sparse irq_desc[] array: core kernel and x86 changes
[deliverable/linux.git] / kernel / irq / handle.c
1 /*
2 * linux/kernel/irq/handle.c
3 *
4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
6 *
7 * This file contains the core interrupt handling code.
8 *
9 * Detailed information is available in Documentation/DocBook/genericirq
10 *
11 */
12
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/rculist.h>
19 #include <linux/hash.h>
20
21 #include "internals.h"
22
23 /*
24 * lockdep: we want to handle all irq_desc locks as a single lock-class:
25 */
26 static struct lock_class_key irq_desc_lock_class;
27
28 /**
29 * handle_bad_irq - handle spurious and unhandled irqs
30 * @irq: the interrupt number
31 * @desc: description of the interrupt
32 *
33 * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
34 */
35 void handle_bad_irq(unsigned int irq, struct irq_desc *desc)
36 {
37 print_irq_desc(irq, desc);
38 kstat_incr_irqs_this_cpu(irq, desc);
39 ack_bad_irq(irq);
40 }
41
42 /*
43 * Linux has a controller-independent interrupt architecture.
44 * Every controller has a 'controller-template', that is used
45 * by the main code to do the right thing. Each driver-visible
46 * interrupt source is transparently wired to the appropriate
47 * controller. Thus drivers need not be aware of the
48 * interrupt-controller.
49 *
50 * The code is designed to be easily extended with new/different
51 * interrupt controllers, without having to do assembly magic or
52 * having to touch the generic code.
53 *
54 * Controller mappings for all interrupt sources:
55 */
56 int nr_irqs = NR_IRQS;
57 EXPORT_SYMBOL_GPL(nr_irqs);
58
59 void __init __attribute__((weak)) arch_early_irq_init(void)
60 {
61 }
62
63 #ifdef CONFIG_SPARSE_IRQ
64 static struct irq_desc irq_desc_init = {
65 .irq = -1,
66 .status = IRQ_DISABLED,
67 .chip = &no_irq_chip,
68 .handle_irq = handle_bad_irq,
69 .depth = 1,
70 .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
71 #ifdef CONFIG_SMP
72 .affinity = CPU_MASK_ALL
73 #endif
74 };
75
76 static void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr)
77 {
78 unsigned long bytes;
79 char *ptr;
80 int node;
81
82 /* Compute how many bytes we need per irq and allocate them */
83 bytes = nr * sizeof(unsigned int);
84
85 node = cpu_to_node(cpu);
86 ptr = kzalloc_node(bytes, GFP_ATOMIC, node);
87 printk(KERN_DEBUG " alloc kstat_irqs on cpu %d node %d\n", cpu, node);
88
89 if (ptr)
90 desc->kstat_irqs = (unsigned int *)ptr;
91 }
92
93 void __attribute__((weak)) arch_init_chip_data(struct irq_desc *desc, int cpu)
94 {
95 }
96
97 static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu)
98 {
99 memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
100 desc->irq = irq;
101 #ifdef CONFIG_SMP
102 desc->cpu = cpu;
103 #endif
104 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
105 init_kstat_irqs(desc, cpu, nr_cpu_ids);
106 if (!desc->kstat_irqs) {
107 printk(KERN_ERR "can not alloc kstat_irqs\n");
108 BUG_ON(1);
109 }
110 arch_init_chip_data(desc, cpu);
111 }
112
113 /*
114 * Protect the sparse_irqs:
115 */
116 static DEFINE_SPINLOCK(sparse_irq_lock);
117
118 struct irq_desc *irq_desc_ptrs[NR_IRQS] __read_mostly;
119
120 static struct irq_desc irq_desc_legacy[16] __cacheline_aligned_in_smp = {
121 [0 ... 15] = {
122 .irq = -1,
123 .status = IRQ_DISABLED,
124 .chip = &no_irq_chip,
125 .handle_irq = handle_bad_irq,
126 .depth = 1,
127 .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
128 #ifdef CONFIG_SMP
129 .affinity = CPU_MASK_ALL
130 #endif
131 }
132 };
133
134 /* FIXME: use bootmem alloc ...*/
135 static unsigned int kstat_irqs_legacy[16][NR_CPUS];
136
137 void __init early_irq_init(void)
138 {
139 struct irq_desc *desc;
140 int legacy_count;
141 int i;
142
143 desc = irq_desc_legacy;
144 legacy_count = ARRAY_SIZE(irq_desc_legacy);
145
146 for (i = 0; i < legacy_count; i++) {
147 desc[i].irq = i;
