af_iucv: remove duplicate sock_set_flag
[deliverable/linux.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
48
49 #include <asm/uaccess.h>
50
51 #include <trace/events/timer.h>
52
53 /*
54 * The timer bases:
55 *
56 * Note: If we want to add new timer bases, we have to skip the two
57 * clock ids captured by the cpu-timers. We do this by holding empty
58 * entries rather than doing math adjustment of the clock ids.
59 * This ensures that we capture erroneous accesses to these clock ids
60 * rather than moving them into the range of valid clock id's.
61 */
62 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
63 {
64
65 .clock_base =
66 {
67 {
68 .index = CLOCK_REALTIME,
69 .get_time = &ktime_get_real,
70 .resolution = KTIME_LOW_RES,
71 },
72 {
73 .index = CLOCK_MONOTONIC,
74 .get_time = &ktime_get,
75 .resolution = KTIME_LOW_RES,
76 },
77 }
78 };
79
80 /*
81 * Get the coarse grained time at the softirq based on xtime and
82 * wall_to_monotonic.
83 */
84 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
85 {
86 ktime_t xtim, tomono;
87 struct timespec xts, tom;
88 unsigned long seq;
89
90 do {
91 seq = read_seqbegin(&xtime_lock);
92 xts = current_kernel_time();
93 tom = wall_to_monotonic;
94 } while (read_seqretry(&xtime_lock, seq));
95
96 xtim = timespec_to_ktime(xts);
97 tomono = timespec_to_ktime(tom);
98 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
99 base->clock_base[CLOCK_MONOTONIC].softirq_time =
100 ktime_add(xtim, tomono);
101 }
102
103 /*
104 * Functions and macros which are different for UP/SMP systems are kept in a
105 * single place
106 */
107 #ifdef CONFIG_SMP
108
109 /*
110 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
111 * means that all timers which are tied to this base via timer->base are
112 * locked, and the base itself is locked too.
113 *
114 * So __run_timers/migrate_timers can safely modify all timers which could
115 * be found on the lists/queues.
116 *
117 * When the timer's base is locked, and the timer removed from list, it is
118 * possible to set timer->base = NULL and drop the lock: the timer remains
119 * locked.
120 */
121 static
122 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
123 unsigned long *flags)
124 {
125 struct hrtimer_clock_base *base;
126
127 for (;;) {
128 base = timer->base;
129 if (likely(base != NULL)) {
130 spin_lock_irqsave(&base->cpu_base->lock, *flags);
131 if (likely(base == timer->base))
132 return base;
133 /* The timer has migrated to another CPU: */
134 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
135 }
136 cpu_relax();
137 }
138 }
139
140
141 /*
142 * Get the preferred target CPU for NOHZ
143 */
144 static int hrtimer_get_target(int this_cpu, int pinned)
145 {
146 #ifdef CONFIG_NO_HZ
147 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) {
148 int preferred_cpu = get_nohz_load_balancer();
149
150 if (preferred_cpu >= 0)
151 return preferred_cpu;
152 }
153 #endif
154 return this_cpu;
155 }
156
157 /*
158 * With HIGHRES=y we do not migrate the timer when it is expiring
159 * before the next event on the target cpu because we cannot reprogram
160 * the target cpu hardware and we would cause it to fire late.
161 *
162 * Called with cpu_base->lock of target cpu held.
163 */
164 static int
165 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
166 {
167 #ifdef CONFIG_HIGH_RES_TIMERS
168 ktime_t expires;
169
170 if (!new_base->cpu_base->hres_active)
171 return 0;
172
173 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
174 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
175 #else
176 return 0;
177 #endif
178 }
179
180 /*
181 * Switch the timer base to the current CPU when possible.
182 */
183 static inline struct hrtimer_clock_base *
184 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
185 int pinned)
186 {
187 struct hrtimer_clock_base *new_base;
188 struct hrtimer_cpu_base *new_cpu_base;
189 int this_cpu = smp_processor_id();
190 int cpu = hrtimer_get_target(this_cpu, pinned);
191
192 again:
193 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
194 new_base = &new_cpu_base->clock_base[base->index];
195
196 if (base != new_base) {
197 /*
198 * We are trying to move timer to new_base.
199 * However we can't change timer's base while it is running,
200 * so we keep it on the same CPU. No hassle vs. reprogramming
201 * the event source in the high resolution case. The softirq
202 * code will take care of this when the timer function has
203 * completed. There is no conflict as we hold the lock until
204 * the timer is enqueued.
