Merge branch 'x86/urgent' into x86/pat
[deliverable/linux.git] / kernel / kmod.c
1 /*
2 kmod, the new module loader (replaces kerneld)
3 Kirk Petersen
4
5 Reorganized not to be a daemon by Adam Richter, with guidance
6 from Greg Zornetzer.
7
8 Modified to avoid chroot and file sharing problems.
9 Mikael Pettersson
10
11 Limit the concurrent number of kmod modprobes to catch loops from
12 "modprobe needs a service that is in a module".
13 Keith Owens <kaos@ocs.com.au> December 1999
14
15 Unblock all signals when we exec a usermode process.
16 Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
17
18 call_usermodehelper wait flag, and remove exec_usermodehelper.
19 Rusty Russell <rusty@rustcorp.com.au> Jan 2003
20 */
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/syscalls.h>
24 #include <linux/unistd.h>
25 #include <linux/kmod.h>
26 #include <linux/slab.h>
27 #include <linux/completion.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/workqueue.h>
31 #include <linux/security.h>
32 #include <linux/mount.h>
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/resource.h>
36 #include <linux/notifier.h>
37 #include <linux/suspend.h>
38 #include <asm/uaccess.h>
39
40 extern int max_threads;
41
42 static struct workqueue_struct *khelper_wq;
43
44 #ifdef CONFIG_MODULES
45
46 /*
47 modprobe_path is set via /proc/sys.
48 */
49 char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
50
51 /**
52 * __request_module - try to load a kernel module
53 * @wait: wait (or not) for the operation to complete
54 * @fmt: printf style format string for the name of the module
55 * @...: arguments as specified in the format string
56 *
57 * Load a module using the user mode module loader. The function returns
58 * zero on success or a negative errno code on failure. Note that a
59 * successful module load does not mean the module did not then unload
60 * and exit on an error of its own. Callers must check that the service
61 * they requested is now available not blindly invoke it.
62 *
63 * If module auto-loading support is disabled then this function
64 * becomes a no-operation.
65 */
66 int __request_module(bool wait, const char *fmt, ...)
67 {
68 va_list args;
69 char module_name[MODULE_NAME_LEN];
70 unsigned int max_modprobes;
71 int ret;
72 char *argv[] = { modprobe_path, "-q", "--", module_name, NULL };
73 static char *envp[] = { "HOME=/",
74 "TERM=linux",
75 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
76 NULL };
77 static atomic_t kmod_concurrent = ATOMIC_INIT(0);
78 #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */
79 static int kmod_loop_msg;
80
81 va_start(args, fmt);
82 ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
83 va_end(args);
84 if (ret >= MODULE_NAME_LEN)
85 return -ENAMETOOLONG;
86
87 /* If modprobe needs a service that is in a module, we get a recursive
88 * loop. Limit the number of running kmod threads to max_threads/2 or
89 * MAX_KMOD_CONCURRENT, whichever is the smaller. A cleaner method
90 * would be to run the parents of this process, counting how many times
91 * kmod was invoked. That would mean accessing the internals of the
92 * process tables to get the command line, proc_pid_cmdline is static
93 * and it is not worth changing the proc code just to handle this case.
94 * KAO.
