Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[deliverable/linux.git] / kernel / irq / irqdesc.c
1 /*
2 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
3 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
4 *
5 * This file contains the interrupt descriptor management code
6 *
7 * Detailed information is available in Documentation/DocBook/genericirq
8 *
9 */
10 #include <linux/irq.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/radix-tree.h>
16 #include <linux/bitmap.h>
17 #include <linux/irqdomain.h>
18
19 #include "internals.h"
20
21 /*
22 * lockdep: we want to handle all irq_desc locks as a single lock-class:
23 */
24 static struct lock_class_key irq_desc_lock_class;
25
26 #if defined(CONFIG_SMP)
27 static int __init irq_affinity_setup(char *str)
28 {
29 zalloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
30 cpulist_parse(str, irq_default_affinity);
31 /*
32 * Set at least the boot cpu. We don't want to end up with
33 * bugreports caused by random comandline masks
34 */
35 cpumask_set_cpu(smp_processor_id(), irq_default_affinity);
36 return 1;
37 }
38 __setup("irqaffinity=", irq_affinity_setup);
39
40 static void __init init_irq_default_affinity(void)
41 {
42 #ifdef CONFIG_CPUMASK_OFFSTACK
43 if (!irq_default_affinity)
44 zalloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
45 #endif
46 if (cpumask_empty(irq_default_affinity))
47 cpumask_setall(irq_default_affinity);
48 }
49 #else
50 static void __init init_irq_default_affinity(void)
51 {
52 }
53 #endif
54
55 #ifdef CONFIG_SMP
56 static int alloc_masks(struct irq_desc *desc, gfp_t gfp, int node)
57 {
58 if (!zalloc_cpumask_var_node(&desc->irq_common_data.affinity,
59 gfp, node))
60 return -ENOMEM;
61
62 #ifdef CONFIG_GENERIC_PENDING_IRQ
63 if (!zalloc_cpumask_var_node(&desc->pending_mask, gfp, node)) {
64 free_cpumask_var(desc->irq_common_data.affinity);
65 return -ENOMEM;
66 }
67 #endif
68 return 0;
69 }
70
71 static void desc_smp_init(struct irq_desc *desc, int node,
72 const struct cpumask *affinity)
73 {
74 if (!affinity)
75 affinity = irq_default_affinity;
76 cpumask_copy(desc->irq_common_data.affinity, affinity);
77
78 #ifdef CONFIG_GENERIC_PENDING_IRQ
79 cpumask_clear(desc->pending_mask);
80 #endif
81 #ifdef CONFIG_NUMA
82 desc->irq_common_data.node = node;
83 #endif
84 }
85
86 #else
87 static inline int
88 alloc_masks(struct irq_desc *desc, gfp_t gfp, int node) { return 0; }
89 static inline void
90 desc_smp_init(struct irq_desc *desc, int node, const struct cpumask *affinity) { }
91 #endif
92
93 static void desc_set_defaults(unsigned int irq, struct irq_desc *desc, int node,
94 const struct cpumask *affinity, struct module *owner)
95 {
96 int cpu;
97
98 desc->irq_common_data.handler_data = NULL;
99 desc->irq_common_data.msi_desc = NULL;
100
101 desc->irq_data.common = &desc->irq_common_data;
102 desc->irq_data.irq = irq;
103 desc->irq_data.chip = &no_irq_chip;
104 desc->irq_data.chip_data = NULL;
105 irq_settings_clr_and_set(desc, ~0, _IRQ_DEFAULT_INIT_FLAGS);
106 irqd_set(&desc->irq_data, IRQD_IRQ_DISABLED);
107 desc->handle_irq = handle_bad_irq;