205 */
206 if (unlikely(hrtimer_callback_running(timer)))
207 return base;
208
209 /* See the comment in lock_timer_base() */
210 timer->base = NULL;
211 spin_unlock(&base->cpu_base->lock);
212 spin_lock(&new_base->cpu_base->lock);
213
214 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
215 cpu = this_cpu;
216 spin_unlock(&new_base->cpu_base->lock);
217 spin_lock(&base->cpu_base->lock);
218 timer->base = base;
219 goto again;
220 }
221 timer->base = new_base;
222 }
223 return new_base;
224 }
225
226 #else /* CONFIG_SMP */
227
228 static inline struct hrtimer_clock_base *
229 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
230 {
231 struct hrtimer_clock_base *base = timer->base;
232
233 spin_lock_irqsave(&base->cpu_base->lock, *flags);
234
235 return base;
236 }
237
238 # define switch_hrtimer_base(t, b, p) (b)
239
240 #endif /* !CONFIG_SMP */
241
242 /*
243 * Functions for the union type storage format of ktime_t which are
244 * too large for inlining:
245 */
246 #if BITS_PER_LONG < 64
247 # ifndef CONFIG_KTIME_SCALAR
248 /**
249 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
250 * @kt: addend
251 * @nsec: the scalar nsec value to add
252 *
253 * Returns the sum of kt and nsec in ktime_t format
254 */
255 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
256 {
257 ktime_t tmp;
258
259 if (likely(nsec < NSEC_PER_SEC)) {
260 tmp.tv64 = nsec;
261 } else {
262 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
263
264 tmp = ktime_set((long)nsec, rem);
265 }
266
267 return ktime_add(kt, tmp);
268 }
269
270 EXPORT_SYMBOL_GPL(ktime_add_ns);
271
272 /**
273 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
274 * @kt: minuend
275 * @nsec: the scalar nsec value to subtract
276 *
277 * Returns the subtraction of @nsec from @kt in ktime_t format
278 */
279 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
280 {
281 ktime_t tmp;
282
283 if (likely(nsec < NSEC_PER_SEC)) {
284 tmp.tv64 = nsec;
285 } else {
286 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
287
288 tmp = ktime_set((long)nsec, rem);
289 }
290
291 return ktime_sub(kt, tmp);
292 }
293
294 EXPORT_SYMBOL_GPL(ktime_sub_ns);
295 # endif /* !CONFIG_KTIME_SCALAR */
296
297 /*
298 * Divide a ktime value by a nanosecond value
299 */
300 u64 ktime_divns(const ktime_t kt, s64 div)
301 {
302 u64 dclc;
303 int sft = 0;
304
305 dclc = ktime_to_ns(kt);
306 /* Make sure the divisor is less than 2^32: */
307 while (div >> 32) {
308 sft++;
309 div >>= 1;
310 }
311 dclc >>= sft;
312 do_div(dclc, (unsigned long) div);
313
314 return dclc;
315 }
316 #endif /* BITS_PER_LONG >= 64 */
317
318 /*
319 * Add two ktime values and do a safety check for overflow:
320 */
321 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
322 {
323 ktime_t res = ktime_add(lhs, rhs);
324
325 /*
326 * We use KTIME_SEC_MAX here, the maximum timeout which we can
327 * return to user space in a timespec:
328 */
329 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
330 res = ktime_set(KTIME_SEC_MAX, 0);
331
332 return res;
333 }
334
335 EXPORT_SYMBOL_GPL(ktime_add_safe);
336
337 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
338
339 static struct debug_obj_descr hrtimer_debug_descr;
340
341 /*
342 * fixup_init is called when:
343 * - an active object is initialized
344 */
345 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
346 {
347 struct hrtimer *timer = addr;
348
349 switch (state) {
350 case ODEBUG_STATE_ACTIVE:
351 hrtimer_cancel(timer);
352 debug_object_init(timer, &hrtimer_debug_descr);
353 return 1;
354 default:
355 return 0;
356 }
357 }
358
359 /*
360 * fixup_activate is called when:
361 * - an active object is activated
362 * - an unknown object is activated (might be a statically initialized object)
363 */
364 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
365 {
366 switch (state) {
367
368 case ODEBUG_STATE_NOTAVAILABLE:
369 WARN_ON_ONCE(1);
370 return 0;
371
372 case ODEBUG_STATE_ACTIVE:
373 WARN_ON(1);
374
375 default:
376 return 0;
377 }
378 }
379
380 /*
381 * fixup_free is called when:
382 * - an active object is freed
383 */
384 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
385 {
386 struct hrtimer *timer = addr;
387
388 switch (state) {
389 case ODEBUG_STATE_ACTIVE:
390 hrtimer_cancel(timer);
391 debug_object_free(timer, &hrtimer_debug_descr);
392 return 1;
393 default:
394 return 0;
395 }
396 }
397
398 static struct debug_obj_descr hrtimer_debug_descr = {
399 .name = "hrtimer",
400 .fixup_init = hrtimer_fixup_init,
401 .fixup_activate = hrtimer_fixup_activate,
402 .fixup_free = hrtimer_fixup_free,
403 };
404
405 static inline void debug_hrtimer_init(struct hrtimer *timer)
406 {
407 debug_object_init(timer, &hrtimer_debug_descr);
408 }
409
410 static inline void debug_hrtimer_activate(struct hrtimer *timer)
411 {
412 debug_object_activate(timer, &hrtimer_debug_descr);
413 }
414
415 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
416 {
417 debug_object_deactivate(timer, &hrtimer_debug_descr);
418 }
419
420 static inline void debug_hrtimer_free(struct hrtimer *timer)
421 {
422 debug_object_free(timer, &hrtimer_debug_descr);
423 }
424
425 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
426 enum hrtimer_mode mode);
427
428 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
429 enum hrtimer_mode mode)
430 {
431 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
432 __hrtimer_init(timer, clock_id, mode);
433 }
434 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
435
436 void destroy_hrtimer_on_stack(struct hrtimer *timer)
437 {
438 debug_object_free(timer, &hrtimer_debug_descr);
439 }
440
441 #else
442 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
443 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
444 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
445 #endif
446
447 static inline void
448 debug_init(struct hrtimer *timer, clockid_t clockid,
449 enum hrtimer_mode mode)
450 {
451 debug_hrtimer_init(timer);
452 trace_hrtimer_init(timer, clockid, mode);
453 }
454
455 static inline void debug_activate(struct hrtimer *timer)
456 {
457 debug_hrtimer_activate(timer);
458 trace_hrtimer_start(timer);
459 }
460
461 static inline void debug_deactivate(struct hrtimer *timer)
462 {
463 debug_hrtimer_deactivate(timer);
464 trace_hrtimer_cancel(timer);
465 }
466
467 /* High resolution timer related functions */
468 #ifdef CONFIG_HIGH_RES_TIMERS
469
470 /*
471 * High resolution timer enabled ?
472 */
473 static int hrtimer_hres_enabled __read_mostly = 1;
474
475 /*
476 * Enable / Disable high resolution mode
477 */
478 static int __init setup_hrtimer_hres(char *str)
479 {
480 if (!strcmp(str, "off"))
481 hrtimer_hres_enabled = 0;
482 else if (!strcmp(str, "on"))
483 hrtimer_hres_enabled = 1;
484 else
485 return 0;
486 return 1;
487 }
488
489 __setup("highres=", setup_hrtimer_hres);
490
491 /*
492 * hrtimer_high_res_enabled - query, if the highres mode is enabled
493 */
494 static inline int hrtimer_is_hres_enabled(void)
495 {
496 return hrtimer_hres_enabled;
497 }
498
499 /*
500 * Is the high resolution mode active ?
