Merge git://git.kernel.org/pub/scm/linux/kernel/git/bart/ide-2.6
[deliverable/linux.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/irq.h>
36 #include <linux/module.h>
37 #include <linux/percpu.h>
38 #include <linux/hrtimer.h>
39 #include <linux/notifier.h>
40 #include <linux/syscalls.h>
41 #include <linux/kallsyms.h>
42 #include <linux/interrupt.h>
43 #include <linux/tick.h>
44 #include <linux/seq_file.h>
45 #include <linux/err.h>
46
47 #include <asm/uaccess.h>
48
49 /**
50 * ktime_get - get the monotonic time in ktime_t format
51 *
52 * returns the time in ktime_t format
53 */
54 ktime_t ktime_get(void)
55 {
56 struct timespec now;
57
58 ktime_get_ts(&now);
59
60 return timespec_to_ktime(now);
61 }
62 EXPORT_SYMBOL_GPL(ktime_get);
63
64 /**
65 * ktime_get_real - get the real (wall-) time in ktime_t format
66 *
67 * returns the time in ktime_t format
68 */
69 ktime_t ktime_get_real(void)
70 {
71 struct timespec now;
72
73 getnstimeofday(&now);
74
75 return timespec_to_ktime(now);
76 }
77
78 EXPORT_SYMBOL_GPL(ktime_get_real);
79
80 /*
81 * The timer bases:
82 *
83 * Note: If we want to add new timer bases, we have to skip the two
84 * clock ids captured by the cpu-timers. We do this by holding empty
85 * entries rather than doing math adjustment of the clock ids.
86 * This ensures that we capture erroneous accesses to these clock ids
87 * rather than moving them into the range of valid clock id's.
88 */
89 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
90 {
91
92 .clock_base =
93 {
94 {
95 .index = CLOCK_REALTIME,
96 .get_time = &ktime_get_real,
97 .resolution = KTIME_LOW_RES,
98 },
99 {
100 .index = CLOCK_MONOTONIC,
101 .get_time = &ktime_get,
102 .resolution = KTIME_LOW_RES,
103 },
104 }
105 };
106
107 /**
108 * ktime_get_ts - get the monotonic clock in timespec format
109 * @ts: pointer to timespec variable
110 *
111 * The function calculates the monotonic clock from the realtime
112 * clock and the wall_to_monotonic offset and stores the result
113 * in normalized timespec format in the variable pointed to by @ts.
114 */
115 void ktime_get_ts(struct timespec *ts)
116 {
117 struct timespec tomono;
118 unsigned long seq;
119
120 do {
121 seq = read_seqbegin(&xtime_lock);
122 getnstimeofday(ts);
123 tomono = wall_to_monotonic;
124
125 } while (read_seqretry(&xtime_lock, seq));
126
127 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
128 ts->tv_nsec + tomono.tv_nsec);
129 }
130 EXPORT_SYMBOL_GPL(ktime_get_ts);
131
132 /*
133 * Get the coarse grained time at the softirq based on xtime and
134 * wall_to_monotonic.
135 */
136 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
137 {
138 ktime_t xtim, tomono;
139 struct timespec xts, tom;
140 unsigned long seq;
141
142 do {
143 seq = read_seqbegin(&xtime_lock);
144 xts = current_kernel_time();
145 tom = wall_to_monotonic;
146 } while (read_seqretry(&xtime_lock, seq));
147
148 xtim = timespec_to_ktime(xts);
149 tomono = timespec_to_ktime(tom);
150 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
151 base->clock_base[CLOCK_MONOTONIC].softirq_time =
152 ktime_add(xtim, tomono);
153 }
154
155 /*
156 * Helper function to check, whether the timer is running the callback
157 * function
158 */
159 static inline int hrtimer_callback_running(struct hrtimer *timer)
160 {
161 return timer->state & HRTIMER_STATE_CALLBACK;
162 }
163
164 /*
165 * Functions and macros which are different for UP/SMP systems are kept in a
166 * single place
167 */
168 #ifdef CONFIG_SMP
169
170 /*
171 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
172 * means that all timers which are tied to this base via timer->base are
173 * locked, and the base itself is locked too.
174 *
175 * So __run_timers/migrate_timers can safely modify all timers which could
176 * be found on the lists/queues.
177 *
178 * When the timer's base is locked, and the timer removed from list, it is
179 * possible to set timer->base = NULL and drop the lock: the timer remains
180 * locked.
181 */
182 static
183 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
184 unsigned long *flags)
185 {
186 struct hrtimer_clock_base *base;
187
188 for (;;) {
189 base = timer->base;
190 if (likely(base != NULL)) {
191 spin_lock_irqsave(&base->cpu_base->lock, *flags);
192 if (likely(base == timer->base))
193 return base;
194 /* The timer has migrated to another CPU: */
195 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
196 }
197 cpu_relax();
198 }
199 }
200
201 /*
202 * Switch the timer base to the current CPU when possible.
203 */
204 static inline struct hrtimer_clock_base *
205 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
206 {
207 struct hrtimer_clock_base *new_base;
208 struct hrtimer_cpu_base *new_cpu_base;
209
210 new_cpu_base = &__get_cpu_var(hrtimer_bases);
211 new_base = &new_cpu_base->clock_base[base->index];
212
213 if (base != new_base) {
214 /*
215 * We are trying to schedule the timer on the local CPU.
216 * However we can't change timer's base while it is running,
217 * so we keep it on the same CPU. No hassle vs. reprogramming
218 * the event source in the high resolution case. The softirq
219 * code will take care of this when the timer function has
220 * completed. There is no conflict as we hold the lock until
221 * the timer is enqueued.
