550294d58a02ef67c76b17440cdaee3675690047
[deliverable/linux.git] / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 /*
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
64 */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81 raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86 return &(kretprobe_table_locks[hash].lock);
87 }
88
89 /*
90 * Normally, functions that we'd want to prohibit kprobes in, are marked
91 * __kprobes. But, there are cases where such functions already belong to
92 * a different section (__sched for preempt_schedule)
93 *
94 * For such cases, we now have a blacklist
95 */
96 static struct kprobe_blackpoint kprobe_blacklist[] = {
97 {"preempt_schedule",},
98 {"native_get_debugreg",},
99 {"irq_entries_start",},
100 {"common_interrupt",},
101 {"mcount",}, /* mcount can be called from everywhere */
102 {NULL} /* Terminator */
103 };
104
105 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106 /*
107 * kprobe->ainsn.insn points to the copy of the instruction to be
108 * single-stepped. x86_64, POWER4 and above have no-exec support and
109 * stepping on the instruction on a vmalloced/kmalloced/data page
110 * is a recipe for disaster
111 */
112 struct kprobe_insn_page {
113 struct list_head list;
114 kprobe_opcode_t *insns; /* Page of instruction slots */
115 int nused;
116 int ngarbage;
117 char slot_used[];
118 };
119
120 #define KPROBE_INSN_PAGE_SIZE(slots) \
121 (offsetof(struct kprobe_insn_page, slot_used) + \
122 (sizeof(char) * (slots)))
123
124 struct kprobe_insn_cache {
125 struct list_head pages; /* list of kprobe_insn_page */
126 size_t insn_size; /* size of instruction slot */
127 int nr_garbage;
128 };
129
130 static int slots_per_page(struct kprobe_insn_cache *c)
131 {
132 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
133 }
134
135 enum kprobe_slot_state {
136 SLOT_CLEAN = 0,
137 SLOT_DIRTY = 1,
138 SLOT_USED = 2,
139 };
140
141 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */
142 static struct kprobe_insn_cache kprobe_insn_slots = {
143 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144 .insn_size = MAX_INSN_SIZE,
145 .nr_garbage = 0,
146 };
147 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148
149 /**
150 * __get_insn_slot() - Find a slot on an executable page for an instruction.
151 * We allocate an executable page if there's no room on existing ones.
152 */
153 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
154 {
155 struct kprobe_insn_page *kip;
156
157 retry:
158 list_for_each_entry(kip, &c->pages, list) {
159 if (kip->nused < slots_per_page(c)) {
160 int i;
161 for (i = 0; i < slots_per_page(c); i++) {
162 if (kip->slot_used[i] == SLOT_CLEAN) {
163 kip->slot_used[i] = SLOT_USED;
164 kip->nused++;
165 return kip->insns + (i * c->insn_size);
166 }
167 }
168 /* kip->nused is broken. Fix it. */
169 kip->nused = slots_per_page(c);
170 WARN_ON(1);
171 }
172 }
173
174 /* If there are any garbage slots, collect it and try again. */
175 if (c->nr_garbage && collect_garbage_slots(c) == 0)
176 goto retry;
177
178 /* All out of space. Need to allocate a new page. */
179 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180 if (!kip)
181 return NULL;
182
183 /*
184 * Use module_alloc so this page is within +/- 2GB of where the
185 * kernel image and loaded module images reside. This is required
186 * so x86_64 can correctly handle the %rip-relative fixups.
187 */
188 kip->insns = module_alloc(PAGE_SIZE);
189 if (!kip->insns) {
190 kfree(kip);
191 return NULL;
192 }
193 INIT_LIST_HEAD(&kip->list);
194 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195 kip->slot_used[0] = SLOT_USED;
196 kip->nused = 1;
197 kip->ngarbage = 0;
198 list_add(&kip->list, &c->pages);
199 return kip->insns;
200 }
201
202
203 kprobe_opcode_t __kprobes *get_insn_slot(void)
204 {
205 kprobe_opcode_t *ret = NULL;
206
207 mutex_lock(&kprobe_insn_mutex);
208 ret = __get_insn_slot(&kprobe_insn_slots);
209 mutex_unlock(&kprobe_insn_mutex);
210
211 return ret;
212 }
213
214 /* Return 1 if all garbages are collected, otherwise 0. */
215 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
216 {
217 kip->slot_used[idx] = SLOT_CLEAN;
218 kip->nused--;
219 if (kip->nused == 0) {
220 /*
221 * Page is no longer in use. Free it unless
222 * it's the last one. We keep the last one
223 * so as not to have to set it up again the
224 * next time somebody inserts a probe.
225 */
226 if (!list_is_singular(&kip->list)) {
227 list_del(&kip->list);
228 module_free(NULL, kip->insns);
229 kfree(kip);
230 }
231 return 1;
232 }
233 return 0;
234 }
235
236 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
237 {
238 struct kprobe_insn_page *kip, *next;
239
240 /* Ensure no-one is interrupted on the garbages */
241 synchronize_sched();
242
243 list_for_each_entry_safe(kip, next, &c->pages, list) {
244 int i;
245 if (kip->ngarbage == 0)
246 continue;
247 kip->ngarbage = 0; /* we will collect all garbages */
248 for (i = 0; i < slots_per_page(c); i++) {
249 if (kip->slot_used[i] == SLOT_DIRTY &&
250 collect_one_slot(kip, i))
251 break;
252 }
253 }
254 c->nr_garbage = 0;
255 return 0;
256 }
257
258 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259 kprobe_opcode_t *slot, int dirty)
260 {
261 struct kprobe_insn_page *kip;
262
263 list_for_each_entry(kip, &c->pages, list) {
264 long idx = ((long)slot - (long)kip->insns) /
265 (c->insn_size * sizeof(kprobe_opcode_t));
266 if (idx >= 0 && idx < slots_per_page(c)) {
267 WARN_ON(kip->slot_used[idx] != SLOT_USED);
268 if (dirty) {
269 kip->slot_used[idx] = SLOT_DIRTY;
270 kip->ngarbage++;
271 if (++c->nr_garbage > slots_per_page(c))
272 collect_garbage_slots(c);
273 } else
274 collect_one_slot(kip, idx);
275 return;
276 }
277 }
278 /* Could not free this slot. */
279 WARN_ON(1);
280 }
281
282 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
283 {
284 mutex_lock(&kprobe_insn_mutex);
285 __free_insn_slot(&kprobe_insn_slots, slot, dirty);
286 mutex_unlock(&kprobe_insn_mutex);
287 }
288 #ifdef CONFIG_OPTPROBES
289 /* For optimized_kprobe buffer */
290 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291 static struct kprobe_insn_cache kprobe_optinsn_slots = {
292 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293 /* .insn_size is initialized later */
294 .nr_garbage = 0,
295 };
296 /* Get a slot for optimized_kprobe buffer */
297 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
298 {
299 kprobe_opcode_t *ret = NULL;
300
301 mutex_lock(&kprobe_optinsn_mutex);
302 ret = __get_insn_slot(&kprobe_optinsn_slots);
303 mutex_unlock(&kprobe_optinsn_mutex);
304
305 return ret;
306 }
307
308 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
309 {
310 mutex_lock(&kprobe_optinsn_mutex);
311 __free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312 mutex_unlock(&kprobe_optinsn_mutex);
313 }
314 #endif
315 #endif
316
317 /* We have preemption disabled.. so it is safe to use __ versions */
318 static inline void set_kprobe_instance(struct kprobe *kp)
319 {
320 __this_cpu_write(kprobe_instance, kp);
321 }
322
323 static inline void reset_kprobe_instance(void)
324 {
325 __this_cpu_write(kprobe_instance, NULL);
326 }
327
328 /*
329 * This routine is called either:
330 * - under the kprobe_mutex - during kprobe_[un]register()
331 * OR
332 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
333 */
334 struct kprobe __kprobes *get_kprobe(void *addr)
335 {
336 struct hlist_head *head;
337 struct hlist_node *node;
338 struct kprobe *p;
339
340 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
341 hlist_for_each_entry_rcu(p, node, head, hlist) {
342 if (p->addr == addr)
343 return p;
344 }
345
346 return NULL;
347 }
348
349 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
350
351 /* Return true if the kprobe is an aggregator */
352 static inline int kprobe_aggrprobe(struct kprobe *p)
353 {
354 return p->pre_handler == aggr_pre_handler;
355 }
356
357 /* Return true(!0) if the kprobe is unused */
358 static inline int kprobe_unused(struct kprobe *p)
359 {
360 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
361 list_empty(&p->list);
362 }
363
364 /*
365 * Keep all fields in the kprobe consistent
366 */
367 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
368 {
369 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
370 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
371 }
372
373 #ifdef CONFIG_OPTPROBES
374 /* NOTE: change this value only with kprobe_mutex held */
375 static bool kprobes_allow_optimization;
376
377 /*
378 * Call all pre_handler on the list, but ignores its return value.
