_next;
514
515 expires_next.tv64 = KTIME_MAX;
516
517 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
518 struct hrtimer *timer;
519
520 if (!base->first)
521 continue;
522 timer = rb_entry(base->first, struct hrtimer, node);
523 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
524 /*
525 * clock_was_set() has changed base->offset so the
526 * result might be negative. Fix it up to prevent a
527 * false positive in clockevents_program_event()
528 */
529 if (expires.tv64 < 0)
530 expires.tv64 = 0;
531 if (expires.tv64 < expires_next.tv64)
532 expires_next = expires;
533 }
534
535 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
536 return;
537
538 cpu_base->expires_next.tv64 = expires_next.tv64;
539
540 if (cpu_base->expires_next.tv64 != KTIME_MAX)
541 tick_program_event(cpu_base->expires_next, 1);
542 }
543
544 /*
545 * Shared reprogramming for clock_realtime and clock_monotonic
546 *
547 * When a timer is enqueued and expires earlier than the already enqueued
548 * timers, we have to check, whether it expires earlier than the timer for
549 * which the clock event device was armed.
550 *
551 * Called with interrupts disabled and base->cpu_base.lock held
552 */
553 static int hrtimer_reprogram(struct hrtimer *timer,
554 struct hrtimer_clock_base *base)
555 {
556 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
557 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
558 int res;
559
560 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
561
562 /*
563 * When the callback is running, we do not reprogram the clock event
564 * device. The timer callback is either running on a different CPU or
565 * the callback is executed in the hrtimer_interrupt context. The
566 * reprogramming is handled either by the softirq, which called the
567 * callback or at the end of the hrtimer_interrupt.
568 */
569 if (hrtimer_callback_running(timer))
570 return 0;
571
572 /*
573 * CLOCK_REALTIME timer might be requested with an absolute
574 * expiry time which is less than base->offset. Nothing wrong
575 * about that, just avoid to call into the tick code, which
576 * has now objections against negative expiry values.
577 */
578 if (expires.tv64 < 0)
579 return -ETIME;
580
581 if (expires.tv64 >= cpu_base->expires_next.tv64)
582 return 0;
583
584 /*
585 * If a hang was detected in the last timer interrupt then we
586 * do not schedule a timer which is earlier than the expiry
587 * which we enforced in the hang detection. We want the system
588 * to make progress.
589 */
590 if (cpu_base->hang_detected)
591 return 0;
592
593 /*
594 * Clockevents returns -ETIME, when the event was in the past.
595 */
596 res = tick_program_event(expires, 0);
597 if (!IS_ERR_VALUE(res))
598 cpu_base->expires_next = expires;
599 return res;
600 }
601
602
603 /*
604 * Retrigger next event is called after clock was set
605 *
606 * Called with interrupts disabled via on_each_cpu()
607 */
608 static void retrigger_next_event(void *arg)
609 {
610 struct hrtimer_cpu_base *base;
611 struct timespec realtime_offset, wtm;
612 unsigned long seq;
613
614 if (!hrtimer_hres_active())
615 return;
616
617 do {
618 seq = read_seqbegin(&xtime_lock);
619 wtm = __get_wall_to_monotonic();
620 } while (read_seqretry(&xtime_lock, seq));
621 set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
622
623 base = &__get_cpu_var(hrtimer_bases);
624
625 /* Adjust CLOCK_REALTIME offset */
626 raw_spin_lock(&base->lock);
627 base->clock_base[CLOCK_REALTIME].offset =
628 timespec_to_ktime(realtime_offset);
629
630 hrtimer_force_reprogram(base, 0);
631 raw_spin_unlock(&base->lock);
632 }
633
634 /*
635 * Clock realtime was set
636 *
637 * Change the offset of the realtime clock vs. the monotonic
638 * clock.
639 *
640 * We might have to reprogram the high resolution timer interrupt. On
641 * SMP we call the architecture specific code to retrigger _all_ high
642 * resolution timer interrupts. On UP we just disable interrupts and
643 * call the high resolution interrupt code.
644 */
645 void clock_was_set(void)
646 {
647 /* Retrigger the CPU local events everywhere */
648 on_each_cpu(retrigger_next_event, NULL, 1);
649 }
650
651 /*
652 * During resume we might have to reprogram the high resolution timer
653 * interrupt (on the local CPU):
654 */
655 void hres_timers_resume(void)
656 {
657 WARN_ONCE(!irqs_disabled(),
658 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
659
660 retrigger_next_event(NULL);
661 }
662
663 /*
664 * Initialize the high resolution related parts of cpu_base
665 */
666 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
667 {
668 base->expires_next.tv64 = KTIME_MAX;
669 base->hres_active = 0;
670 }
671
672 /*
673 * Initialize the high resolution related parts of a hrtimer
674 */
675 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
676 {
677 }
678
679
680 /*
681 * When High resolution timers are active, try to reprogram. Note, that in case
682 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
683 * check happens. The timer gets enqueued into the rbtree. The reprogramming
684 * and expiry check is done in the hrtimer_interrupt or in the softirq.
