usermodehelper: don't use CLONE_VFORK for ____call_usermodehelper()
[deliverable/linux.git] / kernel / kmod.c
1 /*
2 kmod, the new module loader (replaces kerneld)
3 Kirk Petersen
4
5 Reorganized not to be a daemon by Adam Richter, with guidance
6 from Greg Zornetzer.
7
8 Modified to avoid chroot and file sharing problems.
9 Mikael Pettersson
10
11 Limit the concurrent number of kmod modprobes to catch loops from
12 "modprobe needs a service that is in a module".
13 Keith Owens <kaos@ocs.com.au> December 1999
14
15 Unblock all signals when we exec a usermode process.
16 Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
17
18 call_usermodehelper wait flag, and remove exec_usermodehelper.
19 Rusty Russell <rusty@rustcorp.com.au> Jan 2003
20 */
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/syscalls.h>
24 #include <linux/unistd.h>
25 #include <linux/kmod.h>
26 #include <linux/slab.h>
27 #include <linux/completion.h>
28 #include <linux/cred.h>
29 #include <linux/file.h>
30 #include <linux/fdtable.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/mount.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/resource.h>
37 #include <linux/notifier.h>
38 #include <linux/suspend.h>
39 #include <linux/rwsem.h>
40 #include <linux/ptrace.h>
41 #include <linux/async.h>
42 #include <asm/uaccess.h>
43
44 #include <trace/events/module.h>
45
46 extern int max_threads;
47
48 static struct workqueue_struct *khelper_wq;
49
50 /*
51 * kmod_thread_locker is used for deadlock avoidance. There is no explicit
52 * locking to protect this global - it is private to the singleton khelper
53 * thread and should only ever be modified by that thread.
54 */
55 static const struct task_struct *kmod_thread_locker;
56
57 #define CAP_BSET (void *)1
58 #define CAP_PI (void *)2
59
60 static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
61 static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
62 static DEFINE_SPINLOCK(umh_sysctl_lock);
63 static DECLARE_RWSEM(umhelper_sem);
64
65 #ifdef CONFIG_MODULES
66
67 /*
68 modprobe_path is set via /proc/sys.
69 */
70 char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
71
72 static void free_modprobe_argv(struct subprocess_info *info)
73 {
74 kfree(info->argv[3]); /* check call_modprobe() */
75 kfree(info->argv);
76 }
77
78 static int call_modprobe(char *module_name, int wait)
79 {
80 struct subprocess_info *info;
81 static char *envp[] = {
82 "HOME=/",
83 "TERM=linux",
84 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
85 NULL
86 };
87
88 char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL);
89 if (!argv)
90 goto out;
91
92 module_name = kstrdup(module_name, GFP_KERNEL);
93 if (!module_name)
94 goto free_argv;
95
96 argv[0] = modprobe_path;
97 argv[1] = "-q";
98 argv[2] = "--";
99 argv[3] = module_name; /* check free_modprobe_argv() */
100 argv[4] = NULL;
101
102 info = call_usermodehelper_setup(modprobe_path, argv, envp, GFP_KERNEL,
103 NULL, free_modprobe_argv, NULL);
104 if (!info)
105 goto free_module_name;
106
107 return call_usermodehelper_exec(info, wait | UMH_KILLABLE);
108
109 free_module_name:
110 kfree(module_name);
111 free_argv:
112 kfree(argv);
113 out:
114 return -ENOMEM;
115 }
116
117 /**
118 * __request_module - try to load a kernel module
119 * @wait: wait (or not) for the operation to complete
120 * @fmt: printf style format string for the name of the module
121 * @...: arguments as specified in the format string
122 *
123 * Load a module using the user mode module loader. The function returns
124 * zero on success or a negative errno code on failure. Note that a
125 * successful module load does not mean the module did not then unload
126 * and exit on an error of its own. Callers must check that the service
127 * they requested is now available not blindly invoke it.