379 * This must be called from arch-dep optimized caller.
380 */
381 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
382 {
383 struct kprobe *kp;
384
385 list_for_each_entry_rcu(kp, &p->list, list) {
386 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
387 set_kprobe_instance(kp);
388 kp->pre_handler(kp, regs);
389 }
390 reset_kprobe_instance();
391 }
392 }
393
394 /* Free optimized instructions and optimized_kprobe */
395 static __kprobes void free_aggr_kprobe(struct kprobe *p)
396 {
397 struct optimized_kprobe *op;
398
399 op = container_of(p, struct optimized_kprobe, kp);
400 arch_remove_optimized_kprobe(op);
401 arch_remove_kprobe(p);
402 kfree(op);
403 }
404
405 /* Return true(!0) if the kprobe is ready for optimization. */
406 static inline int kprobe_optready(struct kprobe *p)
407 {
408 struct optimized_kprobe *op;
409
410 if (kprobe_aggrprobe(p)) {
411 op = container_of(p, struct optimized_kprobe, kp);
412 return arch_prepared_optinsn(&op->optinsn);
413 }
414
415 return 0;
416 }
417
418 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
419 static inline int kprobe_disarmed(struct kprobe *p)
420 {
421 struct optimized_kprobe *op;
422
423 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
424 if (!kprobe_aggrprobe(p))
425 return kprobe_disabled(p);
426
427 op = container_of(p, struct optimized_kprobe, kp);
428
429 return kprobe_disabled(p) && list_empty(&op->list);
430 }
431
432 /* Return true(!0) if the probe is queued on (un)optimizing lists */
433 static int __kprobes kprobe_queued(struct kprobe *p)
434 {
435 struct optimized_kprobe *op;
436
437 if (kprobe_aggrprobe(p)) {
438 op = container_of(p, struct optimized_kprobe, kp);
439 if (!list_empty(&op->list))
440 return 1;
441 }
442 return 0;
443 }
444
445 /*
446 * Return an optimized kprobe whose optimizing code replaces
447 * instructions including addr (exclude breakpoint).
448 */
449 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
450 {
451 int i;
452 struct kprobe *p = NULL;
453 struct optimized_kprobe *op;
454
455 /* Don't check i == 0, since that is a breakpoint case. */
456 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
457 p = get_kprobe((void *)(addr - i));
458
459 if (p && kprobe_optready(p)) {
460 op = container_of(p, struct optimized_kprobe, kp);
461 if (arch_within_optimized_kprobe(op, addr))
462 return p;
463 }
464
465 return NULL;
466 }
467
468 /* Optimization staging list, protected by kprobe_mutex */
469 static LIST_HEAD(optimizing_list);
470 static LIST_HEAD(unoptimizing_list);
471
472 static void kprobe_optimizer(struct work_struct *work);
473 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
474 #define OPTIMIZE_DELAY 5
475
476 /*
477 * Optimize (replace a breakpoint with a jump) kprobes listed on
478 * optimizing_list.
479 */
480 static __kprobes void do_optimize_kprobes(void)
481 {
482 /* Optimization never be done when disarmed */
483 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
484 list_empty(&optimizing_list))
485 return;
486
487 /*
488 * The optimization/unoptimization refers online_cpus via
489 * stop_machine() and cpu-hotplug modifies online_cpus.
490 * And same time, text_mutex will be held in cpu-hotplug and here.
491 * This combination can cause a deadlock (cpu-hotplug try to lock
492 * text_mutex but stop_machine can not be done because online_cpus
493 * has been changed)
494 * To avoid this deadlock, we need to call get_online_cpus()
495 * for preventing cpu-hotplug outside of text_mutex locking.
496 */
497 get_online_cpus();
498 mutex_lock(&text_mutex);
499 arch_optimize_kprobes(&optimizing_list);
500 mutex_unlock(&text_mutex);
501 put_online_cpus();
502 }
503
504 /*
505 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
506 * if need) kprobes listed on unoptimizing_list.
507 */
508 static __kprobes void do_unoptimize_kprobes(struct list_head *free_list)
509 {
510 struct optimized_kprobe *op, *tmp;
511
512 /* Unoptimization must be done anytime */
513 if (list_empty(&unoptimizing_list))
514 return;
515
516 /* Ditto to do_optimize_kprobes */
517 get_online_cpus();
518 mutex_lock(&text_mutex);
519 arch_unoptimize_kprobes(&unoptimizing_list, free_list);
520 /* Loop free_list for disarming */
521 list_for_each_entry_safe(op, tmp, free_list, list) {
522 /* Disarm probes if marked disabled */
523 if (kprobe_disabled(&op->kp))
524 arch_disarm_kprobe(&op->kp);
525 if (kprobe_unused(&op->kp)) {
526 /*
527 * Remove unused probes from hash list. After waiting
528 * for synchronization, these probes are reclaimed.
529 * (reclaiming is done by do_free_cleaned_kprobes.)
530 */
531 hlist_del_rcu(&op->kp.hlist);
532 } else
533 list_del_init(&op->list);
534 }
535 mutex_unlock(&text_mutex);
536 put_online_cpus();
537 }
538
539 /* Reclaim all kprobes on the free_list */
540 static __kprobes void do_free_cleaned_kprobes(struct list_head *free_list)
541 {
542 struct optimized_kprobe *op, *tmp;
543
544 list_for_each_entry_safe(op, tmp, free_list, list) {
545 BUG_ON(!kprobe_unused(&op->kp));
546 list_del_init(&op->list);
547 free_aggr_kprobe(&op->kp);
548 }
549 }
550
551 /* Start optimizer after OPTIMIZE_DELAY passed */
552 static __kprobes void kick_kprobe_optimizer(void)
553 {
554 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
555 }
556
557 /* Kprobe jump optimizer */
558 static __kprobes void kprobe_optimizer(struct work_struct *work)
559 {
560 LIST_HEAD(free_list);
561
562 mutex_lock(&kprobe_mutex);
563 /* Lock modules while optimizing kprobes */
564 mutex_lock(&module_mutex);
565
566 /*
567 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
568 * kprobes before waiting for quiesence period.
569 */
570 do_unoptimize_kprobes(&free_list);
571
572 /*
573 * Step 2: Wait for quiesence period to ensure all running interrupts
574 * are done. Because optprobe may modify multiple instructions
575 * there is a chance that Nth instruction is interrupted. In that
576 * case, running interrupt can return to 2nd-Nth byte of jump
577 * instruction. This wait is for avoiding it.
578 */
579 synchronize_sched();
580
581 /* Step 3: Optimize kprobes after quiesence period */
582 do_optimize_kprobes();
583
584 /* Step 4: Free cleaned kprobes after quiesence period */
585 do_free_cleaned_kprobes(&free_list);
586
587 mutex_unlock(&module_mutex);
588 mutex_unlock(&kprobe_mutex);
589
590 /* Step 5: Kick optimizer again if needed */
591 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
592 kick_kprobe_optimizer();
593 }
594
595 /* Wait for completing optimization and unoptimization */
596 static __kprobes void wait_for_kprobe_optimizer(void)
597 {
598 mutex_lock(&kprobe_mutex);
599
600 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
601 mutex_unlock(&kprobe_mutex);
602
603 /* this will also make optimizing_work execute immmediately */
604 flush_delayed_work(&optimizing_work);
605 /* @optimizing_work might not have been queued yet, relax */
606 cpu_relax();
607
608 mutex_lock(&kprobe_mutex);
609 }
610
611 mutex_unlock(&kprobe_mutex);
612 }
613
614 /* Optimize kprobe if p is ready to be optimized */
615 static __kprobes void optimize_kprobe(struct kprobe *p)
616 {
617 struct optimized_kprobe *op;
618
619 /* Check if the kprobe is disabled or not ready for optimization. */
620 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
621 (kprobe_disabled(p) || kprobes_all_disarmed))
622 return;
623
624 /* Both of break_handler and post_handler are not supported. */
625 if (p->break_handler || p->post_handler)
626 return;
627
628 op = container_of(p, struct optimized_kprobe, kp);
629
630 /* Check there is no other kprobes at the optimized instructions */
631 if (arch_check_optimized_kprobe(op) < 0)
632 return;
633
634 /* Check if it is already optimized. */
635 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
636 return;
637 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
638
639 if (!list_empty(&op->list))
640 /* This is under unoptimizing. Just dequeue the probe */
641 list_del_init(&op->list);
642 else {
643 list_add(&op->list, &optimizing_list);
644 kick_kprobe_optimizer();
645 }
646 }
647
648 /* Short cut to direct unoptimizing */
649 static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
650 {
651 get_online_cpus();
652 arch_unoptimize_kprobe(op);
653 put_online_cpus();
654 if (kprobe_disabled(&op->kp))
655 arch_disarm_kprobe(&op->kp);
656 }
657
658 /* Unoptimize a kprobe if p is optimized */
659 static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
660 {
661 struct optimized_kprobe *op;
662
663 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
664 return; /* This is not an optprobe nor optimized */
665
666 op = container_of(p, struct optimized_kprobe, kp);
667 if (!kprobe_optimized(p)) {
668 /* Unoptimized or unoptimizing case */
669 if (force && !list_empty(&op->list)) {
670 /*
671 * Only if this is unoptimizing kprobe and forced,
672 * forcibly unoptimize it. (No need to unoptimize
673 * unoptimized kprobe again :)
674 */
675 list_del_init(&op->list);
676 force_unoptimize_kprobe(op);
677 }
678 return;
679 }
680
681 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
682 if (!list_empty(&op->list)) {
683 /* Dequeue from the optimization queue */
684 list_del_init(&op->list);
685 return;
686 }
687 /* Optimized kprobe case */
688 if (force)
689 /* Forcibly update the code: this is a special case */
690 force_unoptimize_kprobe(op);
691 else {
692 list_add(&op->list, &unoptimizing_list);
693 kick_kprobe_optimizer();
694 }
695 }
696
697 /* Cancel unoptimizing for reusing */
698 static void reuse_unused_kprobe(struct kprobe *ap)
699 {
700 struct optimized_kprobe *op;
701
702 BUG_ON(!kprobe_unused(ap));
703 /*
704 * Unused kprobe MUST be on the way of delayed unoptimizing (means
705 * there is still a relative jump) and disabled.