685 */
686 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
687 struct hrtimer_clock_base *base,
688 int wakeup)
689 {
690 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
691 if (wakeup) {
692 raw_spin_unlock(&base->cpu_base->lock);
693 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
694 raw_spin_lock(&base->cpu_base->lock);
695 } else
696 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
697
698 return 1;
699 }
700
701 return 0;
702 }
703
704 /*
705 * Switch to high resolution mode
706 */
707 static int hrtimer_switch_to_hres(void)
708 {
709 int cpu = smp_processor_id();
710 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
711 unsigned long flags;
712
713 if (base->hres_active)
714 return 1;
715
716 local_irq_save(flags);
717
718 if (tick_init_highres()) {
719 local_irq_restore(flags);
720 printk(KERN_WARNING "Could not switch to high resolution "
721 "mode on CPU %d\n", cpu);
722 return 0;
723 }
724 base->hres_active = 1;
725 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
726 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
727
728 tick_setup_sched_timer();
729
730 /* "Retrigger" the interrupt to get things going */
731 retrigger_next_event(NULL);
732 local_irq_restore(flags);
733 return 1;
734 }
735
736 #else
737
738 static inline int hrtimer_hres_active(void) { return 0; }
739 static inline int hrtimer_is_hres_enabled(void) { return 0; }
740 static inline int hrtimer_switch_to_hres(void) { return 0; }
741 static inline void
742 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
743 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
744 struct hrtimer_clock_base *base,
745 int wakeup)
746 {
747 return 0;
748 }
749 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
750 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
751
752 #endif /* CONFIG_HIGH_RES_TIMERS */
753
754 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
755 {
756 #ifdef CONFIG_TIMER_STATS
757 if (timer->start_site)
758 return;
759 timer->start_site = __builtin_return_address(0);
760 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
761 timer->start_pid = current->pid;
762 #endif
763 }
764
765 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
766 {
767 #ifdef CONFIG_TIMER_STATS
768 timer->start_site = NULL;
769 #endif
770 }
771
772 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
773 {
774 #ifdef CONFIG_TIMER_STATS
775 if (likely(!timer_stats_active))
776 return;
777 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
778 timer->function, timer->start_comm, 0);
779 #endif
780 }
781
782 /*
783 * Counterpart to lock_hrtimer_base above:
784 */
785 static inline
786 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
787 {
788 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
789 }
790
791 /**
792 * hrtimer_forward - forward the timer expiry
793 * @timer: hrtimer to forward
794 * @now: forward past this time
795 * @interval: the interval to forward
796 *
797 * Forward the timer expiry so it will expire in the future.
798 * Returns the number of overruns.
799 */
800 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
801 {
802 u64 orun = 1;
803 ktime_t delta;
804
805 delta = ktime_sub(now, hrtimer_get_expires(timer));
806
807 if (delta.tv64 < 0)
808 return 0;
809
810 if (interval.tv64 < timer->base->resolution.tv64)
811 interval.tv64 = timer->base->resolution.tv64;
812
813 if (unlikely(delta.tv64 >= interval.tv64)) {
814 s64 incr = ktime_to_ns(interval);
815
816 orun = ktime_divns(delta, incr);
817 hrtimer_add_expires_ns(timer, incr * orun);
818 if (hrtimer_get_expires_tv64(timer) > now.tv64)
819 return orun;
820 /*
821 * This (and the ktime_add() below) is the
822 * correction for exact:
823 */
824 orun++;
825 }
826 hrtimer_add_expires(timer, interval);
827
828 return orun;
829 }
830 EXPORT_SYMBOL_GPL(hrtimer_forward);
831
832 /*
833 * enqueue_hrtimer - internal function to (re)start a timer
834 *
835 * The timer is inserted in expiry order. Insertion into the
836 * red black tree is O(log(n)). Must hold the base lock.
837 *
838 * Returns 1 when the new timer is the leftmost timer in the tree.
839 */
840 static int enqueue_hrtimer(struct hrtimer *timer,
841 struct hrtimer_clock_base *base)
842 {
843 struct rb_node **link = &base->active.rb_node;
844 struct rb_node *parent = NULL;
845 struct hrtimer *entry;
846 int leftmost = 1;
847
848 debug_activate(timer);
849
850 /*
851 * Find the right place in the rbtree:
852 */
853 while (*link) {
854 parent = *link;
855 entry = rb_entry(parent, struct hrtimer, node);
856 /*
857 * We dont care about collisions. Nodes with
858 * the same expiry time stay together.
