Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[deliverable/linux.git] / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 /*
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
64 */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81 spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86 return &(kretprobe_table_locks[hash].lock);
87 }
88
89 /*
90 * Normally, functions that we'd want to prohibit kprobes in, are marked
91 * __kprobes. But, there are cases where such functions already belong to
92 * a different section (__sched for preempt_schedule)
93 *
94 * For such cases, we now have a blacklist
95 */
96 static struct kprobe_blackpoint kprobe_blacklist[] = {
97 {"preempt_schedule",},
98 {"native_get_debugreg",},
99 {"irq_entries_start",},
100 {"common_interrupt",},
101 {"mcount",}, /* mcount can be called from everywhere */
102 {NULL} /* Terminator */
103 };
104
105 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106 /*
107 * kprobe->ainsn.insn points to the copy of the instruction to be
108 * single-stepped. x86_64, POWER4 and above have no-exec support and
109 * stepping on the instruction on a vmalloced/kmalloced/data page
110 * is a recipe for disaster
111 */
112 struct kprobe_insn_page {
113 struct list_head list;
114 kprobe_opcode_t *insns; /* Page of instruction slots */
115 int nused;
116 int ngarbage;
117 char slot_used[];
118 };
119
120 #define KPROBE_INSN_PAGE_SIZE(slots) \
121 (offsetof(struct kprobe_insn_page, slot_used) + \
122 (sizeof(char) * (slots)))
123
124 struct kprobe_insn_cache {
125 struct list_head pages; /* list of kprobe_insn_page */
126 size_t insn_size; /* size of instruction slot */
127 int nr_garbage;
128 };
129
130 static int slots_per_page(struct kprobe_insn_cache *c)
131 {
132 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
133 }
134
135 enum kprobe_slot_state {
136 SLOT_CLEAN = 0,
137 SLOT_DIRTY = 1,
138 SLOT_USED = 2,
139 };
140
141 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */
142 static struct kprobe_insn_cache kprobe_insn_slots = {
143 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144 .insn_size = MAX_INSN_SIZE,
145 .nr_garbage = 0,
146 };
147 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148
149 /**
150 * __get_insn_slot() - Find a slot on an executable page for an instruction.
151 * We allocate an executable page if there's no room on existing ones.
152 */
153 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
154 {
155 struct kprobe_insn_page *kip;
156
157 retry:
158 list_for_each_entry(kip, &c->pages, list) {
159 if (kip->nused < slots_per_page(c)) {
160 int i;
161 for (i = 0; i < slots_per_page(c); i++) {
162 if (kip->slot_used[i] == SLOT_CLEAN) {
163 kip->slot_used[i] = SLOT_USED;
164 kip->nused++;
165 return kip->insns + (i * c->insn_size);
166 }
167 }
168 /* kip->nused is broken. Fix it. */
169 kip->nused = slots_per_page(c);
170 WARN_ON(1);
171 }
172 }
173
174 /* If there are any garbage slots, collect it and try again. */
175 if (c->nr_garbage && collect_garbage_slots(c) == 0)
176 goto retry;
177
178 /* All out of space. Need to allocate a new page. */
179 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180 if (!kip)
181 return NULL;
182
183 /*
184 * Use module_alloc so this page is within +/- 2GB of where the
185 * kernel image and loaded module images reside. This is required
186 * so x86_64 can correctly handle the %rip-relative fixups.
187 */
188 kip->insns = module_alloc(PAGE_SIZE);
189 if (!kip->insns) {
190 kfree(kip);
191 return NULL;
192 }
193 INIT_LIST_HEAD(&kip->list);
194 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195 kip->slot_used[0] = SLOT_USED;
196 kip->nused = 1;
197 kip->ngarbage = 0;
198 list_add(&kip->list, &c->pages);
199 return kip->insns;
200 }
201
202
203 kprobe_opcode_t __kprobes *get_insn_slot(void)
204 {
205 kprobe_opcode_t *ret = NULL;
206
207 mutex_lock(&kprobe_insn_mutex);
208 ret = __get_insn_slot(&kprobe_insn_slots);
209 mutex_unlock(&kprobe_insn_mutex);
210
211 return ret;
212 }
213
214 /* Return 1 if all garbages are collected, otherwise 0. */
215 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
216 {
217 kip->slot_used[idx] = SLOT_CLEAN;
218 kip->nused--;
219 if (kip->nused == 0) {
220 /*
221 * Page is no longer in use. Free it unless
222 * it's the last one. We keep the last one
223 * so as not to have to set it up again the
224 * next time somebody inserts a probe.
