Merge branch 'master' into next
[deliverable/linux.git] / kernel / kmod.c
1 /*
2 kmod, the new module loader (replaces kerneld)
3 Kirk Petersen
4
5 Reorganized not to be a daemon by Adam Richter, with guidance
6 from Greg Zornetzer.
7
8 Modified to avoid chroot and file sharing problems.
9 Mikael Pettersson
10
11 Limit the concurrent number of kmod modprobes to catch loops from
12 "modprobe needs a service that is in a module".
13 Keith Owens <kaos@ocs.com.au> December 1999
14
15 Unblock all signals when we exec a usermode process.
16 Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
17
18 call_usermodehelper wait flag, and remove exec_usermodehelper.
19 Rusty Russell <rusty@rustcorp.com.au> Jan 2003
20 */
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/syscalls.h>
24 #include <linux/unistd.h>
25 #include <linux/kmod.h>
26 #include <linux/slab.h>
27 #include <linux/completion.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/workqueue.h>
31 #include <linux/security.h>
32 #include <linux/mount.h>
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/resource.h>
36 #include <linux/notifier.h>
37 #include <linux/suspend.h>
38 #include <asm/uaccess.h>
39
40 extern int max_threads;
41
42 static struct workqueue_struct *khelper_wq;
43
44 #ifdef CONFIG_MODULES
45
46 /*
47 modprobe_path is set via /proc/sys.
48 */
49 char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
50
51 /**
52 * __request_module - try to load a kernel module
53 * @wait: wait (or not) for the operation to complete
54 * @fmt: printf style format string for the name of the module
55 * @...: arguments as specified in the format string
56 *
57 * Load a module using the user mode module loader. The function returns
58 * zero on success or a negative errno code on failure. Note that a
59 * successful module load does not mean the module did not then unload
60 * and exit on an error of its own. Callers must check that the service
61 * they requested is now available not blindly invoke it.
62 *
63 * If module auto-loading support is disabled then this function
64 * becomes a no-operation.
65 */
66 int __request_module(bool wait, const char *fmt, ...)
67 {
68 va_list args;
69 char module_name[MODULE_NAME_LEN];
70 unsigned int max_modprobes;
71 int ret;
72 char *argv[] = { modprobe_path, "-q", "--", module_name, NULL };
73 static char *envp[] = { "HOME=/",
74 "TERM=linux",
75 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
76 NULL };
77 static atomic_t kmod_concurrent = ATOMIC_INIT(0);
78 #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */
79 static int kmod_loop_msg;
80
81 ret = security_kernel_module_request();
82 if (ret)
83 return ret;
84
85 va_start(args, fmt);
86 ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
87 va_end(args);
88 if (ret >= MODULE_NAME_LEN)
89 return -ENAMETOOLONG;
90
91 /* If modprobe needs a service that is in a module, we get a recursive
92 * loop. Limit the number of running kmod threads to max_threads/2 or
93 * MAX_KMOD_CONCURRENT, whichever is the smaller. A cleaner method
94 * would be to run the parents of this process, counting how many times
95 * kmod was invoked. That would mean accessing the internals of the
96 * process tables to get the command line, proc_pid_cmdline is static
97 * and it is not worth changing the proc code just to handle this case.
98 * KAO.