859 */
860 if (hrtimer_get_expires_tv64(timer) <
861 hrtimer_get_expires_tv64(entry)) {
862 link = &(*link)->rb_left;
863 } else {
864 link = &(*link)->rb_right;
865 leftmost = 0;
866 }
867 }
868
869 /*
870 * Insert the timer to the rbtree and check whether it
871 * replaces the first pending timer
872 */
873 if (leftmost)
874 base->first = &timer->node;
875
876 rb_link_node(&timer->node, parent, link);
877 rb_insert_color(&timer->node, &base->active);
878 /*
879 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
880 * state of a possibly running callback.
881 */
882 timer->state |= HRTIMER_STATE_ENQUEUED;
883
884 return leftmost;
885 }
886
887 /*
888 * __remove_hrtimer - internal function to remove a timer
889 *
890 * Caller must hold the base lock.
891 *
892 * High resolution timer mode reprograms the clock event device when the
893 * timer is the one which expires next. The caller can disable this by setting
894 * reprogram to zero. This is useful, when the context does a reprogramming
895 * anyway (e.g. timer interrupt)
896 */
897 static void __remove_hrtimer(struct hrtimer *timer,
898 struct hrtimer_clock_base *base,
899 unsigned long newstate, int reprogram)
900 {
901 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
902 goto out;
903
904 /*
905 * Remove the timer from the rbtree and replace the first
906 * entry pointer if necessary.
907 */
908 if (base->first == &timer->node) {
909 base->first = rb_next(&timer->node);
910 #ifdef CONFIG_HIGH_RES_TIMERS
911 /* Reprogram the clock event device. if enabled */
912 if (reprogram && hrtimer_hres_active()) {
913 ktime_t expires;
914
915 expires = ktime_sub(hrtimer_get_expires(timer),
916 base->offset);
917 if (base->cpu_base->expires_next.tv64 == expires.tv64)
918 hrtimer_force_reprogram(base->cpu_base, 1);
919 }
920 #endif
921 }
922 rb_erase(&timer->node, &base->active);
923 out:
924 timer->state = newstate;
925 }
926
927 /*
928 * remove hrtimer, called with base lock held
929 */
930 static inline int
931 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
932 {
933 if (hrtimer_is_queued(timer)) {
934 int reprogram;
935
936 /*
937 * Remove the timer and force reprogramming when high
938 * resolution mode is active and the timer is on the current
939 * CPU. If we remove a timer on another CPU, reprogramming is
940 * skipped. The interrupt event on this CPU is fired and
941 * reprogramming happens in the interrupt handler. This is a
942 * rare case and less expensive than a smp call.
943 */
944 debug_deactivate(timer);
945 timer_stats_hrtimer_clear_start_info(timer);
946 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
947 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
948 reprogram);
949 return 1;
950 }
951 return 0;
952 }
953
954 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
955 unsigned long delta_ns, const enum hrtimer_mode mode,
956 int wakeup)
957 {
958 struct hrtimer_clock_base *base, *new_base;
959 unsigned long flags;
960 int ret, leftmost;
961
962 base = lock_hrtimer_base(timer, &flags);
963
964 /* Remove an active timer from the queue: */
965 ret = remove_hrtimer(timer, base);
966
967 /* Switch the timer base, if necessary: */
968 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
969
970 if (mode & HRTIMER_MODE_REL) {
971 tim = ktime_add_safe(tim, new_base->get_time());
972 /*
973 * CONFIG_TIME_LOW_RES is a temporary way for architectures
974 * to signal that they simply return xtime in
975 * do_gettimeoffset(). In this case we want to round up by
976 * resolution when starting a relative timer, to avoid short
977 * timeouts. This will go away with the GTOD framework.
978 */
979 #ifdef CONFIG_TIME_LOW_RES
980 tim = ktime_add_safe(tim, base->resolution);
981 #endif
982 }
983
984 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
985
986 timer_stats_hrtimer_set_start_info(timer);
987
988 leftmost = enqueue_hrtimer(timer, new_base);
989
990 /*
991 * Only allow reprogramming if the new base is on this CPU.
992 * (it might still be on another CPU if the timer was pending)
993 *
994 * XXX send_remote_softirq() ?