225 */
226 if (!list_is_singular(&kip->list)) {
227 list_del(&kip->list);
228 module_free(NULL, kip->insns);
229 kfree(kip);
230 }
231 return 1;
232 }
233 return 0;
234 }
235
236 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
237 {
238 struct kprobe_insn_page *kip, *next;
239
240 /* Ensure no-one is interrupted on the garbages */
241 synchronize_sched();
242
243 list_for_each_entry_safe(kip, next, &c->pages, list) {
244 int i;
245 if (kip->ngarbage == 0)
246 continue;
247 kip->ngarbage = 0; /* we will collect all garbages */
248 for (i = 0; i < slots_per_page(c); i++) {
249 if (kip->slot_used[i] == SLOT_DIRTY &&
250 collect_one_slot(kip, i))
251 break;
252 }
253 }
254 c->nr_garbage = 0;
255 return 0;
256 }
257
258 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259 kprobe_opcode_t *slot, int dirty)
260 {
261 struct kprobe_insn_page *kip;
262
263 list_for_each_entry(kip, &c->pages, list) {
264 long idx = ((long)slot - (long)kip->insns) /
265 (c->insn_size * sizeof(kprobe_opcode_t));
266 if (idx >= 0 && idx < slots_per_page(c)) {
267 WARN_ON(kip->slot_used[idx] != SLOT_USED);
268 if (dirty) {
269 kip->slot_used[idx] = SLOT_DIRTY;
270 kip->ngarbage++;
271 if (++c->nr_garbage > slots_per_page(c))
272 collect_garbage_slots(c);
273 } else
274 collect_one_slot(kip, idx);
275 return;
276 }
277 }
278 /* Could not free this slot. */
279 WARN_ON(1);
280 }
281
282 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
283 {
284 mutex_lock(&kprobe_insn_mutex);
285 __free_insn_slot(&kprobe_insn_slots, slot, dirty);
286 mutex_unlock(&kprobe_insn_mutex);
287 }
288 #ifdef CONFIG_OPTPROBES
289 /* For optimized_kprobe buffer */
290 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291 static struct kprobe_insn_cache kprobe_optinsn_slots = {
292 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293 /* .insn_size is initialized later */
294 .nr_garbage = 0,
295 };
296 /* Get a slot for optimized_kprobe buffer */
297 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
298 {
299 kprobe_opcode_t *ret = NULL;
300
301 mutex_lock(&kprobe_optinsn_mutex);
302 ret = __get_insn_slot(&kprobe_optinsn_slots);
303 mutex_unlock(&kprobe_optinsn_mutex);
304
305 return ret;
306 }
307
308 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
309 {
310 mutex_lock(&kprobe_optinsn_mutex);
311 __free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312 mutex_unlock(&kprobe_optinsn_mutex);
313 }
314 #endif
315 #endif
316
317 /* We have preemption disabled.. so it is safe to use __ versions */
318 static inline void set_kprobe_instance(struct kprobe *kp)
319 {
320 __get_cpu_var(kprobe_instance) = kp;
321 }
322
323 static inline void reset_kprobe_instance(void)
324 {
325 __get_cpu_var(kprobe_instance) = NULL;
326 }
327
328 /*
329 * This routine is called either:
330 * - under the kprobe_mutex - during kprobe_[un]register()
331 * OR
332 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
333 */
334 struct kprobe __kprobes *get_kprobe(void *addr)
335 {
336 struct hlist_head *head;
337 struct hlist_node *node;
338 struct kprobe *p;
339
340 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
341 hlist_for_each_entry_rcu(p, node, head, hlist) {
342 if (p->addr == addr)
343 return p;
344 }
345
346 return NULL;
347 }
348
349 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
350
351 /* Return true if the kprobe is an aggregator */
352 static inline int kprobe_aggrprobe(struct kprobe *p)
353 {
354 return p->pre_handler == aggr_pre_handler;
355 }
356
357 /*
358 * Keep all fields in the kprobe consistent
359 */
360 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
361 {
362 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
363 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
364 }
365
366 #ifdef CONFIG_OPTPROBES
367 /* NOTE: change this value only with kprobe_mutex held */
368 static bool kprobes_allow_optimization;
369
370 /*
371 * Call all pre_handler on the list, but ignores its return value.