95 *
96 * "trace the ppid" is simple, but will fail if someone's
97 * parent exits. I think this is as good as it gets. --RR
98 */
99 max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
100 atomic_inc(&kmod_concurrent);
101 if (atomic_read(&kmod_concurrent) > max_modprobes) {
102 /* We may be blaming an innocent here, but unlikely */
103 if (kmod_loop_msg++ < 5)
104 printk(KERN_ERR
105 "request_module: runaway loop modprobe %s\n",
106 module_name);
107 atomic_dec(&kmod_concurrent);
108 return -ENOMEM;
109 }
110
111 ret = call_usermodehelper(modprobe_path, argv, envp,
112 wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
113 atomic_dec(&kmod_concurrent);
114 return ret;
115 }
116 EXPORT_SYMBOL(__request_module);
117 #endif /* CONFIG_MODULES */
118
119 struct subprocess_info {
120 struct work_struct work;
121 struct completion *complete;
122 struct cred *cred;
123 char *path;
124 char **argv;
125 char **envp;
126 enum umh_wait wait;
127 int retval;
128 struct file *stdin;
129 void (*cleanup)(char **argv, char **envp);
130 };
131
132 /*
133 * This is the task which runs the usermode application
134 */
135 static int ____call_usermodehelper(void *data)
136 {
137 struct subprocess_info *sub_info = data;
138 int retval;
139
140 BUG_ON(atomic_read(&sub_info->cred->usage) != 1);
141
142 /* Unblock all signals */
143 spin_lock_irq(&current->sighand->siglock);
144 flush_signal_handlers(current, 1);
145 sigemptyset(&current->blocked);
146 recalc_sigpending();
147 spin_unlock_irq(&current->sighand->siglock);
148
149 /* Install the credentials */
150 commit_creds(sub_info->cred);
151 sub_info->cred = NULL;
152
153 /* Install input pipe when needed */
154 if (sub_info->stdin) {
155 struct files_struct *f = current->files;
156 struct fdtable *fdt;
157 /* no races because files should be private here */
158 sys_close(0);
159 fd_install(0, sub_info->stdin);
160 spin_lock(&f->file_lock);
161 fdt = files_fdtable(f);
162 FD_SET(0, fdt->open_fds);
163 FD_CLR(0, fdt->close_on_exec);
164 spin_unlock(&f->file_lock);
165
166 /* and disallow core files too */
167 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){0, 0};
168 }
169
170 /* We can run anywhere, unlike our parent keventd(). */
171 set_cpus_allowed_ptr(current, cpu_all_mask);
172
173 /*
174 * Our parent is keventd, which runs with elevated scheduling priority.
175 * Avoid propagating that into the userspace child.
176 */
177 set_user_nice(current, 0);
178
179 retval = kernel_execve(sub_info->path, sub_info->argv, sub_info->envp);
180
181 /* Exec failed? */
182 sub_info->retval = retval;
183 do_exit(0);
184 }
185
186 void call_usermodehelper_freeinfo(struct subprocess_info *info)
187 {
188 if (info->cleanup)
189 (*info->cleanup)(info->argv, info->envp);
190 if (info->cred)
191 put_cred(info->cred);
192 kfree(info);
193 }
194 EXPORT_SYMBOL(call_usermodehelper_freeinfo);
195
196 /* Keventd can't block, but this (a child) can. */
197 static int wait_for_helper(void *data)
198 {
199 struct subprocess_info *sub_info = data;
200 pid_t pid;
201
202 /* Install a handler: if SIGCLD isn't handled sys_wait4 won't
203 * populate the status, but will return -ECHILD. */
204 allow_signal(SIGCHLD);
205
206 pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
207 if (pid < 0) {
208 sub_info->retval = pid;
209 } else {
210 int ret;
211
212 /*
213 * Normally it is bogus to call wait4() from in-kernel because
214 * wait4() wants to write the exit code to a userspace address.
215 * But wait_for_helper() always runs as keventd, and put_user()
216 * to a kernel address works OK for kernel threads, due to their
217 * having an mm_segment_t which spans the entire address space.
218 *
219 * Thus the __user pointer cast is valid here.
220 */
221 sys_wait4(pid, (int __user *)&ret, 0, NULL);
222
223 /*
224 * If ret is 0, either ____call_usermodehelper failed and the
225 * real error code is already in sub_info->retval or
226 * sub_info->retval is 0 anyway, so don't mess with it then.
227 */
228 if (ret)
229 sub_info->retval = ret;
230 }
231
232 if (sub_info->wait == UMH_NO_WAIT)
233 call_usermodehelper_freeinfo(sub_info);
234 else
235 complete(sub_info->complete);
236 return 0;
237 }
238
239 /* This is run by khelper thread */
240 static void __call_usermodehelper(struct work_struct *work)
241 {
242 struct subprocess_info *sub_info =
243 container_of(work, struct subprocess_info, work);
244 pid_t pid;
245 enum umh_wait wait = sub_info->wait;
246
247 BUG_ON(atomic_read(&sub_info->cred->usage) != 1);
248
249 /* CLONE_VFORK: wait until the usermode helper has execve'd
250 * successfully We need the data structures to stay around
251 * until that is done. */
252 if (wait == UMH_WAIT_PROC || wait == UMH_NO_WAIT)
253 pid = kernel_thread(wait_for_helper, sub_info,
254 CLONE_FS | CLONE_FILES | SIGCHLD);
255 else
256 pid = kernel_thread(____call_usermodehelper, sub_info,
257 CLONE_VFORK | SIGCHLD);
258
259 switch (wait) {
260 case UMH_NO_WAIT:
261 break;
262
263 case UMH_WAIT_PROC:
264 if (pid > 0)
265 break;
266 sub_info->retval = pid;
267 /* FALLTHROUGH */
268
269 case UMH_WAIT_EXEC:
270 complete(sub_info->complete);
271 }
272 }
273
274 #ifdef CONFIG_PM_SLEEP
275 /*
276 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
277 * (used for preventing user land processes from being created after the user
278 * land has been frozen during a system-wide hibernation or suspend operation).