706 */
707 op = container_of(ap, struct optimized_kprobe, kp);
708 if (unlikely(list_empty(&op->list)))
709 printk(KERN_WARNING "Warning: found a stray unused "
710 "aggrprobe@%p\n", ap->addr);
711 /* Enable the probe again */
712 ap->flags &= ~KPROBE_FLAG_DISABLED;
713 /* Optimize it again (remove from op->list) */
714 BUG_ON(!kprobe_optready(ap));
715 optimize_kprobe(ap);
716 }
717
718 /* Remove optimized instructions */
719 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
720 {
721 struct optimized_kprobe *op;
722
723 op = container_of(p, struct optimized_kprobe, kp);
724 if (!list_empty(&op->list))
725 /* Dequeue from the (un)optimization queue */
726 list_del_init(&op->list);
727
728 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
729 /* Don't touch the code, because it is already freed. */
730 arch_remove_optimized_kprobe(op);
731 }
732
733 /* Try to prepare optimized instructions */
734 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
735 {
736 struct optimized_kprobe *op;
737
738 op = container_of(p, struct optimized_kprobe, kp);
739 arch_prepare_optimized_kprobe(op);
740 }
741
742 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
743 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
744 {
745 struct optimized_kprobe *op;
746
747 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
748 if (!op)
749 return NULL;
750
751 INIT_LIST_HEAD(&op->list);
752 op->kp.addr = p->addr;
753 arch_prepare_optimized_kprobe(op);
754
755 return &op->kp;
756 }
757
758 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
759
760 /*
761 * Prepare an optimized_kprobe and optimize it
762 * NOTE: p must be a normal registered kprobe
763 */
764 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
765 {
766 struct kprobe *ap;
767 struct optimized_kprobe *op;
768
769 /* Impossible to optimize ftrace-based kprobe */
770 if (kprobe_ftrace(p))
771 return;
772
773 /* For preparing optimization, jump_label_text_reserved() is called */
774 jump_label_lock();
775 mutex_lock(&text_mutex);
776
777 ap = alloc_aggr_kprobe(p);
778 if (!ap)
779 goto out;
780
781 op = container_of(ap, struct optimized_kprobe, kp);
782 if (!arch_prepared_optinsn(&op->optinsn)) {
783 /* If failed to setup optimizing, fallback to kprobe */
784 arch_remove_optimized_kprobe(op);
785 kfree(op);
786 goto out;
787 }
788
789 init_aggr_kprobe(ap, p);
790 optimize_kprobe(ap); /* This just kicks optimizer thread */
791
792 out:
793 mutex_unlock(&text_mutex);
794 jump_label_unlock();
795 }
796
797 #ifdef CONFIG_SYSCTL
798 /* This should be called with kprobe_mutex locked */
799 static void __kprobes optimize_all_kprobes(void)
800 {
801 struct hlist_head *head;
802 struct hlist_node *node;
803 struct kprobe *p;
804 unsigned int i;
805
806 /* If optimization is already allowed, just return */
807 if (kprobes_allow_optimization)
808 return;
809
810 kprobes_allow_optimization = true;
811 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
812 head = &kprobe_table[i];
813 hlist_for_each_entry_rcu(p, node, head, hlist)
814 if (!kprobe_disabled(p))
815 optimize_kprobe(p);
816 }
817 printk(KERN_INFO "Kprobes globally optimized\n");
818 }
819
820 /* This should be called with kprobe_mutex locked */
821 static void __kprobes unoptimize_all_kprobes(void)
822 {
823 struct hlist_head *head;
824 struct hlist_node *node;
825 struct kprobe *p;
826 unsigned int i;
827
828 /* If optimization is already prohibited, just return */
829 if (!kprobes_allow_optimization)
830 return;
831
832 kprobes_allow_optimization = false;
833 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
834 head = &kprobe_table[i];
835 hlist_for_each_entry_rcu(p, node, head, hlist) {
836 if (!kprobe_disabled(p))
837 unoptimize_kprobe(p, false);
838 }
839 }
840 /* Wait for unoptimizing completion */
841 wait_for_kprobe_optimizer();
842 printk(KERN_INFO "Kprobes globally unoptimized\n");
843 }
844
845 int sysctl_kprobes_optimization;
846 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
847 void __user *buffer, size_t *length,
848 loff_t *ppos)
849 {
850 int ret;
851
852 mutex_lock(&kprobe_mutex);
853 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
854 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
855
856 if (sysctl_kprobes_optimization)
857 optimize_all_kprobes();
858 else
859 unoptimize_all_kprobes();
860 mutex_unlock(&kprobe_mutex);
861
862 return ret;
863 }
864 #endif /* CONFIG_SYSCTL */
865
866 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
867 static void __kprobes __arm_kprobe(struct kprobe *p)
868 {
869 struct kprobe *_p;
870
871 /* Check collision with other optimized kprobes */
872 _p = get_optimized_kprobe((unsigned long)p->addr);
873 if (unlikely(_p))
874 /* Fallback to unoptimized kprobe */
875 unoptimize_kprobe(_p, true);
876
877 arch_arm_kprobe(p);
878 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
879 }
880
881 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
882 static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
883 {
884 struct kprobe *_p;
885
886 unoptimize_kprobe(p, false); /* Try to unoptimize */
887
888 if (!kprobe_queued(p)) {
889 arch_disarm_kprobe(p);
890 /* If another kprobe was blocked, optimize it. */
891 _p = get_optimized_kprobe((unsigned long)p->addr);
892 if (unlikely(_p) && reopt)
893 optimize_kprobe(_p);
894 }
895 /* TODO: reoptimize others after unoptimized this probe */
896 }
897
898 #else /* !CONFIG_OPTPROBES */
899
900 #define optimize_kprobe(p) do {} while (0)
901 #define unoptimize_kprobe(p, f) do {} while (0)
902 #define kill_optimized_kprobe(p) do {} while (0)
903 #define prepare_optimized_kprobe(p) do {} while (0)
904 #define try_to_optimize_kprobe(p) do {} while (0)
905 #define __arm_kprobe(p) arch_arm_kprobe(p)
906 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
907 #define kprobe_disarmed(p) kprobe_disabled(p)
908 #define wait_for_kprobe_optimizer() do {} while (0)
909
910 /* There should be no unused kprobes can be reused without optimization */
911 static void reuse_unused_kprobe(struct kprobe *ap)
912 {
913 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
914 BUG_ON(kprobe_unused(ap));
915 }
916
917 static __kprobes void free_aggr_kprobe(struct kprobe *p)
918 {
919 arch_remove_kprobe(p);
920 kfree(p);
921 }
922
923 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
924 {
925 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
926 }
927 #endif /* CONFIG_OPTPROBES */
928
929 #ifdef CONFIG_KPROBES_ON_FTRACE
930 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
931 .func = kprobe_ftrace_handler,
932 .flags = FTRACE_OPS_FL_SAVE_REGS,
933 };
934 static int kprobe_ftrace_enabled;
935
936 /* Must ensure p->addr is really on ftrace */
937 static int __kprobes prepare_kprobe(struct kprobe *p)
938 {
939 if (!kprobe_ftrace(p))
940 return arch_prepare_kprobe(p);
941
942 return arch_prepare_kprobe_ftrace(p);
943 }
944
945 /* Caller must lock kprobe_mutex */
946 static void __kprobes arm_kprobe_ftrace(struct kprobe *p)
947 {
948 int ret;
949
950 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
951 (unsigned long)p->addr, 0, 0);
952 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
953 kprobe_ftrace_enabled++;
954 if (kprobe_ftrace_enabled == 1) {
955 ret = register_ftrace_function(&kprobe_ftrace_ops);
956 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
957 }
958 }
959
960 /* Caller must lock kprobe_mutex */
961 static void __kprobes disarm_kprobe_ftrace(struct kprobe *p)
962 {
963 int ret;
964
965 kprobe_ftrace_enabled--;
966 if (kprobe_ftrace_enabled == 0) {
967 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
968 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
969 }
970 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
971 (unsigned long)p->addr, 1, 0);
972 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
973 }
974 #else /* !CONFIG_KPROBES_ON_FTRACE */
975 #define prepare_kprobe(p) arch_prepare_kprobe(p)
976 #define arm_kprobe_ftrace(p) do {} while (0)
977 #define disarm_kprobe_ftrace(p) do {} while (0)
978 #endif
979
980 /* Arm a kprobe with text_mutex */
981 static void __kprobes arm_kprobe(struct kprobe *kp)
982 {
983 if (unlikely(kprobe_ftrace(kp))) {
984 arm_kprobe_ftrace(kp);
985 return;
986 }
987 /*
988 * Here, since __arm_kprobe() doesn't use stop_machine(),
989 * this doesn't cause deadlock on text_mutex. So, we don't
990 * need get_online_cpus().