995 */
996 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
997 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
998
999 unlock_hrtimer_base(timer, &flags);
1000
1001 return ret;
1002 }
1003
1004 /**
1005 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1006 * @timer: the timer to be added
1007 * @tim: expiry time
1008 * @delta_ns: "slack" range for the timer
1009 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1010 *
1011 * Returns:
1012 * 0 on success
1013 * 1 when the timer was active
1014 */
1015 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1016 unsigned long delta_ns, const enum hrtimer_mode mode)
1017 {
1018 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1019 }
1020 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1021
1022 /**
1023 * hrtimer_start - (re)start an hrtimer on the current CPU
1024 * @timer: the timer to be added
1025 * @tim: expiry time
1026 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1027 *
1028 * Returns:
1029 * 0 on success
1030 * 1 when the timer was active
1031 */
1032 int
1033 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1034 {
1035 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1036 }
1037 EXPORT_SYMBOL_GPL(hrtimer_start);
1038
1039
1040 /**
1041 * hrtimer_try_to_cancel - try to deactivate a timer
1042 * @timer: hrtimer to stop
1043 *
1044 * Returns:
1045 * 0 when the timer was not active
1046 * 1 when the timer was active
1047 * -1 when the timer is currently excuting the callback function and
1048 * cannot be stopped
1049 */
1050 int hrtimer_try_to_cancel(struct hrtimer *timer)
1051 {
1052 struct hrtimer_clock_base *base;
1053 unsigned long flags;
1054 int ret = -1;
1055
1056 base = lock_hrtimer_base(timer, &flags);
1057
1058 if (!hrtimer_callback_running(timer))
1059 ret = remove_hrtimer(timer, base);
1060
1061 unlock_hrtimer_base(timer, &flags);
1062
1063 return ret;
1064
1065 }
1066 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1067
1068 /**
1069 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1070 * @timer: the timer to be cancelled
1071 *
1072 * Returns:
1073 * 0 when the timer was not active
1074 * 1 when the timer was active
1075 */
1076 int hrtimer_cancel(struct hrtimer *timer)
1077 {
1078 for (;;) {
1079 int ret = hrtimer_try_to_cancel(timer);
1080
1081 if (ret >= 0)
1082 return ret;
1083 cpu_relax();
1084 }
1085 }
1086 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1087
1088 /**
1089 * hrtimer_get_remaining - get remaining time for the timer
1090 * @timer: the timer to read
1091 */
1092 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1093 {
1094 unsigned long flags;
1095 ktime_t rem;
1096
1097 lock_hrtimer_base(timer, &flags);
1098 rem = hrtimer_expires_remaining(timer);
1099 unlock_hrtimer_base(timer, &flags);
1100
1101 return rem;
1102 }
1103 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1104
1105 #ifdef CONFIG_NO_HZ
1106 /**
1107 * hrtimer_get_next_event - get the time until next expiry event
1108 *
1109 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1110 * is pending.
1111 */
1112 ktime_t hrtimer_get_next_event(void)
1113 {
1114 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1115 struct hrtimer_clock_base *base = cpu_base->clock_base;
1116 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1117 unsigned long flags;
1118 int i;
1119
1120 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1121
1122 if (!hrtimer_hres_active()) {
1123 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1124 struct hrtimer *timer;
1125
1126 if (!base->first)
1127 continue;
1128
1129 timer = rb_entry(base->first, struct hrtimer, node);
1130 delta.tv64 = hrtimer_get_expires_tv64(timer);
1131 delta = ktime_sub(delta, base->get_time());
1132 if (delta.tv64 < mindelta.tv64)
1133 mindelta.tv64 = delta.tv64;
1134 }
1135 }
1136
1137 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1138
1139 if (mindelta.tv64 < 0)
1140 mindelta.tv64 = 0;
1141 return mindelta;
1142 }
1143 #endif
1144
1145 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1146 enum hrtimer_mode mode)
1147 {
1148 struct hrtimer_cpu_base *cpu_base;
1149
1150 memset(timer, 0, sizeof(struct hrtimer));
1151
1152 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1153
1154 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1155 clock_id = CLOCK_MONOTONIC;
1156
1157 timer->base = &cpu_base->clock_base[clock_id];
1158 hrtimer_init_timer_hres(timer);
1159
1160 #ifdef CONFIG_TIMER_STATS
1161 timer->start_site = NULL;
1162 timer->start_pid = -1;
1163 memset(timer->start_comm, 0, TASK_COMM_LEN);
1164 #endif
1165 }
1166
1167 /**
1168 * hrtimer_init - initialize a timer to the given clock
1169 * @timer: the timer to be initialized
1170 * @clock_id: the clock to be used
1171 * @mode: timer mode abs/rel
1172 */
1173 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1174 enum hrtimer_mode mode)
1175 {
1176 debug_init(timer, clock_id, mode);
1177 __hrtimer_init(timer, clock_id, mode);
1178 }
1179 EXPORT_SYMBOL_GPL(hrtimer_init);
1180
1181 /**
1182 * hrtimer_get_res - get the timer resolution for a clock
1183 * @which_clock: which clock to query
1184 * @tp: pointer to timespec variable to store the resolution
1185 *
1186 * Store the resolution of the clock selected by @which_clock in the
1187 * variable pointed to by @tp.
1188 */
1189 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1190 {
1191 struct hrtimer_cpu_base *cpu_base;
1192
1193 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1194 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1195
1196 return 0;
1197 }
1198 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1199
1200 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1201 {
1202 struct hrtimer_clock_base *base = timer->base;
1203 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1204 enum hrtimer_restart (*fn)(struct hrtimer *);
1205 int restart;
1206
1207 WARN_ON(!irqs_disabled());
1208
1209 debug_deactivate(timer);
1210 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1211 timer_stats_account_hrtimer(timer);
1212 fn = timer->function;
1213
1214 /*
1215 * Because we run timers from hardirq context, there is no chance
1216 * they get migrated to another cpu, therefore its safe to unlock
1217 * the timer base.
