thermal: exynos: add ->tmu_control method
[deliverable/linux.git] / kernel / kmod.c
1 /*
2 kmod, the new module loader (replaces kerneld)
3 Kirk Petersen
4
5 Reorganized not to be a daemon by Adam Richter, with guidance
6 from Greg Zornetzer.
7
8 Modified to avoid chroot and file sharing problems.
9 Mikael Pettersson
10
11 Limit the concurrent number of kmod modprobes to catch loops from
12 "modprobe needs a service that is in a module".
13 Keith Owens <kaos@ocs.com.au> December 1999
14
15 Unblock all signals when we exec a usermode process.
16 Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
17
18 call_usermodehelper wait flag, and remove exec_usermodehelper.
19 Rusty Russell <rusty@rustcorp.com.au> Jan 2003
20 */
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/syscalls.h>
24 #include <linux/unistd.h>
25 #include <linux/kmod.h>
26 #include <linux/slab.h>
27 #include <linux/completion.h>
28 #include <linux/cred.h>
29 #include <linux/file.h>
30 #include <linux/fdtable.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/mount.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/resource.h>
37 #include <linux/notifier.h>
38 #include <linux/suspend.h>
39 #include <linux/rwsem.h>
40 #include <linux/ptrace.h>
41 #include <linux/async.h>
42 #include <asm/uaccess.h>
43
44 #include <trace/events/module.h>
45
46 extern int max_threads;
47
48 static struct workqueue_struct *khelper_wq;
49
50 /*
51 * kmod_thread_locker is used for deadlock avoidance. There is no explicit
52 * locking to protect this global - it is private to the singleton khelper
53 * thread and should only ever be modified by that thread.
54 */
55 static const struct task_struct *kmod_thread_locker;
56
57 #define CAP_BSET (void *)1
58 #define CAP_PI (void *)2
59
60 static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
61 static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
62 static DEFINE_SPINLOCK(umh_sysctl_lock);
63 static DECLARE_RWSEM(umhelper_sem);
64
65 #ifdef CONFIG_MODULES
66
67 /*
68 modprobe_path is set via /proc/sys.
69 */
70 char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
71
72 static void free_modprobe_argv(struct subprocess_info *info)
73 {
74 kfree(info->argv[3]); /* check call_modprobe() */
75 kfree(info->argv);
76 }
77
78 static int call_modprobe(char *module_name, int wait)
79 {
80 struct subprocess_info *info;
81 static char *envp[] = {
82 "HOME=/",
83 "TERM=linux",
84 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
85 NULL
86 };
87
88 char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL);
89 if (!argv)
90 goto out;
91
92 module_name = kstrdup(module_name, GFP_KERNEL);
93 if (!module_name)
94 goto free_argv;
95
96 argv[0] = modprobe_path;
97 argv[1] = "-q";
98 argv[2] = "--";
99 argv[3] = module_name; /* check free_modprobe_argv() */
100 argv[4] = NULL;
101
102 info = call_usermodehelper_setup(modprobe_path, argv, envp, GFP_KERNEL,
103 NULL, free_modprobe_argv, NULL);
104 if (!info)
105 goto free_module_name;
106
107 return call_usermodehelper_exec(info, wait | UMH_KILLABLE);
108
109 free_module_name:
110 kfree(module_name);
111 free_argv:
112 kfree(argv);
113 out:
114 return -ENOMEM;
115 }
116
117 /**
118 * __request_module - try to load a kernel module
119 * @wait: wait (or not) for the operation to complete
120 * @fmt: printf style format string for the name of the module
121 * @...: arguments as specified in the format string
122 *
123 * Load a module using the user mode module loader. The function returns
124 * zero on success or a negative errno code on failure. Note that a
125 * successful module load does not mean the module did not then unload
126 * and exit on an error of its own. Callers must check that the service
127 * they requested is now available not blindly invoke it.
128 *
129 * If module auto-loading support is disabled then this function
130 * becomes a no-operation.
