Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / kernel / irq / irqdomain.c
1 #define pr_fmt(fmt) "irq: " fmt
2
3 #include <linux/debugfs.h>
4 #include <linux/hardirq.h>
5 #include <linux/interrupt.h>
6 #include <linux/irq.h>
7 #include <linux/irqdesc.h>
8 #include <linux/irqdomain.h>
9 #include <linux/module.h>
10 #include <linux/mutex.h>
11 #include <linux/of.h>
12 #include <linux/of_address.h>
13 #include <linux/of_irq.h>
14 #include <linux/topology.h>
15 #include <linux/seq_file.h>
16 #include <linux/slab.h>
17 #include <linux/smp.h>
18 #include <linux/fs.h>
19
20 static LIST_HEAD(irq_domain_list);
21 static DEFINE_MUTEX(irq_domain_mutex);
22
23 static DEFINE_MUTEX(revmap_trees_mutex);
24 static struct irq_domain *irq_default_domain;
25
26 static int irq_domain_alloc_descs(int virq, unsigned int nr_irqs,
27 irq_hw_number_t hwirq, int node);
28 static void irq_domain_check_hierarchy(struct irq_domain *domain);
29
30 struct irqchip_fwid {
31 struct fwnode_handle fwnode;
32 char *name;
33 void *data;
34 };
35
36 /**
37 * irq_domain_alloc_fwnode - Allocate a fwnode_handle suitable for
38 * identifying an irq domain
39 * @data: optional user-provided data
40 *
41 * Allocate a struct device_node, and return a poiner to the embedded
42 * fwnode_handle (or NULL on failure).
43 */
44 struct fwnode_handle *irq_domain_alloc_fwnode(void *data)
45 {
46 struct irqchip_fwid *fwid;
47 char *name;
48
49 fwid = kzalloc(sizeof(*fwid), GFP_KERNEL);
50 name = kasprintf(GFP_KERNEL, "irqchip@%p", data);
51
52 if (!fwid || !name) {
53 kfree(fwid);
54 kfree(name);
55 return NULL;
56 }
57
58 fwid->name = name;
59 fwid->data = data;
60 fwid->fwnode.type = FWNODE_IRQCHIP;
61 return &fwid->fwnode;
62 }
63
64 /**
65 * irq_domain_free_fwnode - Free a non-OF-backed fwnode_handle
66 *
67 * Free a fwnode_handle allocated with irq_domain_alloc_fwnode.
68 */
69 void irq_domain_free_fwnode(struct fwnode_handle *fwnode)
70 {
71 struct irqchip_fwid *fwid;
72
73 if (WARN_ON(fwnode->type != FWNODE_IRQCHIP))
74 return;
75
76 fwid = container_of(fwnode, struct irqchip_fwid, fwnode);
77 kfree(fwid->name);
78 kfree(fwid);
79 }
80
81 /**
82 * __irq_domain_add() - Allocate a new irq_domain data structure
83 * @of_node: optional device-tree node of the interrupt controller
84 * @size: Size of linear map; 0 for radix mapping only
85 * @hwirq_max: Maximum number of interrupts supported by controller
86 * @direct_max: Maximum value of direct maps; Use ~0 for no limit; 0 for no
87 * direct mapping
88 * @ops: domain callbacks
89 * @host_data: Controller private data pointer
90 *
91 * Allocates and initialize and irq_domain structure.
92 * Returns pointer to IRQ domain, or NULL on failure.
93 */
94 struct irq_domain *__irq_domain_add(struct fwnode_handle *fwnode, int size,
95 irq_hw_number_t hwirq_max, int direct_max,
96 const struct irq_domain_ops *ops,
97 void *host_data)
98 {
99 struct irq_domain *domain;
100 struct device_node *of_node;
101
102 of_node = to_of_node(fwnode);
103
104 domain = kzalloc_node(sizeof(*domain) + (sizeof(unsigned int) * size),
105 GFP_KERNEL, of_node_to_nid(of_node));
106 if (WARN_ON(!domain))
107 return NULL;
108
109 of_node_get(of_node);
110
111 /* Fill structure */
112 INIT_RADIX_TREE(&domain->revmap_tree, GFP_KERNEL);
113 domain->ops = ops;
114 domain->host_data = host_data;
115 domain->fwnode = fwnode;
116 domain->hwirq_max = hwirq_max;
117 domain->revmap_size = size;
118 domain->revmap_direct_max_irq = direct_max;
119 irq_domain_check_hierarchy(domain);
120
121 mutex_lock(&irq_domain_mutex);
122 list_add(&domain->link, &irq_domain_list);
123 mutex_unlock(&irq_domain_mutex);
124
125 pr_debug("Added domain %s\n", domain->name);
126 return domain;
127 }
128 EXPORT_SYMBOL_GPL(__irq_domain_add);
129
130 /**
131 * irq_domain_remove() - Remove an irq domain.
132 * @domain: domain to remove
133 *
134 * This routine is used to remove an irq domain. The caller must ensure
135 * that all mappings within the domain have been disposed of prior to
136 * use, depending on the revmap type.
137 */
138 void irq_domain_remove(struct irq_domain *domain)
139 {
140 mutex_lock(&irq_domain_mutex);
141
142 /*
143 * radix_tree_delete() takes care of destroying the root
144 * node when all entries are removed. Shout if there are
145 * any mappings left.
146 */
147 WARN_ON(domain->revmap_tree.height);
148
149 list_del(&domain->link);
150
151 /*
152 * If the going away domain is the default one, reset it.
153 */
154 if (unlikely(irq_default_domain == domain))
155 irq_set_default_host(NULL);
156
157 mutex_unlock(&irq_domain_mutex);
158
159 pr_debug("Removed domain %s\n", domain->name);
160
161 of_node_put(irq_domain_get_of_node(domain));
162 kfree(domain);
163 }
164 EXPORT_SYMBOL_GPL(irq_domain_remove);
165
166 /**
167 * irq_domain_add_simple() - Register an irq_domain and optionally map a range of irqs
168 * @of_node: pointer to interrupt controller's device tree node.
169 * @size: total number of irqs in mapping
170 * @first_irq: first number of irq block assigned to the domain,
171 * pass zero to assign irqs on-the-fly. If first_irq is non-zero, then
172 * pre-map all of the irqs in the domain to virqs starting at first_irq.
173 * @ops: domain callbacks
174 * @host_data: Controller private data pointer
175 *
176 * Allocates an irq_domain, and optionally if first_irq is positive then also
177 * allocate irq_descs and map all of the hwirqs to virqs starting at first_irq.