372 * This must be called from arch-dep optimized caller.
373 */
374 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
375 {
376 struct kprobe *kp;
377
378 list_for_each_entry_rcu(kp, &p->list, list) {
379 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
380 set_kprobe_instance(kp);
381 kp->pre_handler(kp, regs);
382 }
383 reset_kprobe_instance();
384 }
385 }
386
387 /* Return true(!0) if the kprobe is ready for optimization. */
388 static inline int kprobe_optready(struct kprobe *p)
389 {
390 struct optimized_kprobe *op;
391
392 if (kprobe_aggrprobe(p)) {
393 op = container_of(p, struct optimized_kprobe, kp);
394 return arch_prepared_optinsn(&op->optinsn);
395 }
396
397 return 0;
398 }
399
400 /*
401 * Return an optimized kprobe whose optimizing code replaces
402 * instructions including addr (exclude breakpoint).
403 */
404 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
405 {
406 int i;
407 struct kprobe *p = NULL;
408 struct optimized_kprobe *op;
409
410 /* Don't check i == 0, since that is a breakpoint case. */
411 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
412 p = get_kprobe((void *)(addr - i));
413
414 if (p && kprobe_optready(p)) {
415 op = container_of(p, struct optimized_kprobe, kp);
416 if (arch_within_optimized_kprobe(op, addr))
417 return p;
418 }
419
420 return NULL;
421 }
422
423 /* Optimization staging list, protected by kprobe_mutex */
424 static LIST_HEAD(optimizing_list);
425
426 static void kprobe_optimizer(struct work_struct *work);
427 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
428 #define OPTIMIZE_DELAY 5
429
430 /* Kprobe jump optimizer */
431 static __kprobes void kprobe_optimizer(struct work_struct *work)
432 {
433 struct optimized_kprobe *op, *tmp;
434
435 /* Lock modules while optimizing kprobes */
436 mutex_lock(&module_mutex);
437 mutex_lock(&kprobe_mutex);
438 if (kprobes_all_disarmed || !kprobes_allow_optimization)
439 goto end;
440
441 /*
442 * Wait for quiesence period to ensure all running interrupts
443 * are done. Because optprobe may modify multiple instructions
444 * there is a chance that Nth instruction is interrupted. In that
445 * case, running interrupt can return to 2nd-Nth byte of jump
446 * instruction. This wait is for avoiding it.
447 */
448 synchronize_sched();
449
450 /*
451 * The optimization/unoptimization refers online_cpus via
452 * stop_machine() and cpu-hotplug modifies online_cpus.
453 * And same time, text_mutex will be held in cpu-hotplug and here.
454 * This combination can cause a deadlock (cpu-hotplug try to lock
455 * text_mutex but stop_machine can not be done because online_cpus
456 * has been changed)
457 * To avoid this deadlock, we need to call get_online_cpus()
458 * for preventing cpu-hotplug outside of text_mutex locking.