991 */
992 mutex_lock(&text_mutex);
993 __arm_kprobe(kp);
994 mutex_unlock(&text_mutex);
995 }
996
997 /* Disarm a kprobe with text_mutex */
998 static void __kprobes disarm_kprobe(struct kprobe *kp, bool reopt)
999 {
1000 if (unlikely(kprobe_ftrace(kp))) {
1001 disarm_kprobe_ftrace(kp);
1002 return;
1003 }
1004 /* Ditto */
1005 mutex_lock(&text_mutex);
1006 __disarm_kprobe(kp, reopt);
1007 mutex_unlock(&text_mutex);
1008 }
1009
1010 /*
1011 * Aggregate handlers for multiple kprobes support - these handlers
1012 * take care of invoking the individual kprobe handlers on p->list
1013 */
1014 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1015 {
1016 struct kprobe *kp;
1017
1018 list_for_each_entry_rcu(kp, &p->list, list) {
1019 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1020 set_kprobe_instance(kp);
1021 if (kp->pre_handler(kp, regs))
1022 return 1;
1023 }
1024 reset_kprobe_instance();
1025 }
1026 return 0;
1027 }
1028
1029 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1030 unsigned long flags)
1031 {
1032 struct kprobe *kp;
1033
1034 list_for_each_entry_rcu(kp, &p->list, list) {
1035 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1036 set_kprobe_instance(kp);
1037 kp->post_handler(kp, regs, flags);
1038 reset_kprobe_instance();
1039 }
1040 }
1041 }
1042
1043 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1044 int trapnr)
1045 {
1046 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1047
1048 /*
1049 * if we faulted "during" the execution of a user specified
1050 * probe handler, invoke just that probe's fault handler
1051 */
1052 if (cur && cur->fault_handler) {
1053 if (cur->fault_handler(cur, regs, trapnr))
1054 return 1;
1055 }
1056 return 0;
1057 }
1058
1059 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1060 {
1061 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1062 int ret = 0;
1063
1064 if (cur && cur->break_handler) {
1065 if (cur->break_handler(cur, regs))
1066 ret = 1;
1067 }
1068 reset_kprobe_instance();
1069 return ret;
1070 }
1071
1072 /* Walks the list and increments nmissed count for multiprobe case */
1073 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
1074 {
1075 struct kprobe *kp;
1076 if (!kprobe_aggrprobe(p)) {
1077 p->nmissed++;
1078 } else {
1079 list_for_each_entry_rcu(kp, &p->list, list)
1080 kp->nmissed++;
1081 }
1082 return;
1083 }
1084
1085 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1086 struct hlist_head *head)
1087 {
1088 struct kretprobe *rp = ri->rp;
1089
1090 /* remove rp inst off the rprobe_inst_table */
1091 hlist_del(&ri->hlist);
1092 INIT_HLIST_NODE(&ri->hlist);
1093 if (likely(rp)) {
1094 raw_spin_lock(&rp->lock);
1095 hlist_add_head(&ri->hlist, &rp->free_instances);
1096 raw_spin_unlock(&rp->lock);
1097 } else
1098 /* Unregistering */
1099 hlist_add_head(&ri->hlist, head);
1100 }
1101
1102 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1103 struct hlist_head **head, unsigned long *flags)
1104 __acquires(hlist_lock)
1105 {
1106 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1107 raw_spinlock_t *hlist_lock;
1108
1109 *head = &kretprobe_inst_table[hash];
1110 hlist_lock = kretprobe_table_lock_ptr(hash);
1111 raw_spin_lock_irqsave(hlist_lock, *flags);
1112 }
1113
1114 static void __kprobes kretprobe_table_lock(unsigned long hash,
1115 unsigned long *flags)
1116 __acquires(hlist_lock)
1117 {
1118 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1119 raw_spin_lock_irqsave(hlist_lock, *flags);
1120 }
1121
1122 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1123 unsigned long *flags)
1124 __releases(hlist_lock)
1125 {
1126 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1127 raw_spinlock_t *hlist_lock;
1128
1129 hlist_lock = kretprobe_table_lock_ptr(hash);
1130 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1131 }
1132
1133 static void __kprobes kretprobe_table_unlock(unsigned long hash,
1134 unsigned long *flags)
1135 __releases(hlist_lock)
1136 {
1137 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1138 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1139 }
1140
1141 /*
1142 * This function is called from finish_task_switch when task tk becomes dead,
1143 * so that we can recycle any function-return probe instances associated
1144 * with this task. These left over instances represent probed functions
1145 * that have been called but will never return.
1146 */
1147 void __kprobes kprobe_flush_task(struct task_struct *tk)
1148 {
1149 struct kretprobe_instance *ri;
1150 struct hlist_head *head, empty_rp;
1151 struct hlist_node *node, *tmp;
1152 unsigned long hash, flags = 0;
1153
1154 if (unlikely(!kprobes_initialized))
1155 /* Early boot. kretprobe_table_locks not yet initialized. */
1156 return;
1157
1158 INIT_HLIST_HEAD(&empty_rp);
1159 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1160 head = &kretprobe_inst_table[hash];
1161 kretprobe_table_lock(hash, &flags);
1162 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
1163 if (ri->task == tk)
1164 recycle_rp_inst(ri, &empty_rp);
1165 }
1166 kretprobe_table_unlock(hash, &flags);
1167 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
1168 hlist_del(&ri->hlist);
1169 kfree(ri);
1170 }
1171 }
1172
1173 static inline void free_rp_inst(struct kretprobe *rp)
1174 {
1175 struct kretprobe_instance *ri;
1176 struct hlist_node *pos, *next;
1177
1178 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
1179 hlist_del(&ri->hlist);
1180 kfree(ri);
1181 }
1182 }
1183
1184 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1185 {
1186 unsigned long flags, hash;
1187 struct kretprobe_instance *ri;
1188 struct hlist_node *pos, *next;
1189 struct hlist_head *head;
1190
1191 /* No race here */
1192 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1193 kretprobe_table_lock(hash, &flags);
1194 head = &kretprobe_inst_table[hash];
1195 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
1196 if (ri->rp == rp)
1197 ri->rp = NULL;
1198 }
1199 kretprobe_table_unlock(hash, &flags);
1200 }
1201 free_rp_inst(rp);
1202 }
1203
1204 /*
1205 * Add the new probe to ap->list. Fail if this is the
1206 * second jprobe at the address - two jprobes can't coexist
1207 */
1208 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1209 {
1210 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1211
1212 if (p->break_handler || p->post_handler)
1213 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1214
1215 if (p->break_handler) {
1216 if (ap->break_handler)
1217 return -EEXIST;
1218 list_add_tail_rcu(&p->list, &ap->list);
1219 ap->break_handler = aggr_break_handler;
1220 } else
1221 list_add_rcu(&p->list, &ap->list);
1222 if (p->post_handler && !ap->post_handler)
1223 ap->post_handler = aggr_post_handler;
1224
1225 return 0;
1226 }
1227
1228 /*
1229 * Fill in the required fields of the "manager kprobe". Replace the
1230 * earlier kprobe in the hlist with the manager kprobe
1231 */
1232 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1233 {
1234 /* Copy p's insn slot to ap */
1235 copy_kprobe(p, ap);
1236 flush_insn_slot(ap);
1237 ap->addr = p->addr;
1238 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1239 ap->pre_handler = aggr_pre_handler;
1240 ap->fault_handler = aggr_fault_handler;
1241 /* We don't care the kprobe which has gone. */
1242 if (p->post_handler && !kprobe_gone(p))
1243 ap->post_handler = aggr_post_handler;
1244 if (p->break_handler && !kprobe_gone(p))
1245 ap->break_handler = aggr_break_handler;
1246
1247 INIT_LIST_HEAD(&ap->list);
1248 INIT_HLIST_NODE(&ap->hlist);
1249
1250 list_add_rcu(&p->list, &ap->list);
1251 hlist_replace_rcu(&p->hlist, &ap->hlist);
1252 }
1253
1254 /*
1255 * This is the second or subsequent kprobe at the address - handle
1256 * the intricacies
1257 */
1258 static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1259 struct kprobe *p)
1260 {
1261 int ret = 0;
1262 struct kprobe *ap = orig_p;
1263
1264 /* For preparing optimization, jump_label_text_reserved() is called */
1265 jump_label_lock();
1266 /*
1267 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1268 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1269 */
1270 get_online_cpus();
1271 mutex_lock(&text_mutex);
1272
1273 if (!kprobe_aggrprobe(orig_p)) {
1274 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1275 ap = alloc_aggr_kprobe(orig_p);
1276 if (!ap) {
1277 ret = -ENOMEM;
1278 goto out;
1279 }
1280 init_aggr_kprobe(ap, orig_p);
1281 } else if (kprobe_unused(ap))
1282 /* This probe is going to die. Rescue it */
1283 reuse_unused_kprobe(ap);
1284
1285 if (kprobe_gone(ap)) {
1286 /*
1287 * Attempting to insert new probe at the same location that
1288 * had a probe in the module vaddr area which already
1289 * freed. So, the instruction slot has already been
1290 * released. We need a new slot for the new probe.