178 *
179 * This is intended to implement the expected behaviour for most
180 * interrupt controllers. If device tree is used, then first_irq will be 0 and
181 * irqs get mapped dynamically on the fly. However, if the controller requires
182 * static virq assignments (non-DT boot) then it will set that up correctly.
183 */
184 struct irq_domain *irq_domain_add_simple(struct device_node *of_node,
185 unsigned int size,
186 unsigned int first_irq,
187 const struct irq_domain_ops *ops,
188 void *host_data)
189 {
190 struct irq_domain *domain;
191
192 domain = __irq_domain_add(of_node_to_fwnode(of_node), size, size, 0, ops, host_data);
193 if (!domain)
194 return NULL;
195
196 if (first_irq > 0) {
197 if (IS_ENABLED(CONFIG_SPARSE_IRQ)) {
198 /* attempt to allocated irq_descs */
199 int rc = irq_alloc_descs(first_irq, first_irq, size,
200 of_node_to_nid(of_node));
201 if (rc < 0)
202 pr_info("Cannot allocate irq_descs @ IRQ%d, assuming pre-allocated\n",
203 first_irq);
204 }
205 irq_domain_associate_many(domain, first_irq, 0, size);
206 }
207
208 return domain;
209 }
210 EXPORT_SYMBOL_GPL(irq_domain_add_simple);
211
212 /**
213 * irq_domain_add_legacy() - Allocate and register a legacy revmap irq_domain.
214 * @of_node: pointer to interrupt controller's device tree node.
215 * @size: total number of irqs in legacy mapping
216 * @first_irq: first number of irq block assigned to the domain
217 * @first_hwirq: first hwirq number to use for the translation. Should normally
218 * be '0', but a positive integer can be used if the effective
219 * hwirqs numbering does not begin at zero.
220 * @ops: map/unmap domain callbacks
221 * @host_data: Controller private data pointer
222 *
223 * Note: the map() callback will be called before this function returns
224 * for all legacy interrupts except 0 (which is always the invalid irq for
225 * a legacy controller).
226 */
227 struct irq_domain *irq_domain_add_legacy(struct device_node *of_node,
228 unsigned int size,
229 unsigned int first_irq,
230 irq_hw_number_t first_hwirq,
231 const struct irq_domain_ops *ops,
232 void *host_data)
233 {
234 struct irq_domain *domain;
235
236 domain = __irq_domain_add(of_node_to_fwnode(of_node), first_hwirq + size,
237 first_hwirq + size, 0, ops, host_data);
238 if (domain)
239 irq_domain_associate_many(domain, first_irq, first_hwirq, size);
240
241 return domain;
242 }
243 EXPORT_SYMBOL_GPL(irq_domain_add_legacy);
244
245 /**
246 * irq_find_matching_fwnode() - Locates a domain for a given fwnode
247 * @fwnode: FW descriptor of the interrupt controller
248 * @bus_token: domain-specific data
249 */
250 struct irq_domain *irq_find_matching_fwnode(struct fwnode_handle *fwnode,
251 enum irq_domain_bus_token bus_token)
252 {
253 struct irq_domain *h, *found = NULL;
254 int rc;
255
256 /* We might want to match the legacy controller last since
257 * it might potentially be set to match all interrupts in
258 * the absence of a device node. This isn't a problem so far
259 * yet though...
260 *
261 * bus_token == DOMAIN_BUS_ANY matches any domain, any other
262 * values must generate an exact match for the domain to be
263 * selected.
264 */
265 mutex_lock(&irq_domain_mutex);
266 list_for_each_entry(h, &irq_domain_list, link) {
267 if (h->ops->match)
268 rc = h->ops->match(h, to_of_node(fwnode), bus_token);
269 else
270 rc = ((fwnode != NULL) && (h->fwnode == fwnode) &&
271 ((bus_token == DOMAIN_BUS_ANY) ||
272 (h->bus_token == bus_token)));
273
274 if (rc) {
275 found = h;
276 break;
277 }
278 }
279 mutex_unlock(&irq_domain_mutex);
280 return found;
281 }
282 EXPORT_SYMBOL_GPL(irq_find_matching_fwnode);
283
284 /**
285 * irq_set_default_host() - Set a "default" irq domain
286 * @domain: default domain pointer
287 *
288 * For convenience, it's possible to set a "default" domain that will be used
289 * whenever NULL is passed to irq_create_mapping(). It makes life easier for
290 * platforms that want to manipulate a few hard coded interrupt numbers that
291 * aren't properly represented in the device-tree.
292 */
293 void irq_set_default_host(struct irq_domain *domain)
294 {
295 pr_debug("Default domain set to @0x%p\n", domain);
296
297 irq_default_domain = domain;
298 }
299 EXPORT_SYMBOL_GPL(irq_set_default_host);
300
301 void irq_domain_disassociate(struct irq_domain *domain, unsigned int irq)
302 {
303 struct irq_data *irq_data = irq_get_irq_data(irq);
304 irq_hw_number_t hwirq;
305
306 if (WARN(!irq_data || irq_data->domain != domain,
307 "virq%i doesn't exist; cannot disassociate\n", irq))
308 return;
309
310 hwirq = irq_data->hwirq;
311 irq_set_status_flags(irq, IRQ_NOREQUEST);
312
313 /* remove chip and handler */
314 irq_set_chip_and_handler(irq, NULL, NULL);
315
316 /* Make sure it's completed */
317 synchronize_irq(irq);
318
319 /* Tell the PIC about it */
320 if (domain->ops->unmap)
321 domain->ops->unmap(domain, irq);
322 smp_mb();
323
324 irq_data->domain = NULL;
325 irq_data->hwirq = 0;
326
327 /* Clear reverse map for this hwirq */
328 if (hwirq < domain->revmap_size) {
329 domain->linear_revmap[hwirq] = 0;
330 } else {
331 mutex_lock(&revmap_trees_mutex);
332 radix_tree_delete(&domain->revmap_tree, hwirq);
333 mutex_unlock(&revmap_trees_mutex);
334 }
335 }
336
337 int irq_domain_associate(struct irq_domain *domain, unsigned int virq,
338 irq_hw_number_t hwirq)
339 {
340 struct irq_data *irq_data = irq_get_irq_data(virq);
341 int ret;
342
343 if (WARN(hwirq >= domain->hwirq_max,
344 "error: hwirq 0x%x is too large for %s\n", (int)hwirq, domain->name))
345 return -EINVAL;
346 if (WARN(!irq_data, "error: virq%i is not allocated", virq))
347 return -EINVAL;
348 if (WARN(irq_data->domain, "error: virq%i is already associated", virq))
349 return -EINVAL;
350
351 mutex_lock(&irq_domain_mutex);
352 irq_data->hwirq = hwirq;
353 irq_data->domain = domain;
354 if (domain->ops->map) {
355 ret = domain->ops->map(domain, virq, hwirq);
356 if (ret != 0) {
357 /*
358 * If map() returns -EPERM, this interrupt is protected
359 * by the firmware or some other service and shall not
360 * be mapped. Don't bother telling the user about it.