99 *
100 * "trace the ppid" is simple, but will fail if someone's
101 * parent exits. I think this is as good as it gets. --RR
102 */
103 max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
104 atomic_inc(&kmod_concurrent);
105 if (atomic_read(&kmod_concurrent) > max_modprobes) {
106 /* We may be blaming an innocent here, but unlikely */
107 if (kmod_loop_msg++ < 5)
108 printk(KERN_ERR
109 "request_module: runaway loop modprobe %s\n",
110 module_name);
111 atomic_dec(&kmod_concurrent);
112 return -ENOMEM;
113 }
114
115 ret = call_usermodehelper(modprobe_path, argv, envp,
116 wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
117 atomic_dec(&kmod_concurrent);
118 return ret;
119 }
120 EXPORT_SYMBOL(__request_module);
121 #endif /* CONFIG_MODULES */
122
123 struct subprocess_info {
124 struct work_struct work;
125 struct completion *complete;
126 struct cred *cred;
127 char *path;
128 char **argv;
129 char **envp;
130 enum umh_wait wait;
131 int retval;
132 struct file *stdin;
133 void (*cleanup)(char **argv, char **envp);
134 };
135
136 /*
137 * This is the task which runs the usermode application
138 */
139 static int ____call_usermodehelper(void *data)
140 {
141 struct subprocess_info *sub_info = data;
142 int retval;
143
144 BUG_ON(atomic_read(&sub_info->cred->usage) != 1);
145
146 /* Unblock all signals */
147 spin_lock_irq(&current->sighand->siglock);
148 flush_signal_handlers(current, 1);
149 sigemptyset(&current->blocked);
150 recalc_sigpending();
151 spin_unlock_irq(&current->sighand->siglock);
152
153 /* Install the credentials */
154 commit_creds(sub_info->cred);
155 sub_info->cred = NULL;
156
157 /* Install input pipe when needed */
158 if (sub_info->stdin) {
159 struct files_struct *f = current->files;
160 struct fdtable *fdt;
161 /* no races because files should be private here */
162 sys_close(0);
163 fd_install(0, sub_info->stdin);
164 spin_lock(&f->file_lock);
165 fdt = files_fdtable(f);
166 FD_SET(0, fdt->open_fds);
167 FD_CLR(0, fdt->close_on_exec);
168 spin_unlock(&f->file_lock);
169
170 /* and disallow core files too */
171 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){0, 0};
172 }
173
174 /* We can run anywhere, unlike our parent keventd(). */
175 set_cpus_allowed_ptr(current, cpu_all_mask);
176
177 /*
178 * Our parent is keventd, which runs with elevated scheduling priority.
179 * Avoid propagating that into the userspace child.
180 */
181 set_user_nice(current, 0);
182
183 retval = kernel_execve(sub_info->path, sub_info->argv, sub_info->envp);
184
185 /* Exec failed? */
186 sub_info->retval = retval;
187 do_exit(0);
188 }
189
190 void call_usermodehelper_freeinfo(struct subprocess_info *info)
191 {
192 if (info->cleanup)
193 (*info->cleanup)(info->argv, info->envp);
194 if (info->cred)
195 put_cred(info->cred);
196 kfree(info);
197 }
198 EXPORT_SYMBOL(call_usermodehelper_freeinfo);
199
200 /* Keventd can't block, but this (a child) can. */
201 static int wait_for_helper(void *data)
202 {
203 struct subprocess_info *sub_info = data;
204 pid_t pid;
205
206 /* Install a handler: if SIGCLD isn't handled sys_wait4 won't
207 * populate the status, but will return -ECHILD. */
208 allow_signal(SIGCHLD);
209
210 pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
211 if (pid < 0) {
212 sub_info->retval = pid;
213 } else {
214 int ret;
215
216 /*
217 * Normally it is bogus to call wait4() from in-kernel because
218 * wait4() wants to write the exit code to a userspace address.
219 * But wait_for_helper() always runs as keventd, and put_user()
220 * to a kernel address works OK for kernel threads, due to their
221 * having an mm_segment_t which spans the entire address space.
222 *
223 * Thus the __user pointer cast is valid here.
224 */
225 sys_wait4(pid, (int __user *)&ret, 0, NULL);
226
227 /*
228 * If ret is 0, either ____call_usermodehelper failed and the
229 * real error code is already in sub_info->retval or
230 * sub_info->retval is 0 anyway, so don't mess with it then.
231 */
232 if (ret)
233 sub_info->retval = ret;
234 }
235
236 if (sub_info->wait == UMH_NO_WAIT)
237 call_usermodehelper_freeinfo(sub_info);
238 else
239 complete(sub_info->complete);
240 return 0;
241 }
242
243 /* This is run by khelper thread */
244 static void __call_usermodehelper(struct work_struct *work)
245 {
246 struct subprocess_info *sub_info =
247 container_of(work, struct subprocess_info, work);
248 pid_t pid;
249 enum umh_wait wait = sub_info->wait;
250
251 BUG_ON(atomic_read(&sub_info->cred->usage) != 1);
252
253 /* CLONE_VFORK: wait until the usermode helper has execve'd
254 * successfully We need the data structures to stay around
255 * until that is done. */
256 if (wait == UMH_WAIT_PROC || wait == UMH_NO_WAIT)
257 pid = kernel_thread(wait_for_helper, sub_info,
258 CLONE_FS | CLONE_FILES | SIGCHLD);
259 else
260 pid = kernel_thread(____call_usermodehelper, sub_info,
261 CLONE_VFORK | SIGCHLD);
262
263 switch (wait) {
264 case UMH_NO_WAIT:
265 break;
266
267 case UMH_WAIT_PROC:
268 if (pid > 0)
269 break;
270 sub_info->retval = pid;
271 /* FALLTHROUGH */
272
273 case UMH_WAIT_EXEC:
274 complete(sub_info->complete);
275 }
276 }
277
278 #ifdef CONFIG_PM_SLEEP
279 /*
280 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
281 * (used for preventing user land processes from being created after the user
282 * land has been frozen during a system-wide hibernation or suspend operation).