108 desc->depth = 1;
109 desc->irq_count = 0;
110 desc->irqs_unhandled = 0;
111 desc->name = NULL;
112 desc->owner = owner;
113 for_each_possible_cpu(cpu)
114 *per_cpu_ptr(desc->kstat_irqs, cpu) = 0;
115 desc_smp_init(desc, node, affinity);
116 }
117
118 int nr_irqs = NR_IRQS;
119 EXPORT_SYMBOL_GPL(nr_irqs);
120
121 static DEFINE_MUTEX(sparse_irq_lock);
122 static DECLARE_BITMAP(allocated_irqs, IRQ_BITMAP_BITS);
123
124 #ifdef CONFIG_SPARSE_IRQ
125
126 static RADIX_TREE(irq_desc_tree, GFP_KERNEL);
127
128 static void irq_insert_desc(unsigned int irq, struct irq_desc *desc)
129 {
130 radix_tree_insert(&irq_desc_tree, irq, desc);
131 }
132
133 struct irq_desc *irq_to_desc(unsigned int irq)
134 {
135 return radix_tree_lookup(&irq_desc_tree, irq);
136 }
137 EXPORT_SYMBOL(irq_to_desc);
138
139 static void delete_irq_desc(unsigned int irq)
140 {
141 radix_tree_delete(&irq_desc_tree, irq);
142 }
143
144 #ifdef CONFIG_SMP
145 static void free_masks(struct irq_desc *desc)
146 {
147 #ifdef CONFIG_GENERIC_PENDING_IRQ
148 free_cpumask_var(desc->pending_mask);
149 #endif
150 free_cpumask_var(desc->irq_common_data.affinity);
151 }
152 #else
153 static inline void free_masks(struct irq_desc *desc) { }
154 #endif
155
156 void irq_lock_sparse(void)
157 {
158 mutex_lock(&sparse_irq_lock);
159 }
160
161 void irq_unlock_sparse(void)
162 {
163 mutex_unlock(&sparse_irq_lock);
164 }
165
166 static struct irq_desc *alloc_desc(int irq, int node, unsigned int flags,
167 const struct cpumask *affinity,
168 struct module *owner)
169 {
170 struct irq_desc *desc;
171 gfp_t gfp = GFP_KERNEL;
172
173 desc = kzalloc_node(sizeof(*desc), gfp, node);
174 if (!desc)
175 return NULL;
176 /* allocate based on nr_cpu_ids */
177 desc->kstat_irqs = alloc_percpu(unsigned int);
178 if (!desc->kstat_irqs)
179 goto err_desc;
180
181 if (alloc_masks(desc, gfp, node))
182 goto err_kstat;
183
184 raw_spin_lock_init(&desc->lock);
185 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
186 init_rcu_head(&desc->rcu);
187
188 desc_set_defaults(irq, desc, node, affinity, owner);
189 irqd_set(&desc->irq_data, flags);
190
191 return desc;
192
193 err_kstat:
194 free_percpu(desc->kstat_irqs);
195 err_desc:
196 kfree(desc);
197 return NULL;
198 }
199
200 static void delayed_free_desc(struct rcu_head *rhp)
201 {
202 struct irq_desc *desc = container_of(rhp, struct irq_desc, rcu);
203
204 free_masks(desc);
205 free_percpu(desc->kstat_irqs);
206 kfree(desc);
207 }
208
209 static void free_desc(unsigned int irq)
210 {
211 struct irq_desc *desc = irq_to_desc(irq);
212
213 unregister_irq_proc(irq, desc);
214
215 /*
216 * sparse_irq_lock protects also show_interrupts() and
217 * kstat_irq_usr(). Once we deleted the descriptor from the
218 * sparse tree we can free it. Access in proc will fail to
219 * lookup the descriptor.
220 */
221 mutex_lock(&sparse_irq_lock);
222 delete_irq_desc(irq);
223 mutex_unlock(&sparse_irq_lock);
224
225 /*
226 * We free the descriptor, masks and stat fields via RCU. That
227 * allows demultiplex interrupts to do rcu based management of
228 * the child interrupts.