361 */
362 if (ret != -EPERM) {
363 pr_info("%s didn't like hwirq-0x%lx to VIRQ%i mapping (rc=%d)\n",
364 domain->name, hwirq, virq, ret);
365 }
366 irq_data->domain = NULL;
367 irq_data->hwirq = 0;
368 mutex_unlock(&irq_domain_mutex);
369 return ret;
370 }
371
372 /* If not already assigned, give the domain the chip's name */
373 if (!domain->name && irq_data->chip)
374 domain->name = irq_data->chip->name;
375 }
376
377 if (hwirq < domain->revmap_size) {
378 domain->linear_revmap[hwirq] = virq;
379 } else {
380 mutex_lock(&revmap_trees_mutex);
381 radix_tree_insert(&domain->revmap_tree, hwirq, irq_data);
382 mutex_unlock(&revmap_trees_mutex);
383 }
384 mutex_unlock(&irq_domain_mutex);
385
386 irq_clear_status_flags(virq, IRQ_NOREQUEST);
387
388 return 0;
389 }
390 EXPORT_SYMBOL_GPL(irq_domain_associate);
391
392 void irq_domain_associate_many(struct irq_domain *domain, unsigned int irq_base,
393 irq_hw_number_t hwirq_base, int count)
394 {
395 struct device_node *of_node;
396 int i;
397
398 of_node = irq_domain_get_of_node(domain);
399 pr_debug("%s(%s, irqbase=%i, hwbase=%i, count=%i)\n", __func__,
400 of_node_full_name(of_node), irq_base, (int)hwirq_base, count);
401
402 for (i = 0; i < count; i++) {
403 irq_domain_associate(domain, irq_base + i, hwirq_base + i);
404 }
405 }
406 EXPORT_SYMBOL_GPL(irq_domain_associate_many);
407
408 /**
409 * irq_create_direct_mapping() - Allocate an irq for direct mapping
410 * @domain: domain to allocate the irq for or NULL for default domain
411 *
412 * This routine is used for irq controllers which can choose the hardware
413 * interrupt numbers they generate. In such a case it's simplest to use
414 * the linux irq as the hardware interrupt number. It still uses the linear
415 * or radix tree to store the mapping, but the irq controller can optimize
416 * the revmap path by using the hwirq directly.
417 */
418 unsigned int irq_create_direct_mapping(struct irq_domain *domain)
419 {
420 struct device_node *of_node;
421 unsigned int virq;
422
423 if (domain == NULL)
424 domain = irq_default_domain;
425
426 of_node = irq_domain_get_of_node(domain);
427 virq = irq_alloc_desc_from(1, of_node_to_nid(of_node));
428 if (!virq) {
429 pr_debug("create_direct virq allocation failed\n");
430 return 0;
431 }
432 if (virq >= domain->revmap_direct_max_irq) {
433 pr_err("ERROR: no free irqs available below %i maximum\n",
434 domain->revmap_direct_max_irq);
435 irq_free_desc(virq);
436 return 0;
437 }
438 pr_debug("create_direct obtained virq %d\n", virq);
439
440 if (irq_domain_associate(domain, virq, virq)) {
441 irq_free_desc(virq);
442 return 0;
443 }
444
445 return virq;
446 }
447 EXPORT_SYMBOL_GPL(irq_create_direct_mapping);
448
449 /**
450 * irq_create_mapping() - Map a hardware interrupt into linux irq space
451 * @domain: domain owning this hardware interrupt or NULL for default domain
452 * @hwirq: hardware irq number in that domain space
453 *
454 * Only one mapping per hardware interrupt is permitted. Returns a linux
455 * irq number.
456 * If the sense/trigger is to be specified, set_irq_type() should be called
457 * on the number returned from that call.
458 */
459 unsigned int irq_create_mapping(struct irq_domain *domain,
460 irq_hw_number_t hwirq)
461 {
462 struct device_node *of_node;
463 int virq;
464
465 pr_debug("irq_create_mapping(0x%p, 0x%lx)\n", domain, hwirq);
466
467 /* Look for default domain if nececssary */
468 if (domain == NULL)
469 domain = irq_default_domain;
470 if (domain == NULL) {
471 WARN(1, "%s(, %lx) called with NULL domain\n", __func__, hwirq);
472 return 0;
473 }
474 pr_debug("-> using domain @%p\n", domain);
475
476 of_node = irq_domain_get_of_node(domain);
477
478 /* Check if mapping already exists */
479 virq = irq_find_mapping(domain, hwirq);
480 if (virq) {
481 pr_debug("-> existing mapping on virq %d\n", virq);
482 return virq;
483 }
484
485 /* Allocate a virtual interrupt number */
486 virq = irq_domain_alloc_descs(-1, 1, hwirq, of_node_to_nid(of_node));
487 if (virq <= 0) {
488 pr_debug("-> virq allocation failed\n");
489 return 0;
490 }
491
492 if (irq_domain_associate(domain, virq, hwirq)) {
493 irq_free_desc(virq);
494 return 0;
495 }
496
497 pr_debug("irq %lu on domain %s mapped to virtual irq %u\n",
498 hwirq, of_node_full_name(of_node), virq);
499
500 return virq;
501 }
502 EXPORT_SYMBOL_GPL(irq_create_mapping);
503
504 /**
505 * irq_create_strict_mappings() - Map a range of hw irqs to fixed linux irqs
506 * @domain: domain owning the interrupt range
507 * @irq_base: beginning of linux IRQ range
508 * @hwirq_base: beginning of hardware IRQ range
509 * @count: Number of interrupts to map
510 *
511 * This routine is used for allocating and mapping a range of hardware
512 * irqs to linux irqs where the linux irq numbers are at pre-defined
513 * locations. For use by controllers that already have static mappings
514 * to insert in to the domain.
515 *
516 * Non-linear users can use irq_create_identity_mapping() for IRQ-at-a-time
517 * domain insertion.