1218 */
1219 raw_spin_unlock(&cpu_base->lock);
1220 trace_hrtimer_expire_entry(timer, now);
1221 restart = fn(timer);
1222 trace_hrtimer_expire_exit(timer);
1223 raw_spin_lock(&cpu_base->lock);
1224
1225 /*
1226 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1227 * we do not reprogramm the event hardware. Happens either in
1228 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1229 */
1230 if (restart != HRTIMER_NORESTART) {
1231 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1232 enqueue_hrtimer(timer, base);
1233 }
1234 timer->state &= ~HRTIMER_STATE_CALLBACK;
1235 }
1236
1237 #ifdef CONFIG_HIGH_RES_TIMERS
1238
1239 /*
1240 * High resolution timer interrupt
1241 * Called with interrupts disabled
1242 */
1243 void hrtimer_interrupt(struct clock_event_device *dev)
1244 {
1245 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1246 struct hrtimer_clock_base *base;
1247 ktime_t expires_next, now, entry_time, delta;
1248 int i, retries = 0;
1249
1250 BUG_ON(!cpu_base->hres_active);
1251 cpu_base->nr_events++;
1252 dev->next_event.tv64 = KTIME_MAX;
1253
1254 entry_time = now = ktime_get();
1255 retry:
1256 expires_next.tv64 = KTIME_MAX;
1257
1258 raw_spin_lock(&cpu_base->lock);
1259 /*
1260 * We set expires_next to KTIME_MAX here with cpu_base->lock
1261 * held to prevent that a timer is enqueued in our queue via
1262 * the migration code. This does not affect enqueueing of
1263 * timers which run their callback and need to be requeued on
1264 * this CPU.
1265 */
1266 cpu_base->expires_next.tv64 = KTIME_MAX;
1267
1268 base = cpu_base->clock_base;
1269
1270 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1271 ktime_t basenow;
1272 struct rb_node *node;
1273
1274 basenow = ktime_add(now, base->offset);
1275
1276 while ((node = base->first)) {
1277 struct hrtimer *timer;
1278
1279 timer = rb_entry(node, struct hrtimer, node);
1280
1281 /*
1282 * The immediate goal for using the softexpires is
1283 * minimizing wakeups, not running timers at the
1284 * earliest interrupt after their soft expiration.
1285 * This allows us to avoid using a Priority Search
1286 * Tree, which can answer a stabbing querry for
1287 * overlapping intervals and instead use the simple
1288 * BST we already have.
1289 * We don't add extra wakeups by delaying timers that
1290 * are right-of a not yet expired timer, because that
1291 * timer will have to trigger a wakeup anyway.
1292 */
1293
1294 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1295 ktime_t expires;
1296
1297 expires = ktime_sub(hrtimer_get_expires(timer),
1298 base->offset);
1299 if (expires.tv64 < expires_next.tv64)
1300 expires_next = expires;
1301 break;
1302 }
1303
1304 __run_hrtimer(timer, &basenow);
1305 }
1306 base++;
1307 }
1308
1309 /*
1310 * Store the new expiry value so the migration code can verify
1311 * against it.
1312 */
1313 cpu_base->expires_next = expires_next;
1314 raw_spin_unlock(&cpu_base->lock);
1315
1316 /* Reprogramming necessary ? */
1317 if (expires_next.tv64 == KTIME_MAX ||
1318 !tick_program_event(expires_next, 0)) {
1319 cpu_base->hang_detected = 0;
1320 return;
1321 }
1322
1323 /*
1324 * The next timer was already expired due to:
1325 * - tracing
1326 * - long lasting callbacks
1327 * - being scheduled away when running in a VM
1328 *
1329 * We need to prevent that we loop forever in the hrtimer
1330 * interrupt routine. We give it 3 attempts to avoid
1331 * overreacting on some spurious event.
1332 */
1333 now = ktime_get();
1334 cpu_base->nr_retries++;
1335 if (++retries < 3)
1336 goto retry;
1337 /*
1338 * Give the system a chance to do something else than looping
1339 * here. We stored the entry time, so we know exactly how long
1340 * we spent here. We schedule the next event this amount of
1341 * time away.
1342 */
1343 cpu_base->nr_hangs++;
1344 cpu_base->hang_detected = 1;
1345 delta = ktime_sub(now, entry_time);
1346 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1347 cpu_base->max_hang_time = delta;
1348 /*
1349 * Limit it to a sensible value as we enforce a longer
1350 * delay. Give the CPU at least 100ms to catch up.
1351 */
1352 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1353 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1354 else
1355 expires_next = ktime_add(now, delta);
1356 tick_program_event(expires_next, 1);
1357 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1358 ktime_to_ns(delta));
1359 }
1360
1361 /*
1362 * local version of hrtimer_peek_ahead_timers() called with interrupts
1363 * disabled.