222 */
223 if (unlikely(hrtimer_callback_running(timer)))
224 return base;
225
226 /* See the comment in lock_timer_base() */
227 timer->base = NULL;
228 spin_unlock(&base->cpu_base->lock);
229 spin_lock(&new_base->cpu_base->lock);
230 timer->base = new_base;
231 }
232 return new_base;
233 }
234
235 #else /* CONFIG_SMP */
236
237 static inline struct hrtimer_clock_base *
238 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
239 {
240 struct hrtimer_clock_base *base = timer->base;
241
242 spin_lock_irqsave(&base->cpu_base->lock, *flags);
243
244 return base;
245 }
246
247 # define switch_hrtimer_base(t, b) (b)
248
249 #endif /* !CONFIG_SMP */
250
251 /*
252 * Functions for the union type storage format of ktime_t which are
253 * too large for inlining:
254 */
255 #if BITS_PER_LONG < 64
256 # ifndef CONFIG_KTIME_SCALAR
257 /**
258 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
259 * @kt: addend
260 * @nsec: the scalar nsec value to add
261 *
262 * Returns the sum of kt and nsec in ktime_t format
263 */
264 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
265 {
266 ktime_t tmp;
267
268 if (likely(nsec < NSEC_PER_SEC)) {
269 tmp.tv64 = nsec;
270 } else {
271 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
272
273 tmp = ktime_set((long)nsec, rem);
274 }
275
276 return ktime_add(kt, tmp);
277 }
278
279 EXPORT_SYMBOL_GPL(ktime_add_ns);
280
281 /**
282 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
283 * @kt: minuend
284 * @nsec: the scalar nsec value to subtract
285 *
286 * Returns the subtraction of @nsec from @kt in ktime_t format
287 */
288 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
289 {
290 ktime_t tmp;
291
292 if (likely(nsec < NSEC_PER_SEC)) {
293 tmp.tv64 = nsec;
294 } else {
295 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
296
297 tmp = ktime_set((long)nsec, rem);
298 }
299
300 return ktime_sub(kt, tmp);
301 }
302
303 EXPORT_SYMBOL_GPL(ktime_sub_ns);
304 # endif /* !CONFIG_KTIME_SCALAR */
305
306 /*
307 * Divide a ktime value by a nanosecond value
308 */
309 u64 ktime_divns(const ktime_t kt, s64 div)
310 {
311 u64 dclc, inc, dns;
312 int sft = 0;
313
314 dclc = dns = ktime_to_ns(kt);
315 inc = div;
316 /* Make sure the divisor is less than 2^32: */
317 while (div >> 32) {
318 sft++;
319 div >>= 1;
320 }
321 dclc >>= sft;
322 do_div(dclc, (unsigned long) div);
323
324 return dclc;
325 }
326 #endif /* BITS_PER_LONG >= 64 */
327
328 /*
329 * Add two ktime values and do a safety check for overflow:
330 */
331 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
332 {
333 ktime_t res = ktime_add(lhs, rhs);
334
335 /*
336 * We use KTIME_SEC_MAX here, the maximum timeout which we can
337 * return to user space in a timespec:
338 */
339 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
340 res = ktime_set(KTIME_SEC_MAX, 0);
341
342 return res;
343 }
344
345 /*
346 * Check, whether the timer is on the callback pending list
347 */
348 static inline int hrtimer_cb_pending(const struct hrtimer *timer)
349 {
350 return timer->state & HRTIMER_STATE_PENDING;
351 }
352
353 /*
354 * Remove a timer from the callback pending list
355 */
356 static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
357 {
358 list_del_init(&timer->cb_entry);
359 }
360
361 /* High resolution timer related functions */
362 #ifdef CONFIG_HIGH_RES_TIMERS
363
364 /*
365 * High resolution timer enabled ?
366 */
367 static int hrtimer_hres_enabled __read_mostly = 1;
368
369 /*
370 * Enable / Disable high resolution mode
371 */
372 static int __init setup_hrtimer_hres(char *str)
373 {
374 if (!strcmp(str, "off"))
375 hrtimer_hres_enabled = 0;
376 else if (!strcmp(str, "on"))
377 hrtimer_hres_enabled = 1;
378 else
379 return 0;
380 return 1;
381 }
382
383 __setup("highres=", setup_hrtimer_hres);
384
385 /*
386 * hrtimer_high_res_enabled - query, if the highres mode is enabled
387 */
388 static inline int hrtimer_is_hres_enabled(void)
389 {
390 return hrtimer_hres_enabled;
391 }
392
393 /*
394 * Is the high resolution mode active ?
395 */
396 static inline int hrtimer_hres_active(void)
397 {
398 return __get_cpu_var(hrtimer_bases).hres_active;
399 }
400
401 /*
402 * Reprogram the event source with checking both queues for the
403 * next event
404 * Called with interrupts disabled and base->lock held
405 */
406 static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
407 {
408 int i;
409 struct hrtimer_clock_base *base = cpu_base->clock_base;
410 ktime_t expires;
411
412 cpu_base->expires_next.tv64 = KTIME_MAX;
413
414 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
415 struct hrtimer *timer;
416
417 if (!base->first)
418 continue;
419 timer = rb_entry(base->first, struct hrtimer, node);
420 expires = ktime_sub(timer->expires, base->offset);
421 if (expires.tv64 < cpu_base->expires_next.tv64)
422 cpu_base->expires_next = expires;
423 }
424
425 if (cpu_base->expires_next.tv64 != KTIME_MAX)
426 tick_program_event(cpu_base->expires_next, 1);
427 }
428
429 /*
430 * Shared reprogramming for clock_realtime and clock_monotonic
431 *
432 * When a timer is enqueued and expires earlier than the already enqueued
433 * timers, we have to check, whether it expires earlier than the timer for
434 * which the clock event device was armed.