518 *
519 * 0 is returned upon success, while any failure to establish a static
520 * mapping is treated as an error.
521 */
522 int irq_create_strict_mappings(struct irq_domain *domain, unsigned int irq_base,
523 irq_hw_number_t hwirq_base, int count)
524 {
525 struct device_node *of_node;
526 int ret;
527
528 of_node = irq_domain_get_of_node(domain);
529 ret = irq_alloc_descs(irq_base, irq_base, count,
530 of_node_to_nid(of_node));
531 if (unlikely(ret < 0))
532 return ret;
533
534 irq_domain_associate_many(domain, irq_base, hwirq_base, count);
535 return 0;
536 }
537 EXPORT_SYMBOL_GPL(irq_create_strict_mappings);
538
539 static int irq_domain_translate(struct irq_domain *d,
540 struct irq_fwspec *fwspec,
541 irq_hw_number_t *hwirq, unsigned int *type)
542 {
543 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
544 if (d->ops->translate)
545 return d->ops->translate(d, fwspec, hwirq, type);
546 #endif
547 if (d->ops->xlate)
548 return d->ops->xlate(d, to_of_node(fwspec->fwnode),
549 fwspec->param, fwspec->param_count,
550 hwirq, type);
551
552 /* If domain has no translation, then we assume interrupt line */
553 *hwirq = fwspec->param[0];
554 return 0;
555 }
556
557 static void of_phandle_args_to_fwspec(struct of_phandle_args *irq_data,
558 struct irq_fwspec *fwspec)
559 {
560 int i;
561
562 fwspec->fwnode = irq_data->np ? &irq_data->np->fwnode : NULL;
563 fwspec->param_count = irq_data->args_count;
564
565 for (i = 0; i < irq_data->args_count; i++)
566 fwspec->param[i] = irq_data->args[i];
567 }
568
569 unsigned int irq_create_fwspec_mapping(struct irq_fwspec *fwspec)
570 {
571 struct irq_domain *domain;
572 irq_hw_number_t hwirq;
573 unsigned int type = IRQ_TYPE_NONE;
574 int virq;
575
576 if (fwspec->fwnode)
577 domain = irq_find_matching_fwnode(fwspec->fwnode, DOMAIN_BUS_ANY);
578 else
579 domain = irq_default_domain;
580
581 if (!domain) {
582 pr_warn("no irq domain found for %s !\n",
583 of_node_full_name(to_of_node(fwspec->fwnode)));
584 return 0;
585 }
586
587 if (irq_domain_translate(domain, fwspec, &hwirq, &type))
588 return 0;
589
590 if (irq_domain_is_hierarchy(domain)) {
591 /*
592 * If we've already configured this interrupt,
593 * don't do it again, or hell will break loose.
594 */
595 virq = irq_find_mapping(domain, hwirq);
596 if (virq)
597 return virq;
598
599 virq = irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, fwspec);
600 if (virq <= 0)
601 return 0;
602 } else {
603 /* Create mapping */
604 virq = irq_create_mapping(domain, hwirq);
605 if (!virq)
606 return virq;
607 }
608
609 /* Set type if specified and different than the current one */
610 if (type != IRQ_TYPE_NONE &&
611 type != irq_get_trigger_type(virq))
612 irq_set_irq_type(virq, type);
613 return virq;
614 }
615 EXPORT_SYMBOL_GPL(irq_create_fwspec_mapping);
616
617 unsigned int irq_create_of_mapping(struct of_phandle_args *irq_data)
618 {
619 struct irq_fwspec fwspec;
620
621 of_phandle_args_to_fwspec(irq_data, &fwspec);
622 return irq_create_fwspec_mapping(&fwspec);
623 }
624 EXPORT_SYMBOL_GPL(irq_create_of_mapping);
625
626 /**
627 * irq_dispose_mapping() - Unmap an interrupt
628 * @virq: linux irq number of the interrupt to unmap
629 */
630 void irq_dispose_mapping(unsigned int virq)
631 {
632 struct irq_data *irq_data = irq_get_irq_data(virq);
633 struct irq_domain *domain;
634
635 if (!virq || !irq_data)
636 return;
637
638 domain = irq_data->domain;
639 if (WARN_ON(domain == NULL))
640 return;
641
642 irq_domain_disassociate(domain, virq);
643 irq_free_desc(virq);
644 }
645 EXPORT_SYMBOL_GPL(irq_dispose_mapping);
646
647 /**
648 * irq_find_mapping() - Find a linux irq from an hw irq number.
649 * @domain: domain owning this hardware interrupt
650 * @hwirq: hardware irq number in that domain space
651 */
652 unsigned int irq_find_mapping(struct irq_domain *domain,
653 irq_hw_number_t hwirq)
654 {
655 struct irq_data *data;
656
657 /* Look for default domain if nececssary */
658 if (domain == NULL)
659 domain = irq_default_domain;
660 if (domain == NULL)
661 return 0;
662
663 if (hwirq < domain->revmap_direct_max_irq) {
664 data = irq_domain_get_irq_data(domain, hwirq);
665 if (data && data->hwirq == hwirq)
666 return hwirq;
667 }
668
669 /* Check if the hwirq is in the linear revmap. */
670 if (hwirq < domain->revmap_size)
671 return domain->linear_revmap[hwirq];
672
673 rcu_read_lock();
674 data = radix_tree_lookup(&domain->revmap_tree, hwirq);
675 rcu_read_unlock();
676 return data ? data->irq : 0;
677 }
678 EXPORT_SYMBOL_GPL(irq_find_mapping);
679
680 #ifdef CONFIG_IRQ_DOMAIN_DEBUG
681 static int virq_debug_show(struct seq_file *m, void *private)
682 {
683 unsigned long flags;
684 struct irq_desc *desc;
685 struct irq_domain *domain;
686 struct radix_tree_iter iter;
687 void *data, **slot;
688 int i;
689
690 seq_printf(m, " %-16s %-6s %-10s %-10s %s\n",
691 "name", "mapped", "linear-max", "direct-max", "devtree-node");
692 mutex_lock(&irq_domain_mutex);
693 list_for_each_entry(domain, &irq_domain_list, link) {
694 struct device_node *of_node;
695 int count = 0;
696 of_node = irq_domain_get_of_node(domain);
697 radix_tree_for_each_slot(slot, &domain->revmap_tree, &iter, 0)
698 count++;
699 seq_printf(m, "%c%-16s %6u %10u %10u %s\n",
700 domain == irq_default_domain ? '*' : ' ', domain->name,