229 */
230 call_rcu(&desc->rcu, delayed_free_desc);
231 }
232
233 static int alloc_descs(unsigned int start, unsigned int cnt, int node,
234 const struct cpumask *affinity, struct module *owner)
235 {
236 const struct cpumask *mask = NULL;
237 struct irq_desc *desc;
238 unsigned int flags;
239 int i, cpu = -1;
240
241 if (affinity && cpumask_empty(affinity))
242 return -EINVAL;
243
244 flags = affinity ? IRQD_AFFINITY_MANAGED : 0;
245
246 for (i = 0; i < cnt; i++) {
247 if (affinity) {
248 cpu = cpumask_next(cpu, affinity);
249 if (cpu >= nr_cpu_ids)
250 cpu = cpumask_first(affinity);
251 node = cpu_to_node(cpu);
252
253 /*
254 * For single allocations we use the caller provided
255 * mask otherwise we use the mask of the target cpu
256 */
257 mask = cnt == 1 ? affinity : cpumask_of(cpu);
258 }
259 desc = alloc_desc(start + i, node, flags, mask, owner);
260 if (!desc)
261 goto err;
262 mutex_lock(&sparse_irq_lock);
263 irq_insert_desc(start + i, desc);
264 mutex_unlock(&sparse_irq_lock);
265 }
266 return start;
267
268 err:
269 for (i--; i >= 0; i--)
270 free_desc(start + i);
271
272 mutex_lock(&sparse_irq_lock);
273 bitmap_clear(allocated_irqs, start, cnt);
274 mutex_unlock(&sparse_irq_lock);
275 return -ENOMEM;
276 }
277
278 static int irq_expand_nr_irqs(unsigned int nr)
279 {
280 if (nr > IRQ_BITMAP_BITS)
281 return -ENOMEM;
282 nr_irqs = nr;
283 return 0;
284 }
285
286 int __init early_irq_init(void)
287 {
288 int i, initcnt, node = first_online_node;
289 struct irq_desc *desc;
290
291 init_irq_default_affinity();
292
293 /* Let arch update nr_irqs and return the nr of preallocated irqs */
294 initcnt = arch_probe_nr_irqs();
295 printk(KERN_INFO "NR_IRQS:%d nr_irqs:%d %d\n", NR_IRQS, nr_irqs, initcnt);
296
297 if (WARN_ON(nr_irqs > IRQ_BITMAP_BITS))
298 nr_irqs = IRQ_BITMAP_BITS;
299
300 if (WARN_ON(initcnt > IRQ_BITMAP_BITS))
301 initcnt = IRQ_BITMAP_BITS;
302
303 if (initcnt > nr_irqs)
304 nr_irqs = initcnt;
305
306 for (i = 0; i < initcnt; i++) {
307 desc = alloc_desc(i, node, 0, NULL, NULL);
308 set_bit(i, allocated_irqs);
309 irq_insert_desc(i, desc);
310 }
311 return arch_early_irq_init();
312 }
313
314 #else /* !CONFIG_SPARSE_IRQ */
315
316 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
317 [0 ... NR_IRQS-1] = {
318 .handle_irq = handle_bad_irq,
319 .depth = 1,
320 .lock = __RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),
321 }
322 };
323
324 int __init early_irq_init(void)
325 {
326 int count, i, node = first_online_node;
327 struct irq_desc *desc;
328
329 init_irq_default_affinity();
330
331 printk(KERN_INFO "NR_IRQS:%d\n", NR_IRQS);
332
333 desc = irq_desc;
334 count = ARRAY_SIZE(irq_desc);
335
336 for (i = 0; i < count; i++) {
337 desc[i].kstat_irqs = alloc_percpu(unsigned int);
338 alloc_masks(&desc[i], GFP_KERNEL, node);
339 raw_spin_lock_init(&desc[i].lock);
340 lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
341 desc_set_defaults(i, &desc[i], node, NULL, NULL);
342 }
343 return arch_early_irq_init();
344 }
345
346 struct irq_desc *irq_to_desc(unsigned int irq)
347 {
348 return (irq < NR_IRQS) ? irq_desc + irq : NULL;
349 }
350 EXPORT_SYMBOL(irq_to_desc);
351
352 static void free_desc(unsigned int irq)
353 {
354 struct irq_desc *desc = irq_to_desc(irq);