148 desc[i].kstat_irqs = kstat_irqs_legacy[i];
149
150 irq_desc_ptrs[i] = desc + i;
151 }
152
153 for (i = legacy_count; i < NR_IRQS; i++)
154 irq_desc_ptrs[i] = NULL;
155
156 arch_early_irq_init();
157 }
158
159 struct irq_desc *irq_to_desc(unsigned int irq)
160 {
161 return (irq < NR_IRQS) ? irq_desc_ptrs[irq] : NULL;
162 }
163
164 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
165 {
166 struct irq_desc *desc;
167 unsigned long flags;
168 int node;
169
170 if (irq >= NR_IRQS) {
171 printk(KERN_WARNING "irq >= NR_IRQS in irq_to_desc_alloc: %d %d\n",
172 irq, NR_IRQS);
173 WARN_ON(1);
174 return NULL;
175 }
176
177 desc = irq_desc_ptrs[irq];
178 if (desc)
179 return desc;
180
181 spin_lock_irqsave(&sparse_irq_lock, flags);
182
183 /* We have to check it to avoid races with another CPU */
184 desc = irq_desc_ptrs[irq];
185 if (desc)
186 goto out_unlock;
187
188 node = cpu_to_node(cpu);
189 desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node);
190 printk(KERN_DEBUG " alloc irq_desc for %d on cpu %d node %d\n",
191 irq, cpu, node);
192 if (!desc) {
193 printk(KERN_ERR "can not alloc irq_desc\n");
194 BUG_ON(1);
195 }
196 init_one_irq_desc(irq, desc, cpu);
197
198 irq_desc_ptrs[irq] = desc;
199
200 out_unlock:
201 spin_unlock_irqrestore(&sparse_irq_lock, flags);
202
203 return desc;
204 }
205
206 #else
207
208 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
209 [0 ... NR_IRQS-1] = {
210 .status = IRQ_DISABLED,
211 .chip = &no_irq_chip,
212 .handle_irq = handle_bad_irq,
213 .depth = 1,
214 .lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock),
215 #ifdef CONFIG_SMP
216 .affinity = CPU_MASK_ALL
217 #endif
218 }
219 };
220
221 #endif
222
223 /*
224 * What should we do if we get a hw irq event on an illegal vector?
225 * Each architecture has to answer this themself.
226 */
227 static void ack_bad(unsigned int irq)
228 {
229 struct irq_desc *desc = irq_to_desc(irq);
230
231 print_irq_desc(irq, desc);
232 ack_bad_irq(irq);
233 }
234
235 /*
236 * NOP functions
237 */
238 static void noop(unsigned int irq)
239 {
240 }
241
242 static unsigned int noop_ret(unsigned int irq)
243 {
244 return 0;
245 }
246
247 /*
248 * Generic no controller implementation
249 */
250 struct irq_chip no_irq_chip = {
251 .name = "none",
252 .startup = noop_ret,
253 .shutdown = noop,
254 .enable = noop,
255 .disable = noop,
256 .ack = ack_bad,
257 .end = noop,
258 };
259
260 /*
261 * Generic dummy implementation which can be used for
262 * real dumb interrupt sources
263 */
264 struct irq_chip dummy_irq_chip = {
265 .name = "dummy",
266 .startup = noop_ret,
267 .shutdown = noop,
268 .enable = noop,
269 .disable = noop,
270 .ack = noop,
271 .mask = noop,
272 .unmask = noop,
273 .end = noop,
274 };
275
276 /*
277 * Special, empty irq handler:
278 */
279 irqreturn_t no_action(int cpl, void *dev_id)
280 {
281 return IRQ_NONE;
282 }
283
284 /**
285 * handle_IRQ_event - irq action chain handler
286 * @irq: the interrupt number
287 * @action: the interrupt action chain for this irq
288 *
289 * Handles the action chain of an irq event
290 */
291 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
292 {
293 irqreturn_t ret, retval = IRQ_NONE;
294 unsigned int status = 0;
295
296 if (!(action->flags & IRQF_DISABLED))
297 local_irq_enable_in_hardirq();
298
299 do {
300 ret = action->handler(irq, action->dev_id);
301 if (ret == IRQ_HANDLED)
302 status |= action->flags;
303 retval |= ret;
304 action = action->next;
305 } while (action);
306
307 if (status & IRQF_SAMPLE_RANDOM)
308 add_interrupt_randomness(irq);
309 local_irq_disable();
310
311 return retval;
312 }
313
314 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
315 /**
316 * __do_IRQ - original all in one highlevel IRQ handler
317 * @irq: the interrupt number
318 *
319 * __do_IRQ handles all normal device IRQ's (the special
320 * SMP cross-CPU interrupts have their own specific
321 * handlers).