701 domain->revmap_size + count, domain->revmap_size,
702 domain->revmap_direct_max_irq,
703 of_node ? of_node_full_name(of_node) : "");
704 }
705 mutex_unlock(&irq_domain_mutex);
706
707 seq_printf(m, "%-5s %-7s %-15s %-*s %6s %-14s %s\n", "irq", "hwirq",
708 "chip name", (int)(2 * sizeof(void *) + 2), "chip data",
709 "active", "type", "domain");
710
711 for (i = 1; i < nr_irqs; i++) {
712 desc = irq_to_desc(i);
713 if (!desc)
714 continue;
715
716 raw_spin_lock_irqsave(&desc->lock, flags);
717 domain = desc->irq_data.domain;
718
719 if (domain) {
720 struct irq_chip *chip;
721 int hwirq = desc->irq_data.hwirq;
722 bool direct;
723
724 seq_printf(m, "%5d ", i);
725 seq_printf(m, "0x%05x ", hwirq);
726
727 chip = irq_desc_get_chip(desc);
728 seq_printf(m, "%-15s ", (chip && chip->name) ? chip->name : "none");
729
730 data = irq_desc_get_chip_data(desc);
731 seq_printf(m, data ? "0x%p " : " %p ", data);
732
733 seq_printf(m, " %c ", (desc->action && desc->action->handler) ? '*' : ' ');
734 direct = (i == hwirq) && (i < domain->revmap_direct_max_irq);
735 seq_printf(m, "%6s%-8s ",
736 (hwirq < domain->revmap_size) ? "LINEAR" : "RADIX",
737 direct ? "(DIRECT)" : "");
738 seq_printf(m, "%s\n", desc->irq_data.domain->name);
739 }
740
741 raw_spin_unlock_irqrestore(&desc->lock, flags);
742 }
743
744 return 0;
745 }
746
747 static int virq_debug_open(struct inode *inode, struct file *file)
748 {
749 return single_open(file, virq_debug_show, inode->i_private);
750 }
751
752 static const struct file_operations virq_debug_fops = {
753 .open = virq_debug_open,
754 .read = seq_read,
755 .llseek = seq_lseek,
756 .release = single_release,
757 };
758
759 static int __init irq_debugfs_init(void)
760 {
761 if (debugfs_create_file("irq_domain_mapping", S_IRUGO, NULL,
762 NULL, &virq_debug_fops) == NULL)
763 return -ENOMEM;
764
765 return 0;
766 }
767 __initcall(irq_debugfs_init);
768 #endif /* CONFIG_IRQ_DOMAIN_DEBUG */
769
770 /**
771 * irq_domain_xlate_onecell() - Generic xlate for direct one cell bindings
772 *
773 * Device Tree IRQ specifier translation function which works with one cell
774 * bindings where the cell value maps directly to the hwirq number.
775 */
776 int irq_domain_xlate_onecell(struct irq_domain *d, struct device_node *ctrlr,
777 const u32 *intspec, unsigned int intsize,
778 unsigned long *out_hwirq, unsigned int *out_type)
779 {
780 if (WARN_ON(intsize < 1))
781 return -EINVAL;
782 *out_hwirq = intspec[0];
783 *out_type = IRQ_TYPE_NONE;
784 return 0;
785 }
786 EXPORT_SYMBOL_GPL(irq_domain_xlate_onecell);
787
788 /**
789 * irq_domain_xlate_twocell() - Generic xlate for direct two cell bindings
790 *
791 * Device Tree IRQ specifier translation function which works with two cell
792 * bindings where the cell values map directly to the hwirq number
793 * and linux irq flags.
794 */
795 int irq_domain_xlate_twocell(struct irq_domain *d, struct device_node *ctrlr,
796 const u32 *intspec, unsigned int intsize,
797 irq_hw_number_t *out_hwirq, unsigned int *out_type)
798 {
799 if (WARN_ON(intsize < 2))
800 return -EINVAL;
801 *out_hwirq = intspec[0];
802 *out_type = intspec[1] & IRQ_TYPE_SENSE_MASK;
803 return 0;
804 }
805 EXPORT_SYMBOL_GPL(irq_domain_xlate_twocell);
806
807 /**
808 * irq_domain_xlate_onetwocell() - Generic xlate for one or two cell bindings
809 *
810 * Device Tree IRQ specifier translation function which works with either one
811 * or two cell bindings where the cell values map directly to the hwirq number
812 * and linux irq flags.
813 *
814 * Note: don't use this function unless your interrupt controller explicitly
815 * supports both one and two cell bindings. For the majority of controllers
816 * the _onecell() or _twocell() variants above should be used.
817 */
818 int irq_domain_xlate_onetwocell(struct irq_domain *d,
819 struct device_node *ctrlr,
820 const u32 *intspec, unsigned int intsize,
821 unsigned long *out_hwirq, unsigned int *out_type)
822 {
823 if (WARN_ON(intsize < 1))
824 return -EINVAL;
825 *out_hwirq = intspec[0];
826 *out_type = (intsize > 1) ? intspec[1] : IRQ_TYPE_NONE;
827 return 0;
828 }
829 EXPORT_SYMBOL_GPL(irq_domain_xlate_onetwocell);
830
831 const struct irq_domain_ops irq_domain_simple_ops = {
832 .xlate = irq_domain_xlate_onetwocell,
833 };
834 EXPORT_SYMBOL_GPL(irq_domain_simple_ops);
835
836 static int irq_domain_alloc_descs(int virq, unsigned int cnt,
837 irq_hw_number_t hwirq, int node)
838 {
839 unsigned int hint;
840
841 if (virq >= 0) {
842 virq = irq_alloc_descs(virq, virq, cnt, node);
843 } else {
844 hint = hwirq % nr_irqs;
845 if (hint == 0)
846 hint++;
847 virq = irq_alloc_descs_from(hint, cnt, node);
848 if (virq <= 0 && hint > 1)
849 virq = irq_alloc_descs_from(1, cnt, node);
850 }
851
852 return virq;
853 }
854
855 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
856 /**
857 * irq_domain_create_hierarchy - Add a irqdomain into the hierarchy
858 * @parent: Parent irq domain to associate with the new domain
859 * @flags: Irq domain flags associated to the domain
860 * @size: Size of the domain. See below
861 * @fwnode: Optional fwnode of the interrupt controller
862 * @ops: Pointer to the interrupt domain callbacks
863 * @host_data: Controller private data pointer
864 *
865 * If @size is 0 a tree domain is created, otherwise a linear domain.