131 */
132 int __request_module(bool wait, const char *fmt, ...)
133 {
134 va_list args;
135 char module_name[MODULE_NAME_LEN];
136 unsigned int max_modprobes;
137 int ret;
138 static atomic_t kmod_concurrent = ATOMIC_INIT(0);
139 #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */
140 static int kmod_loop_msg;
141
142 /*
143 * We don't allow synchronous module loading from async. Module
144 * init may invoke async_synchronize_full() which will end up
145 * waiting for this task which already is waiting for the module
146 * loading to complete, leading to a deadlock.
147 */
148 WARN_ON_ONCE(wait && current_is_async());
149
150 if (!modprobe_path[0])
151 return 0;
152
153 va_start(args, fmt);
154 ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
155 va_end(args);
156 if (ret >= MODULE_NAME_LEN)
157 return -ENAMETOOLONG;
158
159 ret = security_kernel_module_request(module_name);
160 if (ret)
161 return ret;
162
163 /* If modprobe needs a service that is in a module, we get a recursive
164 * loop. Limit the number of running kmod threads to max_threads/2 or
165 * MAX_KMOD_CONCURRENT, whichever is the smaller. A cleaner method
166 * would be to run the parents of this process, counting how many times
167 * kmod was invoked. That would mean accessing the internals of the
168 * process tables to get the command line, proc_pid_cmdline is static
169 * and it is not worth changing the proc code just to handle this case.
170 * KAO.
171 *
172 * "trace the ppid" is simple, but will fail if someone's
173 * parent exits. I think this is as good as it gets. --RR
174 */
175 max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
176 atomic_inc(&kmod_concurrent);
177 if (atomic_read(&kmod_concurrent) > max_modprobes) {
178 /* We may be blaming an innocent here, but unlikely */
179 if (kmod_loop_msg < 5) {
180 printk(KERN_ERR
181 "request_module: runaway loop modprobe %s\n",
182 module_name);
183 kmod_loop_msg++;
184 }
185 atomic_dec(&kmod_concurrent);
186 return -ENOMEM;
187 }
188
189 trace_module_request(module_name, wait, _RET_IP_);
190
191 ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
192
193 atomic_dec(&kmod_concurrent);
194 return ret;
195 }
196 EXPORT_SYMBOL(__request_module);
197 #endif /* CONFIG_MODULES */
198
199 static void call_usermodehelper_freeinfo(struct subprocess_info *info)
200 {
201 if (info->cleanup)
202 (*info->cleanup)(info);
203 kfree(info);
204 }
205
206 static void umh_complete(struct subprocess_info *sub_info)
207 {
208 struct completion *comp = xchg(&sub_info->complete, NULL);
209 /*
210 * See call_usermodehelper_exec(). If xchg() returns NULL
211 * we own sub_info, the UMH_KILLABLE caller has gone away
212 * or the caller used UMH_NO_WAIT.
213 */
214 if (comp)
215 complete(comp);
216 else
217 call_usermodehelper_freeinfo(sub_info);
218 }
219
220 /*
221 * This is the task which runs the usermode application
222 */
223 static int ____call_usermodehelper(void *data)
224 {
225 struct subprocess_info *sub_info = data;
226 int wait = sub_info->wait & ~UMH_KILLABLE;
227 struct cred *new;
228 int retval;
229
230 spin_lock_irq(&current->sighand->siglock);
231 flush_signal_handlers(current, 1);
232 spin_unlock_irq(&current->sighand->siglock);
233
234 /* We can run anywhere, unlike our parent keventd(). */
235 set_cpus_allowed_ptr(current, cpu_all_mask);
236
237 /*
238 * Our parent is keventd, which runs with elevated scheduling priority.
239 * Avoid propagating that into the userspace child.