128 *
129 * If module auto-loading support is disabled then this function
130 * becomes a no-operation.
131 */
132 int __request_module(bool wait, const char *fmt, ...)
133 {
134 va_list args;
135 char module_name[MODULE_NAME_LEN];
136 unsigned int max_modprobes;
137 int ret;
138 static atomic_t kmod_concurrent = ATOMIC_INIT(0);
139 #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */
140 static int kmod_loop_msg;
141
142 /*
143 * We don't allow synchronous module loading from async. Module
144 * init may invoke async_synchronize_full() which will end up
145 * waiting for this task which already is waiting for the module
146 * loading to complete, leading to a deadlock.
147 */
148 WARN_ON_ONCE(wait && current_is_async());
149
150 if (!modprobe_path[0])
151 return 0;
152
153 va_start(args, fmt);
154 ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
155 va_end(args);
156 if (ret >= MODULE_NAME_LEN)
157 return -ENAMETOOLONG;
158
159 ret = security_kernel_module_request(module_name);
160 if (ret)
161 return ret;
162
163 /* If modprobe needs a service that is in a module, we get a recursive
164 * loop. Limit the number of running kmod threads to max_threads/2 or
165 * MAX_KMOD_CONCURRENT, whichever is the smaller. A cleaner method
166 * would be to run the parents of this process, counting how many times
167 * kmod was invoked. That would mean accessing the internals of the
168 * process tables to get the command line, proc_pid_cmdline is static
169 * and it is not worth changing the proc code just to handle this case.
170 * KAO.
171 *
172 * "trace the ppid" is simple, but will fail if someone's
173 * parent exits. I think this is as good as it gets. --RR
174 */
175 max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
176 atomic_inc(&kmod_concurrent);
177 if (atomic_read(&kmod_concurrent) > max_modprobes) {
178 /* We may be blaming an innocent here, but unlikely */
179 if (kmod_loop_msg < 5) {
180 printk(KERN_ERR
181 "request_module: runaway loop modprobe %s\n",
182 module_name);
183 kmod_loop_msg++;
184 }
185 atomic_dec(&kmod_concurrent);
186 return -ENOMEM;
187 }
188
189 trace_module_request(module_name, wait, _RET_IP_);
190
191 ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
192
193 atomic_dec(&kmod_concurrent);
194 return ret;
195 }
196 EXPORT_SYMBOL(__request_module);
197 #endif /* CONFIG_MODULES */
198
199 static void call_usermodehelper_freeinfo(struct subprocess_info *info)
200 {
201 if (info->cleanup)
202 (*info->cleanup)(info);
203 kfree(info);
204 }
205
206 static void umh_complete(struct subprocess_info *sub_info)
207 {
208 struct completion *comp = xchg(&sub_info->complete, NULL);
209 /*
210 * See call_usermodehelper_exec(). If xchg() returns NULL
211 * we own sub_info, the UMH_KILLABLE caller has gone away
212 * or the caller used UMH_NO_WAIT.
213 */
214 if (comp)
215 complete(comp);
216 else
217 call_usermodehelper_freeinfo(sub_info);
218 }
219
220 /*
221 * This is the task which runs the usermode application
222 */
223 static int ____call_usermodehelper(void *data)
224 {
225 struct subprocess_info *sub_info = data;
226 struct cred *new;
227 int retval;
228
229 spin_lock_irq(&current->sighand->siglock);
230 flush_signal_handlers(current, 1);
231 spin_unlock_irq(&current->sighand->siglock);
232
233 /* We can run anywhere, unlike our parent keventd(). */
234 set_cpus_allowed_ptr(current, cpu_all_mask);
235
236 /*
237 * Our parent is keventd, which runs with elevated scheduling priority.
238 * Avoid propagating that into the userspace child.