866 *
867 * If successful the parent is associated to the new domain and the
868 * domain flags are set.
869 * Returns pointer to IRQ domain, or NULL on failure.
870 */
871 struct irq_domain *irq_domain_create_hierarchy(struct irq_domain *parent,
872 unsigned int flags,
873 unsigned int size,
874 struct fwnode_handle *fwnode,
875 const struct irq_domain_ops *ops,
876 void *host_data)
877 {
878 struct irq_domain *domain;
879
880 if (size)
881 domain = irq_domain_create_linear(fwnode, size, ops, host_data);
882 else
883 domain = irq_domain_create_tree(fwnode, ops, host_data);
884 if (domain) {
885 domain->parent = parent;
886 domain->flags |= flags;
887 }
888
889 return domain;
890 }
891
892 static void irq_domain_insert_irq(int virq)
893 {
894 struct irq_data *data;
895
896 for (data = irq_get_irq_data(virq); data; data = data->parent_data) {
897 struct irq_domain *domain = data->domain;
898 irq_hw_number_t hwirq = data->hwirq;
899
900 if (hwirq < domain->revmap_size) {
901 domain->linear_revmap[hwirq] = virq;
902 } else {
903 mutex_lock(&revmap_trees_mutex);
904 radix_tree_insert(&domain->revmap_tree, hwirq, data);
905 mutex_unlock(&revmap_trees_mutex);
906 }
907
908 /* If not already assigned, give the domain the chip's name */
909 if (!domain->name && data->chip)
910 domain->name = data->chip->name;
911 }
912
913 irq_clear_status_flags(virq, IRQ_NOREQUEST);
914 }
915
916 static void irq_domain_remove_irq(int virq)
917 {
918 struct irq_data *data;
919
920 irq_set_status_flags(virq, IRQ_NOREQUEST);
921 irq_set_chip_and_handler(virq, NULL, NULL);
922 synchronize_irq(virq);
923 smp_mb();
924
925 for (data = irq_get_irq_data(virq); data; data = data->parent_data) {
926 struct irq_domain *domain = data->domain;
927 irq_hw_number_t hwirq = data->hwirq;
928
929 if (hwirq < domain->revmap_size) {
930 domain->linear_revmap[hwirq] = 0;
931 } else {
932 mutex_lock(&revmap_trees_mutex);
933 radix_tree_delete(&domain->revmap_tree, hwirq);
934 mutex_unlock(&revmap_trees_mutex);
935 }
936 }
937 }
938
939 static struct irq_data *irq_domain_insert_irq_data(struct irq_domain *domain,
940 struct irq_data *child)
941 {
942 struct irq_data *irq_data;
943
944 irq_data = kzalloc_node(sizeof(*irq_data), GFP_KERNEL,
945 irq_data_get_node(child));
946 if (irq_data) {
947 child->parent_data = irq_data;
948 irq_data->irq = child->irq;
949 irq_data->common = child->common;
950 irq_data->domain = domain;
951 }
952
953 return irq_data;
954 }
955
956 static void irq_domain_free_irq_data(unsigned int virq, unsigned int nr_irqs)
957 {
958 struct irq_data *irq_data, *tmp;
959 int i;
960
961 for (i = 0; i < nr_irqs; i++) {
962 irq_data = irq_get_irq_data(virq + i);
963 tmp = irq_data->parent_data;
964 irq_data->parent_data = NULL;
965 irq_data->domain = NULL;
966
967 while (tmp) {
968 irq_data = tmp;
969 tmp = tmp->parent_data;
970 kfree(irq_data);
971 }
972 }
973 }
974
975 static int irq_domain_alloc_irq_data(struct irq_domain *domain,
976 unsigned int virq, unsigned int nr_irqs)
977 {
978 struct irq_data *irq_data;
979 struct irq_domain *parent;
980 int i;
981
982 /* The outermost irq_data is embedded in struct irq_desc */
983 for (i = 0; i < nr_irqs; i++) {
984 irq_data = irq_get_irq_data(virq + i);
985 irq_data->domain = domain;
986
987 for (parent = domain->parent; parent; parent = parent->parent) {
988 irq_data = irq_domain_insert_irq_data(parent, irq_data);
989 if (!irq_data) {
990 irq_domain_free_irq_data(virq, i + 1);
991 return -ENOMEM;
992 }
993 }
994 }
995
996 return 0;
997 }
998
999 /**
1000 * irq_domain_get_irq_data - Get irq_data associated with @virq and @domain
1001 * @domain: domain to match
1002 * @virq: IRQ number to get irq_data
1003 */
1004 struct irq_data *irq_domain_get_irq_data(struct irq_domain *domain,
1005 unsigned int virq)
1006 {
1007 struct irq_data *irq_data;
1008
1009 for (irq_data = irq_get_irq_data(virq); irq_data;
1010 irq_data = irq_data->parent_data)
1011 if (irq_data->domain == domain)
1012 return irq_data;
1013
1014 return NULL;
1015 }
1016
1017 /**
1018 * irq_domain_set_hwirq_and_chip - Set hwirq and irqchip of @virq at @domain
1019 * @domain: Interrupt domain to match
1020 * @virq: IRQ number
1021 * @hwirq: The hwirq number
1022 * @chip: The associated interrupt chip
1023 * @chip_data: The associated chip data
1024 */
1025 int irq_domain_set_hwirq_and_chip(struct irq_domain *domain, unsigned int virq,
1026 irq_hw_number_t hwirq, struct irq_chip *chip,
1027 void *chip_data)
1028 {
1029 struct irq_data *irq_data = irq_domain_get_irq_data(domain, virq);
1030
1031 if (!irq_data)
1032 return -ENOENT;
1033
1034 irq_data->hwirq = hwirq;
1035 irq_data->chip = chip ? chip : &no_irq_chip;
1036 irq_data->chip_data = chip_data;
1037
1038 return 0;
1039 }
1040
1041 /**
1042 * irq_domain_set_info - Set the complete data for a @virq in @domain
1043 * @domain: Interrupt domain to match
1044 * @virq: IRQ number
1045 * @hwirq: The hardware interrupt number
1046 * @chip: The associated interrupt chip
1047 * @chip_data: The associated interrupt chip data
1048 * @handler: The interrupt flow handler
1049 * @handler_data: The interrupt flow handler data
1050 * @handler_name: The interrupt handler name
1051 */
1052 void irq_domain_set_info(struct irq_domain *domain, unsigned int virq,
1053 irq_hw_number_t hwirq, struct irq_chip *chip,
1054 void *chip_data, irq_flow_handler_t handler,
1055 void *handler_data, const char *handler_name)
1056 {
1057 irq_domain_set_hwirq_and_chip(domain, virq, hwirq, chip, chip_data);
1058 __irq_set_handler(virq, handler, 0, handler_name);
1059 irq_set_handler_data(virq, handler_data);
1060 }
1061
1062 /**
1063 * irq_domain_reset_irq_data - Clear hwirq, chip and chip_data in @irq_data
1064 * @irq_data: The pointer to irq_data
1065 */
1066 void irq_domain_reset_irq_data(struct irq_data *irq_data)
1067 {
1068 irq_data->hwirq = 0;