435 *
436 * Called with interrupts disabled and base->cpu_base.lock held
437 */
438 static int hrtimer_reprogram(struct hrtimer *timer,
439 struct hrtimer_clock_base *base)
440 {
441 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
442 ktime_t expires = ktime_sub(timer->expires, base->offset);
443 int res;
444
445 WARN_ON_ONCE(timer->expires.tv64 < 0);
446
447 /*
448 * When the callback is running, we do not reprogram the clock event
449 * device. The timer callback is either running on a different CPU or
450 * the callback is executed in the hrtimer_interrupt context. The
451 * reprogramming is handled either by the softirq, which called the
452 * callback or at the end of the hrtimer_interrupt.
453 */
454 if (hrtimer_callback_running(timer))
455 return 0;
456
457 /*
458 * CLOCK_REALTIME timer might be requested with an absolute
459 * expiry time which is less than base->offset. Nothing wrong
460 * about that, just avoid to call into the tick code, which
461 * has now objections against negative expiry values.
462 */
463 if (expires.tv64 < 0)
464 return -ETIME;
465
466 if (expires.tv64 >= expires_next->tv64)
467 return 0;
468
469 /*
470 * Clockevents returns -ETIME, when the event was in the past.
471 */
472 res = tick_program_event(expires, 0);
473 if (!IS_ERR_VALUE(res))
474 *expires_next = expires;
475 return res;
476 }
477
478
479 /*
480 * Retrigger next event is called after clock was set
481 *
482 * Called with interrupts disabled via on_each_cpu()
483 */
484 static void retrigger_next_event(void *arg)
485 {
486 struct hrtimer_cpu_base *base;
487 struct timespec realtime_offset;
488 unsigned long seq;
489
490 if (!hrtimer_hres_active())
491 return;
492
493 do {
494 seq = read_seqbegin(&xtime_lock);
495 set_normalized_timespec(&realtime_offset,
496 -wall_to_monotonic.tv_sec,
497 -wall_to_monotonic.tv_nsec);
498 } while (read_seqretry(&xtime_lock, seq));
499
500 base = &__get_cpu_var(hrtimer_bases);
501
502 /* Adjust CLOCK_REALTIME offset */
503 spin_lock(&base->lock);
504 base->clock_base[CLOCK_REALTIME].offset =
505 timespec_to_ktime(realtime_offset);
506
507 hrtimer_force_reprogram(base);
508 spin_unlock(&base->lock);
509 }
510
511 /*
512 * Clock realtime was set
513 *
514 * Change the offset of the realtime clock vs. the monotonic
515 * clock.
516 *
517 * We might have to reprogram the high resolution timer interrupt. On
518 * SMP we call the architecture specific code to retrigger _all_ high
519 * resolution timer interrupts. On UP we just disable interrupts and
520 * call the high resolution interrupt code.
521 */
522 void clock_was_set(void)
523 {
524 /* Retrigger the CPU local events everywhere */
525 on_each_cpu(retrigger_next_event, NULL, 0, 1);
526 }
527
528 /*
529 * During resume we might have to reprogram the high resolution timer
530 * interrupt (on the local CPU):
531 */
532 void hres_timers_resume(void)
533 {
534 WARN_ON_ONCE(num_online_cpus() > 1);
535
536 /* Retrigger the CPU local events: */
537 retrigger_next_event(NULL);
538 }
539
540 /*
541 * Initialize the high resolution related parts of cpu_base
542 */
543 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
544 {
545 base->expires_next.tv64 = KTIME_MAX;
546 base->hres_active = 0;
547 }
548
549 /*
550 * Initialize the high resolution related parts of a hrtimer
551 */
552 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
553 {
554 }
555
556 /*
557 * When High resolution timers are active, try to reprogram. Note, that in case
558 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
559 * check happens. The timer gets enqueued into the rbtree. The reprogramming
560 * and expiry check is done in the hrtimer_interrupt or in the softirq.
561 */
562 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
563 struct hrtimer_clock_base *base)
564 {
565 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
566
567 /* Timer is expired, act upon the callback mode */
568 switch(timer->cb_mode) {
569 case HRTIMER_CB_IRQSAFE_NO_RESTART:
570 /*
571 * We can call the callback from here. No restart
572 * happens, so no danger of recursion
573 */
574 BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
575 return 1;
576 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
577 /*
578 * This is solely for the sched tick emulation with
579 * dynamic tick support to ensure that we do not
580 * restart the tick right on the edge and end up with
581 * the tick timer in the softirq ! The calling site
582 * takes care of this.
583 */
584 return 1;
585 case HRTIMER_CB_IRQSAFE:
586 case HRTIMER_CB_SOFTIRQ:
587 /*
588 * Move everything else into the softirq pending list !