279 */
280 static int usermodehelper_disabled;
281
282 /* Number of helpers running */
283 static atomic_t running_helpers = ATOMIC_INIT(0);
284
285 /*
286 * Wait queue head used by usermodehelper_pm_callback() to wait for all running
287 * helpers to finish.
288 */
289 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
290
291 /*
292 * Time to wait for running_helpers to become zero before the setting of
293 * usermodehelper_disabled in usermodehelper_pm_callback() fails
294 */
295 #define RUNNING_HELPERS_TIMEOUT (5 * HZ)
296
297 /**
298 * usermodehelper_disable - prevent new helpers from being started
299 */
300 int usermodehelper_disable(void)
301 {
302 long retval;
303
304 usermodehelper_disabled = 1;
305 smp_mb();
306 /*
307 * From now on call_usermodehelper_exec() won't start any new
308 * helpers, so it is sufficient if running_helpers turns out to
309 * be zero at one point (it may be increased later, but that
310 * doesn't matter).
311 */
312 retval = wait_event_timeout(running_helpers_waitq,
313 atomic_read(&running_helpers) == 0,
314 RUNNING_HELPERS_TIMEOUT);
315 if (retval)
316 return 0;
317
318 usermodehelper_disabled = 0;
319 return -EAGAIN;
320 }
321
322 /**
323 * usermodehelper_enable - allow new helpers to be started again
324 */
325 void usermodehelper_enable(void)
326 {
327 usermodehelper_disabled = 0;
328 }
329
330 static void helper_lock(void)
331 {
332 atomic_inc(&running_helpers);
333 smp_mb__after_atomic_inc();
334 }
335
336 static void helper_unlock(void)
337 {
338 if (atomic_dec_and_test(&running_helpers))
339 wake_up(&running_helpers_waitq);
340 }
341 #else /* CONFIG_PM_SLEEP */
342 #define usermodehelper_disabled 0
343
344 static inline void helper_lock(void) {}
345 static inline void helper_unlock(void) {}
346 #endif /* CONFIG_PM_SLEEP */
347
348 /**
349 * call_usermodehelper_setup - prepare to call a usermode helper
350 * @path: path to usermode executable
351 * @argv: arg vector for process
352 * @envp: environment for process
353 * @gfp_mask: gfp mask for memory allocation
354 *
355 * Returns either %NULL on allocation failure, or a subprocess_info
356 * structure. This should be passed to call_usermodehelper_exec to
357 * exec the process and free the structure.
358 */
359 struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
360 char **envp, gfp_t gfp_mask)
361 {
362 struct subprocess_info *sub_info;
363 sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
364 if (!sub_info)
365 goto out;
366
367 INIT_WORK(&sub_info->work, __call_usermodehelper);
368 sub_info->path = path;
369 sub_info->argv = argv;
370 sub_info->envp = envp;
371 sub_info->cred = prepare_usermodehelper_creds();
372 if (!sub_info->cred) {
373 kfree(sub_info);
374 return NULL;
375 }
376
377 out:
378 return sub_info;
379 }
380 EXPORT_SYMBOL(call_usermodehelper_setup);
381
382 /**
383 * call_usermodehelper_setkeys - set the session keys for usermode helper
384 * @info: a subprocess_info returned by call_usermodehelper_setup
385 * @session_keyring: the session keyring for the process
386 */
387 void call_usermodehelper_setkeys(struct subprocess_info *info,
388 struct key *session_keyring)
389 {
390 #ifdef CONFIG_KEYS
391 struct thread_group_cred *tgcred = info->cred->tgcred;
392 key_put(tgcred->session_keyring);
393 tgcred->session_keyring = key_get(session_keyring);
394 #else
395 BUG();
396 #endif
397 }
398 EXPORT_SYMBOL(call_usermodehelper_setkeys);
399
400 /**
401 * call_usermodehelper_setcleanup - set a cleanup function
402 * @info: a subprocess_info returned by call_usermodehelper_setup
403 * @cleanup: a cleanup function
404 *
405 * The cleanup function is just befor ethe subprocess_info is about to
406 * be freed. This can be used for freeing the argv and envp. The
407 * Function must be runnable in either a process context or the
408 * context in which call_usermodehelper_exec is called.