1069 irq_data->chip = &no_irq_chip;
1070 irq_data->chip_data = NULL;
1071 }
1072
1073 /**
1074 * irq_domain_free_irqs_common - Clear irq_data and free the parent
1075 * @domain: Interrupt domain to match
1076 * @virq: IRQ number to start with
1077 * @nr_irqs: The number of irqs to free
1078 */
1079 void irq_domain_free_irqs_common(struct irq_domain *domain, unsigned int virq,
1080 unsigned int nr_irqs)
1081 {
1082 struct irq_data *irq_data;
1083 int i;
1084
1085 for (i = 0; i < nr_irqs; i++) {
1086 irq_data = irq_domain_get_irq_data(domain, virq + i);
1087 if (irq_data)
1088 irq_domain_reset_irq_data(irq_data);
1089 }
1090 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1091 }
1092
1093 /**
1094 * irq_domain_free_irqs_top - Clear handler and handler data, clear irqdata and free parent
1095 * @domain: Interrupt domain to match
1096 * @virq: IRQ number to start with
1097 * @nr_irqs: The number of irqs to free
1098 */
1099 void irq_domain_free_irqs_top(struct irq_domain *domain, unsigned int virq,
1100 unsigned int nr_irqs)
1101 {
1102 int i;
1103
1104 for (i = 0; i < nr_irqs; i++) {
1105 irq_set_handler_data(virq + i, NULL);
1106 irq_set_handler(virq + i, NULL);
1107 }
1108 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1109 }
1110
1111 static bool irq_domain_is_auto_recursive(struct irq_domain *domain)
1112 {
1113 return domain->flags & IRQ_DOMAIN_FLAG_AUTO_RECURSIVE;
1114 }
1115
1116 static void irq_domain_free_irqs_recursive(struct irq_domain *domain,
1117 unsigned int irq_base,
1118 unsigned int nr_irqs)
1119 {
1120 domain->ops->free(domain, irq_base, nr_irqs);
1121 if (irq_domain_is_auto_recursive(domain)) {
1122 BUG_ON(!domain->parent);
1123 irq_domain_free_irqs_recursive(domain->parent, irq_base,
1124 nr_irqs);
1125 }
1126 }
1127
1128 static int irq_domain_alloc_irqs_recursive(struct irq_domain *domain,
1129 unsigned int irq_base,
1130 unsigned int nr_irqs, void *arg)
1131 {
1132 int ret = 0;
1133 struct irq_domain *parent = domain->parent;
1134 bool recursive = irq_domain_is_auto_recursive(domain);
1135
1136 BUG_ON(recursive && !parent);
1137 if (recursive)
1138 ret = irq_domain_alloc_irqs_recursive(parent, irq_base,
1139 nr_irqs, arg);
1140 if (ret >= 0)
1141 ret = domain->ops->alloc(domain, irq_base, nr_irqs, arg);
1142 if (ret < 0 && recursive)
1143 irq_domain_free_irqs_recursive(parent, irq_base, nr_irqs);
1144
1145 return ret;
1146 }
1147
1148 /**
1149 * __irq_domain_alloc_irqs - Allocate IRQs from domain
1150 * @domain: domain to allocate from
1151 * @irq_base: allocate specified IRQ nubmer if irq_base >= 0
1152 * @nr_irqs: number of IRQs to allocate
1153 * @node: NUMA node id for memory allocation
1154 * @arg: domain specific argument
1155 * @realloc: IRQ descriptors have already been allocated if true
1156 *
1157 * Allocate IRQ numbers and initialized all data structures to support
1158 * hierarchy IRQ domains.
1159 * Parameter @realloc is mainly to support legacy IRQs.
1160 * Returns error code or allocated IRQ number
1161 *
1162 * The whole process to setup an IRQ has been split into two steps.
1163 * The first step, __irq_domain_alloc_irqs(), is to allocate IRQ
1164 * descriptor and required hardware resources. The second step,
1165 * irq_domain_activate_irq(), is to program hardwares with preallocated
1166 * resources. In this way, it's easier to rollback when failing to
1167 * allocate resources.
1168 */
1169 int __irq_domain_alloc_irqs(struct irq_domain *domain, int irq_base,
1170 unsigned int nr_irqs, int node, void *arg,
1171 bool realloc)
1172 {
1173 int i, ret, virq;
1174
1175 if (domain == NULL) {
1176 domain = irq_default_domain;
1177 if (WARN(!domain, "domain is NULL; cannot allocate IRQ\n"))
1178 return -EINVAL;
1179 }
1180
1181 if (!domain->ops->alloc) {
1182 pr_debug("domain->ops->alloc() is NULL\n");
1183 return -ENOSYS;
1184 }
1185
1186 if (realloc && irq_base >= 0) {
1187 virq = irq_base;
1188 } else {
1189 virq = irq_domain_alloc_descs(irq_base, nr_irqs, 0, node);
1190 if (virq < 0) {
1191 pr_debug("cannot allocate IRQ(base %d, count %d)\n",
1192 irq_base, nr_irqs);
1193 return virq;
1194 }
1195 }
1196
1197 if (irq_domain_alloc_irq_data(domain, virq, nr_irqs)) {
1198 pr_debug("cannot allocate memory for IRQ%d\n", virq);
1199 ret = -ENOMEM;
1200 goto out_free_desc;
1201 }
1202
1203 mutex_lock(&irq_domain_mutex);
1204 ret = irq_domain_alloc_irqs_recursive(domain, virq, nr_irqs, arg);
1205 if (ret < 0) {
1206 mutex_unlock(&irq_domain_mutex);
1207 goto out_free_irq_data;
1208 }
1209 for (i = 0; i < nr_irqs; i++)
1210 irq_domain_insert_irq(virq + i);
1211 mutex_unlock(&irq_domain_mutex);
1212
1213 return virq;
1214
1215 out_free_irq_data:
1216 irq_domain_free_irq_data(virq, nr_irqs);
1217 out_free_desc:
1218 irq_free_descs(virq, nr_irqs);
1219 return ret;
1220 }
1221
1222 /**
1223 * irq_domain_free_irqs - Free IRQ number and associated data structures
1224 * @virq: base IRQ number
1225 * @nr_irqs: number of IRQs to free
1226 */
1227 void irq_domain_free_irqs(unsigned int virq, unsigned int nr_irqs)
1228 {
1229 struct irq_data *data = irq_get_irq_data(virq);
1230 int i;
1231
1232 if (WARN(!data || !data->domain || !data->domain->ops->free,
1233 "NULL pointer, cannot free irq\n"))
1234 return;
1235
1236 mutex_lock(&irq_domain_mutex);
1237 for (i = 0; i < nr_irqs; i++)
1238 irq_domain_remove_irq(virq + i);
1239 irq_domain_free_irqs_recursive(data->domain, virq, nr_irqs);
1240 mutex_unlock(&irq_domain_mutex);
1241
1242 irq_domain_free_irq_data(virq, nr_irqs);
1243 irq_free_descs(virq, nr_irqs);
1244 }
1245
1246 /**
1247 * irq_domain_alloc_irqs_parent - Allocate interrupts from parent domain
1248 * @irq_base: Base IRQ number
1249 * @nr_irqs: Number of IRQs to allocate
1250 * @arg: Allocation data (arch/domain specific)
1251 *
1252 * Check whether the domain has been setup recursive. If not allocate
1253 * through the parent domain.