240 */
241 set_user_nice(current, 0);
242
243 retval = -ENOMEM;
244 new = prepare_kernel_cred(current);
245 if (!new)
246 goto out;
247
248 spin_lock(&umh_sysctl_lock);
249 new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
250 new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
251 new->cap_inheritable);
252 spin_unlock(&umh_sysctl_lock);
253
254 if (sub_info->init) {
255 retval = sub_info->init(sub_info, new);
256 if (retval) {
257 abort_creds(new);
258 goto out;
259 }
260 }
261
262 commit_creds(new);
263
264 retval = do_execve(getname_kernel(sub_info->path),
265 (const char __user *const __user *)sub_info->argv,
266 (const char __user *const __user *)sub_info->envp);
267 out:
268 sub_info->retval = retval;
269 /* wait_for_helper() will call umh_complete if UHM_WAIT_PROC. */
270 if (wait != UMH_WAIT_PROC)
271 umh_complete(sub_info);
272 if (!retval)
273 return 0;
274 do_exit(0);
275 }
276
277 static int call_helper(void *data)
278 {
279 /* Worker thread started blocking khelper thread. */
280 kmod_thread_locker = current;
281 return ____call_usermodehelper(data);
282 }
283
284 /* Keventd can't block, but this (a child) can. */
285 static int wait_for_helper(void *data)
286 {
287 struct subprocess_info *sub_info = data;
288 pid_t pid;
289
290 /* If SIGCLD is ignored sys_wait4 won't populate the status. */
291 kernel_sigaction(SIGCHLD, SIG_DFL);
292 pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
293 if (pid < 0) {
294 sub_info->retval = pid;
295 } else {
296 int ret = -ECHILD;
297 /*
298 * Normally it is bogus to call wait4() from in-kernel because
299 * wait4() wants to write the exit code to a userspace address.
300 * But wait_for_helper() always runs as keventd, and put_user()
301 * to a kernel address works OK for kernel threads, due to their
302 * having an mm_segment_t which spans the entire address space.
303 *
304 * Thus the __user pointer cast is valid here.
305 */
306 sys_wait4(pid, (int __user *)&ret, 0, NULL);
307
308 /*
309 * If ret is 0, either ____call_usermodehelper failed and the
310 * real error code is already in sub_info->retval or
311 * sub_info->retval is 0 anyway, so don't mess with it then.
312 */
313 if (ret)
314 sub_info->retval = ret;
315 }
316
317 umh_complete(sub_info);
318 do_exit(0);
319 }
320
321 /* This is run by khelper thread */
322 static void __call_usermodehelper(struct work_struct *work)
323 {
324 struct subprocess_info *sub_info =
325 container_of(work, struct subprocess_info, work);
326 int wait = sub_info->wait & ~UMH_KILLABLE;
327 pid_t pid;
328
329 /* CLONE_VFORK: wait until the usermode helper has execve'd
330 * successfully We need the data structures to stay around
331 * until that is done. */
332 if (wait == UMH_WAIT_PROC)
333 pid = kernel_thread(wait_for_helper, sub_info,
334 CLONE_FS | CLONE_FILES | SIGCHLD);
335 else {
336 pid = kernel_thread(call_helper, sub_info,
337 CLONE_VFORK | SIGCHLD);
338 /* Worker thread stopped blocking khelper thread. */
339 kmod_thread_locker = NULL;
340 }
341
342 if (pid < 0) {
343 sub_info->retval = pid;
344 umh_complete(sub_info);
345 }
346 }
347
348 /*
349 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
350 * (used for preventing user land processes from being created after the user
351 * land has been frozen during a system-wide hibernation or suspend operation).
352 * Should always be manipulated under umhelper_sem acquired for write.
353 */
354 static enum umh_disable_depth usermodehelper_disabled = UMH_DISABLED;
355
356 /* Number of helpers running */
357 static atomic_t running_helpers = ATOMIC_INIT(0);
358
359 /*
360 * Wait queue head used by usermodehelper_disable() to wait for all running
361 * helpers to finish.