589 */
590 list_add_tail(&timer->cb_entry,
591 &base->cpu_base->cb_pending);
592 timer->state = HRTIMER_STATE_PENDING;
593 return 1;
594 default:
595 BUG();
596 }
597 }
598 return 0;
599 }
600
601 /*
602 * Switch to high resolution mode
603 */
604 static int hrtimer_switch_to_hres(void)
605 {
606 int cpu = smp_processor_id();
607 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
608 unsigned long flags;
609
610 if (base->hres_active)
611 return 1;
612
613 local_irq_save(flags);
614
615 if (tick_init_highres()) {
616 local_irq_restore(flags);
617 printk(KERN_WARNING "Could not switch to high resolution "
618 "mode on CPU %d\n", cpu);
619 return 0;
620 }
621 base->hres_active = 1;
622 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
623 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
624
625 tick_setup_sched_timer();
626
627 /* "Retrigger" the interrupt to get things going */
628 retrigger_next_event(NULL);
629 local_irq_restore(flags);
630 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
631 smp_processor_id());
632 return 1;
633 }
634
635 static inline void hrtimer_raise_softirq(void)
636 {
637 raise_softirq(HRTIMER_SOFTIRQ);
638 }
639
640 #else
641
642 static inline int hrtimer_hres_active(void) { return 0; }
643 static inline int hrtimer_is_hres_enabled(void) { return 0; }
644 static inline int hrtimer_switch_to_hres(void) { return 0; }
645 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
646 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
647 struct hrtimer_clock_base *base)
648 {
649 return 0;
650 }
651 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
652 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
653 static inline int hrtimer_reprogram(struct hrtimer *timer,
654 struct hrtimer_clock_base *base)
655 {
656 return 0;
657 }
658 static inline void hrtimer_raise_softirq(void) { }
659
660 #endif /* CONFIG_HIGH_RES_TIMERS */
661
662 #ifdef CONFIG_TIMER_STATS
663 void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
664 {
665 if (timer->start_site)
666 return;
667
668 timer->start_site = addr;
669 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
670 timer->start_pid = current->pid;
671 }
672 #endif
673
674 /*
675 * Counterpart to lock_hrtimer_base above:
676 */
677 static inline
678 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
679 {
680 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
681 }
682
683 /**
684 * hrtimer_forward - forward the timer expiry
685 * @timer: hrtimer to forward
686 * @now: forward past this time
687 * @interval: the interval to forward
688 *
689 * Forward the timer expiry so it will expire in the future.
690 * Returns the number of overruns.
691 */
692 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
693 {
694 u64 orun = 1;
695 ktime_t delta;
696
697 delta = ktime_sub(now, timer->expires);
698
699 if (delta.tv64 < 0)
700 return 0;
701
702 if (interval.tv64 < timer->base->resolution.tv64)
703 interval.tv64 = timer->base->resolution.tv64;
704
705 if (unlikely(delta.tv64 >= interval.tv64)) {
706 s64 incr = ktime_to_ns(interval);
707
708 orun = ktime_divns(delta, incr);
709 timer->expires = ktime_add_ns(timer->expires, incr * orun);
710 if (timer->expires.tv64 > now.tv64)
711 return orun;
712 /*
713 * This (and the ktime_add() below) is the
714 * correction for exact:
715 */
716 orun++;
717 }
718 timer->expires = ktime_add_safe(timer->expires, interval);
719
720 return orun;
721 }
722 EXPORT_SYMBOL_GPL(hrtimer_forward);
723
724 /*
725 * enqueue_hrtimer - internal function to (re)start a timer
726 *
727 * The timer is inserted in expiry order. Insertion into the
728 * red black tree is O(log(n)). Must hold the base lock.
729 */
730 static void enqueue_hrtimer(struct hrtimer *timer,
731 struct hrtimer_clock_base *base, int reprogram)
732 {
733 struct rb_node **link = &base->active.rb_node;
734 struct rb_node *parent = NULL;
735 struct hrtimer *entry;
736 int leftmost = 1;
737
738 /*
739 * Find the right place in the rbtree:
740 */
741 while (*link) {
742 parent = *link;
743 entry = rb_entry(parent, struct hrtimer, node);
744 /*
745 * We dont care about collisions. Nodes with
746 * the same expiry time stay together.
747 */
748 if (timer->expires.tv64 < entry->expires.tv64) {
749 link = &(*link)->rb_left;
750 } else {
751 link = &(*link)->rb_right;
752 leftmost = 0;
753 }
754 }
755
756 /*
757 * Insert the timer to the rbtree and check whether it
758 * replaces the first pending timer
759 */
760 if (leftmost) {
761 /*
762 * Reprogram the clock event device. When the timer is already
763 * expired hrtimer_enqueue_reprogram has either called the
764 * callback or added it to the pending list and raised the
765 * softirq.
766 *
767 * This is a NOP for !HIGHRES
768 */
769 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
770 return;
771
772 base->first = &timer->node;
773 }
774
775 rb_link_node(&timer->node, parent, link);
776 rb_insert_color(&timer->node, &base->active);
777 /*
778 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
779 * state of a possibly running callback.
780 */
781 timer->state |= HRTIMER_STATE_ENQUEUED;
782 }
783
784 /*
785 * __remove_hrtimer - internal function to remove a timer
786 *
787 * Caller must hold the base lock.
788 *
789 * High resolution timer mode reprograms the clock event device when the
790 * timer is the one which expires next. The caller can disable this by setting
791 * reprogram to zero. This is useful, when the context does a reprogramming
792 * anyway (e.g. timer interrupt)
793 */
794 static void __remove_hrtimer(struct hrtimer *timer,
795 struct hrtimer_clock_base *base,
796 unsigned long newstate, int reprogram)
797 {
798 /* High res. callback list. NOP for !HIGHRES */
799 if (hrtimer_cb_pending(timer))
800 hrtimer_remove_cb_pending(timer);
801 else {
802 /*
803 * Remove the timer from the rbtree and replace the
804 * first entry pointer if necessary.