1364 */
1365 static void __hrtimer_peek_ahead_timers(void)
1366 {
1367 struct tick_device *td;
1368
1369 if (!hrtimer_hres_active())
1370 return;
1371
1372 td = &__get_cpu_var(tick_cpu_device);
1373 if (td && td->evtdev)
1374 hrtimer_interrupt(td->evtdev);
1375 }
1376
1377 /**
1378 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1379 *
1380 * hrtimer_peek_ahead_timers will peek at the timer queue of
1381 * the current cpu and check if there are any timers for which
1382 * the soft expires time has passed. If any such timers exist,
1383 * they are run immediately and then removed from the timer queue.
1384 *
1385 */
1386 void hrtimer_peek_ahead_timers(void)
1387 {
1388 unsigned long flags;
1389
1390 local_irq_save(flags);
1391 __hrtimer_peek_ahead_timers();
1392 local_irq_restore(flags);
1393 }
1394
1395 static void run_hrtimer_softirq(struct softirq_action *h)
1396 {
1397 hrtimer_peek_ahead_timers();
1398 }
1399
1400 #else /* CONFIG_HIGH_RES_TIMERS */
1401
1402 static inline void __hrtimer_peek_ahead_timers(void) { }
1403
1404 #endif /* !CONFIG_HIGH_RES_TIMERS */
1405
1406 /*
1407 * Called from timer softirq every jiffy, expire hrtimers:
1408 *
1409 * For HRT its the fall back code to run the softirq in the timer
1410 * softirq context in case the hrtimer initialization failed or has
1411 * not been done yet.
1412 */
1413 void hrtimer_run_pending(void)
1414 {
1415 if (hrtimer_hres_active())
1416 return;
1417
1418 /*
1419 * This _is_ ugly: We have to check in the softirq context,
1420 * whether we can switch to highres and / or nohz mode. The
1421 * clocksource switch happens in the timer interrupt with
1422 * xtime_lock held. Notification from there only sets the
1423 * check bit in the tick_oneshot code, otherwise we might
1424 * deadlock vs. xtime_lock.
1425 */
1426 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1427 hrtimer_switch_to_hres();
1428 }
1429
1430 /*
1431 * Called from hardirq context every jiffy
1432 */
1433 void hrtimer_run_queues(void)
1434 {
1435 struct rb_node *node;
1436 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1437 struct hrtimer_clock_base *base;
1438 int index, gettime = 1;
1439
1440 if (hrtimer_hres_active())
1441 return;
1442
1443 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1444 base = &cpu_base->clock_base[index];
1445
1446 if (!base->first)
1447 continue;
1448
1449 if (gettime) {
1450 hrtimer_get_softirq_time(cpu_base);
1451 gettime = 0;
1452 }
1453
1454 raw_spin_lock(&cpu_base->lock);
1455
1456 while ((node = base->first)) {
1457 struct hrtimer *timer;
1458
1459 timer = rb_entry(node, struct hrtimer, node);
1460 if (base->softirq_time.tv64 <=
1461 hrtimer_get_expires_tv64(timer))
1462 break;
1463
1464 __run_hrtimer(timer, &base->softirq_time);
1465 }
1466 raw_spin_unlock(&cpu_base->lock);
1467 }
1468 }
1469
1470 /*
1471 * Sleep related functions:
1472 */
1473 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1474 {
1475 struct hrtimer_sleeper *t =
1476 container_of(timer, struct hrtimer_sleeper, timer);
1477 struct task_struct *task = t->task;
1478
1479 t->task = NULL;
1480 if (task)
1481 wake_up_process(task);
1482
1483 return HRTIMER_NORESTART;
1484 }
1485
1486 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1487 {
1488 sl->timer.function = hrtimer_wakeup;
1489 sl->task = task;
1490 }
1491 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1492
1493 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1494 {
1495 hrtimer_init_sleeper(t, current);
1496
1497 do {
1498 set_current_state(TASK_INTERRUPTIBLE);
1499 hrtimer_start_expires(&t->timer, mode);
1500 if (!hrtimer_active(&t->timer))
1501 t->task = NULL;
1502
1503 if (likely(t->task))
1504 schedule();
1505
1506 hrtimer_cancel(&t->timer);
1507 mode = HRTIMER_MODE_ABS;
1508
1509 } while (t->task && !signal_pending(current));
1510
1511 __set_current_state(TASK_RUNNING);
1512
1513 return t->task == NULL;
1514 }
1515
1516 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1517 {
1518 struct timespec rmt;
1519 ktime_t rem;
1520
1521 rem = hrtimer_expires_remaining(timer);
1522 if (rem.tv64 <= 0)
1523 return 0;
1524 rmt = ktime_to_timespec(rem);
1525