283 */
284 static int usermodehelper_disabled;
285
286 /* Number of helpers running */
287 static atomic_t running_helpers = ATOMIC_INIT(0);
288
289 /*
290 * Wait queue head used by usermodehelper_pm_callback() to wait for all running
291 * helpers to finish.
292 */
293 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
294
295 /*
296 * Time to wait for running_helpers to become zero before the setting of
297 * usermodehelper_disabled in usermodehelper_pm_callback() fails
298 */
299 #define RUNNING_HELPERS_TIMEOUT (5 * HZ)
300
301 /**
302 * usermodehelper_disable - prevent new helpers from being started
303 */
304 int usermodehelper_disable(void)
305 {
306 long retval;
307
308 usermodehelper_disabled = 1;
309 smp_mb();
310 /*
311 * From now on call_usermodehelper_exec() won't start any new
312 * helpers, so it is sufficient if running_helpers turns out to
313 * be zero at one point (it may be increased later, but that
314 * doesn't matter).
315 */
316 retval = wait_event_timeout(running_helpers_waitq,
317 atomic_read(&running_helpers) == 0,
318 RUNNING_HELPERS_TIMEOUT);
319 if (retval)
320 return 0;
321
322 usermodehelper_disabled = 0;
323 return -EAGAIN;
324 }
325
326 /**
327 * usermodehelper_enable - allow new helpers to be started again
328 */
329 void usermodehelper_enable(void)
330 {
331 usermodehelper_disabled = 0;
332 }
333
334 static void helper_lock(void)
335 {
336 atomic_inc(&running_helpers);
337 smp_mb__after_atomic_inc();
338 }
339
340 static void helper_unlock(void)
341 {
342 if (atomic_dec_and_test(&running_helpers))
343 wake_up(&running_helpers_waitq);
344 }
345 #else /* CONFIG_PM_SLEEP */
346 #define usermodehelper_disabled 0
347
348 static inline void helper_lock(void) {}
349 static inline void helper_unlock(void) {}
350 #endif /* CONFIG_PM_SLEEP */
351
352 /**
353 * call_usermodehelper_setup - prepare to call a usermode helper
354 * @path: path to usermode executable
355 * @argv: arg vector for process
356 * @envp: environment for process
357 * @gfp_mask: gfp mask for memory allocation
358 *
359 * Returns either %NULL on allocation failure, or a subprocess_info
360 * structure. This should be passed to call_usermodehelper_exec to
361 * exec the process and free the structure.
362 */
363 struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
364 char **envp, gfp_t gfp_mask)
365 {
366 struct subprocess_info *sub_info;
367 sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
368 if (!sub_info)
369 goto out;
370
371 INIT_WORK(&sub_info->work, __call_usermodehelper);
372 sub_info->path = path;
373 sub_info->argv = argv;
374 sub_info->envp = envp;
375 sub_info->cred = prepare_usermodehelper_creds();
376 if (!sub_info->cred) {
377 kfree(sub_info);
378 return NULL;
379 }
380
381 out:
382 return sub_info;
383 }
384 EXPORT_SYMBOL(call_usermodehelper_setup);
385
386 /**
387 * call_usermodehelper_setkeys - set the session keys for usermode helper
388 * @info: a subprocess_info returned by call_usermodehelper_setup
389 * @session_keyring: the session keyring for the process
390 */
391 void call_usermodehelper_setkeys(struct subprocess_info *info,
392 struct key *session_keyring)
393 {
394 #ifdef CONFIG_KEYS
395 struct thread_group_cred *tgcred = info->cred->tgcred;
396 key_put(tgcred->session_keyring);
397 tgcred->session_keyring = key_get(session_keyring);
398 #else
399 BUG();
400 #endif
401 }
402 EXPORT_SYMBOL(call_usermodehelper_setkeys);
403
404 /**
405 * call_usermodehelper_setcleanup - set a cleanup function
406 * @info: a subprocess_info returned by call_usermodehelper_setup
407 * @cleanup: a cleanup function
408 *
409 * The cleanup function is just befor ethe subprocess_info is about to
410 * be freed. This can be used for freeing the argv and envp. The
411 * Function must be runnable in either a process context or the
412 * context in which call_usermodehelper_exec is called.