362 */
363 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
364
365 /*
366 * Used by usermodehelper_read_lock_wait() to wait for usermodehelper_disabled
367 * to become 'false'.
368 */
369 static DECLARE_WAIT_QUEUE_HEAD(usermodehelper_disabled_waitq);
370
371 /*
372 * Time to wait for running_helpers to become zero before the setting of
373 * usermodehelper_disabled in usermodehelper_disable() fails
374 */
375 #define RUNNING_HELPERS_TIMEOUT (5 * HZ)
376
377 int usermodehelper_read_trylock(void)
378 {
379 DEFINE_WAIT(wait);
380 int ret = 0;
381
382 down_read(&umhelper_sem);
383 for (;;) {
384 prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
385 TASK_INTERRUPTIBLE);
386 if (!usermodehelper_disabled)
387 break;
388
389 if (usermodehelper_disabled == UMH_DISABLED)
390 ret = -EAGAIN;
391
392 up_read(&umhelper_sem);
393
394 if (ret)
395 break;
396
397 schedule();
398 try_to_freeze();
399
400 down_read(&umhelper_sem);
401 }
402 finish_wait(&usermodehelper_disabled_waitq, &wait);
403 return ret;
404 }
405 EXPORT_SYMBOL_GPL(usermodehelper_read_trylock);
406
407 long usermodehelper_read_lock_wait(long timeout)
408 {
409 DEFINE_WAIT(wait);
410
411 if (timeout < 0)
412 return -EINVAL;
413
414 down_read(&umhelper_sem);
415 for (;;) {
416 prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
417 TASK_UNINTERRUPTIBLE);
418 if (!usermodehelper_disabled)
419 break;
420
421 up_read(&umhelper_sem);
422
423 timeout = schedule_timeout(timeout);
424 if (!timeout)
425 break;
426
427 down_read(&umhelper_sem);
428 }
429 finish_wait(&usermodehelper_disabled_waitq, &wait);
430 return timeout;
431 }
432 EXPORT_SYMBOL_GPL(usermodehelper_read_lock_wait);
433
434 void usermodehelper_read_unlock(void)
435 {
436 up_read(&umhelper_sem);
437 }
438 EXPORT_SYMBOL_GPL(usermodehelper_read_unlock);
439
440 /**
441 * __usermodehelper_set_disable_depth - Modify usermodehelper_disabled.
442 * @depth: New value to assign to usermodehelper_disabled.
443 *
444 * Change the value of usermodehelper_disabled (under umhelper_sem locked for
445 * writing) and wakeup tasks waiting for it to change.
446 */
447 void __usermodehelper_set_disable_depth(enum umh_disable_depth depth)
448 {
449 down_write(&umhelper_sem);
450 usermodehelper_disabled = depth;
451 wake_up(&usermodehelper_disabled_waitq);
452 up_write(&umhelper_sem);
453 }
454
455 /**
456 * __usermodehelper_disable - Prevent new helpers from being started.
457 * @depth: New value to assign to usermodehelper_disabled.
458 *
459 * Set usermodehelper_disabled to @depth and wait for running helpers to exit.
460 */
461 int __usermodehelper_disable(enum umh_disable_depth depth)
462 {
463 long retval;
464
465 if (!depth)
466 return -EINVAL;
467
468 down_write(&umhelper_sem);
469 usermodehelper_disabled = depth;
470 up_write(&umhelper_sem);
471
472 /*
473 * From now on call_usermodehelper_exec() won't start any new
474 * helpers, so it is sufficient if running_helpers turns out to
475 * be zero at one point (it may be increased later, but that
476 * doesn't matter).