459 */
460 get_online_cpus();
461 mutex_lock(&text_mutex);
462 list_for_each_entry_safe(op, tmp, &optimizing_list, list) {
463 WARN_ON(kprobe_disabled(&op->kp));
464 if (arch_optimize_kprobe(op) < 0)
465 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
466 list_del_init(&op->list);
467 }
468 mutex_unlock(&text_mutex);
469 put_online_cpus();
470 end:
471 mutex_unlock(&kprobe_mutex);
472 mutex_unlock(&module_mutex);
473 }
474
475 /* Optimize kprobe if p is ready to be optimized */
476 static __kprobes void optimize_kprobe(struct kprobe *p)
477 {
478 struct optimized_kprobe *op;
479
480 /* Check if the kprobe is disabled or not ready for optimization. */
481 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
482 (kprobe_disabled(p) || kprobes_all_disarmed))
483 return;
484
485 /* Both of break_handler and post_handler are not supported. */
486 if (p->break_handler || p->post_handler)
487 return;
488
489 op = container_of(p, struct optimized_kprobe, kp);
490
491 /* Check there is no other kprobes at the optimized instructions */
492 if (arch_check_optimized_kprobe(op) < 0)
493 return;
494
495 /* Check if it is already optimized. */
496 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
497 return;
498
499 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
500 list_add(&op->list, &optimizing_list);
501 if (!delayed_work_pending(&optimizing_work))
502 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
503 }
504
505 /* Unoptimize a kprobe if p is optimized */
506 static __kprobes void unoptimize_kprobe(struct kprobe *p)
507 {
508 struct optimized_kprobe *op;
509
510 if ((p->flags & KPROBE_FLAG_OPTIMIZED) && kprobe_aggrprobe(p)) {
511 op = container_of(p, struct optimized_kprobe, kp);
512 if (!list_empty(&op->list))
513 /* Dequeue from the optimization queue */
514 list_del_init(&op->list);
515 else
516 /* Replace jump with break */
517 arch_unoptimize_kprobe(op);
518 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
519 }
520 }
521
522 /* Remove optimized instructions */
523 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
524 {
525 struct optimized_kprobe *op;
526
527 op = container_of(p, struct optimized_kprobe, kp);
528 if (!list_empty(&op->list)) {
529 /* Dequeue from the optimization queue */
530 list_del_init(&op->list);
531 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
532 }
533 /* Don't unoptimize, because the target code will be freed. */
534 arch_remove_optimized_kprobe(op);
535 }
536
537 /* Try to prepare optimized instructions */
538 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
539 {
540 struct optimized_kprobe *op;
541
542 op = container_of(p, struct optimized_kprobe, kp);
543 arch_prepare_optimized_kprobe(op);
544 }
545
546 /* Free optimized instructions and optimized_kprobe */
547 static __kprobes void free_aggr_kprobe(struct kprobe *p)
548 {
549 struct optimized_kprobe *op;
550
551 op = container_of(p, struct optimized_kprobe, kp);
552 arch_remove_optimized_kprobe(op);
553 kfree(op);
554 }
555
556 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
557 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
558 {
559 struct optimized_kprobe *op;
560
561 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
562 if (!op)
563 return NULL;
564
565 INIT_LIST_HEAD(&op->list);
566 op->kp.addr = p->addr;
567 arch_prepare_optimized_kprobe(op);
568
569 return &op->kp;
570 }
571
572 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
573
574 /*
575 * Prepare an optimized_kprobe and optimize it
576 * NOTE: p must be a normal registered kprobe
577 */
578 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
579 {
580 struct kprobe *ap;
581 struct optimized_kprobe *op;
582
583 ap = alloc_aggr_kprobe(p);
584 if (!ap)
585 return;
586
587 op = container_of(ap, struct optimized_kprobe, kp);
588 if (!arch_prepared_optinsn(&op->optinsn)) {
