kexec: introduce a protection mechanism for the crashkernel reserved memory
[deliverable/linux.git] / kernel / kexec.c
1 /*
2 * kexec.c - kexec_load system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/syscalls.h>
18 #include <linux/vmalloc.h>
19 #include <linux/slab.h>
20
21 #include "kexec_internal.h"
22
23 static int copy_user_segment_list(struct kimage *image,
24 unsigned long nr_segments,
25 struct kexec_segment __user *segments)
26 {
27 int ret;
28 size_t segment_bytes;
29
30 /* Read in the segments */
31 image->nr_segments = nr_segments;
32 segment_bytes = nr_segments * sizeof(*segments);
33 ret = copy_from_user(image->segment, segments, segment_bytes);
34 if (ret)
35 ret = -EFAULT;
36
37 return ret;
38 }
39
40 static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
41 unsigned long nr_segments,
42 struct kexec_segment __user *segments,
43 unsigned long flags)
44 {
45 int ret;
46 struct kimage *image;
47 bool kexec_on_panic = flags & KEXEC_ON_CRASH;
48
49 if (kexec_on_panic) {
50 /* Verify we have a valid entry point */
51 if ((entry < crashk_res.start) || (entry > crashk_res.end))
52 return -EADDRNOTAVAIL;
53 }
54
55 /* Allocate and initialize a controlling structure */
56 image = do_kimage_alloc_init();
57 if (!image)
58 return -ENOMEM;
59
60 image->start = entry;
61
62 ret = copy_user_segment_list(image, nr_segments, segments);
63 if (ret)
64 goto out_free_image;
65
66 if (kexec_on_panic) {
67 /* Enable special crash kernel control page alloc policy. */
68 image->control_page = crashk_res.start;
69 image->type = KEXEC_TYPE_CRASH;
70 }
71
72 ret = sanity_check_segment_list(image);
73 if (ret)
74 goto out_free_image;
75
76 /*
77 * Find a location for the control code buffer, and add it
78 * the vector of segments so that it's pages will also be
79 * counted as destination pages.
80 */
81 ret = -ENOMEM;
82 image->control_code_page = kimage_alloc_control_pages(image,
83 get_order(KEXEC_CONTROL_PAGE_SIZE));
84 if (!image->control_code_page) {
85 pr_err("Could not allocate control_code_buffer\n");
86 goto out_free_image;
87 }
88
89 if (!kexec_on_panic) {
90 image->swap_page = kimage_alloc_control_pages(image, 0);
91 if (!image->swap_page) {
92 pr_err("Could not allocate swap buffer\n");
93 goto out_free_control_pages;
94 }
95 }
96
97 *rimage = image;
98 return 0;
99 out_free_control_pages:
100 kimage_free_page_list(&image->control_pages);
101 out_free_image:
102 kfree(image);
103 return ret;
104 }
105
106 /*
107 * Exec Kernel system call: for obvious reasons only root may call it.
108 *
109 * This call breaks up into three pieces.
110 * - A generic part which loads the new kernel from the current
111 * address space, and very carefully places the data in the
112 * allocated pages.
113 *
114 * - A generic part that interacts with the kernel and tells all of
115 * the devices to shut down. Preventing on-going dmas, and placing
116 * the devices in a consistent state so a later kernel can
117 * reinitialize them.
118 *
119 * - A machine specific part that includes the syscall number
120 * and then copies the image to it's final destination. And
121 * jumps into the image at entry.
122 *
123 * kexec does not sync, or unmount filesystems so if you need
124 * that to happen you need to do that yourself.
125 */
126
127 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
128 struct kexec_segment __user *, segments, unsigned long, flags)
129 {
130 struct kimage **dest_image, *image;
131 int result;
132
133 /* We only trust the superuser with rebooting the system. */
134 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
135 return -EPERM;
136
137 /*
138 * Verify we have a legal set of flags
139 * This leaves us room for future extensions.
140 */
141 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
142 return -EINVAL;
143
144 /* Verify we are on the appropriate architecture */
145 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
146 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
147 return -EINVAL;
148
149 /* Put an artificial cap on the number
150 * of segments passed to kexec_load.
151 */
152 if (nr_segments > KEXEC_SEGMENT_MAX)
153 return -EINVAL;
154
155 image = NULL;
156 result = 0;
157
158 /* Because we write directly to the reserved memory
159 * region when loading crash kernels we need a mutex here to
160 * prevent multiple crash kernels from attempting to load
161 * simultaneously, and to prevent a crash kernel from loading
162 * over the top of a in use crash kernel.
163 *
164 * KISS: always take the mutex.
165 */
166 if (!mutex_trylock(&kexec_mutex))
167 return -EBUSY;
168
169 dest_image = &kexec_image;
170 if (flags & KEXEC_ON_CRASH) {
171 dest_image = &kexec_crash_image;
172 if (kexec_crash_image)
173 arch_kexec_unprotect_crashkres();
174 }
175
176 if (nr_segments > 0) {
177 unsigned long i;
178
179 if (flags & KEXEC_ON_CRASH) {
180 /*
181 * Loading another kernel to switch to if this one
182 * crashes. Free any current crash dump kernel before
183 * we corrupt it.
184 */
185
186 kimage_free(xchg(&kexec_crash_image, NULL));
187 result = kimage_alloc_init(&image, entry, nr_segments,
188 segments, flags);
189 crash_map_reserved_pages();
190 } else {
191 /* Loading another kernel to reboot into. */
192
193 result = kimage_alloc_init(&image, entry, nr_segments,
194 segments, flags);
195 }
196 if (result)
197 goto out;
198
199 if (flags & KEXEC_PRESERVE_CONTEXT)
200 image->preserve_context = 1;
201 result = machine_kexec_prepare(image);
202 if (result)
203 goto out;
204
205 for (i = 0; i < nr_segments; i++) {
206 result = kimage_load_segment(image, &image->segment[i]);
207 if (result)
208 goto out;
209 }
210 kimage_terminate(image);
211 if (flags & KEXEC_ON_CRASH)
212 crash_unmap_reserved_pages();
213 }
214 /* Install the new kernel, and Uninstall the old */
215 image = xchg(dest_image, image);
216
217 out:
218 if ((flags & KEXEC_ON_CRASH) && kexec_crash_image)
219 arch_kexec_protect_crashkres();
220
221 mutex_unlock(&kexec_mutex);
222 kimage_free(image);
223
224 return result;
225 }
226
227 #ifdef CONFIG_COMPAT
228 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
229 compat_ulong_t, nr_segments,
230 struct compat_kexec_segment __user *, segments,
231 compat_ulong_t, flags)
232 {
233 struct compat_kexec_segment in;
234 struct kexec_segment out, __user *ksegments;
235 unsigned long i, result;
236
237 /* Don't allow clients that don't understand the native
238 * architecture to do anything.
239 */
240 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
241 return -EINVAL;
242
243 if (nr_segments > KEXEC_SEGMENT_MAX)
244 return -EINVAL;
245
246 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
247 for (i = 0; i < nr_segments; i++) {
248 result = copy_from_user(&in, &segments[i], sizeof(in));
249 if (result)
250 return -EFAULT;
251
252 out.buf = compat_ptr(in.buf);
253 out.bufsz = in.bufsz;
254 out.mem = in.mem;
255 out.memsz = in.memsz;
256
257 result = copy_to_user(&ksegments[i], &out, sizeof(out));
258 if (result)
259 return -EFAULT;
260 }
261
262 return sys_kexec_load(entry, nr_segments, ksegments, flags);
263 }
264 #endif
This page took 0.03631 seconds and 6 git commands to generate.