501 */
502 static inline int hrtimer_hres_active(void)
503 {
504 return __get_cpu_var(hrtimer_bases).hres_active;
505 }
506
507 /*
508 * Reprogram the event source with checking both queues for the
509 * next event
510 * Called with interrupts disabled and base->lock held
511 */
512 static void
513 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
514 {
515 int i;
516 struct hrtimer_clock_base *base = cpu_base->clock_base;
517 ktime_t expires, expires_next;
518
519 expires_next.tv64 = KTIME_MAX;
520
521 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
522 struct hrtimer *timer;
523
524 if (!base->first)
525 continue;
526 timer = rb_entry(base->first, struct hrtimer, node);
527 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
528 /*
529 * clock_was_set() has changed base->offset so the
530 * result might be negative. Fix it up to prevent a
531 * false positive in clockevents_program_event()
532 */
533 if (expires.tv64 < 0)
534 expires.tv64 = 0;
535 if (expires.tv64 < expires_next.tv64)
536 expires_next = expires;
537 }
538
539 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
540 return;
541
542 cpu_base->expires_next.tv64 = expires_next.tv64;
543
544 if (cpu_base->expires_next.tv64 != KTIME_MAX)
545 tick_program_event(cpu_base->expires_next, 1);
546 }
547
548 /*
549 * Shared reprogramming for clock_realtime and clock_monotonic
550 *
551 * When a timer is enqueued and expires earlier than the already enqueued
552 * timers, we have to check, whether it expires earlier than the timer for
553 * which the clock event device was armed.
554 *
555 * Called with interrupts disabled and base->cpu_base.lock held
556 */
557 static int hrtimer_reprogram(struct hrtimer *timer,
558 struct hrtimer_clock_base *base)
559 {
560 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
561 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
562 int res;
563
564 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
565
566 /*
567 * When the callback is running, we do not reprogram the clock event
568 * device. The timer callback is either running on a different CPU or
569 * the callback is executed in the hrtimer_interrupt context. The
570 * reprogramming is handled either by the softirq, which called the
571 * callback or at the end of the hrtimer_interrupt.
572 */
573 if (hrtimer_callback_running(timer))
574 return 0;
575
576 /*
577 * CLOCK_REALTIME timer might be requested with an absolute
578 * expiry time which is less than base->offset. Nothing wrong
579 * about that, just avoid to call into the tick code, which
580 * has now objections against negative expiry values.
581 */
582 if (expires.tv64 < 0)
583 return -ETIME;
584
585 if (expires.tv64 >= expires_next->tv64)
586 return 0;
587
588 /*
589 * Clockevents returns -ETIME, when the event was in the past.
590 */
591 res = tick_program_event(expires, 0);
592 if (!IS_ERR_VALUE(res))
593 *expires_next = expires;
594 return res;
595 }
596
597
598 /*
599 * Retrigger next event is called after clock was set
600 *
601 * Called with interrupts disabled via on_each_cpu()
602 */
603 static void retrigger_next_event(void *arg)
604 {
605 struct hrtimer_cpu_base *base;
606 struct timespec realtime_offset;
607 unsigned long seq;
608
609 if (!hrtimer_hres_active())
610 return;
611
612 do {
613 seq = read_seqbegin(&xtime_lock);
614 set_normalized_timespec(&realtime_offset,
615 -wall_to_monotonic.tv_sec,
616 -wall_to_monotonic.tv_nsec);
617 } while (read_seqretry(&xtime_lock, seq));
618
619 base = &__get_cpu_var(hrtimer_bases);
620
621 /* Adjust CLOCK_REALTIME offset */
622 spin_lock(&base->lock);
623 base->clock_base[CLOCK_REALTIME].offset =
624 timespec_to_ktime(realtime_offset);
625
626 hrtimer_force_reprogram(base, 0);
627 spin_unlock(&base->lock);
628 }
629
630 /*
631 * Clock realtime was set
632 *
633 * Change the offset of the realtime clock vs. the monotonic
634 * clock.
635 *
636 * We might have to reprogram the high resolution timer interrupt. On
637 * SMP we call the architecture specific code to retrigger _all_ high
638 * resolution timer interrupts. On UP we just disable interrupts and
639 * call the high resolution interrupt code.
640 */
641 void clock_was_set(void)
642 {
643 /* Retrigger the CPU local events everywhere */
644 on_each_cpu(retrigger_next_event, NULL, 1);
645 }
646
647 /*
648 * During resume we might have to reprogram the high resolution timer
649 * interrupt (on the local CPU):
650 */
651 void hres_timers_resume(void)
652 {
653 WARN_ONCE(!irqs_disabled(),
654 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
655
656 retrigger_next_event(NULL);
657 }
658
659 /*
660 * Initialize the high resolution related parts of cpu_base
661 */
662 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
663 {
664 base->expires_next.tv64 = KTIME_MAX;
665 base->hres_active = 0;
666 }
667
668 /*
669 * Initialize the high resolution related parts of a hrtimer
670 */
671 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
672 {
673 }
674
675
676 /*
677 * When High resolution timers are active, try to reprogram. Note, that in case
678 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
679 * check happens. The timer gets enqueued into the rbtree. The reprogramming
680 * and expiry check is done in the hrtimer_interrupt or in the softirq.
681 */
682 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
683 struct hrtimer_clock_base *base,
684 int wakeup)
685 {
686 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
687 if (wakeup) {
688 spin_unlock(&base->cpu_base->lock);
689 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
690 spin_lock(&base->cpu_base->lock);
691 } else
692 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
693
694 return 1;
695 }
696
697 return 0;
698 }
699
700 /*
701 * Switch to high resolution mode
702 */
703 static int hrtimer_switch_to_hres(void)
704 {
705 int cpu = smp_processor_id();
706 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
707 unsigned long flags;
708
709 if (base->hres_active)
710 return 1;
711
712 local_irq_save(flags);
713
714 if (tick_init_highres()) {
715 local_irq_restore(flags);
716 printk(KERN_WARNING "Could not switch to high resolution "
717 "mode on CPU %d\n", cpu);
718 return 0;
719 }
720 base->hres_active = 1;
721 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
722 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
723
724 tick_setup_sched_timer();
725
726 /* "Retrigger" the interrupt to get things going */
727 retrigger_next_event(NULL);
728 local_irq_restore(flags);
729 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
730 smp_processor_id());
731 return 1;
732 }
733
734 #else
735
736 static inline int hrtimer_hres_active(void) { return 0; }
737 static inline int hrtimer_is_hres_enabled(void) { return 0; }
738 static inline int hrtimer_switch_to_hres(void) { return 0; }
739 static inline void
740 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
741 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
742 struct hrtimer_clock_base *base,
743 int wakeup)
744 {
745 return 0;
746 }
747 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
748 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
749
750 #endif /* CONFIG_HIGH_RES_TIMERS */
751
752 #ifdef CONFIG_TIMER_STATS
753 void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
754 {
755 if (timer->start_site)
756 return;
757
758 timer->start_site = addr;
759 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
760 timer->start_pid = current->pid;
761 }
762 #endif
763
764 /*
765 * Counterpart to lock_hrtimer_base above:
766 */
767 static inline
768 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
769 {
770 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
771 }
772
773 /**
774 * hrtimer_forward - forward the timer expiry
775 * @timer: hrtimer to forward
776 * @now: forward past this time
777 * @interval: the interval to forward
778 *
779 * Forward the timer expiry so it will expire in the future.