589 /* If failed to setup optimizing, fallback to kprobe */
590 free_aggr_kprobe(ap);
591 return;
592 }
593
594 init_aggr_kprobe(ap, p);
595 optimize_kprobe(ap);
596 }
597
598 #ifdef CONFIG_SYSCTL
599 /* This should be called with kprobe_mutex locked */
600 static void __kprobes optimize_all_kprobes(void)
601 {
602 struct hlist_head *head;
603 struct hlist_node *node;
604 struct kprobe *p;
605 unsigned int i;
606
607 /* If optimization is already allowed, just return */
608 if (kprobes_allow_optimization)
609 return;
610
611 kprobes_allow_optimization = true;
612 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
613 head = &kprobe_table[i];
614 hlist_for_each_entry_rcu(p, node, head, hlist)
615 if (!kprobe_disabled(p))
616 optimize_kprobe(p);
617 }
618 printk(KERN_INFO "Kprobes globally optimized\n");
619 }
620
621 /* This should be called with kprobe_mutex locked */
622 static void __kprobes unoptimize_all_kprobes(void)
623 {
624 struct hlist_head *head;
625 struct hlist_node *node;
626 struct kprobe *p;
627 unsigned int i;
628
629 /* If optimization is already prohibited, just return */
630 if (!kprobes_allow_optimization)
631 return;
632
633 kprobes_allow_optimization = false;
634 printk(KERN_INFO "Kprobes globally unoptimized\n");
635 get_online_cpus(); /* For avoiding text_mutex deadlock */
636 mutex_lock(&text_mutex);
637 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
638 head = &kprobe_table[i];
639 hlist_for_each_entry_rcu(p, node, head, hlist) {
640 if (!kprobe_disabled(p))
641 unoptimize_kprobe(p);
642 }
643 }
644
645 mutex_unlock(&text_mutex);
646 put_online_cpus();
647 /* Allow all currently running kprobes to complete */
648 synchronize_sched();
649 }
650
651 int sysctl_kprobes_optimization;
652 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
653 void __user *buffer, size_t *length,
654 loff_t *ppos)
655 {
656 int ret;
657
658 mutex_lock(&kprobe_mutex);
659 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
660 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
661
662 if (sysctl_kprobes_optimization)
663 optimize_all_kprobes();
664 else
665 unoptimize_all_kprobes();
666 mutex_unlock(&kprobe_mutex);
667
668 return ret;
669 }
670 #endif /* CONFIG_SYSCTL */
671
672 static void __kprobes __arm_kprobe(struct kprobe *p)
673 {
674 struct kprobe *old_p;
675
676 /* Check collision with other optimized kprobes */
677 old_p = get_optimized_kprobe((unsigned long)p->addr);
678 if (unlikely(old_p))
679 unoptimize_kprobe(old_p); /* Fallback to unoptimized kprobe */
680
681 arch_arm_kprobe(p);
682 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
683 }
684
685 static void __kprobes __disarm_kprobe(struct kprobe *p)
686 {
687 struct kprobe *old_p;
688
689 unoptimize_kprobe(p); /* Try to unoptimize */
690 arch_disarm_kprobe(p);
691
692 /* If another kprobe was blocked, optimize it. */
693 old_p = get_optimized_kprobe((unsigned long)p->addr);
694 if (unlikely(old_p))
695 optimize_kprobe(old_p);
696 }
697
698 #else /* !CONFIG_OPTPROBES */
699
700 #define optimize_kprobe(p) do {} while (0)
701 #define unoptimize_kprobe(p) do {} while (0)
702 #define kill_optimized_kprobe(p) do {} while (0)
703 #define prepare_optimized_kprobe(p) do {} while (0)
704 #define try_to_optimize_kprobe(p) do {} while (0)
705 #define __arm_kprobe(p) arch_arm_kprobe(p)
706 #define __disarm_kprobe(p) arch_disarm_kprobe(p)
707
708 static __kprobes void free_aggr_kprobe(struct kprobe *p)
709 {
710 kfree(p);
711 }
712
713 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
714 {
715 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
716 }
717 #endif /* CONFIG_OPTPROBES */
718
719 /* Arm a kprobe with text_mutex */
720 static void __kprobes arm_kprobe(struct kprobe *kp)
721 {
722 /*
723 * Here, since __arm_kprobe() doesn't use stop_machine(),
724 * this doesn't cause deadlock on text_mutex. So, we don't
725 * need get_online_cpus().