355 unsigned long flags;
356
357 raw_spin_lock_irqsave(&desc->lock, flags);
358 desc_set_defaults(irq, desc, irq_desc_get_node(desc), NULL, NULL);
359 raw_spin_unlock_irqrestore(&desc->lock, flags);
360 }
361
362 static inline int alloc_descs(unsigned int start, unsigned int cnt, int node,
363 const struct cpumask *affinity,
364 struct module *owner)
365 {
366 u32 i;
367
368 for (i = 0; i < cnt; i++) {
369 struct irq_desc *desc = irq_to_desc(start + i);
370
371 desc->owner = owner;
372 }
373 return start;
374 }
375
376 static int irq_expand_nr_irqs(unsigned int nr)
377 {
378 return -ENOMEM;
379 }
380
381 void irq_mark_irq(unsigned int irq)
382 {
383 mutex_lock(&sparse_irq_lock);
384 bitmap_set(allocated_irqs, irq, 1);
385 mutex_unlock(&sparse_irq_lock);
386 }
387
388 #ifdef CONFIG_GENERIC_IRQ_LEGACY
389 void irq_init_desc(unsigned int irq)
390 {
391 free_desc(irq);
392 }
393 #endif
394
395 #endif /* !CONFIG_SPARSE_IRQ */
396
397 /**
398 * generic_handle_irq - Invoke the handler for a particular irq
399 * @irq: The irq number to handle
400 *
401 */
402 int generic_handle_irq(unsigned int irq)
403 {
404 struct irq_desc *desc = irq_to_desc(irq);
405
406 if (!desc)
407 return -EINVAL;
408 generic_handle_irq_desc(desc);
409 return 0;
410 }
411 EXPORT_SYMBOL_GPL(generic_handle_irq);
412
413 #ifdef CONFIG_HANDLE_DOMAIN_IRQ
414 /**
415 * __handle_domain_irq - Invoke the handler for a HW irq belonging to a domain
416 * @domain: The domain where to perform the lookup
417 * @hwirq: The HW irq number to convert to a logical one
418 * @lookup: Whether to perform the domain lookup or not
419 * @regs: Register file coming from the low-level handling code
420 *
421 * Returns: 0 on success, or -EINVAL if conversion has failed
422 */
423 int __handle_domain_irq(struct irq_domain *domain, unsigned int hwirq,
424 bool lookup, struct pt_regs *regs)
425 {
426 struct pt_regs *old_regs = set_irq_regs(regs);
427 unsigned int irq = hwirq;
428 int ret = 0;
429
430 irq_enter();
431
432 #ifdef CONFIG_IRQ_DOMAIN
433 if (lookup)
434 irq = irq_find_mapping(domain, hwirq);
435 #endif
436
437 /*
438 * Some hardware gives randomly wrong interrupts. Rather
439 * than crashing, do something sensible.
440 */
441 if (unlikely(!irq || irq >= nr_irqs)) {
442 ack_bad_irq(irq);
443 ret = -EINVAL;
444 } else {
445 generic_handle_irq(irq);
446 }
447
448 irq_exit();
449 set_irq_regs(old_regs);
450 return ret;
451 }
452 #endif
453
454 /* Dynamic interrupt handling */
455
456 /**
457 * irq_free_descs - free irq descriptors
458 * @from: Start of descriptor range
459 * @cnt: Number of consecutive irqs to free
460 */
461 void irq_free_descs(unsigned int from, unsigned int cnt)
462 {
463 int i;
464
465 if (from >= nr_irqs || (from + cnt) > nr_irqs)
466 return;
467
468 for (i = 0; i < cnt; i++)
469 free_desc(from + i);
470
471 mutex_lock(&sparse_irq_lock);
472 bitmap_clear(allocated_irqs, from, cnt);
473 mutex_unlock(&sparse_irq_lock);
474 }
475 EXPORT_SYMBOL_GPL(irq_free_descs);
476
477 /**
478 * irq_alloc_descs - allocate and initialize a range of irq descriptors
479 * @irq: Allocate for specific irq number if irq >= 0
480 * @from: Start the search from this irq number
481 * @cnt: Number of consecutive irqs to allocate.