1254 */
1255 int irq_domain_alloc_irqs_parent(struct irq_domain *domain,
1256 unsigned int irq_base, unsigned int nr_irqs,
1257 void *arg)
1258 {
1259 /* irq_domain_alloc_irqs_recursive() has called parent's alloc() */
1260 if (irq_domain_is_auto_recursive(domain))
1261 return 0;
1262
1263 domain = domain->parent;
1264 if (domain)
1265 return irq_domain_alloc_irqs_recursive(domain, irq_base,
1266 nr_irqs, arg);
1267 return -ENOSYS;
1268 }
1269
1270 /**
1271 * irq_domain_free_irqs_parent - Free interrupts from parent domain
1272 * @irq_base: Base IRQ number
1273 * @nr_irqs: Number of IRQs to free
1274 *
1275 * Check whether the domain has been setup recursive. If not free
1276 * through the parent domain.
1277 */
1278 void irq_domain_free_irqs_parent(struct irq_domain *domain,
1279 unsigned int irq_base, unsigned int nr_irqs)
1280 {
1281 /* irq_domain_free_irqs_recursive() will call parent's free */
1282 if (!irq_domain_is_auto_recursive(domain) && domain->parent)
1283 irq_domain_free_irqs_recursive(domain->parent, irq_base,
1284 nr_irqs);
1285 }
1286
1287 /**
1288 * irq_domain_activate_irq - Call domain_ops->activate recursively to activate
1289 * interrupt
1290 * @irq_data: outermost irq_data associated with interrupt
1291 *
1292 * This is the second step to call domain_ops->activate to program interrupt
1293 * controllers, so the interrupt could actually get delivered.
1294 */
1295 void irq_domain_activate_irq(struct irq_data *irq_data)
1296 {
1297 if (irq_data && irq_data->domain) {
1298 struct irq_domain *domain = irq_data->domain;
1299
1300 if (irq_data->parent_data)
1301 irq_domain_activate_irq(irq_data->parent_data);
1302 if (domain->ops->activate)
1303 domain->ops->activate(domain, irq_data);
1304 }
1305 }
1306
1307 /**
1308 * irq_domain_deactivate_irq - Call domain_ops->deactivate recursively to
1309 * deactivate interrupt
1310 * @irq_data: outermost irq_data associated with interrupt
1311 *
1312 * It calls domain_ops->deactivate to program interrupt controllers to disable
1313 * interrupt delivery.
1314 */
1315 void irq_domain_deactivate_irq(struct irq_data *irq_data)
1316 {
1317 if (irq_data && irq_data->domain) {
1318 struct irq_domain *domain = irq_data->domain;
1319
1320 if (domain->ops->deactivate)
1321 domain->ops->deactivate(domain, irq_data);
1322 if (irq_data->parent_data)
1323 irq_domain_deactivate_irq(irq_data->parent_data);
1324 }
1325 }
1326
1327 static void irq_domain_check_hierarchy(struct irq_domain *domain)
1328 {
1329 /* Hierarchy irq_domains must implement callback alloc() */
1330 if (domain->ops->alloc)
1331 domain->flags |= IRQ_DOMAIN_FLAG_HIERARCHY;
1332 }
1333 #else /* CONFIG_IRQ_DOMAIN_HIERARCHY */
1334 /**
1335 * irq_domain_get_irq_data - Get irq_data associated with @virq and @domain
1336 * @domain: domain to match
1337 * @virq: IRQ number to get irq_data
1338 */
1339 struct irq_data *irq_domain_get_irq_data(struct irq_domain *domain,
1340 unsigned int virq)
1341 {
1342 struct irq_data *irq_data = irq_get_irq_data(virq);
1343
1344 return (irq_data && irq_data->domain == domain) ? irq_data : NULL;
1345 }
1346
1347 /**
1348 * irq_domain_set_info - Set the complete data for a @virq in @domain
1349 * @domain: Interrupt domain to match
1350 * @virq: IRQ number
1351 * @hwirq: The hardware interrupt number
1352 * @chip: The associated interrupt chip
1353 * @chip_data: The associated interrupt chip data
1354 * @handler: The interrupt flow handler
1355 * @handler_data: The interrupt flow handler data
1356 * @handler_name: The interrupt handler name
1357 */
1358 void irq_domain_set_info(struct irq_domain *domain, unsigned int virq,
1359 irq_hw_number_t hwirq, struct irq_chip *chip,
1360 void *chip_data, irq_flow_handler_t handler,
1361 void *handler_data, const char *handler_name)
1362 {
1363 irq_set_chip_and_handler_name(virq, chip, handler, handler_name);
1364 irq_set_chip_data(virq, chip_data);
1365 irq_set_handler_data(virq, handler_data);
1366 }
1367
1368 static void irq_domain_check_hierarchy(struct irq_domain *domain)
1369 {
1370 }
1371 #endif /* CONFIG_IRQ_DOMAIN_HIERARCHY */
This page took 0.080673 seconds and 5 git commands to generate.