805 */
806 if (base->first == &timer->node) {
807 base->first = rb_next(&timer->node);
808 /* Reprogram the clock event device. if enabled */
809 if (reprogram && hrtimer_hres_active())
810 hrtimer_force_reprogram(base->cpu_base);
811 }
812 rb_erase(&timer->node, &base->active);
813 }
814 timer->state = newstate;
815 }
816
817 /*
818 * remove hrtimer, called with base lock held
819 */
820 static inline int
821 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
822 {
823 if (hrtimer_is_queued(timer)) {
824 int reprogram;
825
826 /*
827 * Remove the timer and force reprogramming when high
828 * resolution mode is active and the timer is on the current
829 * CPU. If we remove a timer on another CPU, reprogramming is
830 * skipped. The interrupt event on this CPU is fired and
831 * reprogramming happens in the interrupt handler. This is a
832 * rare case and less expensive than a smp call.
833 */
834 timer_stats_hrtimer_clear_start_info(timer);
835 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
836 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
837 reprogram);
838 return 1;
839 }
840 return 0;
841 }
842
843 /**
844 * hrtimer_start - (re)start an relative timer on the current CPU
845 * @timer: the timer to be added
846 * @tim: expiry time
847 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
848 *
849 * Returns:
850 * 0 on success
851 * 1 when the timer was active
852 */
853 int
854 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
855 {
856 struct hrtimer_clock_base *base, *new_base;
857 unsigned long flags;
858 int ret, raise;
859
860 base = lock_hrtimer_base(timer, &flags);
861
862 /* Remove an active timer from the queue: */
863 ret = remove_hrtimer(timer, base);
864
865 /* Switch the timer base, if necessary: */
866 new_base = switch_hrtimer_base(timer, base);
867
868 if (mode == HRTIMER_MODE_REL) {
869 tim = ktime_add_safe(tim, new_base->get_time());
870 /*
871 * CONFIG_TIME_LOW_RES is a temporary way for architectures
872 * to signal that they simply return xtime in
873 * do_gettimeoffset(). In this case we want to round up by
874 * resolution when starting a relative timer, to avoid short
875 * timeouts. This will go away with the GTOD framework.
876 */
877 #ifdef CONFIG_TIME_LOW_RES
878 tim = ktime_add_safe(tim, base->resolution);
879 #endif
880 }
881 timer->expires = tim;
882
883 timer_stats_hrtimer_set_start_info(timer);
884
885 /*
886 * Only allow reprogramming if the new base is on this CPU.
887 * (it might still be on another CPU if the timer was pending)
888 */
889 enqueue_hrtimer(timer, new_base,
890 new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
891
892 /*
893 * The timer may be expired and moved to the cb_pending
894 * list. We can not raise the softirq with base lock held due
895 * to a possible deadlock with runqueue lock.
896 */
897 raise = timer->state == HRTIMER_STATE_PENDING;
898
899 unlock_hrtimer_base(timer, &flags);
900
901 if (raise)
902 hrtimer_raise_softirq();
903
904 return ret;
905 }
906 EXPORT_SYMBOL_GPL(hrtimer_start);
907
908 /**
909 * hrtimer_try_to_cancel - try to deactivate a timer
910 * @timer: hrtimer to stop
911 *
912 * Returns:
913 * 0 when the timer was not active
914 * 1 when the timer was active
915 * -1 when the timer is currently excuting the callback function and
916 * cannot be stopped
917 */
918 int hrtimer_try_to_cancel(struct hrtimer *timer)
919 {
920 struct hrtimer_clock_base *base;
921 unsigned long flags;
922 int ret = -1;
923
924 base = lock_hrtimer_base(timer, &flags);
925
926 if (!hrtimer_callback_running(timer))
927 ret = remove_hrtimer(timer, base);
928
929 unlock_hrtimer_base(timer, &flags);
930
931 return ret;
932
933 }
934 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
935
936 /**
937 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
938 * @timer: the timer to be cancelled
939 *
940 * Returns:
941 * 0 when the timer was not active
942 * 1 when the timer was active
943 */
944 int hrtimer_cancel(struct hrtimer *timer)
945 {
946 for (;;) {
947 int ret = hrtimer_try_to_cancel(timer);
948
949 if (ret >= 0)
950 return ret;
951 cpu_relax();
952 }
953 }
954 EXPORT_SYMBOL_GPL(hrtimer_cancel);
955
956 /**
957 * hrtimer_get_remaining - get remaining time for the timer
958 * @timer: the timer to read
959 */
960 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
961 {
962 struct hrtimer_clock_base *base;
963 unsigned long flags;
964 ktime_t rem;
965
966 base = lock_hrtimer_base(timer, &flags);
967 rem = ktime_sub(timer->expires, base->get_time());
968 unlock_hrtimer_base(timer, &flags);
969
970 return rem;
971 }
972 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
973
974 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
975 /**
976 * hrtimer_get_next_event - get the time until next expiry event
977 *
978 * Returns the delta to the next expiry event or KTIME_MAX if no timer
979 * is pending.