477 */
478 retval = wait_event_timeout(running_helpers_waitq,
479 atomic_read(&running_helpers) == 0,
480 RUNNING_HELPERS_TIMEOUT);
481 if (retval)
482 return 0;
483
484 __usermodehelper_set_disable_depth(UMH_ENABLED);
485 return -EAGAIN;
486 }
487
488 static void helper_lock(void)
489 {
490 atomic_inc(&running_helpers);
491 smp_mb__after_atomic();
492 }
493
494 static void helper_unlock(void)
495 {
496 if (atomic_dec_and_test(&running_helpers))
497 wake_up(&running_helpers_waitq);
498 }
499
500 /**
501 * call_usermodehelper_setup - prepare to call a usermode helper
502 * @path: path to usermode executable
503 * @argv: arg vector for process
504 * @envp: environment for process
505 * @gfp_mask: gfp mask for memory allocation
506 * @cleanup: a cleanup function
507 * @init: an init function
508 * @data: arbitrary context sensitive data
509 *
510 * Returns either %NULL on allocation failure, or a subprocess_info
511 * structure. This should be passed to call_usermodehelper_exec to
512 * exec the process and free the structure.
513 *
514 * The init function is used to customize the helper process prior to
515 * exec. A non-zero return code causes the process to error out, exit,
516 * and return the failure to the calling process
517 *
518 * The cleanup function is just before ethe subprocess_info is about to
519 * be freed. This can be used for freeing the argv and envp. The
520 * Function must be runnable in either a process context or the
521 * context in which call_usermodehelper_exec is called.
522 */
523 struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
524 char **envp, gfp_t gfp_mask,
525 int (*init)(struct subprocess_info *info, struct cred *new),
526 void (*cleanup)(struct subprocess_info *info),
527 void *data)
528 {
529 struct subprocess_info *sub_info;
530 sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
531 if (!sub_info)
532 goto out;
533
534 INIT_WORK(&sub_info->work, __call_usermodehelper);
535 sub_info->path = path;
536 sub_info->argv = argv;
537 sub_info->envp = envp;
538
539 sub_info->cleanup = cleanup;
540 sub_info->init = init;
541 sub_info->data = data;
542 out:
543 return sub_info;
544 }
545 EXPORT_SYMBOL(call_usermodehelper_setup);
546
547 /**
548 * call_usermodehelper_exec - start a usermode application
549 * @sub_info: information about the subprocessa
550 * @wait: wait for the application to finish and return status.
551 * when UMH_NO_WAIT don't wait at all, but you get no useful error back
552 * when the program couldn't be exec'ed. This makes it safe to call
553 * from interrupt context.
554 *
555 * Runs a user-space application. The application is started
556 * asynchronously if wait is not set, and runs as a child of keventd.
557 * (ie. it runs with full root capabilities).
558 */
559 int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
560 {
561 DECLARE_COMPLETION_ONSTACK(done);
562 int retval = 0;
563
564 if (!sub_info->path) {
565 call_usermodehelper_freeinfo(sub_info);
566 return -EINVAL;
567 }
568 helper_lock();
569 if (!khelper_wq || usermodehelper_disabled) {
570 retval = -EBUSY;
571 goto out;
572 }
573 /*
574 * Worker thread must not wait for khelper thread at below
575 * wait_for_completion() if the thread was created with CLONE_VFORK
576 * flag, for khelper thread is already waiting for the thread at
577 * wait_for_completion() in do_fork().
578 */
579 if (wait != UMH_NO_WAIT && current == kmod_thread_locker) {
580 retval = -EBUSY;
581 goto out;
582 }
583
584 /*
585 * Set the completion pointer only if there is a waiter.
586 * This makes it possible to use umh_complete to free
587 * the data structure in case of UMH_NO_WAIT.