1526 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1527 return -EFAULT;
1528
1529 return 1;
1530 }
1531
1532 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1533 {
1534 struct hrtimer_sleeper t;
1535 struct timespec __user *rmtp;
1536 int ret = 0;
1537
1538 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1539 HRTIMER_MODE_ABS);
1540 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1541
1542 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1543 goto out;
1544
1545 rmtp = restart->nanosleep.rmtp;
1546 if (rmtp) {
1547 ret = update_rmtp(&t.timer, rmtp);
1548 if (ret <= 0)
1549 goto out;
1550 }
1551
1552 /* The other values in restart are already filled in */
1553 ret = -ERESTART_RESTARTBLOCK;
1554 out:
1555 destroy_hrtimer_on_stack(&t.timer);
1556 return ret;
1557 }
1558
1559 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1560 const enum hrtimer_mode mode, const clockid_t clockid)
1561 {
1562 struct restart_block *restart;
1563 struct hrtimer_sleeper t;
1564 int ret = 0;
1565 unsigned long slack;
1566
1567 slack = current->timer_slack_ns;
1568 if (rt_task(current))
1569 slack = 0;
1570
1571 hrtimer_init_on_stack(&t.timer, clockid, mode);
1572 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1573 if (do_nanosleep(&t, mode))
1574 goto out;
1575
1576 /* Absolute timers do not update the rmtp value and restart: */
1577 if (mode == HRTIMER_MODE_ABS) {
1578 ret = -ERESTARTNOHAND;
1579 goto out;
1580 }
1581
1582 if (rmtp) {
1583 ret = update_rmtp(&t.timer, rmtp);
1584 if (ret <= 0)
1585 goto out;
1586 }
1587
1588 restart = &current_thread_info()->restart_block;
1589 restart->fn = hrtimer_nanosleep_restart;
1590 restart->nanosleep.index = t.timer.base->index;
1591 restart->nanosleep.rmtp = rmtp;
1592 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1593
1594 ret = -ERESTART_RESTARTBLOCK;
1595 out:
1596 destroy_hrtimer_on_stack(&t.timer);
1597 return ret;
1598 }
1599
1600 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1601 struct timespec __user *, rmtp)
1602 {
1603 struct timespec tu;
1604
1605 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1606 return -EFAULT;
1607
1608 if (!timespec_valid(&tu))
1609 return -EINVAL;
1610
1611 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1612 }
1613
1614 /*
1615 * Functions related to boot-time initialization:
1616 */
1617 static void __cpuinit init_hrtimers_cpu(int cpu)
1618 {
1619 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1620 int i;
1621
1622 raw_spin_lock_init(&cpu_base->lock);
1623
1624 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1625 cpu_base->clock_base[i].cpu_base = cpu_base;
1626
1627 hrtimer_init_hres(cpu_base);
1628 }
1629
1630 #ifdef CONFIG_HOTPLUG_CPU
1631
1632 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1633 struct hrtimer_clock_base *new_base)
1634 {
1635 struct hrtimer *timer;
1636 struct rb_node *node;
1637
1638 while ((node = rb_first(&old_base->active))) {
1639 timer = rb_entry(node, struct hrtimer, node);
1640 BUG_ON(hrtimer_callback_running(timer));
1641 debug_deactivate(timer);
1642
1643 /*
1644 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1645 * timer could be seen as !active and just vanish away
1646 * under us on another CPU
1647 */
1648 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1649 timer->base = new_base;
1650 /*
1651 * Enqueue the timers on the new cpu. This does not
1652 * reprogram the event device in case the timer
1653 * expires before the earliest on this CPU, but we run
1654 * hrtimer_interrupt after we migrated everything to
1655 * sort out already expired timers and reprogram the
1656 * event device.
1657 */
1658 enqueue_hrtimer(timer, new_base);
1659
1660 /* Clear the migration state bit */
1661 timer->state &= ~HRTIMER_STATE_MIGRATE;
1662 }
1663 }
1664
1665 static void migrate_hrtimers(int scpu)
1666 {
1667 struct hrtimer_cpu_base *old_base, *new_base;
1668 int i;
1669
1670 BUG_ON(cpu_online(scpu));
1671 tick_cancel_sched_timer(scpu);
1672
1673 local_irq_disable();
1674 old_base = &per_cpu(hrtimer_bases, scpu);
1675 new_base = &__get_cpu_var(hrtimer_bases);
1676 /*
1677 * The caller is globally serialized and nobody else
1678 * takes two locks at once, deadlock is not possible.