1291 */
1292 ret = arch_prepare_kprobe(ap);
1293 if (ret)
1294 /*
1295 * Even if fail to allocate new slot, don't need to
1296 * free aggr_probe. It will be used next time, or
1297 * freed by unregister_kprobe.
1298 */
1299 goto out;
1300
1301 /* Prepare optimized instructions if possible. */
1302 prepare_optimized_kprobe(ap);
1303
1304 /*
1305 * Clear gone flag to prevent allocating new slot again, and
1306 * set disabled flag because it is not armed yet.
1307 */
1308 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1309 | KPROBE_FLAG_DISABLED;
1310 }
1311
1312 /* Copy ap's insn slot to p */
1313 copy_kprobe(ap, p);
1314 ret = add_new_kprobe(ap, p);
1315
1316 out:
1317 mutex_unlock(&text_mutex);
1318 put_online_cpus();
1319 jump_label_unlock();
1320
1321 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1322 ap->flags &= ~KPROBE_FLAG_DISABLED;
1323 if (!kprobes_all_disarmed)
1324 /* Arm the breakpoint again. */
1325 arm_kprobe(ap);
1326 }
1327 return ret;
1328 }
1329
1330 static int __kprobes in_kprobes_functions(unsigned long addr)
1331 {
1332 struct kprobe_blackpoint *kb;
1333
1334 if (addr >= (unsigned long)__kprobes_text_start &&
1335 addr < (unsigned long)__kprobes_text_end)
1336 return -EINVAL;
1337 /*
1338 * If there exists a kprobe_blacklist, verify and
1339 * fail any probe registration in the prohibited area
1340 */
1341 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1342 if (kb->start_addr) {
1343 if (addr >= kb->start_addr &&
1344 addr < (kb->start_addr + kb->range))
1345 return -EINVAL;
1346 }
1347 }
1348 return 0;
1349 }
1350
1351 /*
1352 * If we have a symbol_name argument, look it up and add the offset field
1353 * to it. This way, we can specify a relative address to a symbol.
1354 * This returns encoded errors if it fails to look up symbol or invalid
1355 * combination of parameters.
1356 */
1357 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1358 {
1359 kprobe_opcode_t *addr = p->addr;
1360
1361 if ((p->symbol_name && p->addr) ||
1362 (!p->symbol_name && !p->addr))
1363 goto invalid;
1364
1365 if (p->symbol_name) {
1366 kprobe_lookup_name(p->symbol_name, addr);
1367 if (!addr)
1368 return ERR_PTR(-ENOENT);
1369 }
1370
1371 addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1372 if (addr)
1373 return addr;
1374
1375 invalid:
1376 return ERR_PTR(-EINVAL);
1377 }
1378
1379 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1380 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1381 {
1382 struct kprobe *ap, *list_p;
1383
1384 ap = get_kprobe(p->addr);
1385 if (unlikely(!ap))
1386 return NULL;
1387
1388 if (p != ap) {
1389 list_for_each_entry_rcu(list_p, &ap->list, list)
1390 if (list_p == p)
1391 /* kprobe p is a valid probe */
1392 goto valid;
1393 return NULL;
1394 }
1395 valid:
1396 return ap;
1397 }
1398
1399 /* Return error if the kprobe is being re-registered */
1400 static inline int check_kprobe_rereg(struct kprobe *p)
1401 {
1402 int ret = 0;
1403
1404 mutex_lock(&kprobe_mutex);
1405 if (__get_valid_kprobe(p))
1406 ret = -EINVAL;
1407 mutex_unlock(&kprobe_mutex);
1408
1409 return ret;
1410 }
1411
1412 static __kprobes int check_kprobe_address_safe(struct kprobe *p,
1413 struct module **probed_mod)
1414 {
1415 int ret = 0;
1416 unsigned long ftrace_addr;
1417
1418 /*
1419 * If the address is located on a ftrace nop, set the
1420 * breakpoint to the following instruction.
1421 */
1422 ftrace_addr = ftrace_location((unsigned long)p->addr);
1423 if (ftrace_addr) {
1424 #ifdef CONFIG_KPROBES_ON_FTRACE
1425 /* Given address is not on the instruction boundary */
1426 if ((unsigned long)p->addr != ftrace_addr)
1427 return -EILSEQ;
1428 p->flags |= KPROBE_FLAG_FTRACE;
1429 #else /* !CONFIG_KPROBES_ON_FTRACE */
1430 return -EINVAL;
1431 #endif
1432 }
1433
1434 jump_label_lock();
1435 preempt_disable();
1436
1437 /* Ensure it is not in reserved area nor out of text */
1438 if (!kernel_text_address((unsigned long) p->addr) ||
1439 in_kprobes_functions((unsigned long) p->addr) ||
1440 jump_label_text_reserved(p->addr, p->addr)) {
1441 ret = -EINVAL;
1442 goto out;
1443 }
1444
1445 /* Check if are we probing a module */
1446 *probed_mod = __module_text_address((unsigned long) p->addr);
1447 if (*probed_mod) {
1448 /*
1449 * We must hold a refcount of the probed module while updating
1450 * its code to prohibit unexpected unloading.
1451 */
1452 if (unlikely(!try_module_get(*probed_mod))) {
1453 ret = -ENOENT;
1454 goto out;
1455 }
1456
1457 /*
1458 * If the module freed .init.text, we couldn't insert
1459 * kprobes in there.
1460 */
1461 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1462 (*probed_mod)->state != MODULE_STATE_COMING) {
1463 module_put(*probed_mod);
1464 *probed_mod = NULL;
1465 ret = -ENOENT;
1466 }
1467 }
1468 out:
1469 preempt_enable();
1470 jump_label_unlock();
1471
1472 return ret;
1473 }
1474
1475 int __kprobes register_kprobe(struct kprobe *p)
1476 {
1477 int ret;
1478 struct kprobe *old_p;
1479 struct module *probed_mod;
1480 kprobe_opcode_t *addr;
1481
1482 /* Adjust probe address from symbol */
1483 addr = kprobe_addr(p);
1484 if (IS_ERR(addr))
1485 return PTR_ERR(addr);
1486 p->addr = addr;
1487
1488 ret = check_kprobe_rereg(p);
1489 if (ret)
1490 return ret;
1491
1492 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1493 p->flags &= KPROBE_FLAG_DISABLED;
1494 p->nmissed = 0;
1495 INIT_LIST_HEAD(&p->list);
1496
1497 ret = check_kprobe_address_safe(p, &probed_mod);
1498 if (ret)
1499 return ret;
1500
1501 mutex_lock(&kprobe_mutex);
1502
1503 old_p = get_kprobe(p->addr);
1504 if (old_p) {
1505 /* Since this may unoptimize old_p, locking text_mutex. */
1506 ret = register_aggr_kprobe(old_p, p);
1507 goto out;
1508 }
1509
1510 mutex_lock(&text_mutex); /* Avoiding text modification */
1511 ret = prepare_kprobe(p);
1512 mutex_unlock(&text_mutex);
1513 if (ret)
1514 goto out;
1515
1516 INIT_HLIST_NODE(&p->hlist);
1517 hlist_add_head_rcu(&p->hlist,
1518 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1519
1520 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1521 arm_kprobe(p);
1522
1523 /* Try to optimize kprobe */
1524 try_to_optimize_kprobe(p);
1525
1526 out:
1527 mutex_unlock(&kprobe_mutex);
1528
1529 if (probed_mod)
1530 module_put(probed_mod);
1531
1532 return ret;
1533 }
1534 EXPORT_SYMBOL_GPL(register_kprobe);
1535
1536 /* Check if all probes on the aggrprobe are disabled */
1537 static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1538 {
1539 struct kprobe *kp;
1540
1541 list_for_each_entry_rcu(kp, &ap->list, list)
1542 if (!kprobe_disabled(kp))
1543 /*
1544 * There is an active probe on the list.