482 * @node: Preferred node on which the irq descriptor should be allocated
483 * @owner: Owning module (can be NULL)
484 * @affinity: Optional pointer to an affinity mask which hints where the
485 * irq descriptors should be allocated and which default
486 * affinities to use
487 *
488 * Returns the first irq number or error code
489 */
490 int __ref
491 __irq_alloc_descs(int irq, unsigned int from, unsigned int cnt, int node,
492 struct module *owner, const struct cpumask *affinity)
493 {
494 int start, ret;
495
496 if (!cnt)
497 return -EINVAL;
498
499 if (irq >= 0) {
500 if (from > irq)
501 return -EINVAL;
502 from = irq;
503 } else {
504 /*
505 * For interrupts which are freely allocated the
506 * architecture can force a lower bound to the @from
507 * argument. x86 uses this to exclude the GSI space.
508 */
509 from = arch_dynirq_lower_bound(from);
510 }
511
512 mutex_lock(&sparse_irq_lock);
513
514 start = bitmap_find_next_zero_area(allocated_irqs, IRQ_BITMAP_BITS,
515 from, cnt, 0);
516 ret = -EEXIST;
517 if (irq >=0 && start != irq)
518 goto err;
519
520 if (start + cnt > nr_irqs) {
521 ret = irq_expand_nr_irqs(start + cnt);
522 if (ret)
523 goto err;
524 }
525
526 bitmap_set(allocated_irqs, start, cnt);
527 mutex_unlock(&sparse_irq_lock);
528 return alloc_descs(start, cnt, node, affinity, owner);
529
530 err:
531 mutex_unlock(&sparse_irq_lock);
532 return ret;
533 }
534 EXPORT_SYMBOL_GPL(__irq_alloc_descs);
535
536 #ifdef CONFIG_GENERIC_IRQ_LEGACY_ALLOC_HWIRQ
537 /**
538 * irq_alloc_hwirqs - Allocate an irq descriptor and initialize the hardware
539 * @cnt: number of interrupts to allocate
540 * @node: node on which to allocate
541 *
542 * Returns an interrupt number > 0 or 0, if the allocation fails.
543 */
544 unsigned int irq_alloc_hwirqs(int cnt, int node)
545 {
546 int i, irq = __irq_alloc_descs(-1, 0, cnt, node, NULL, NULL);
547
548 if (irq < 0)
549 return 0;
550
551 for (i = irq; cnt > 0; i++, cnt--) {
552 if (arch_setup_hwirq(i, node))
553 goto err;
554 irq_clear_status_flags(i, _IRQ_NOREQUEST);
555 }
556 return irq;
557
558 err:
559 for (i--; i >= irq; i--) {
560 irq_set_status_flags(i, _IRQ_NOREQUEST | _IRQ_NOPROBE);
561 arch_teardown_hwirq(i);
562 }
563 irq_free_descs(irq, cnt);
564 return 0;
565 }
566 EXPORT_SYMBOL_GPL(irq_alloc_hwirqs);
567
568 /**
569 * irq_free_hwirqs - Free irq descriptor and cleanup the hardware
570 * @from: Free from irq number
571 * @cnt: number of interrupts to free
572 *
573 */
574 void irq_free_hwirqs(unsigned int from, int cnt)
575 {
576 int i, j;
577
578 for (i = from, j = cnt; j > 0; i++, j--) {
579 irq_set_status_flags(i, _IRQ_NOREQUEST | _IRQ_NOPROBE);
580 arch_teardown_hwirq(i);
581 }
582 irq_free_descs(from, cnt);
583 }
584 EXPORT_SYMBOL_GPL(irq_free_hwirqs);
585 #endif
586
587 /**
588 * irq_get_next_irq - get next allocated irq number
589 * @offset: where to start the search
590 *
591 * Returns next irq number after offset or nr_irqs if none is found.