780 * Returns the number of overruns.
781 */
782 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
783 {
784 u64 orun = 1;
785 ktime_t delta;
786
787 delta = ktime_sub(now, hrtimer_get_expires(timer));
788
789 if (delta.tv64 < 0)
790 return 0;
791
792 if (interval.tv64 < timer->base->resolution.tv64)
793 interval.tv64 = timer->base->resolution.tv64;
794
795 if (unlikely(delta.tv64 >= interval.tv64)) {
796 s64 incr = ktime_to_ns(interval);
797
798 orun = ktime_divns(delta, incr);
799 hrtimer_add_expires_ns(timer, incr * orun);
800 if (hrtimer_get_expires_tv64(timer) > now.tv64)
801 return orun;
802 /*
803 * This (and the ktime_add() below) is the
804 * correction for exact:
805 */
806 orun++;
807 }
808 hrtimer_add_expires(timer, interval);
809
810 return orun;
811 }
812 EXPORT_SYMBOL_GPL(hrtimer_forward);
813
814 /*
815 * enqueue_hrtimer - internal function to (re)start a timer
816 *
817 * The timer is inserted in expiry order. Insertion into the
818 * red black tree is O(log(n)). Must hold the base lock.
819 *
820 * Returns 1 when the new timer is the leftmost timer in the tree.
821 */
822 static int enqueue_hrtimer(struct hrtimer *timer,
823 struct hrtimer_clock_base *base)
824 {
825 struct rb_node **link = &base->active.rb_node;
826 struct rb_node *parent = NULL;
827 struct hrtimer *entry;
828 int leftmost = 1;
829
830 debug_activate(timer);
831
832 /*
833 * Find the right place in the rbtree:
834 */
835 while (*link) {
836 parent = *link;
837 entry = rb_entry(parent, struct hrtimer, node);
838 /*
839 * We dont care about collisions. Nodes with
840 * the same expiry time stay together.
841 */
842 if (hrtimer_get_expires_tv64(timer) <
843 hrtimer_get_expires_tv64(entry)) {
844 link = &(*link)->rb_left;
845 } else {
846 link = &(*link)->rb_right;
847 leftmost = 0;
848 }
849 }
850
851 /*
852 * Insert the timer to the rbtree and check whether it
853 * replaces the first pending timer
854 */
855 if (leftmost)
856 base->first = &timer->node;
857
858 rb_link_node(&timer->node, parent, link);
859 rb_insert_color(&timer->node, &base->active);
860 /*
861 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
862 * state of a possibly running callback.
863 */
864 timer->state |= HRTIMER_STATE_ENQUEUED;
865
866 return leftmost;
867 }
868
869 /*
870 * __remove_hrtimer - internal function to remove a timer
871 *
872 * Caller must hold the base lock.
873 *
874 * High resolution timer mode reprograms the clock event device when the
875 * timer is the one which expires next. The caller can disable this by setting
876 * reprogram to zero. This is useful, when the context does a reprogramming
877 * anyway (e.g. timer interrupt)
878 */
879 static void __remove_hrtimer(struct hrtimer *timer,
880 struct hrtimer_clock_base *base,
881 unsigned long newstate, int reprogram)
882 {
883 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
884 goto out;
885
886 /*
887 * Remove the timer from the rbtree and replace the first
888 * entry pointer if necessary.
889 */
890 if (base->first == &timer->node) {
891 base->first = rb_next(&timer->node);
892 #ifdef CONFIG_HIGH_RES_TIMERS
893 /* Reprogram the clock event device. if enabled */
894 if (reprogram && hrtimer_hres_active()) {
895 ktime_t expires;
896
897 expires = ktime_sub(hrtimer_get_expires(timer),
898 base->offset);
899 if (base->cpu_base->expires_next.tv64 == expires.tv64)
900 hrtimer_force_reprogram(base->cpu_base, 1);
901 }
902 #endif
903 }
904 rb_erase(&timer->node, &base->active);
905 out:
906 timer->state = newstate;
907 }
908
909 /*
910 * remove hrtimer, called with base lock held
911 */
912 static inline int
913 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
914 {
915 if (hrtimer_is_queued(timer)) {
916 int reprogram;
917
918 /*
919 * Remove the timer and force reprogramming when high
920 * resolution mode is active and the timer is on the current
921 * CPU. If we remove a timer on another CPU, reprogramming is
922 * skipped. The interrupt event on this CPU is fired and
923 * reprogramming happens in the interrupt handler. This is a
924 * rare case and less expensive than a smp call.
925 */
926 debug_deactivate(timer);
927 timer_stats_hrtimer_clear_start_info(timer);
928 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
929 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
930 reprogram);
931 return 1;
932 }
933 return 0;
934 }
935
936 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
937 unsigned long delta_ns, const enum hrtimer_mode mode,
938 int wakeup)
939 {
940 struct hrtimer_clock_base *base, *new_base;
941 unsigned long flags;
942 int ret, leftmost;
943
944 base = lock_hrtimer_base(timer, &flags);
945
946 /* Remove an active timer from the queue: */
947 ret = remove_hrtimer(timer, base);
948
949 /* Switch the timer base, if necessary: */
950 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
951
952 if (mode & HRTIMER_MODE_REL) {
953 tim = ktime_add_safe(tim, new_base->get_time());
954 /*
955 * CONFIG_TIME_LOW_RES is a temporary way for architectures
956 * to signal that they simply return xtime in
957 * do_gettimeoffset(). In this case we want to round up by
958 * resolution when starting a relative timer, to avoid short
959 * timeouts. This will go away with the GTOD framework.