1545 * We can't disable this ap.
1546 */
1547 return 0;
1548
1549 return 1;
1550 }
1551
1552 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1553 static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1554 {
1555 struct kprobe *orig_p;
1556
1557 /* Get an original kprobe for return */
1558 orig_p = __get_valid_kprobe(p);
1559 if (unlikely(orig_p == NULL))
1560 return NULL;
1561
1562 if (!kprobe_disabled(p)) {
1563 /* Disable probe if it is a child probe */
1564 if (p != orig_p)
1565 p->flags |= KPROBE_FLAG_DISABLED;
1566
1567 /* Try to disarm and disable this/parent probe */
1568 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1569 disarm_kprobe(orig_p, true);
1570 orig_p->flags |= KPROBE_FLAG_DISABLED;
1571 }
1572 }
1573
1574 return orig_p;
1575 }
1576
1577 /*
1578 * Unregister a kprobe without a scheduler synchronization.
1579 */
1580 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1581 {
1582 struct kprobe *ap, *list_p;
1583
1584 /* Disable kprobe. This will disarm it if needed. */
1585 ap = __disable_kprobe(p);
1586 if (ap == NULL)
1587 return -EINVAL;
1588
1589 if (ap == p)
1590 /*
1591 * This probe is an independent(and non-optimized) kprobe
1592 * (not an aggrprobe). Remove from the hash list.
1593 */
1594 goto disarmed;
1595
1596 /* Following process expects this probe is an aggrprobe */
1597 WARN_ON(!kprobe_aggrprobe(ap));
1598
1599 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1600 /*
1601 * !disarmed could be happen if the probe is under delayed
1602 * unoptimizing.
1603 */
1604 goto disarmed;
1605 else {
1606 /* If disabling probe has special handlers, update aggrprobe */
1607 if (p->break_handler && !kprobe_gone(p))
1608 ap->break_handler = NULL;
1609 if (p->post_handler && !kprobe_gone(p)) {
1610 list_for_each_entry_rcu(list_p, &ap->list, list) {
1611 if ((list_p != p) && (list_p->post_handler))
1612 goto noclean;
1613 }
1614 ap->post_handler = NULL;
1615 }
1616 noclean:
1617 /*
1618 * Remove from the aggrprobe: this path will do nothing in
1619 * __unregister_kprobe_bottom().
1620 */
1621 list_del_rcu(&p->list);
1622 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1623 /*
1624 * Try to optimize this probe again, because post
1625 * handler may have been changed.
1626 */
1627 optimize_kprobe(ap);
1628 }
1629 return 0;
1630
1631 disarmed:
1632 BUG_ON(!kprobe_disarmed(ap));
1633 hlist_del_rcu(&ap->hlist);
1634 return 0;
1635 }
1636
1637 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1638 {
1639 struct kprobe *ap;
1640
1641 if (list_empty(&p->list))
1642 /* This is an independent kprobe */
1643 arch_remove_kprobe(p);
1644 else if (list_is_singular(&p->list)) {
1645 /* This is the last child of an aggrprobe */
1646 ap = list_entry(p->list.next, struct kprobe, list);
1647 list_del(&p->list);
1648 free_aggr_kprobe(ap);
1649 }
1650 /* Otherwise, do nothing. */
1651 }
1652
1653 int __kprobes register_kprobes(struct kprobe **kps, int num)
1654 {
1655 int i, ret = 0;
1656
1657 if (num <= 0)
1658 return -EINVAL;
1659 for (i = 0; i < num; i++) {
1660 ret = register_kprobe(kps[i]);
1661 if (ret < 0) {
1662 if (i > 0)
1663 unregister_kprobes(kps, i);
1664 break;
1665 }
1666 }
1667 return ret;
1668 }
1669 EXPORT_SYMBOL_GPL(register_kprobes);
1670
1671 void __kprobes unregister_kprobe(struct kprobe *p)
1672 {
1673 unregister_kprobes(&p, 1);
1674 }
1675 EXPORT_SYMBOL_GPL(unregister_kprobe);
1676
1677 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1678 {
1679 int i;
1680
1681 if (num <= 0)
1682 return;
1683 mutex_lock(&kprobe_mutex);
1684 for (i = 0; i < num; i++)
1685 if (__unregister_kprobe_top(kps[i]) < 0)
1686 kps[i]->addr = NULL;
1687 mutex_unlock(&kprobe_mutex);
1688
1689 synchronize_sched();
1690 for (i = 0; i < num; i++)
1691 if (kps[i]->addr)
1692 __unregister_kprobe_bottom(kps[i]);
1693 }
1694 EXPORT_SYMBOL_GPL(unregister_kprobes);
1695
1696 static struct notifier_block kprobe_exceptions_nb = {
1697 .notifier_call = kprobe_exceptions_notify,
1698 .priority = 0x7fffffff /* we need to be notified first */
1699 };
1700
1701 unsigned long __weak arch_deref_entry_point(void *entry)
1702 {
1703 return (unsigned long)entry;
1704 }
1705
1706 int __kprobes register_jprobes(struct jprobe **jps, int num)
1707 {
1708 struct jprobe *jp;
1709 int ret = 0, i;
1710
1711 if (num <= 0)
1712 return -EINVAL;
1713 for (i = 0; i < num; i++) {
1714 unsigned long addr, offset;
1715 jp = jps[i];
1716 addr = arch_deref_entry_point(jp->entry);
1717
1718 /* Verify probepoint is a function entry point */
1719 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1720 offset == 0) {
1721 jp->kp.pre_handler = setjmp_pre_handler;
1722 jp->kp.break_handler = longjmp_break_handler;
1723 ret = register_kprobe(&jp->kp);
1724 } else
1725 ret = -EINVAL;
1726
1727 if (ret < 0) {
1728 if (i > 0)
1729 unregister_jprobes(jps, i);
1730 break;
1731 }
1732 }
1733 return ret;
1734 }
1735 EXPORT_SYMBOL_GPL(register_jprobes);
1736
1737 int __kprobes register_jprobe(struct jprobe *jp)
1738 {
1739 return register_jprobes(&jp, 1);
1740 }
1741 EXPORT_SYMBOL_GPL(register_jprobe);
1742
1743 void __kprobes unregister_jprobe(struct jprobe *jp)
1744 {
1745 unregister_jprobes(&jp, 1);
1746 }
1747 EXPORT_SYMBOL_GPL(unregister_jprobe);
1748
1749 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1750 {
1751 int i;
1752
1753 if (num <= 0)
1754 return;
1755 mutex_lock(&kprobe_mutex);
1756 for (i = 0; i < num; i++)
1757 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1758 jps[i]->kp.addr = NULL;
1759 mutex_unlock(&kprobe_mutex);
1760
1761 synchronize_sched();
1762 for (i = 0; i < num; i++) {
1763 if (jps[i]->kp.addr)
1764 __unregister_kprobe_bottom(&jps[i]->kp);
1765 }
1766 }
1767 EXPORT_SYMBOL_GPL(unregister_jprobes);
1768
1769 #ifdef CONFIG_KRETPROBES
1770 /*
1771 * This kprobe pre_handler is registered with every kretprobe. When probe
1772 * hits it will set up the return probe.