592 */
593 unsigned int irq_get_next_irq(unsigned int offset)
594 {
595 return find_next_bit(allocated_irqs, nr_irqs, offset);
596 }
597
598 struct irq_desc *
599 __irq_get_desc_lock(unsigned int irq, unsigned long *flags, bool bus,
600 unsigned int check)
601 {
602 struct irq_desc *desc = irq_to_desc(irq);
603
604 if (desc) {
605 if (check & _IRQ_DESC_CHECK) {
606 if ((check & _IRQ_DESC_PERCPU) &&
607 !irq_settings_is_per_cpu_devid(desc))
608 return NULL;
609
610 if (!(check & _IRQ_DESC_PERCPU) &&
611 irq_settings_is_per_cpu_devid(desc))
612 return NULL;
613 }
614
615 if (bus)
616 chip_bus_lock(desc);
617 raw_spin_lock_irqsave(&desc->lock, *flags);
618 }
619 return desc;
620 }
621
622 void __irq_put_desc_unlock(struct irq_desc *desc, unsigned long flags, bool bus)
623 {
624 raw_spin_unlock_irqrestore(&desc->lock, flags);
625 if (bus)
626 chip_bus_sync_unlock(desc);
627 }
628
629 int irq_set_percpu_devid_partition(unsigned int irq,
630 const struct cpumask *affinity)
631 {
632 struct irq_desc *desc = irq_to_desc(irq);
633
634 if (!desc)
635 return -EINVAL;
636
637 if (desc->percpu_enabled)
638 return -EINVAL;
639
640 desc->percpu_enabled = kzalloc(sizeof(*desc->percpu_enabled), GFP_KERNEL);
641
642 if (!desc->percpu_enabled)
643 return -ENOMEM;
644
645 if (affinity)
646 desc->percpu_affinity = affinity;
647 else
648 desc->percpu_affinity = cpu_possible_mask;
649
650 irq_set_percpu_devid_flags(irq);
651 return 0;
652 }
653
654 int irq_set_percpu_devid(unsigned int irq)
655 {
656 return irq_set_percpu_devid_partition(irq, NULL);
657 }
658
659 int irq_get_percpu_devid_partition(unsigned int irq, struct cpumask *affinity)
660 {
661 struct irq_desc *desc = irq_to_desc(irq);
662
663 if (!desc || !desc->percpu_enabled)
664 return -EINVAL;
665
666 if (affinity)
667 cpumask_copy(affinity, desc->percpu_affinity);
668
669 return 0;
670 }
671
672 void kstat_incr_irq_this_cpu(unsigned int irq)
673 {
674 kstat_incr_irqs_this_cpu(irq_to_desc(irq));
675 }
676
677 /**
678 * kstat_irqs_cpu - Get the statistics for an interrupt on a cpu
679 * @irq: The interrupt number
680 * @cpu: The cpu number
681 *
682 * Returns the sum of interrupt counts on @cpu since boot for
683 * @irq. The caller must ensure that the interrupt is not removed
684 * concurrently.
685 */
686 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
687 {
688 struct irq_desc *desc = irq_to_desc(irq);
689
690 return desc && desc->kstat_irqs ?
691 *per_cpu_ptr(desc->kstat_irqs, cpu) : 0;
692 }
693
694 /**
695 * kstat_irqs - Get the statistics for an interrupt
696 * @irq: The interrupt number
697 *
698 * Returns the sum of interrupt counts on all cpus since boot for
699 * @irq. The caller must ensure that the interrupt is not removed
700 * concurrently.
701 */
702 unsigned int kstat_irqs(unsigned int irq)
703 {
704 struct irq_desc *desc = irq_to_desc(irq);
705 int cpu;
706 unsigned int sum = 0;
707
708 if (!desc || !desc->kstat_irqs)
709 return 0;
710 for_each_possible_cpu(cpu)
711 sum += *per_cpu_ptr(desc->kstat_irqs, cpu);
712 return sum;
713 }
714
715 /**
716 * kstat_irqs_usr - Get the statistics for an interrupt
717 * @irq: The interrupt number
718 *
719 * Returns the sum of interrupt counts on all cpus since boot for
720 * @irq. Contrary to kstat_irqs() this can be called from any
721 * preemptible context. It's protected against concurrent removal of
722 * an interrupt descriptor when sparse irqs are enabled.
723 */
724 unsigned int kstat_irqs_usr(unsigned int irq)
725 {
726 unsigned int sum;
727
728 irq_lock_sparse();
729 sum = kstat_irqs(irq);
730 irq_unlock_sparse();
731 return sum;
732 }
This page took 0.047188 seconds and 5 git commands to generate.