409 */
410 void call_usermodehelper_setcleanup(struct subprocess_info *info,
411 void (*cleanup)(char **argv, char **envp))
412 {
413 info->cleanup = cleanup;
414 }
415 EXPORT_SYMBOL(call_usermodehelper_setcleanup);
416
417 /**
418 * call_usermodehelper_stdinpipe - set up a pipe to be used for stdin
419 * @sub_info: a subprocess_info returned by call_usermodehelper_setup
420 * @filp: set to the write-end of a pipe
421 *
422 * This constructs a pipe, and sets the read end to be the stdin of the
423 * subprocess, and returns the write-end in *@filp.
424 */
425 int call_usermodehelper_stdinpipe(struct subprocess_info *sub_info,
426 struct file **filp)
427 {
428 struct file *f;
429
430 f = create_write_pipe(0);
431 if (IS_ERR(f))
432 return PTR_ERR(f);
433 *filp = f;
434
435 f = create_read_pipe(f, 0);
436 if (IS_ERR(f)) {
437 free_write_pipe(*filp);
438 return PTR_ERR(f);
439 }
440 sub_info->stdin = f;
441
442 return 0;
443 }
444 EXPORT_SYMBOL(call_usermodehelper_stdinpipe);
445
446 /**
447 * call_usermodehelper_exec - start a usermode application
448 * @sub_info: information about the subprocessa
449 * @wait: wait for the application to finish and return status.
450 * when -1 don't wait at all, but you get no useful error back when
451 * the program couldn't be exec'ed. This makes it safe to call
452 * from interrupt context.
453 *
454 * Runs a user-space application. The application is started
455 * asynchronously if wait is not set, and runs as a child of keventd.
456 * (ie. it runs with full root capabilities).
457 */
458 int call_usermodehelper_exec(struct subprocess_info *sub_info,
459 enum umh_wait wait)
460 {
461 DECLARE_COMPLETION_ONSTACK(done);
462 int retval = 0;
463
464 BUG_ON(atomic_read(&sub_info->cred->usage) != 1);
465
466 helper_lock();
467 if (sub_info->path[0] == '\0')
468 goto out;
469
470 if (!khelper_wq || usermodehelper_disabled) {
471 retval = -EBUSY;
472 goto out;
473 }
474
475 sub_info->complete = &done;
476 sub_info->wait = wait;
477
478 queue_work(khelper_wq, &sub_info->work);
479 if (wait == UMH_NO_WAIT) /* task has freed sub_info */
480 goto unlock;
481 wait_for_completion(&done);
482 retval = sub_info->retval;
483
484 out:
485 call_usermodehelper_freeinfo(sub_info);
486 unlock:
487 helper_unlock();
488 return retval;
489 }
490 EXPORT_SYMBOL(call_usermodehelper_exec);
491
492 /**
493 * call_usermodehelper_pipe - call a usermode helper process with a pipe stdin
494 * @path: path to usermode executable
495 * @argv: arg vector for process
496 * @envp: environment for process
497 * @filp: set to the write-end of a pipe
498 *
499 * This is a simple wrapper which executes a usermode-helper function
500 * with a pipe as stdin. It is implemented entirely in terms of
501 * lower-level call_usermodehelper_* functions.
502 */
503 int call_usermodehelper_pipe(char *path, char **argv, char **envp,
504 struct file **filp)
505 {
506 struct subprocess_info *sub_info;
507 int ret;
508
509 sub_info = call_usermodehelper_setup(path, argv, envp, GFP_KERNEL);
510 if (sub_info == NULL)
511 return -ENOMEM;
512
513 ret = call_usermodehelper_stdinpipe(sub_info, filp);
514 if (ret < 0)
515 goto out;
516
517 return call_usermodehelper_exec(sub_info, UMH_WAIT_EXEC);
518
519 out:
520 call_usermodehelper_freeinfo(sub_info);
521 return ret;
522 }
523 EXPORT_SYMBOL(call_usermodehelper_pipe);
524
525 void __init usermodehelper_init(void)
526 {
527 khelper_wq = create_singlethread_workqueue("khelper");
528 BUG_ON(!khelper_wq);
529 }
This page took 0.044255 seconds and 5 git commands to generate.