1773 */
1774 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1775 struct pt_regs *regs)
1776 {
1777 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1778 unsigned long hash, flags = 0;
1779 struct kretprobe_instance *ri;
1780
1781 /*TODO: consider to only swap the RA after the last pre_handler fired */
1782 hash = hash_ptr(current, KPROBE_HASH_BITS);
1783 raw_spin_lock_irqsave(&rp->lock, flags);
1784 if (!hlist_empty(&rp->free_instances)) {
1785 ri = hlist_entry(rp->free_instances.first,
1786 struct kretprobe_instance, hlist);
1787 hlist_del(&ri->hlist);
1788 raw_spin_unlock_irqrestore(&rp->lock, flags);
1789
1790 ri->rp = rp;
1791 ri->task = current;
1792
1793 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1794 raw_spin_lock_irqsave(&rp->lock, flags);
1795 hlist_add_head(&ri->hlist, &rp->free_instances);
1796 raw_spin_unlock_irqrestore(&rp->lock, flags);
1797 return 0;
1798 }
1799
1800 arch_prepare_kretprobe(ri, regs);
1801
1802 /* XXX(hch): why is there no hlist_move_head? */
1803 INIT_HLIST_NODE(&ri->hlist);
1804 kretprobe_table_lock(hash, &flags);
1805 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1806 kretprobe_table_unlock(hash, &flags);
1807 } else {
1808 rp->nmissed++;
1809 raw_spin_unlock_irqrestore(&rp->lock, flags);
1810 }
1811 return 0;
1812 }
1813
1814 int __kprobes register_kretprobe(struct kretprobe *rp)
1815 {
1816 int ret = 0;
1817 struct kretprobe_instance *inst;
1818 int i;
1819 void *addr;
1820
1821 if (kretprobe_blacklist_size) {
1822 addr = kprobe_addr(&rp->kp);
1823 if (IS_ERR(addr))
1824 return PTR_ERR(addr);
1825
1826 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1827 if (kretprobe_blacklist[i].addr == addr)
1828 return -EINVAL;
1829 }
1830 }
1831
1832 rp->kp.pre_handler = pre_handler_kretprobe;
1833 rp->kp.post_handler = NULL;
1834 rp->kp.fault_handler = NULL;
1835 rp->kp.break_handler = NULL;
1836
1837 /* Pre-allocate memory for max kretprobe instances */
1838 if (rp->maxactive <= 0) {
1839 #ifdef CONFIG_PREEMPT
1840 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1841 #else
1842 rp->maxactive = num_possible_cpus();
1843 #endif
1844 }
1845 raw_spin_lock_init(&rp->lock);
1846 INIT_HLIST_HEAD(&rp->free_instances);
1847 for (i = 0; i < rp->maxactive; i++) {
1848 inst = kmalloc(sizeof(struct kretprobe_instance) +
1849 rp->data_size, GFP_KERNEL);
1850 if (inst == NULL) {
1851 free_rp_inst(rp);
1852 return -ENOMEM;
1853 }
1854 INIT_HLIST_NODE(&inst->hlist);
1855 hlist_add_head(&inst->hlist, &rp->free_instances);
1856 }
1857
1858 rp->nmissed = 0;
1859 /* Establish function entry probe point */
1860 ret = register_kprobe(&rp->kp);
1861 if (ret != 0)
1862 free_rp_inst(rp);
1863 return ret;
1864 }
1865 EXPORT_SYMBOL_GPL(register_kretprobe);
1866
1867 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1868 {
1869 int ret = 0, i;
1870
1871 if (num <= 0)
1872 return -EINVAL;
1873 for (i = 0; i < num; i++) {
1874 ret = register_kretprobe(rps[i]);
1875 if (ret < 0) {
1876 if (i > 0)
1877 unregister_kretprobes(rps, i);
1878 break;
1879 }
1880 }
1881 return ret;
1882 }
1883 EXPORT_SYMBOL_GPL(register_kretprobes);
1884
1885 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1886 {
1887 unregister_kretprobes(&rp, 1);
1888 }
1889 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1890
1891 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1892 {
1893 int i;
1894
1895 if (num <= 0)
1896 return;
1897 mutex_lock(&kprobe_mutex);
1898 for (i = 0; i < num; i++)
1899 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1900 rps[i]->kp.addr = NULL;
1901 mutex_unlock(&kprobe_mutex);
1902
1903 synchronize_sched();
1904 for (i = 0; i < num; i++) {
1905 if (rps[i]->kp.addr) {
1906 __unregister_kprobe_bottom(&rps[i]->kp);
1907 cleanup_rp_inst(rps[i]);
1908 }
1909 }
1910 }
1911 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1912
1913 #else /* CONFIG_KRETPROBES */
1914 int __kprobes register_kretprobe(struct kretprobe *rp)
1915 {
1916 return -ENOSYS;
1917 }
1918 EXPORT_SYMBOL_GPL(register_kretprobe);
1919
1920 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1921 {
1922 return -ENOSYS;
1923 }
1924 EXPORT_SYMBOL_GPL(register_kretprobes);
1925
1926 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1927 {
1928 }
1929 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1930
1931 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1932 {
1933 }
1934 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1935
1936 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1937 struct pt_regs *regs)
1938 {
1939 return 0;
1940 }
1941
1942 #endif /* CONFIG_KRETPROBES */
1943
1944 /* Set the kprobe gone and remove its instruction buffer. */
1945 static void __kprobes kill_kprobe(struct kprobe *p)
1946 {
1947 struct kprobe *kp;
1948
1949 p->flags |= KPROBE_FLAG_GONE;
1950 if (kprobe_aggrprobe(p)) {
1951 /*
1952 * If this is an aggr_kprobe, we have to list all the
1953 * chained probes and mark them GONE.
1954 */
1955 list_for_each_entry_rcu(kp, &p->list, list)
1956 kp->flags |= KPROBE_FLAG_GONE;
1957 p->post_handler = NULL;
1958 p->break_handler = NULL;
1959 kill_optimized_kprobe(p);
1960 }
1961 /*
1962 * Here, we can remove insn_slot safely, because no thread calls
1963 * the original probed function (which will be freed soon) any more.
1964 */
1965 arch_remove_kprobe(p);
1966 }
1967
1968 /* Disable one kprobe */
1969 int __kprobes disable_kprobe(struct kprobe *kp)
1970 {
1971 int ret = 0;
1972
1973 mutex_lock(&kprobe_mutex);
1974
1975 /* Disable this kprobe */
1976 if (__disable_kprobe(kp) == NULL)
1977 ret = -EINVAL;
1978
1979 mutex_unlock(&kprobe_mutex);
1980 return ret;
1981 }
1982 EXPORT_SYMBOL_GPL(disable_kprobe);
1983
1984 /* Enable one kprobe */
1985 int __kprobes enable_kprobe(struct kprobe *kp)
1986 {
1987 int ret = 0;
1988 struct kprobe *p;
1989
1990 mutex_lock(&kprobe_mutex);
1991
1992 /* Check whether specified probe is valid. */
1993 p = __get_valid_kprobe(kp);
1994 if (unlikely(p == NULL)) {
1995 ret = -EINVAL;
1996 goto out;
1997 }
1998
1999 if (kprobe_gone(kp)) {
2000 /* This kprobe has gone, we couldn't enable it. */
2001 ret = -EINVAL;
2002 goto out;
2003 }
2004
2005 if (p != kp)
2006 kp->flags &= ~KPROBE_FLAG_DISABLED;
2007
2008 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2009 p->flags &= ~KPROBE_FLAG_DISABLED;
2010 arm_kprobe(p);
2011 }
2012 out:
2013 mutex_unlock(&kprobe_mutex);
2014 return ret;
2015 }
2016 EXPORT_SYMBOL_GPL(enable_kprobe);
2017
2018 void __kprobes dump_kprobe(struct kprobe *kp)
2019 {
2020 printk(KERN_WARNING "Dumping kprobe:\n");
2021 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2022 kp->symbol_name, kp->addr, kp->offset);
2023 }
2024
2025 /* Module notifier call back, checking kprobes on the module */
2026 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
2027 unsigned long val, void *data)
2028 {
2029 struct module *mod = data;
2030 struct hlist_head *head;
2031 struct hlist_node *node;
2032 struct kprobe *p;
2033 unsigned int i;
2034 int checkcore = (val == MODULE_STATE_GOING);
2035
2036 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2037 return NOTIFY_DONE;
2038
2039 /*
2040 * When MODULE_STATE_GOING was notified, both of module .text and
2041 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2042 * notified, only .init.text section would be freed. We need to
2043 * disable kprobes which have been inserted in the sections.
2044 */
2045 mutex_lock(&kprobe_mutex);
2046 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2047 head = &kprobe_table[i];
2048 hlist_for_each_entry_rcu(p, node, head, hlist)
2049 if (within_module_init((unsigned long)p->addr, mod) ||
2050 (checkcore &&
2051 within_module_core((unsigned long)p->addr, mod))) {
2052 /*
2053 * The vaddr this probe is installed will soon
2054 * be vfreed buy not synced to disk. Hence,
2055 * disarming the breakpoint isn't needed.
2056 */
2057 kill_kprobe(p);
2058 }
2059 }
2060 mutex_unlock(&kprobe_mutex);
2061 return NOTIFY_DONE;
2062 }
2063
2064 static struct notifier_block kprobe_module_nb = {
2065 .notifier_call = kprobes_module_callback,
2066 .priority = 0
2067 };
2068
2069 static int __init init_kprobes(void)
2070 {
2071 int i, err = 0;
2072 unsigned long offset = 0, size = 0;
2073 char *modname, namebuf[128];
2074 const char *symbol_name;
2075 void *addr;
2076 struct kprobe_blackpoint *kb;
2077
2078 /* FIXME allocate the probe table, currently defined statically */
2079 /* initialize all list heads */
2080 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2081 INIT_HLIST_HEAD(&kprobe_table[i]);
2082 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2083 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2084 }
2085
2086 /*
2087 * Lookup and populate the kprobe_blacklist.