239 */
240 set_user_nice(current, 0);
241
242 retval = -ENOMEM;
243 new = prepare_kernel_cred(current);
244 if (!new)
245 goto out;
246
247 spin_lock(&umh_sysctl_lock);
248 new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
249 new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
250 new->cap_inheritable);
251 spin_unlock(&umh_sysctl_lock);
252
253 if (sub_info->init) {
254 retval = sub_info->init(sub_info, new);
255 if (retval) {
256 abort_creds(new);
257 goto out;
258 }
259 }
260
261 commit_creds(new);
262
263 retval = do_execve(getname_kernel(sub_info->path),
264 (const char __user *const __user *)sub_info->argv,
265 (const char __user *const __user *)sub_info->envp);
266 out:
267 sub_info->retval = retval;
268 /* wait_for_helper() will call umh_complete if UHM_WAIT_PROC. */
269 if (!(sub_info->wait & UMH_WAIT_PROC))
270 umh_complete(sub_info);
271 if (!retval)
272 return 0;
273 do_exit(0);
274 }
275
276 static int call_helper(void *data)
277 {
278 /* Worker thread started blocking khelper thread. */
279 kmod_thread_locker = current;
280 return ____call_usermodehelper(data);
281 }
282
283 /* Keventd can't block, but this (a child) can. */
284 static int wait_for_helper(void *data)
285 {
286 struct subprocess_info *sub_info = data;
287 pid_t pid;
288
289 /* If SIGCLD is ignored sys_wait4 won't populate the status. */
290 kernel_sigaction(SIGCHLD, SIG_DFL);
291 pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
292 if (pid < 0) {
293 sub_info->retval = pid;
294 } else {
295 int ret = -ECHILD;
296 /*
297 * Normally it is bogus to call wait4() from in-kernel because
298 * wait4() wants to write the exit code to a userspace address.
299 * But wait_for_helper() always runs as keventd, and put_user()
300 * to a kernel address works OK for kernel threads, due to their
301 * having an mm_segment_t which spans the entire address space.
302 *
303 * Thus the __user pointer cast is valid here.
304 */
305 sys_wait4(pid, (int __user *)&ret, 0, NULL);
306
307 /*
308 * If ret is 0, either ____call_usermodehelper failed and the
309 * real error code is already in sub_info->retval or
310 * sub_info->retval is 0 anyway, so don't mess with it then.
311 */
312 if (ret)
313 sub_info->retval = ret;
314 }
315
316 umh_complete(sub_info);
317 do_exit(0);
318 }
319
320 /* This is run by khelper thread */
321 static void __call_usermodehelper(struct work_struct *work)
322 {
323 struct subprocess_info *sub_info =
324 container_of(work, struct subprocess_info, work);
325 pid_t pid;
326
327 if (sub_info->wait & UMH_WAIT_PROC)
328 pid = kernel_thread(wait_for_helper, sub_info,
329 CLONE_FS | CLONE_FILES | SIGCHLD);
330 else {
331 pid = kernel_thread(call_helper, sub_info, SIGCHLD);
332 /* Worker thread stopped blocking khelper thread. */
333 kmod_thread_locker = NULL;
334 }
335
336 if (pid < 0) {
337 sub_info->retval = pid;
338 umh_complete(sub_info);
339 }
340 }
341
342 /*
343 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
344 * (used for preventing user land processes from being created after the user
345 * land has been frozen during a system-wide hibernation or suspend operation).
346 * Should always be manipulated under umhelper_sem acquired for write.
347 */
348 static enum umh_disable_depth usermodehelper_disabled = UMH_DISABLED;
349
350 /* Number of helpers running */
351 static atomic_t running_helpers = ATOMIC_INIT(0);
352
353 /*
354 * Wait queue head used by usermodehelper_disable() to wait for all running
355 * helpers to finish.
356 */
357 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
358
359 /*
360 * Used by usermodehelper_read_lock_wait() to wait for usermodehelper_disabled
361 * to become 'false'.