588 */
589 sub_info->complete = (wait == UMH_NO_WAIT) ? NULL : &done;
590 sub_info->wait = wait;
591
592 queue_work(khelper_wq, &sub_info->work);
593 if (wait == UMH_NO_WAIT) /* task has freed sub_info */
594 goto unlock;
595
596 if (wait & UMH_KILLABLE) {
597 retval = wait_for_completion_killable(&done);
598 if (!retval)
599 goto wait_done;
600
601 /* umh_complete() will see NULL and free sub_info */
602 if (xchg(&sub_info->complete, NULL))
603 goto unlock;
604 /* fallthrough, umh_complete() was already called */
605 }
606
607 wait_for_completion(&done);
608 wait_done:
609 retval = sub_info->retval;
610 out:
611 call_usermodehelper_freeinfo(sub_info);
612 unlock:
613 helper_unlock();
614 return retval;
615 }
616 EXPORT_SYMBOL(call_usermodehelper_exec);
617
618 /**
619 * call_usermodehelper() - prepare and start a usermode application
620 * @path: path to usermode executable
621 * @argv: arg vector for process
622 * @envp: environment for process
623 * @wait: wait for the application to finish and return status.
624 * when UMH_NO_WAIT don't wait at all, but you get no useful error back
625 * when the program couldn't be exec'ed. This makes it safe to call
626 * from interrupt context.
627 *
628 * This function is the equivalent to use call_usermodehelper_setup() and
629 * call_usermodehelper_exec().
630 */
631 int call_usermodehelper(char *path, char **argv, char **envp, int wait)
632 {
633 struct subprocess_info *info;
634 gfp_t gfp_mask = (wait == UMH_NO_WAIT) ? GFP_ATOMIC : GFP_KERNEL;
635
636 info = call_usermodehelper_setup(path, argv, envp, gfp_mask,
637 NULL, NULL, NULL);
638 if (info == NULL)
639 return -ENOMEM;
640
641 return call_usermodehelper_exec(info, wait);
642 }
643 EXPORT_SYMBOL(call_usermodehelper);
644
645 static int proc_cap_handler(struct ctl_table *table, int write,
646 void __user *buffer, size_t *lenp, loff_t *ppos)
647 {
648 struct ctl_table t;
649 unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
650 kernel_cap_t new_cap;
651 int err, i;
652
653 if (write && (!capable(CAP_SETPCAP) ||
654 !capable(CAP_SYS_MODULE)))
655 return -EPERM;
656
657 /*
658 * convert from the global kernel_cap_t to the ulong array to print to
659 * userspace if this is a read.
660 */
661 spin_lock(&umh_sysctl_lock);
662 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++) {
663 if (table->data == CAP_BSET)
664 cap_array[i] = usermodehelper_bset.cap[i];
665 else if (table->data == CAP_PI)
666 cap_array[i] = usermodehelper_inheritable.cap[i];
667 else
668 BUG();
669 }
670 spin_unlock(&umh_sysctl_lock);
671
672 t = *table;
673 t.data = &cap_array;
674
675 /*
676 * actually read or write and array of ulongs from userspace. Remember
677 * these are least significant 32 bits first
678 */
679 err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
680 if (err < 0)
681 return err;
682
683 /*
684 * convert from the sysctl array of ulongs to the kernel_cap_t
685 * internal representation
686 */
687 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
688 new_cap.cap[i] = cap_array[i];
689
690 /*
691 * Drop everything not in the new_cap (but don't add things)
692 */
693 spin_lock(&umh_sysctl_lock);
694 if (write) {
695 if (table->data == CAP_BSET)
696 usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
697 if (table->data == CAP_PI)
698 usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
699 }
700 spin_unlock(&umh_sysctl_lock);
701
702 return 0;
703 }
704
705 struct ctl_table usermodehelper_table[] = {
706 {
707 .procname = "bset",
708 .data = CAP_BSET,
709 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
710 .mode = 0600,
711 .proc_handler = proc_cap_handler,
712 },
713 {
714 .procname = "inheritable",
715 .data = CAP_PI,
716 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
717 .mode = 0600,
718 .proc_handler = proc_cap_handler,
719 },
720 { }
721 };
722
723 void __init usermodehelper_init(void)
724 {
725 khelper_wq = create_singlethread_workqueue("khelper");
726 BUG_ON(!khelper_wq);
727 }
This page took 0.054675 seconds and 5 git commands to generate.