2088 *
2089 * Unlike the kretprobe blacklist, we'll need to determine
2090 * the range of addresses that belong to the said functions,
2091 * since a kprobe need not necessarily be at the beginning
2092 * of a function.
2093 */
2094 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
2095 kprobe_lookup_name(kb->name, addr);
2096 if (!addr)
2097 continue;
2098
2099 kb->start_addr = (unsigned long)addr;
2100 symbol_name = kallsyms_lookup(kb->start_addr,
2101 &size, &offset, &modname, namebuf);
2102 if (!symbol_name)
2103 kb->range = 0;
2104 else
2105 kb->range = size;
2106 }
2107
2108 if (kretprobe_blacklist_size) {
2109 /* lookup the function address from its name */
2110 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2111 kprobe_lookup_name(kretprobe_blacklist[i].name,
2112 kretprobe_blacklist[i].addr);
2113 if (!kretprobe_blacklist[i].addr)
2114 printk("kretprobe: lookup failed: %s\n",
2115 kretprobe_blacklist[i].name);
2116 }
2117 }
2118
2119 #if defined(CONFIG_OPTPROBES)
2120 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2121 /* Init kprobe_optinsn_slots */
2122 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2123 #endif
2124 /* By default, kprobes can be optimized */
2125 kprobes_allow_optimization = true;
2126 #endif
2127
2128 /* By default, kprobes are armed */
2129 kprobes_all_disarmed = false;
2130
2131 err = arch_init_kprobes();
2132 if (!err)
2133 err = register_die_notifier(&kprobe_exceptions_nb);
2134 if (!err)
2135 err = register_module_notifier(&kprobe_module_nb);
2136
2137 kprobes_initialized = (err == 0);
2138
2139 if (!err)
2140 init_test_probes();
2141 return err;
2142 }
2143
2144 #ifdef CONFIG_DEBUG_FS
2145 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2146 const char *sym, int offset, char *modname, struct kprobe *pp)
2147 {
2148 char *kprobe_type;
2149
2150 if (p->pre_handler == pre_handler_kretprobe)
2151 kprobe_type = "r";
2152 else if (p->pre_handler == setjmp_pre_handler)
2153 kprobe_type = "j";
2154 else
2155 kprobe_type = "k";
2156
2157 if (sym)
2158 seq_printf(pi, "%p %s %s+0x%x %s ",
2159 p->addr, kprobe_type, sym, offset,
2160 (modname ? modname : " "));
2161 else
2162 seq_printf(pi, "%p %s %p ",
2163 p->addr, kprobe_type, p->addr);
2164
2165 if (!pp)
2166 pp = p;
2167 seq_printf(pi, "%s%s%s%s\n",
2168 (kprobe_gone(p) ? "[GONE]" : ""),
2169 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2170 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2171 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2172 }
2173
2174 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2175 {
2176 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2177 }
2178
2179 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2180 {
2181 (*pos)++;
2182 if (*pos >= KPROBE_TABLE_SIZE)
2183 return NULL;
2184 return pos;
2185 }
2186
2187 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2188 {
2189 /* Nothing to do */
2190 }
2191
2192 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2193 {
2194 struct hlist_head *head;
2195 struct hlist_node *node;
2196 struct kprobe *p, *kp;
2197 const char *sym = NULL;
2198 unsigned int i = *(loff_t *) v;
2199 unsigned long offset = 0;
2200 char *modname, namebuf[128];
2201
2202 head = &kprobe_table[i];
2203 preempt_disable();
2204 hlist_for_each_entry_rcu(p, node, head, hlist) {
2205 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2206 &offset, &modname, namebuf);
2207 if (kprobe_aggrprobe(p)) {
2208 list_for_each_entry_rcu(kp, &p->list, list)
2209 report_probe(pi, kp, sym, offset, modname, p);
2210 } else
2211 report_probe(pi, p, sym, offset, modname, NULL);
2212 }
2213 preempt_enable();
2214 return 0;
2215 }
2216
2217 static const struct seq_operations kprobes_seq_ops = {
2218 .start = kprobe_seq_start,
2219 .next = kprobe_seq_next,
2220 .stop = kprobe_seq_stop,
2221 .show = show_kprobe_addr
2222 };
2223
2224 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2225 {
2226 return seq_open(filp, &kprobes_seq_ops);
2227 }
2228
2229 static const struct file_operations debugfs_kprobes_operations = {
2230 .open = kprobes_open,
2231 .read = seq_read,
2232 .llseek = seq_lseek,
2233 .release = seq_release,
2234 };
2235
2236 static void __kprobes arm_all_kprobes(void)
2237 {
2238 struct hlist_head *head;
2239 struct hlist_node *node;
2240 struct kprobe *p;
2241 unsigned int i;
2242
2243 mutex_lock(&kprobe_mutex);
2244
2245 /* If kprobes are armed, just return */
2246 if (!kprobes_all_disarmed)
2247 goto already_enabled;
2248
2249 /* Arming kprobes doesn't optimize kprobe itself */
2250 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2251 head = &kprobe_table[i];
2252 hlist_for_each_entry_rcu(p, node, head, hlist)
2253 if (!kprobe_disabled(p))
2254 arm_kprobe(p);
2255 }
2256
2257 kprobes_all_disarmed = false;
2258 printk(KERN_INFO "Kprobes globally enabled\n");
2259
2260 already_enabled:
2261 mutex_unlock(&kprobe_mutex);
2262 return;
2263 }
2264
2265 static void __kprobes disarm_all_kprobes(void)
2266 {
2267 struct hlist_head *head;
2268 struct hlist_node *node;
2269 struct kprobe *p;
2270 unsigned int i;
2271
2272 mutex_lock(&kprobe_mutex);
2273
2274 /* If kprobes are already disarmed, just return */
2275 if (kprobes_all_disarmed) {
2276 mutex_unlock(&kprobe_mutex);
2277 return;
2278 }
2279
2280 kprobes_all_disarmed = true;
2281 printk(KERN_INFO "Kprobes globally disabled\n");
2282
2283 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2284 head = &kprobe_table[i];
2285 hlist_for_each_entry_rcu(p, node, head, hlist) {
2286 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2287 disarm_kprobe(p, false);
2288 }
2289 }
2290 mutex_unlock(&kprobe_mutex);
2291
2292 /* Wait for disarming all kprobes by optimizer */
2293 wait_for_kprobe_optimizer();
2294 }
2295
2296 /*
2297 * XXX: The debugfs bool file interface doesn't allow for callbacks
2298 * when the bool state is switched. We can reuse that facility when
2299 * available
2300 */
2301 static ssize_t read_enabled_file_bool(struct file *file,
2302 char __user *user_buf, size_t count, loff_t *ppos)
2303 {
2304 char buf[3];
2305
2306 if (!kprobes_all_disarmed)
2307 buf[0] = '1';
2308 else
2309 buf[0] = '0';
2310 buf[1] = '\n';
2311 buf[2] = 0x00;
2312 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2313 }
2314
2315 static ssize_t write_enabled_file_bool(struct file *file,
2316 const char __user *user_buf, size_t count, loff_t *ppos)
2317 {
2318 char buf[32];
2319 size_t buf_size;
2320
2321 buf_size = min(count, (sizeof(buf)-1));
2322 if (copy_from_user(buf, user_buf, buf_size))
2323 return -EFAULT;
2324
2325 switch (buf[0]) {
2326 case 'y':
2327 case 'Y':
2328 case '1':
2329 arm_all_kprobes();
2330 break;
2331 case 'n':
2332 case 'N':
2333 case '0':
2334 disarm_all_kprobes();
2335 break;
2336 }
2337
2338 return count;
2339 }
2340
2341 static const struct file_operations fops_kp = {
2342 .read = read_enabled_file_bool,
2343 .write = write_enabled_file_bool,
2344 .llseek = default_llseek,
2345 };
2346
2347 static int __kprobes debugfs_kprobe_init(void)
2348 {
2349 struct dentry *dir, *file;
2350 unsigned int value = 1;
2351
2352 dir = debugfs_create_dir("kprobes", NULL);
2353 if (!dir)
2354 return -ENOMEM;
2355
2356 file = debugfs_create_file("list", 0444, dir, NULL,
2357 &debugfs_kprobes_operations);
2358 if (!file) {
2359 debugfs_remove(dir);
2360 return -ENOMEM;
2361 }
2362
2363 file = debugfs_create_file("enabled", 0600, dir,
2364 &value, &fops_kp);
2365 if (!file) {
2366 debugfs_remove(dir);
2367 return -ENOMEM;
2368 }
2369
2370 return 0;
2371 }
2372
2373 late_initcall(debugfs_kprobe_init);
2374 #endif /* CONFIG_DEBUG_FS */
2375
2376 module_init(init_kprobes);
2377
2378 /* defined in arch/.../kernel/kprobes.c */
2379 EXPORT_SYMBOL_GPL(jprobe_return);
This page took 0.07804 seconds and 5 git commands to generate.