1679 */
1680 raw_spin_lock(&new_base->lock);
1681 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1682
1683 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1684 migrate_hrtimer_list(&old_base->clock_base[i],
1685 &new_base->clock_base[i]);
1686 }
1687
1688 raw_spin_unlock(&old_base->lock);
1689 raw_spin_unlock(&new_base->lock);
1690
1691 /* Check, if we got expired work to do */
1692 __hrtimer_peek_ahead_timers();
1693 local_irq_enable();
1694 }
1695
1696 #endif /* CONFIG_HOTPLUG_CPU */
1697
1698 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1699 unsigned long action, void *hcpu)
1700 {
1701 int scpu = (long)hcpu;
1702
1703 switch (action) {
1704
1705 case CPU_UP_PREPARE:
1706 case CPU_UP_PREPARE_FROZEN:
1707 init_hrtimers_cpu(scpu);
1708 break;
1709
1710 #ifdef CONFIG_HOTPLUG_CPU
1711 case CPU_DYING:
1712 case CPU_DYING_FROZEN:
1713 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1714 break;
1715 case CPU_DEAD:
1716 case CPU_DEAD_FROZEN:
1717 {
1718 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1719 migrate_hrtimers(scpu);
1720 break;
1721 }
1722 #endif
1723
1724 default:
1725 break;
1726 }
1727
1728 return NOTIFY_OK;
1729 }
1730
1731 static struct notifier_block __cpuinitdata hrtimers_nb = {
1732 .notifier_call = hrtimer_cpu_notify,
1733 };
1734
1735 void __init hrtimers_init(void)
1736 {
1737 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1738 (void *)(long)smp_processor_id());
1739 register_cpu_notifier(&hrtimers_nb);
1740 #ifdef CONFIG_HIGH_RES_TIMERS
1741 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1742 #endif
1743 }
1744
1745 /**
1746 * schedule_hrtimeout_range_clock - sleep until timeout
1747 * @expires: timeout value (ktime_t)
1748 * @delta: slack in expires timeout (ktime_t)
1749 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1750 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1751 */
1752 int __sched
1753 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1754 const enum hrtimer_mode mode, int clock)
1755 {
1756 struct hrtimer_sleeper t;
1757
1758 /*
1759 * Optimize when a zero timeout value is given. It does not
1760 * matter whether this is an absolute or a relative time.
1761 */
1762 if (expires && !expires->tv64) {
1763 __set_current_state(TASK_RUNNING);
1764 return 0;
1765 }
1766
1767 /*
1768 * A NULL parameter means "inifinte"
1769 */
1770 if (!expires) {
1771 schedule();
1772 __set_current_state(TASK_RUNNING);
1773 return -EINTR;
1774 }
1775
1776 hrtimer_init_on_stack(&t.timer, clock, mode);
1777 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1778
1779 hrtimer_init_sleeper(&t, current);
1780
1781 hrtimer_start_expires(&t.timer, mode);
1782 if (!hrtimer_active(&t.timer))
1783 t.task = NULL;
1784
1785 if (likely(t.task))
1786 schedule();
1787
1788 hrtimer_cancel(&t.timer);
1789 destroy_hrtimer_on_stack(&t.timer);
1790
1791 __set_current_state(TASK_RUNNING);
1792
1793 return !t.task ? 0 : -EINTR;
1794 }
1795
1796 /**
1797 * schedule_hrtimeout_range - sleep until timeout
1798 * @expires: timeout value (ktime_t)
1799 * @delta: slack in expires timeout (ktime_t)
1800 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1801 *
1802 * Make the current task sleep until the given expiry time has
1803 * elapsed. The routine will return immediately unless
1804 * the current task state has been set (see set_current_state()).
1805 *
1806 * The @delta argument gives the kernel the freedom to schedule the
1807 * actual wakeup to a time that is both power and performance friendly.
1808 * The kernel give the normal best effort behavior for "@expires+@delta",
1809 * but may decide to fire the timer earlier, but no earlier than @expires.
1810 *
1811 * You can set the task state as follows -
1812 *
1813 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1814 * pass before the routine returns.
1815 *
1816 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1817 * delivered to the current task.
1818 *
1819 * The current task state is guaranteed to be TASK_RUNNING when this
1820 * routine returns.
1821 *
1822 * Returns 0 when the timer has expired otherwise -EINTR
1823 */
1824 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1825 const enum hrtimer_mode mode)
1826 {
1827 return schedule_hrtimeout_range_clock(expires, delta, mode,
1828 CLOCK_MONOTONIC);
1829 }
1830 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1831
1832 /**
1833 * schedule_hrtimeout - sleep until timeout
1834 * @expires: timeout value (ktime_t)
1835 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1836 *
1837 * Make the current task sleep until the given expiry time has
1838 * elapsed. The routine will return immediately unless
1839 * the current task state has been set (see set_current_state()).
1840 *
1841 * You can set the task state as follows -
1842 *
1843 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1844 * pass before the routine returns.
1845 *
1846 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1847 * delivered to the current task.
1848 *
1849 * The current task state is guaranteed to be TASK_RUNNING when this
1850 * routine returns.
1851 *
1852 * Returns 0 when the timer has expired otherwise -EINTR
1853 */
1854 int __sched schedule_hrtimeout(ktime_t *expires,
1855 const enum hrtimer_mode mode)
1856 {
1857 return schedule_hrtimeout_range(expires, 0, mode);
1858 }
1859 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 0.068687 seconds and 5 git commands to generate.