362 */
363 static DECLARE_WAIT_QUEUE_HEAD(usermodehelper_disabled_waitq);
364
365 /*
366 * Time to wait for running_helpers to become zero before the setting of
367 * usermodehelper_disabled in usermodehelper_disable() fails
368 */
369 #define RUNNING_HELPERS_TIMEOUT (5 * HZ)
370
371 int usermodehelper_read_trylock(void)
372 {
373 DEFINE_WAIT(wait);
374 int ret = 0;
375
376 down_read(&umhelper_sem);
377 for (;;) {
378 prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
379 TASK_INTERRUPTIBLE);
380 if (!usermodehelper_disabled)
381 break;
382
383 if (usermodehelper_disabled == UMH_DISABLED)
384 ret = -EAGAIN;
385
386 up_read(&umhelper_sem);
387
388 if (ret)
389 break;
390
391 schedule();
392 try_to_freeze();
393
394 down_read(&umhelper_sem);
395 }
396 finish_wait(&usermodehelper_disabled_waitq, &wait);
397 return ret;
398 }
399 EXPORT_SYMBOL_GPL(usermodehelper_read_trylock);
400
401 long usermodehelper_read_lock_wait(long timeout)
402 {
403 DEFINE_WAIT(wait);
404
405 if (timeout < 0)
406 return -EINVAL;
407
408 down_read(&umhelper_sem);
409 for (;;) {
410 prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
411 TASK_UNINTERRUPTIBLE);
412 if (!usermodehelper_disabled)
413 break;
414
415 up_read(&umhelper_sem);
416
417 timeout = schedule_timeout(timeout);
418 if (!timeout)
419 break;
420
421 down_read(&umhelper_sem);
422 }
423 finish_wait(&usermodehelper_disabled_waitq, &wait);
424 return timeout;
425 }
426 EXPORT_SYMBOL_GPL(usermodehelper_read_lock_wait);
427
428 void usermodehelper_read_unlock(void)
429 {
430 up_read(&umhelper_sem);
431 }
432 EXPORT_SYMBOL_GPL(usermodehelper_read_unlock);
433
434 /**
435 * __usermodehelper_set_disable_depth - Modify usermodehelper_disabled.
436 * @depth: New value to assign to usermodehelper_disabled.
437 *
438 * Change the value of usermodehelper_disabled (under umhelper_sem locked for
439 * writing) and wakeup tasks waiting for it to change.
440 */
441 void __usermodehelper_set_disable_depth(enum umh_disable_depth depth)
442 {
443 down_write(&umhelper_sem);
444 usermodehelper_disabled = depth;
445 wake_up(&usermodehelper_disabled_waitq);
446 up_write(&umhelper_sem);
447 }
448
449 /**
450 * __usermodehelper_disable - Prevent new helpers from being started.
451 * @depth: New value to assign to usermodehelper_disabled.
452 *
453 * Set usermodehelper_disabled to @depth and wait for running helpers to exit.
454 */
455 int __usermodehelper_disable(enum umh_disable_depth depth)
456 {
457 long retval;
458
459 if (!depth)
460 return -EINVAL;
461
462 down_write(&umhelper_sem);
463 usermodehelper_disabled = depth;
464 up_write(&umhelper_sem);
465
466 /*
467 * From now on call_usermodehelper_exec() won't start any new
468 * helpers, so it is sufficient if running_helpers turns out to
469 * be zero at one point (it may be increased later, but that
470 * doesn't matter).