960 */
961 #ifdef CONFIG_TIME_LOW_RES
962 tim = ktime_add_safe(tim, base->resolution);
963 #endif
964 }
965
966 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
967
968 timer_stats_hrtimer_set_start_info(timer);
969
970 leftmost = enqueue_hrtimer(timer, new_base);
971
972 /*
973 * Only allow reprogramming if the new base is on this CPU.
974 * (it might still be on another CPU if the timer was pending)
975 *
976 * XXX send_remote_softirq() ?
977 */
978 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
979 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
980
981 unlock_hrtimer_base(timer, &flags);
982
983 return ret;
984 }
985
986 /**
987 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
988 * @timer: the timer to be added
989 * @tim: expiry time
990 * @delta_ns: "slack" range for the timer
991 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
992 *
993 * Returns:
994 * 0 on success
995 * 1 when the timer was active
996 */
997 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
998 unsigned long delta_ns, const enum hrtimer_mode mode)
999 {
1000 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1001 }
1002 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1003
1004 /**
1005 * hrtimer_start - (re)start an hrtimer on the current CPU
1006 * @timer: the timer to be added
1007 * @tim: expiry time
1008 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1009 *
1010 * Returns:
1011 * 0 on success
1012 * 1 when the timer was active
1013 */
1014 int
1015 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1016 {
1017 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1018 }
1019 EXPORT_SYMBOL_GPL(hrtimer_start);
1020
1021
1022 /**
1023 * hrtimer_try_to_cancel - try to deactivate a timer
1024 * @timer: hrtimer to stop
1025 *
1026 * Returns:
1027 * 0 when the timer was not active
1028 * 1 when the timer was active
1029 * -1 when the timer is currently excuting the callback function and
1030 * cannot be stopped
1031 */
1032 int hrtimer_try_to_cancel(struct hrtimer *timer)
1033 {
1034 struct hrtimer_clock_base *base;
1035 unsigned long flags;
1036 int ret = -1;
1037
1038 base = lock_hrtimer_base(timer, &flags);
1039
1040 if (!hrtimer_callback_running(timer))
1041 ret = remove_hrtimer(timer, base);
1042
1043 unlock_hrtimer_base(timer, &flags);
1044
1045 return ret;
1046
1047 }
1048 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1049
1050 /**
1051 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1052 * @timer: the timer to be cancelled
1053 *
1054 * Returns:
1055 * 0 when the timer was not active
1056 * 1 when the timer was active
1057 */
1058 int hrtimer_cancel(struct hrtimer *timer)
1059 {
1060 for (;;) {
1061 int ret = hrtimer_try_to_cancel(timer);
1062
1063 if (ret >= 0)
1064 return ret;
1065 cpu_relax();
1066 }
1067 }
1068 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1069
1070 /**
1071 * hrtimer_get_remaining - get remaining time for the timer
1072 * @timer: the timer to read
1073 */
1074 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1075 {
1076 struct hrtimer_clock_base *base;
1077 unsigned long flags;
1078 ktime_t rem;
1079
1080 base = lock_hrtimer_base(timer, &flags);
1081 rem = hrtimer_expires_remaining(timer);
1082 unlock_hrtimer_base(timer, &flags);
1083
1084 return rem;
1085 }
1086 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1087
1088 #ifdef CONFIG_NO_HZ
1089 /**
1090 * hrtimer_get_next_event - get the time until next expiry event
1091 *
1092 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1093 * is pending.
1094 */
1095 ktime_t hrtimer_get_next_event(void)
1096 {
1097 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1098 struct hrtimer_clock_base *base = cpu_base->clock_base;
1099 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1100 unsigned long flags;
1101 int i;
1102
1103 spin_lock_irqsave(&cpu_base->lock, flags);
1104
1105 if (!hrtimer_hres_active()) {
1106 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1107 struct hrtimer *timer;
1108
1109 if (!base->first)
1110 continue;
1111
1112 timer = rb_entry(base->first, struct hrtimer, node);
1113 delta.tv64 = hrtimer_get_expires_tv64(timer);
1114 delta = ktime_sub(delta, base->get_time());
1115 if (delta.tv64 < mindelta.tv64)
1116 mindelta.tv64 = delta.tv64;
1117 }
1118 }
1119
1120 spin_unlock_irqrestore(&cpu_base->lock, flags);
1121
1122 if (mindelta.tv64 < 0)
1123 mindelta.tv64 = 0;
1124 return mindelta;
1125 }
1126 #endif
1127
1128 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1129 enum hrtimer_mode mode)
1130 {
1131 struct hrtimer_cpu_base *cpu_base;
1132
1133 memset(timer, 0, sizeof(struct hrtimer));
1134
1135 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1136
1137 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1138 clock_id = CLOCK_MONOTONIC;
1139
1140 timer->base = &cpu_base->clock_base[clock_id];
1141 hrtimer_init_timer_hres(timer);
1142
1143 #ifdef CONFIG_TIMER_STATS
1144 timer->start_site = NULL;
1145 timer->start_pid = -1;
1146 memset(timer->start_comm, 0, TASK_COMM_LEN);
1147 #endif
1148 }
1149
1150 /**
1151 * hrtimer_init - initialize a timer to the given clock
1152 * @timer: the timer to be initialized
1153 * @clock_id: the clock to be used
1154 * @mode: timer mode abs/rel
1155 */
1156 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1157 enum hrtimer_mode mode)
1158 {
1159 debug_init(timer, clock_id, mode);
1160 __hrtimer_init(timer, clock_id, mode);
1161 }
1162 EXPORT_SYMBOL_GPL(hrtimer_init);
1163
1164 /**
1165 * hrtimer_get_res - get the timer resolution for a clock
1166 * @which_clock: which clock to query
1167 * @tp: pointer to timespec variable to store the resolution
1168 *
1169 * Store the resolution of the clock selected by @which_clock in the
1170 * variable pointed to by @tp.
1171 */
1172 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1173 {
1174 struct hrtimer_cpu_base *cpu_base;
1175
1176 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1177 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1178
1179 return 0;
1180 }
1181 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1182
1183 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1184 {
1185 struct hrtimer_clock_base *base = timer->base;
1186 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1187 enum hrtimer_restart (*fn)(struct hrtimer *);
1188 int restart;
1189
1190 WARN_ON(!irqs_disabled());
1191
1192 debug_deactivate(timer);
1193 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1194 timer_stats_account_hrtimer(timer);
1195 fn = timer->function;
1196
1197 /*
1198 * Because we run timers from hardirq context, there is no chance
1199 * they get migrated to another cpu, therefore its safe to unlock
1200 * the timer base.