413 */
414 void call_usermodehelper_setcleanup(struct subprocess_info *info,
415 void (*cleanup)(char **argv, char **envp))
416 {
417 info->cleanup = cleanup;
418 }
419 EXPORT_SYMBOL(call_usermodehelper_setcleanup);
420
421 /**
422 * call_usermodehelper_stdinpipe - set up a pipe to be used for stdin
423 * @sub_info: a subprocess_info returned by call_usermodehelper_setup
424 * @filp: set to the write-end of a pipe
425 *
426 * This constructs a pipe, and sets the read end to be the stdin of the
427 * subprocess, and returns the write-end in *@filp.
428 */
429 int call_usermodehelper_stdinpipe(struct subprocess_info *sub_info,
430 struct file **filp)
431 {
432 struct file *f;
433
434 f = create_write_pipe(0);
435 if (IS_ERR(f))
436 return PTR_ERR(f);
437 *filp = f;
438
439 f = create_read_pipe(f, 0);
440 if (IS_ERR(f)) {
441 free_write_pipe(*filp);
442 return PTR_ERR(f);
443 }
444 sub_info->stdin = f;
445
446 return 0;
447 }
448 EXPORT_SYMBOL(call_usermodehelper_stdinpipe);
449
450 /**
451 * call_usermodehelper_exec - start a usermode application
452 * @sub_info: information about the subprocessa
453 * @wait: wait for the application to finish and return status.
454 * when -1 don't wait at all, but you get no useful error back when
455 * the program couldn't be exec'ed. This makes it safe to call
456 * from interrupt context.
457 *
458 * Runs a user-space application. The application is started
459 * asynchronously if wait is not set, and runs as a child of keventd.
460 * (ie. it runs with full root capabilities).
461 */
462 int call_usermodehelper_exec(struct subprocess_info *sub_info,
463 enum umh_wait wait)
464 {
465 DECLARE_COMPLETION_ONSTACK(done);
466 int retval = 0;
467
468 BUG_ON(atomic_read(&sub_info->cred->usage) != 1);
469
470 helper_lock();
471 if (sub_info->path[0] == '\0')
472 goto out;
473
474 if (!khelper_wq || usermodehelper_disabled) {
475 retval = -EBUSY;
476 goto out;
477 }
478
479 sub_info->complete = &done;
480 sub_info->wait = wait;
481
482 queue_work(khelper_wq, &sub_info->work);
483 if (wait == UMH_NO_WAIT) /* task has freed sub_info */
484 goto unlock;
485 wait_for_completion(&done);
486 retval = sub_info->retval;
487
488 out:
489 call_usermodehelper_freeinfo(sub_info);
490 unlock:
491 helper_unlock();
492 return retval;
493 }
494 EXPORT_SYMBOL(call_usermodehelper_exec);
495
496 /**
497 * call_usermodehelper_pipe - call a usermode helper process with a pipe stdin
498 * @path: path to usermode executable
499 * @argv: arg vector for process
500 * @envp: environment for process
501 * @filp: set to the write-end of a pipe
502 *
503 * This is a simple wrapper which executes a usermode-helper function
504 * with a pipe as stdin. It is implemented entirely in terms of
505 * lower-level call_usermodehelper_* functions.
506 */
507 int call_usermodehelper_pipe(char *path, char **argv, char **envp,
508 struct file **filp)
509 {
510 struct subprocess_info *sub_info;
511 int ret;
512
513 sub_info = call_usermodehelper_setup(path, argv, envp, GFP_KERNEL);
514 if (sub_info == NULL)
515 return -ENOMEM;
516
517 ret = call_usermodehelper_stdinpipe(sub_info, filp);
518 if (ret < 0)
519 goto out;
520
521 return call_usermodehelper_exec(sub_info, UMH_WAIT_EXEC);
522
523 out:
524 call_usermodehelper_freeinfo(sub_info);
525 return ret;
526 }
527 EXPORT_SYMBOL(call_usermodehelper_pipe);
528
529 void __init usermodehelper_init(void)
530 {
531 khelper_wq = create_singlethread_workqueue("khelper");
532 BUG_ON(!khelper_wq);
533 }
This page took 0.061194 seconds and 5 git commands to generate.