322 *
323 * This is the original x86 implementation which is used for every
324 * interrupt type.
325 */
326 unsigned int __do_IRQ(unsigned int irq)
327 {
328 struct irq_desc *desc = irq_to_desc(irq);
329 struct irqaction *action;
330 unsigned int status;
331
332 kstat_incr_irqs_this_cpu(irq, desc);
333
334 if (CHECK_IRQ_PER_CPU(desc->status)) {
335 irqreturn_t action_ret;
336
337 /*
338 * No locking required for CPU-local interrupts:
339 */
340 if (desc->chip->ack)
341 desc->chip->ack(irq);
342 if (likely(!(desc->status & IRQ_DISABLED))) {
343 action_ret = handle_IRQ_event(irq, desc->action);
344 if (!noirqdebug)
345 note_interrupt(irq, desc, action_ret);
346 }
347 desc->chip->end(irq);
348 return 1;
349 }
350
351 spin_lock(&desc->lock);
352 if (desc->chip->ack)
353 desc->chip->ack(irq);
354 /*
355 * REPLAY is when Linux resends an IRQ that was dropped earlier
356 * WAITING is used by probe to mark irqs that are being tested
357 */
358 status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
359 status |= IRQ_PENDING; /* we _want_ to handle it */
360
361 /*
362 * If the IRQ is disabled for whatever reason, we cannot
363 * use the action we have.
364 */
365 action = NULL;
366 if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
367 action = desc->action;
368 status &= ~IRQ_PENDING; /* we commit to handling */
369 status |= IRQ_INPROGRESS; /* we are handling it */
370 }
371 desc->status = status;
372
373 /*
374 * If there is no IRQ handler or it was disabled, exit early.
375 * Since we set PENDING, if another processor is handling
376 * a different instance of this same irq, the other processor
377 * will take care of it.
378 */
379 if (unlikely(!action))
380 goto out;
381
382 /*
383 * Edge triggered interrupts need to remember
384 * pending events.
385 * This applies to any hw interrupts that allow a second
386 * instance of the same irq to arrive while we are in do_IRQ
387 * or in the handler. But the code here only handles the _second_
388 * instance of the irq, not the third or fourth. So it is mostly
389 * useful for irq hardware that does not mask cleanly in an
390 * SMP environment.
391 */
392 for (;;) {
393 irqreturn_t action_ret;
394
395 spin_unlock(&desc->lock);
396
397 action_ret = handle_IRQ_event(irq, action);
398 if (!noirqdebug)
399 note_interrupt(irq, desc, action_ret);
400
401 spin_lock(&desc->lock);
402 if (likely(!(desc->status & IRQ_PENDING)))
403 break;
404 desc->status &= ~IRQ_PENDING;
405 }
406 desc->status &= ~IRQ_INPROGRESS;
407
408 out:
409 /*
410 * The ->end() handler has to deal with interrupts which got
411 * disabled while the handler was running.
412 */
413 desc->chip->end(irq);
414 spin_unlock(&desc->lock);
415
416 return 1;
417 }
418 #endif
419
420
421 #ifdef CONFIG_TRACE_IRQFLAGS
422 void early_init_irq_lock_class(void)
423 {
424 #ifndef CONFIG_SPARSE_IRQ
425 struct irq_desc *desc;
426 int i;
427
428 for_each_irq_desc(i, desc) {
429 if (!desc)
430 continue;
431
432 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
433 }
434 #endif
435 }
436 #endif
437
438 #ifdef CONFIG_SPARSE_IRQ
439 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
440 {
441 struct irq_desc *desc = irq_to_desc(irq);
442 return desc->kstat_irqs[cpu];
443 }
444 #endif
445 EXPORT_SYMBOL(kstat_irqs_cpu);
446
This page took 0.039267 seconds and 5 git commands to generate.