980 */
981 ktime_t hrtimer_get_next_event(void)
982 {
983 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
984 struct hrtimer_clock_base *base = cpu_base->clock_base;
985 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
986 unsigned long flags;
987 int i;
988
989 spin_lock_irqsave(&cpu_base->lock, flags);
990
991 if (!hrtimer_hres_active()) {
992 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
993 struct hrtimer *timer;
994
995 if (!base->first)
996 continue;
997
998 timer = rb_entry(base->first, struct hrtimer, node);
999 delta.tv64 = timer->expires.tv64;
1000 delta = ktime_sub(delta, base->get_time());
1001 if (delta.tv64 < mindelta.tv64)
1002 mindelta.tv64 = delta.tv64;
1003 }
1004 }
1005
1006 spin_unlock_irqrestore(&cpu_base->lock, flags);
1007
1008 if (mindelta.tv64 < 0)
1009 mindelta.tv64 = 0;
1010 return mindelta;
1011 }
1012 #endif
1013
1014 /**
1015 * hrtimer_init - initialize a timer to the given clock
1016 * @timer: the timer to be initialized
1017 * @clock_id: the clock to be used
1018 * @mode: timer mode abs/rel
1019 */
1020 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1021 enum hrtimer_mode mode)
1022 {
1023 struct hrtimer_cpu_base *cpu_base;
1024
1025 memset(timer, 0, sizeof(struct hrtimer));
1026
1027 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1028
1029 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1030 clock_id = CLOCK_MONOTONIC;
1031
1032 timer->base = &cpu_base->clock_base[clock_id];
1033 INIT_LIST_HEAD(&timer->cb_entry);
1034 hrtimer_init_timer_hres(timer);
1035
1036 #ifdef CONFIG_TIMER_STATS
1037 timer->start_site = NULL;
1038 timer->start_pid = -1;
1039 memset(timer->start_comm, 0, TASK_COMM_LEN);
1040 #endif
1041 }
1042 EXPORT_SYMBOL_GPL(hrtimer_init);
1043
1044 /**
1045 * hrtimer_get_res - get the timer resolution for a clock
1046 * @which_clock: which clock to query
1047 * @tp: pointer to timespec variable to store the resolution
1048 *
1049 * Store the resolution of the clock selected by @which_clock in the
1050 * variable pointed to by @tp.
1051 */
1052 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1053 {
1054 struct hrtimer_cpu_base *cpu_base;
1055
1056 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1057 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1058
1059 return 0;
1060 }
1061 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1062
1063 static void run_hrtimer_pending(struct hrtimer_cpu_base *cpu_base)
1064 {
1065 spin_lock_irq(&cpu_base->lock);
1066
1067 while (!list_empty(&cpu_base->cb_pending)) {
1068 enum hrtimer_restart (*fn)(struct hrtimer *);
1069 struct hrtimer *timer;
1070 int restart;
1071
1072 timer = list_entry(cpu_base->cb_pending.next,
1073 struct hrtimer, cb_entry);
1074
1075 timer_stats_account_hrtimer(timer);
1076
1077 fn = timer->function;
1078 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1079 spin_unlock_irq(&cpu_base->lock);
1080
1081 restart = fn(timer);
1082
1083 spin_lock_irq(&cpu_base->lock);
1084
1085 timer->state &= ~HRTIMER_STATE_CALLBACK;
1086 if (restart == HRTIMER_RESTART) {
1087 BUG_ON(hrtimer_active(timer));
1088 /*
1089 * Enqueue the timer, allow reprogramming of the event
1090 * device
1091 */
1092 enqueue_hrtimer(timer, timer->base, 1);
1093 } else if (hrtimer_active(timer)) {
1094 /*
1095 * If the timer was rearmed on another CPU, reprogram
1096 * the event device.
1097 */
1098 struct hrtimer_clock_base *base = timer->base;
1099
1100 if (base->first == &timer->node &&
1101 hrtimer_reprogram(timer, base)) {
1102 /*
1103 * Timer is expired. Thus move it from tree to
1104 * pending list again.
1105 */
1106 __remove_hrtimer(timer, base,
1107 HRTIMER_STATE_PENDING, 0);
1108 list_add_tail(&timer->cb_entry,
1109 &base->cpu_base->cb_pending);
1110 }
1111 }
1112 }
1113 spin_unlock_irq(&cpu_base->lock);
1114 }
1115
1116 static void __run_hrtimer(struct hrtimer *timer)
1117 {
1118 struct hrtimer_clock_base *base = timer->base;
1119 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1120 enum hrtimer_restart (*fn)(struct hrtimer *);
1121 int restart;
1122
1123 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1124 timer_stats_account_hrtimer(timer);
1125
1126 fn = timer->function;
1127 if (timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ) {
1128 /*
1129 * Used for scheduler timers, avoid lock inversion with
1130 * rq->lock and tasklist_lock.
1131 *
1132 * These timers are required to deal with enqueue expiry
1133 * themselves and are not allowed to migrate.
1134 */
1135 spin_unlock(&cpu_base->lock);
1136 restart = fn(timer);
1137 spin_lock(&cpu_base->lock);
1138 } else
1139 restart = fn(timer);
1140
1141 /*
1142 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
1143 * reprogramming of the event hardware. This happens at the end of this
1144 * function anyway.