1201 */
1202 spin_unlock(&cpu_base->lock);
1203 trace_hrtimer_expire_entry(timer, now);
1204 restart = fn(timer);
1205 trace_hrtimer_expire_exit(timer);
1206 spin_lock(&cpu_base->lock);
1207
1208 /*
1209 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1210 * we do not reprogramm the event hardware. Happens either in
1211 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1212 */
1213 if (restart != HRTIMER_NORESTART) {
1214 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1215 enqueue_hrtimer(timer, base);
1216 }
1217 timer->state &= ~HRTIMER_STATE_CALLBACK;
1218 }
1219
1220 #ifdef CONFIG_HIGH_RES_TIMERS
1221
1222 static int force_clock_reprogram;
1223
1224 /*
1225 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
1226 * is hanging, which could happen with something that slows the interrupt
1227 * such as the tracing. Then we force the clock reprogramming for each future
1228 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
1229 * threshold that we will overwrite.
1230 * The next tick event will be scheduled to 3 times we currently spend on
1231 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
1232 * 1/4 of their time to process the hrtimer interrupts. This is enough to
1233 * let it running without serious starvation.
1234 */
1235
1236 static inline void
1237 hrtimer_interrupt_hanging(struct clock_event_device *dev,
1238 ktime_t try_time)
1239 {
1240 force_clock_reprogram = 1;
1241 dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
1242 printk(KERN_WARNING "hrtimer: interrupt too slow, "
1243 "forcing clock min delta to %lu ns\n", dev->min_delta_ns);
1244 }
1245 /*
1246 * High resolution timer interrupt
1247 * Called with interrupts disabled
1248 */
1249 void hrtimer_interrupt(struct clock_event_device *dev)
1250 {
1251 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1252 struct hrtimer_clock_base *base;
1253 ktime_t expires_next, now;
1254 int nr_retries = 0;
1255 int i;
1256
1257 BUG_ON(!cpu_base->hres_active);
1258 cpu_base->nr_events++;
1259 dev->next_event.tv64 = KTIME_MAX;
1260
1261 retry:
1262 /* 5 retries is enough to notice a hang */
1263 if (!(++nr_retries % 5))
1264 hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));
1265
1266 now = ktime_get();
1267
1268 expires_next.tv64 = KTIME_MAX;
1269
1270 spin_lock(&cpu_base->lock);
1271 /*
1272 * We set expires_next to KTIME_MAX here with cpu_base->lock
1273 * held to prevent that a timer is enqueued in our queue via
1274 * the migration code. This does not affect enqueueing of
1275 * timers which run their callback and need to be requeued on
1276 * this CPU.
1277 */
1278 cpu_base->expires_next.tv64 = KTIME_MAX;
1279
1280 base = cpu_base->clock_base;
1281
1282 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1283 ktime_t basenow;
1284 struct rb_node *node;
1285
1286 basenow = ktime_add(now, base->offset);
1287
1288 while ((node = base->first)) {
1289 struct hrtimer *timer;
1290
1291 timer = rb_entry(node, struct hrtimer, node);
1292
1293 /*
1294 * The immediate goal for using the softexpires is
1295 * minimizing wakeups, not running timers at the
1296 * earliest interrupt after their soft expiration.
1297 * This allows us to avoid using a Priority Search
1298 * Tree, which can answer a stabbing querry for
1299 * overlapping intervals and instead use the simple
1300 * BST we already have.
1301 * We don't add extra wakeups by delaying timers that
1302 * are right-of a not yet expired timer, because that
1303 * timer will have to trigger a wakeup anyway.
1304 */
1305
1306 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1307 ktime_t expires;
1308
1309 expires = ktime_sub(hrtimer_get_expires(timer),
1310 base->offset);
1311 if (expires.tv64 < expires_next.tv64)
1312 expires_next = expires;
1313 break;
1314 }
1315
1316 __run_hrtimer(timer, &basenow);
1317 }
1318 base++;
1319 }
1320
1321 /*
1322 * Store the new expiry value so the migration code can verify
1323 * against it.
1324 */
1325 cpu_base->expires_next = expires_next;
1326 spin_unlock(&cpu_base->lock);
1327
1328 /* Reprogramming necessary ? */
1329 if (expires_next.tv64 != KTIME_MAX) {
1330 if (tick_program_event(expires_next, force_clock_reprogram))
1331 goto retry;
1332 }
1333 }
1334
1335 /*
1336 * local version of hrtimer_peek_ahead_timers() called with interrupts
1337 * disabled.
1338 */
1339 static void __hrtimer_peek_ahead_timers(void)
1340 {
1341 struct tick_device *td;
1342
1343 if (!hrtimer_hres_active())
1344 return;
1345
1346 td = &__get_cpu_var(tick_cpu_device);
1347 if (td && td->evtdev)
1348 hrtimer_interrupt(td->evtdev);
1349 }
1350
1351 /**
1352 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1353 *
1354 * hrtimer_peek_ahead_timers will peek at the timer queue of
1355 * the current cpu and check if there are any timers for which
1356 * the soft expires time has passed. If any such timers exist,
1357 * they are run immediately and then removed from the timer queue.
1358 *
1359 */
1360 void hrtimer_peek_ahead_timers(void)
1361 {
1362 unsigned long flags;
1363
1364 local_irq_save(flags);
1365 __hrtimer_peek_ahead_timers();
1366 local_irq_restore(flags);
1367 }
1368
1369 static void run_hrtimer_softirq(struct softirq_action *h)
1370 {
1371 hrtimer_peek_ahead_timers();
1372 }
1373
1374 #else /* CONFIG_HIGH_RES_TIMERS */
1375
1376 static inline void __hrtimer_peek_ahead_timers(void) { }
1377
1378 #endif /* !CONFIG_HIGH_RES_TIMERS */
1379
1380 /*
1381 * Called from timer softirq every jiffy, expire hrtimers:
1382 *
1383 * For HRT its the fall back code to run the softirq in the timer
1384 * softirq context in case the hrtimer initialization failed or has
1385 * not been done yet.