471 */
472 retval = wait_event_timeout(running_helpers_waitq,
473 atomic_read(&running_helpers) == 0,
474 RUNNING_HELPERS_TIMEOUT);
475 if (retval)
476 return 0;
477
478 __usermodehelper_set_disable_depth(UMH_ENABLED);
479 return -EAGAIN;
480 }
481
482 static void helper_lock(void)
483 {
484 atomic_inc(&running_helpers);
485 smp_mb__after_atomic();
486 }
487
488 static void helper_unlock(void)
489 {
490 if (atomic_dec_and_test(&running_helpers))
491 wake_up(&running_helpers_waitq);
492 }
493
494 /**
495 * call_usermodehelper_setup - prepare to call a usermode helper
496 * @path: path to usermode executable
497 * @argv: arg vector for process
498 * @envp: environment for process
499 * @gfp_mask: gfp mask for memory allocation
500 * @cleanup: a cleanup function
501 * @init: an init function
502 * @data: arbitrary context sensitive data
503 *
504 * Returns either %NULL on allocation failure, or a subprocess_info
505 * structure. This should be passed to call_usermodehelper_exec to
506 * exec the process and free the structure.
507 *
508 * The init function is used to customize the helper process prior to
509 * exec. A non-zero return code causes the process to error out, exit,
510 * and return the failure to the calling process
511 *
512 * The cleanup function is just before ethe subprocess_info is about to
513 * be freed. This can be used for freeing the argv and envp. The
514 * Function must be runnable in either a process context or the
515 * context in which call_usermodehelper_exec is called.
516 */
517 struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
518 char **envp, gfp_t gfp_mask,
519 int (*init)(struct subprocess_info *info, struct cred *new),
520 void (*cleanup)(struct subprocess_info *info),
521 void *data)
522 {
523 struct subprocess_info *sub_info;
524 sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
525 if (!sub_info)
526 goto out;
527
528 INIT_WORK(&sub_info->work, __call_usermodehelper);
529 sub_info->path = path;
530 sub_info->argv = argv;
531 sub_info->envp = envp;
532
533 sub_info->cleanup = cleanup;
534 sub_info->init = init;
535 sub_info->data = data;
536 out:
537 return sub_info;
538 }
539 EXPORT_SYMBOL(call_usermodehelper_setup);
540
541 /**
542 * call_usermodehelper_exec - start a usermode application
543 * @sub_info: information about the subprocessa
544 * @wait: wait for the application to finish and return status.
545 * when UMH_NO_WAIT don't wait at all, but you get no useful error back
546 * when the program couldn't be exec'ed. This makes it safe to call
547 * from interrupt context.
548 *
549 * Runs a user-space application. The application is started
550 * asynchronously if wait is not set, and runs as a child of keventd.
551 * (ie. it runs with full root capabilities).
552 */
553 int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
554 {
555 DECLARE_COMPLETION_ONSTACK(done);
556 int retval = 0;
557
558 if (!sub_info->path) {
559 call_usermodehelper_freeinfo(sub_info);
560 return -EINVAL;
561 }
562 helper_lock();
563 if (!khelper_wq || usermodehelper_disabled) {
564 retval = -EBUSY;
565 goto out;
566 }
567 /*
568 * Worker thread must not wait for khelper thread at below
569 * wait_for_completion() if the thread was created with CLONE_VFORK
570 * flag, for khelper thread is already waiting for the thread at
571 * wait_for_completion() in do_fork().
572 */
573 if (wait != UMH_NO_WAIT && current == kmod_thread_locker) {
574 retval = -EBUSY;
575 goto out;
576 }
577
578 /*
579 * Set the completion pointer only if there is a waiter.
580 * This makes it possible to use umh_complete to free
581 * the data structure in case of UMH_NO_WAIT.