1145 */
1146 if (restart != HRTIMER_NORESTART) {
1147 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1148 enqueue_hrtimer(timer, base, 0);
1149 }
1150 timer->state &= ~HRTIMER_STATE_CALLBACK;
1151 }
1152
1153 #ifdef CONFIG_HIGH_RES_TIMERS
1154
1155 /*
1156 * High resolution timer interrupt
1157 * Called with interrupts disabled
1158 */
1159 void hrtimer_interrupt(struct clock_event_device *dev)
1160 {
1161 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1162 struct hrtimer_clock_base *base;
1163 ktime_t expires_next, now;
1164 int i, raise = 0;
1165
1166 BUG_ON(!cpu_base->hres_active);
1167 cpu_base->nr_events++;
1168 dev->next_event.tv64 = KTIME_MAX;
1169
1170 retry:
1171 now = ktime_get();
1172
1173 expires_next.tv64 = KTIME_MAX;
1174
1175 base = cpu_base->clock_base;
1176
1177 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1178 ktime_t basenow;
1179 struct rb_node *node;
1180
1181 spin_lock(&cpu_base->lock);
1182
1183 basenow = ktime_add(now, base->offset);
1184
1185 while ((node = base->first)) {
1186 struct hrtimer *timer;
1187
1188 timer = rb_entry(node, struct hrtimer, node);
1189
1190 if (basenow.tv64 < timer->expires.tv64) {
1191 ktime_t expires;
1192
1193 expires = ktime_sub(timer->expires,
1194 base->offset);
1195 if (expires.tv64 < expires_next.tv64)
1196 expires_next = expires;
1197 break;
1198 }
1199
1200 /* Move softirq callbacks to the pending list */
1201 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1202 __remove_hrtimer(timer, base,
1203 HRTIMER_STATE_PENDING, 0);
1204 list_add_tail(&timer->cb_entry,
1205 &base->cpu_base->cb_pending);
1206 raise = 1;
1207 continue;
1208 }
1209
1210 __run_hrtimer(timer);
1211 }
1212 spin_unlock(&cpu_base->lock);
1213 base++;
1214 }
1215
1216 cpu_base->expires_next = expires_next;
1217
1218 /* Reprogramming necessary ? */
1219 if (expires_next.tv64 != KTIME_MAX) {
1220 if (tick_program_event(expires_next, 0))
1221 goto retry;
1222 }
1223
1224 /* Raise softirq ? */
1225 if (raise)
1226 raise_softirq(HRTIMER_SOFTIRQ);
1227 }
1228
1229 static void run_hrtimer_softirq(struct softirq_action *h)
1230 {
1231 run_hrtimer_pending(&__get_cpu_var(hrtimer_bases));
1232 }
1233
1234 #endif /* CONFIG_HIGH_RES_TIMERS */
1235
1236 /*
1237 * Called from timer softirq every jiffy, expire hrtimers:
1238 *
1239 * For HRT its the fall back code to run the softirq in the timer
1240 * softirq context in case the hrtimer initialization failed or has
1241 * not been done yet.
1242 */
1243 void hrtimer_run_pending(void)
1244 {
1245 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1246
1247 if (hrtimer_hres_active())
1248 return;
1249
1250 /*
1251 * This _is_ ugly: We have to check in the softirq context,
1252 * whether we can switch to highres and / or nohz mode. The
1253 * clocksource switch happens in the timer interrupt with
1254 * xtime_lock held. Notification from there only sets the
1255 * check bit in the tick_oneshot code, otherwise we might
1256 * deadlock vs. xtime_lock.
1257 */
1258 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1259 hrtimer_switch_to_hres();
1260
1261 run_hrtimer_pending(cpu_base);
1262 }
1263
1264 /*
1265 * Called from hardirq context every jiffy
1266 */
1267 void hrtimer_run_queues(void)
1268 {
1269 struct rb_node *node;
1270 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1271 struct hrtimer_clock_base *base;
1272 int index, gettime = 1;
1273
1274 if (hrtimer_hres_active())
1275 return;
1276
1277 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1278 base = &cpu_base->clock_base[index];
1279
1280 if (!base->first)
1281 continue;
1282
1283 if (base->get_softirq_time)
1284 base->softirq_time = base->get_softirq_time();
1285 else if (gettime) {
1286 hrtimer_get_softirq_time(cpu_base);
1287 gettime = 0;
1288 }
1289
1290 spin_lock(&cpu_base->lock);
1291
1292 while ((node = base->first)) {
1293 struct hrtimer *timer;
1294
1295 timer = rb_entry(node, struct hrtimer, node);
1296 if (base->softirq_time.tv64 <= timer->expires.tv64)
1297 break;
1298
1299 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1300 __remove_hrtimer(timer, base,
1301 HRTIMER_STATE_PENDING, 0);
1302 list_add_tail(&timer->cb_entry,
1303 &base->cpu_base->cb_pending);
1304 continue;
1305 }
1306
1307 __run_hrtimer(timer);
1308 }
1309 spin_unlock(&cpu_base->lock);
1310 }
1311 }
1312
1313 /*
1314 * Sleep related functions:
1315 */
1316 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1317 {
1318 struct hrtimer_sleeper *t =
1319 container_of(timer, struct hrtimer_sleeper, timer);
1320 struct task_struct *task = t->task;
1321
1322 t->task = NULL;
1323 if (task)
1324 wake_up_process(task);
1325
1326 return HRTIMER_NORESTART;
1327 }
1328
1329 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1330 {
1331 sl->timer.function = hrtimer_wakeup;
1332 sl->task = task;
1333 #ifdef CONFIG_HIGH_RES_TIMERS
1334 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1335 #endif
1336 }
1337
1338 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1339 {
1340 hrtimer_init_sleeper(t, current);
1341
1342 do {
1343 set_current_state(TASK_INTERRUPTIBLE);
1344 hrtimer_start(&t->timer, t->timer.expires, mode);
1345 if (!hrtimer_active(&t->timer))
1346 t->task = NULL;
1347
1348 if (likely(t->task))