1386 */
1387 void hrtimer_run_pending(void)
1388 {
1389 if (hrtimer_hres_active())
1390 return;
1391
1392 /*
1393 * This _is_ ugly: We have to check in the softirq context,
1394 * whether we can switch to highres and / or nohz mode. The
1395 * clocksource switch happens in the timer interrupt with
1396 * xtime_lock held. Notification from there only sets the
1397 * check bit in the tick_oneshot code, otherwise we might
1398 * deadlock vs. xtime_lock.
1399 */
1400 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1401 hrtimer_switch_to_hres();
1402 }
1403
1404 /*
1405 * Called from hardirq context every jiffy
1406 */
1407 void hrtimer_run_queues(void)
1408 {
1409 struct rb_node *node;
1410 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1411 struct hrtimer_clock_base *base;
1412 int index, gettime = 1;
1413
1414 if (hrtimer_hres_active())
1415 return;
1416
1417 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1418 base = &cpu_base->clock_base[index];
1419
1420 if (!base->first)
1421 continue;
1422
1423 if (gettime) {
1424 hrtimer_get_softirq_time(cpu_base);
1425 gettime = 0;
1426 }
1427
1428 spin_lock(&cpu_base->lock);
1429
1430 while ((node = base->first)) {
1431 struct hrtimer *timer;
1432
1433 timer = rb_entry(node, struct hrtimer, node);
1434 if (base->softirq_time.tv64 <=
1435 hrtimer_get_expires_tv64(timer))
1436 break;
1437
1438 __run_hrtimer(timer, &base->softirq_time);
1439 }
1440 spin_unlock(&cpu_base->lock);
1441 }
1442 }
1443
1444 /*
1445 * Sleep related functions:
1446 */
1447 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1448 {
1449 struct hrtimer_sleeper *t =
1450 container_of(timer, struct hrtimer_sleeper, timer);
1451 struct task_struct *task = t->task;
1452
1453 t->task = NULL;
1454 if (task)
1455 wake_up_process(task);
1456
1457 return HRTIMER_NORESTART;
1458 }
1459
1460 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1461 {
1462 sl->timer.function = hrtimer_wakeup;
1463 sl->task = task;
1464 }
1465 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1466
1467 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1468 {
1469 hrtimer_init_sleeper(t, current);
1470
1471 do {
1472 set_current_state(TASK_INTERRUPTIBLE);
1473 hrtimer_start_expires(&t->timer, mode);
1474 if (!hrtimer_active(&t->timer))
1475 t->task = NULL;
1476
1477 if (likely(t->task))
1478 schedule();
1479
1480 hrtimer_cancel(&t->timer);
1481 mode = HRTIMER_MODE_ABS;
1482
1483 } while (t->task && !signal_pending(current));
1484
1485 __set_current_state(TASK_RUNNING);
1486
1487 return t->task == NULL;
1488 }
1489
1490 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1491 {
1492 struct timespec rmt;
1493 ktime_t rem;
1494
1495 rem = hrtimer_expires_remaining(timer);
1496 if (rem.tv64 <= 0)
1497 return 0;
1498 rmt = ktime_to_timespec(rem);
1499
1500 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1501 return -EFAULT;
1502
1503 return 1;
1504 }
1505
1506 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1507 {
1508 struct hrtimer_sleeper t;
1509 struct timespec __user *rmtp;
1510 int ret = 0;
1511
1512 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1513 HRTIMER_MODE_ABS);
1514 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1515
1516 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1517 goto out;
1518
1519 rmtp = restart->nanosleep.rmtp;
1520 if (rmtp) {
1521 ret = update_rmtp(&t.timer, rmtp);
1522 if (ret <= 0)
1523 goto out;
1524 }
1525
1526 /* The other values in restart are already filled in */
1527 ret = -ERESTART_RESTARTBLOCK;
1528 out:
1529 destroy_hrtimer_on_stack(&t.timer);
1530 return ret;
1531 }
1532
1533 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1534 const enum hrtimer_mode mode, const clockid_t clockid)
1535 {
1536 struct restart_block *restart;
1537 struct hrtimer_sleeper t;
1538 int ret = 0;
1539 unsigned long slack;
1540
1541 slack = current->timer_slack_ns;
1542 if (rt_task(current))
1543 slack = 0;
1544
1545 hrtimer_init_on_stack(&t.timer, clockid, mode);
1546 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1547 if (do_nanosleep(&t, mode))
1548 goto out;
1549
1550 /* Absolute timers do not update the rmtp value and restart: */
1551 if (mode == HRTIMER_MODE_ABS) {
1552 ret = -ERESTARTNOHAND;
1553 goto out;
1554 }
1555
1556 if (rmtp) {
1557 ret = update_rmtp(&t.timer, rmtp);
1558 if (ret <= 0)
1559 goto out;
1560 }
1561
1562 restart = &current_thread_info()->restart_block;
1563 restart->fn = hrtimer_nanosleep_restart;
1564 restart->nanosleep.index = t.timer.base->index;
1565 restart->nanosleep.rmtp = rmtp;
1566 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1567
1568 ret = -ERESTART_RESTARTBLOCK;
1569 out:
1570 destroy_hrtimer_on_stack(&t.timer);
1571 return ret;
1572 }
1573
1574 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1575 struct timespec __user *, rmtp)
1576 {
1577 struct timespec tu;
1578
1579 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1580 return -EFAULT;
1581
1582 if (!timespec_valid(&tu))
1583 return -EINVAL;
1584
1585 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1586 }
1587
1588 /*
1589 * Functions related to boot-time initialization:
1590 */
1591 static void __cpuinit init_hrtimers_cpu(int cpu)
1592 {
1593 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1594 int i;
1595
1596 spin_lock_init(&cpu_base->lock);
1597
1598 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1599 cpu_base->clock_base[i].cpu_base = cpu_base;
1600
1601 hrtimer_init_hres(cpu_base);
1602 }
1603
1604 #ifdef CONFIG_HOTPLUG_CPU
1605
1606 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1607 struct hrtimer_clock_base *new_base)
1608 {
1609 struct hrtimer *timer;
1610 struct rb_node *node;
1611
1612 while ((node = rb_first(&old_base->active))) {
1613 timer = rb_entry(node, struct hrtimer, node);
1614 BUG_ON(hrtimer_callback_running(timer));
1615 debug_deactivate(timer);
1616
1617 /*
1618 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1619 * timer could be seen as !active and just vanish away
1620 * under us on another CPU
1621 */
1622 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1623 timer->base = new_base;
1624 /*
1625 * Enqueue the timers on the new cpu. This does not
1626 * reprogram the event device in case the timer
1627 * expires before the earliest on this CPU, but we run
1628 * hrtimer_interrupt after we migrated everything to
1629 * sort out already expired timers and reprogram the
1630 * event device.