582 */
583 sub_info->complete = (wait == UMH_NO_WAIT) ? NULL : &done;
584 sub_info->wait = wait;
585
586 queue_work(khelper_wq, &sub_info->work);
587 if (wait == UMH_NO_WAIT) /* task has freed sub_info */
588 goto unlock;
589
590 if (wait & UMH_KILLABLE) {
591 retval = wait_for_completion_killable(&done);
592 if (!retval)
593 goto wait_done;
594
595 /* umh_complete() will see NULL and free sub_info */
596 if (xchg(&sub_info->complete, NULL))
597 goto unlock;
598 /* fallthrough, umh_complete() was already called */
599 }
600
601 wait_for_completion(&done);
602 wait_done:
603 retval = sub_info->retval;
604 out:
605 call_usermodehelper_freeinfo(sub_info);
606 unlock:
607 helper_unlock();
608 return retval;
609 }
610 EXPORT_SYMBOL(call_usermodehelper_exec);
611
612 /**
613 * call_usermodehelper() - prepare and start a usermode application
614 * @path: path to usermode executable
615 * @argv: arg vector for process
616 * @envp: environment for process
617 * @wait: wait for the application to finish and return status.
618 * when UMH_NO_WAIT don't wait at all, but you get no useful error back
619 * when the program couldn't be exec'ed. This makes it safe to call
620 * from interrupt context.
621 *
622 * This function is the equivalent to use call_usermodehelper_setup() and
623 * call_usermodehelper_exec().
624 */
625 int call_usermodehelper(char *path, char **argv, char **envp, int wait)
626 {
627 struct subprocess_info *info;
628 gfp_t gfp_mask = (wait == UMH_NO_WAIT) ? GFP_ATOMIC : GFP_KERNEL;
629
630 info = call_usermodehelper_setup(path, argv, envp, gfp_mask,
631 NULL, NULL, NULL);
632 if (info == NULL)
633 return -ENOMEM;
634
635 return call_usermodehelper_exec(info, wait);
636 }
637 EXPORT_SYMBOL(call_usermodehelper);
638
639 static int proc_cap_handler(struct ctl_table *table, int write,
640 void __user *buffer, size_t *lenp, loff_t *ppos)
641 {
642 struct ctl_table t;
643 unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
644 kernel_cap_t new_cap;
645 int err, i;
646
647 if (write && (!capable(CAP_SETPCAP) ||
648 !capable(CAP_SYS_MODULE)))
649 return -EPERM;
650
651 /*
652 * convert from the global kernel_cap_t to the ulong array to print to
653 * userspace if this is a read.
654 */
655 spin_lock(&umh_sysctl_lock);
656 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++) {
657 if (table->data == CAP_BSET)
658 cap_array[i] = usermodehelper_bset.cap[i];
659 else if (table->data == CAP_PI)
660 cap_array[i] = usermodehelper_inheritable.cap[i];
661 else
662 BUG();
663 }
664 spin_unlock(&umh_sysctl_lock);
665
666 t = *table;
667 t.data = &cap_array;
668
669 /*
670 * actually read or write and array of ulongs from userspace. Remember
671 * these are least significant 32 bits first
672 */
673 err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
674 if (err < 0)
675 return err;
676
677 /*
678 * convert from the sysctl array of ulongs to the kernel_cap_t
679 * internal representation
680 */
681 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
682 new_cap.cap[i] = cap_array[i];
683
684 /*
685 * Drop everything not in the new_cap (but don't add things)
686 */
687 spin_lock(&umh_sysctl_lock);
688 if (write) {
689 if (table->data == CAP_BSET)
690 usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
691 if (table->data == CAP_PI)
692 usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
693 }
694 spin_unlock(&umh_sysctl_lock);
695
696 return 0;
697 }
698
699 struct ctl_table usermodehelper_table[] = {
700 {
701 .procname = "bset",
702 .data = CAP_BSET,
703 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
704 .mode = 0600,
705 .proc_handler = proc_cap_handler,
706 },
707 {
708 .procname = "inheritable",
709 .data = CAP_PI,
710 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
711 .mode = 0600,
712 .proc_handler = proc_cap_handler,
713 },
714 { }
715 };
716
717 void __init usermodehelper_init(void)
718 {
719 khelper_wq = create_singlethread_workqueue("khelper");
720 BUG_ON(!khelper_wq);
721 }
This page took 0.063749 seconds and 6 git commands to generate.