1349 schedule();
1350
1351 hrtimer_cancel(&t->timer);
1352 mode = HRTIMER_MODE_ABS;
1353
1354 } while (t->task && !signal_pending(current));
1355
1356 __set_current_state(TASK_RUNNING);
1357
1358 return t->task == NULL;
1359 }
1360
1361 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1362 {
1363 struct timespec rmt;
1364 ktime_t rem;
1365
1366 rem = ktime_sub(timer->expires, timer->base->get_time());
1367 if (rem.tv64 <= 0)
1368 return 0;
1369 rmt = ktime_to_timespec(rem);
1370
1371 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1372 return -EFAULT;
1373
1374 return 1;
1375 }
1376
1377 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1378 {
1379 struct hrtimer_sleeper t;
1380 struct timespec __user *rmtp;
1381
1382 hrtimer_init(&t.timer, restart->nanosleep.index, HRTIMER_MODE_ABS);
1383 t.timer.expires.tv64 = restart->nanosleep.expires;
1384
1385 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1386 return 0;
1387
1388 rmtp = restart->nanosleep.rmtp;
1389 if (rmtp) {
1390 int ret = update_rmtp(&t.timer, rmtp);
1391 if (ret <= 0)
1392 return ret;
1393 }
1394
1395 /* The other values in restart are already filled in */
1396 return -ERESTART_RESTARTBLOCK;
1397 }
1398
1399 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1400 const enum hrtimer_mode mode, const clockid_t clockid)
1401 {
1402 struct restart_block *restart;
1403 struct hrtimer_sleeper t;
1404
1405 hrtimer_init(&t.timer, clockid, mode);
1406 t.timer.expires = timespec_to_ktime(*rqtp);
1407 if (do_nanosleep(&t, mode))
1408 return 0;
1409
1410 /* Absolute timers do not update the rmtp value and restart: */
1411 if (mode == HRTIMER_MODE_ABS)
1412 return -ERESTARTNOHAND;
1413
1414 if (rmtp) {
1415 int ret = update_rmtp(&t.timer, rmtp);
1416 if (ret <= 0)
1417 return ret;
1418 }
1419
1420 restart = &current_thread_info()->restart_block;
1421 restart->fn = hrtimer_nanosleep_restart;
1422 restart->nanosleep.index = t.timer.base->index;
1423 restart->nanosleep.rmtp = rmtp;
1424 restart->nanosleep.expires = t.timer.expires.tv64;
1425
1426 return -ERESTART_RESTARTBLOCK;
1427 }
1428
1429 asmlinkage long
1430 sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1431 {
1432 struct timespec tu;
1433
1434 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1435 return -EFAULT;
1436
1437 if (!timespec_valid(&tu))
1438 return -EINVAL;
1439
1440 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1441 }
1442
1443 /*
1444 * Functions related to boot-time initialization:
1445 */
1446 static void __cpuinit init_hrtimers_cpu(int cpu)
1447 {
1448 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1449 int i;
1450
1451 spin_lock_init(&cpu_base->lock);
1452
1453 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1454 cpu_base->clock_base[i].cpu_base = cpu_base;
1455
1456 INIT_LIST_HEAD(&cpu_base->cb_pending);
1457 hrtimer_init_hres(cpu_base);
1458 }
1459
1460 #ifdef CONFIG_HOTPLUG_CPU
1461
1462 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1463 struct hrtimer_clock_base *new_base)
1464 {
1465 struct hrtimer *timer;
1466 struct rb_node *node;
1467
1468 while ((node = rb_first(&old_base->active))) {
1469 timer = rb_entry(node, struct hrtimer, node);
1470 BUG_ON(hrtimer_callback_running(timer));
1471 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
1472 timer->base = new_base;
1473 /*
1474 * Enqueue the timer. Allow reprogramming of the event device
1475 */
1476 enqueue_hrtimer(timer, new_base, 1);
1477 }
1478 }
1479
1480 static void migrate_hrtimers(int cpu)
1481 {
1482 struct hrtimer_cpu_base *old_base, *new_base;
1483 int i;
1484
1485 BUG_ON(cpu_online(cpu));
1486 old_base = &per_cpu(hrtimer_bases, cpu);
1487 new_base = &get_cpu_var(hrtimer_bases);
1488
1489 tick_cancel_sched_timer(cpu);
1490
1491 local_irq_disable();
1492 spin_lock(&new_base->lock);
1493 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1494
1495 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1496 migrate_hrtimer_list(&old_base->clock_base[i],
1497 &new_base->clock_base[i]);
1498 }
1499
1500 spin_unlock(&old_base->lock);
1501 spin_unlock(&new_base->lock);
1502 local_irq_enable();
1503 put_cpu_var(hrtimer_bases);
1504 }
1505 #endif /* CONFIG_HOTPLUG_CPU */
1506
1507 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1508 unsigned long action, void *hcpu)
1509 {
1510 unsigned int cpu = (long)hcpu;
1511
1512 switch (action) {
1513
1514 case CPU_UP_PREPARE:
1515 case CPU_UP_PREPARE_FROZEN:
1516 init_hrtimers_cpu(cpu);
1517 break;
1518
1519 #ifdef CONFIG_HOTPLUG_CPU
1520 case CPU_DEAD:
1521 case CPU_DEAD_FROZEN:
1522 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
1523 migrate_hrtimers(cpu);
1524 break;
1525 #endif
1526
1527 default:
1528 break;
1529 }
1530
1531 return NOTIFY_OK;
1532 }
1533
1534 static struct notifier_block __cpuinitdata hrtimers_nb = {
1535 .notifier_call = hrtimer_cpu_notify,
1536 };
1537
1538 void __init hrtimers_init(void)
1539 {
1540 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1541 (void *)(long)smp_processor_id());
1542 register_cpu_notifier(&hrtimers_nb);
1543 #ifdef CONFIG_HIGH_RES_TIMERS
1544 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
1545 #endif
1546 }
1547
This page took 0.058209 seconds and 6 git commands to generate.