1631 */
1632 enqueue_hrtimer(timer, new_base);
1633
1634 /* Clear the migration state bit */
1635 timer->state &= ~HRTIMER_STATE_MIGRATE;
1636 }
1637 }
1638
1639 static void migrate_hrtimers(int scpu)
1640 {
1641 struct hrtimer_cpu_base *old_base, *new_base;
1642 int i;
1643
1644 BUG_ON(cpu_online(scpu));
1645 tick_cancel_sched_timer(scpu);
1646
1647 local_irq_disable();
1648 old_base = &per_cpu(hrtimer_bases, scpu);
1649 new_base = &__get_cpu_var(hrtimer_bases);
1650 /*
1651 * The caller is globally serialized and nobody else
1652 * takes two locks at once, deadlock is not possible.
1653 */
1654 spin_lock(&new_base->lock);
1655 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1656
1657 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1658 migrate_hrtimer_list(&old_base->clock_base[i],
1659 &new_base->clock_base[i]);
1660 }
1661
1662 spin_unlock(&old_base->lock);
1663 spin_unlock(&new_base->lock);
1664
1665 /* Check, if we got expired work to do */
1666 __hrtimer_peek_ahead_timers();
1667 local_irq_enable();
1668 }
1669
1670 #endif /* CONFIG_HOTPLUG_CPU */
1671
1672 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1673 unsigned long action, void *hcpu)
1674 {
1675 int scpu = (long)hcpu;
1676
1677 switch (action) {
1678
1679 case CPU_UP_PREPARE:
1680 case CPU_UP_PREPARE_FROZEN:
1681 init_hrtimers_cpu(scpu);
1682 break;
1683
1684 #ifdef CONFIG_HOTPLUG_CPU
1685 case CPU_DYING:
1686 case CPU_DYING_FROZEN:
1687 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1688 break;
1689 case CPU_DEAD:
1690 case CPU_DEAD_FROZEN:
1691 {
1692 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1693 migrate_hrtimers(scpu);
1694 break;
1695 }
1696 #endif
1697
1698 default:
1699 break;
1700 }
1701
1702 return NOTIFY_OK;
1703 }
1704
1705 static struct notifier_block __cpuinitdata hrtimers_nb = {
1706 .notifier_call = hrtimer_cpu_notify,
1707 };
1708
1709 void __init hrtimers_init(void)
1710 {
1711 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1712 (void *)(long)smp_processor_id());
1713 register_cpu_notifier(&hrtimers_nb);
1714 #ifdef CONFIG_HIGH_RES_TIMERS
1715 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1716 #endif
1717 }
1718
1719 /**
1720 * schedule_hrtimeout_range - sleep until timeout
1721 * @expires: timeout value (ktime_t)
1722 * @delta: slack in expires timeout (ktime_t)
1723 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1724 *
1725 * Make the current task sleep until the given expiry time has
1726 * elapsed. The routine will return immediately unless
1727 * the current task state has been set (see set_current_state()).
1728 *
1729 * The @delta argument gives the kernel the freedom to schedule the
1730 * actual wakeup to a time that is both power and performance friendly.
1731 * The kernel give the normal best effort behavior for "@expires+@delta",
1732 * but may decide to fire the timer earlier, but no earlier than @expires.
1733 *
1734 * You can set the task state as follows -
1735 *
1736 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1737 * pass before the routine returns.
1738 *
1739 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1740 * delivered to the current task.
1741 *
1742 * The current task state is guaranteed to be TASK_RUNNING when this
1743 * routine returns.
1744 *
1745 * Returns 0 when the timer has expired otherwise -EINTR
1746 */
1747 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1748 const enum hrtimer_mode mode)
1749 {
1750 struct hrtimer_sleeper t;
1751
1752 /*
1753 * Optimize when a zero timeout value is given. It does not
1754 * matter whether this is an absolute or a relative time.
1755 */
1756 if (expires && !expires->tv64) {
1757 __set_current_state(TASK_RUNNING);
1758 return 0;
1759 }
1760
1761 /*
1762 * A NULL parameter means "inifinte"
1763 */
1764 if (!expires) {
1765 schedule();
1766 __set_current_state(TASK_RUNNING);
1767 return -EINTR;
1768 }
1769
1770 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1771 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1772
1773 hrtimer_init_sleeper(&t, current);
1774
1775 hrtimer_start_expires(&t.timer, mode);
1776 if (!hrtimer_active(&t.timer))
1777 t.task = NULL;
1778
1779 if (likely(t.task))
1780 schedule();
1781
1782 hrtimer_cancel(&t.timer);
1783 destroy_hrtimer_on_stack(&t.timer);
1784
1785 __set_current_state(TASK_RUNNING);
1786
1787 return !t.task ? 0 : -EINTR;
1788 }
1789 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1790
1791 /**
1792 * schedule_hrtimeout - sleep until timeout
1793 * @expires: timeout value (ktime_t)
1794 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1795 *
1796 * Make the current task sleep until the given expiry time has
1797 * elapsed. The routine will return immediately unless
1798 * the current task state has been set (see set_current_state()).
1799 *
1800 * You can set the task state as follows -
1801 *
1802 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1803 * pass before the routine returns.
1804 *
1805 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1806 * delivered to the current task.
1807 *
1808 * The current task state is guaranteed to be TASK_RUNNING when this
1809 * routine returns.
1810 *
1811 * Returns 0 when the timer has expired otherwise -EINTR
1812 */
1813 int __sched schedule_hrtimeout(ktime_t *expires,
1814 const enum hrtimer_mode mode)
1815 {
1816 return schedule_hrtimeout_range(expires, 0, mode);
1817 }
1818 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 0.068015 seconds and 5 git commands to generate.