726 */
727 mutex_lock(&text_mutex);
728 __arm_kprobe(kp);
729 mutex_unlock(&text_mutex);
730 }
731
732 /* Disarm a kprobe with text_mutex */
733 static void __kprobes disarm_kprobe(struct kprobe *kp)
734 {
735 get_online_cpus(); /* For avoiding text_mutex deadlock */
736 mutex_lock(&text_mutex);
737 __disarm_kprobe(kp);
738 mutex_unlock(&text_mutex);
739 put_online_cpus();
740 }
741
742 /*
743 * Aggregate handlers for multiple kprobes support - these handlers
744 * take care of invoking the individual kprobe handlers on p->list
745 */
746 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
747 {
748 struct kprobe *kp;
749
750 list_for_each_entry_rcu(kp, &p->list, list) {
751 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
752 set_kprobe_instance(kp);
753 if (kp->pre_handler(kp, regs))
754 return 1;
755 }
756 reset_kprobe_instance();
757 }
758 return 0;
759 }
760
761 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
762 unsigned long flags)
763 {
764 struct kprobe *kp;
765
766 list_for_each_entry_rcu(kp, &p->list, list) {
767 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
768 set_kprobe_instance(kp);
769 kp->post_handler(kp, regs, flags);
770 reset_kprobe_instance();
771 }
772 }
773 }
774
775 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
776 int trapnr)
777 {
778 struct kprobe *cur = __get_cpu_var(kprobe_instance);
779
780 /*
781 * if we faulted "during" the execution of a user specified
782 * probe handler, invoke just that probe's fault handler
783 */
784 if (cur && cur->fault_handler) {
785 if (cur->fault_handler(cur, regs, trapnr))
786 return 1;
787 }
788 return 0;
789 }
790
791 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
792 {
793 struct kprobe *cur = __get_cpu_var(kprobe_instance);
794 int ret = 0;
795
796 if (cur && cur->break_handler) {
797 if (cur->break_handler(cur, regs))
798 ret = 1;
799 }
800 reset_kprobe_instance();
801 return ret;
802 }
803
804 /* Walks the list and increments nmissed count for multiprobe case */
805 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
806 {
807 struct kprobe *kp;
808 if (!kprobe_aggrprobe(p)) {
809 p->nmissed++;
810 } else {
811 list_for_each_entry_rcu(kp, &p->list, list)
812 kp->nmissed++;
813 }
814 return;
815 }
816
817 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
818 struct hlist_head *head)
819 {
820 struct kretprobe *rp = ri->rp;
821
822 /* remove rp inst off the rprobe_inst_table */
823 hlist_del(&ri->hlist);
824 INIT_HLIST_NODE(&ri->hlist);
825 if (likely(rp)) {
826 spin_lock(&rp->lock);
827 hlist_add_head(&ri->hlist, &rp->free_instances);
828 spin_unlock(&rp->lock);
829 } else
830 /* Unregistering */
831 hlist_add_head(&ri->hlist, head);
832 }
833
834 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
835 struct hlist_head **head, unsigned long *flags)
836 __acquires(hlist_lock)
837 {
838 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
839 spinlock_t *hlist_lock;
840
841 *head = &kretprobe_inst_table[hash];
842 hlist_lock = kretprobe_table_lock_ptr(hash);
843 spin_lock_irqsave(hlist_lock, *flags);
844 }
845
846 static void __kprobes kretprobe_table_lock(unsigned long hash,
847 unsigned long *flags)
848 __acquires(hlist_lock)
849 {
850 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
851 spin_lock_irqsave(hlist_lock, *flags);
852 }
853
854 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
855 unsigned long *flags)
856 __releases(hlist_lock)
857 {
858 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
859 spinlock_t *hlist_lock;
860
861 hlist_lock = kretprobe_table_lock_ptr(hash);
862 spin_unlock_irqrestore(hlist_lock, *flags);
863 }
864
865 static void __kprobes kretprobe_table_unlock(unsigned long hash,
866 unsigned long *flags)
867 __releases(hlist_lock)
868 {
869 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
870 spin_unlock_irqrestore(hlist_lock, *flags);
871 }
872
873 /*
874 * This function is called from finish_task_switch when task tk becomes dead,
875 * so that we can recycle any function-return probe instances associated
876 * with this task. These left over instances represent probed functions
877 * that have been called but will never return.
878 */
879 void __kprobes kprobe_flush_task(struct task_struct *tk)
880 {
881 struct kretprobe_instance *ri;
882 struct hlist_head *head, empty_rp;
883 struct hlist_node *node, *tmp;
884 unsigned long hash, flags = 0;
885
886 if (unlikely(!kprobes_initialized))
887 /* Early boot. kretprobe_table_locks not yet initialized. */
888 return;
889
890 hash = hash_ptr(tk, KPROBE_HASH_BITS);
891 head = &kretprobe_inst_table[hash];
892 kretprobe_table_lock(hash, &flags);
893 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
894 if (ri->task == tk)
895 recycle_rp_inst(ri, &empty_rp);
896 }
897 kretprobe_table_unlock(hash, &flags);
898 INIT_HLIST_HEAD(&empty_rp);
899 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
900 hlist_del(&ri->hlist);
901 kfree(ri);
902 }
903 }
904
905 static inline void free_rp_inst(struct kretprobe *rp)
906 {
907 struct kretprobe_instance *ri;
908 struct hlist_node *pos, *next;
909
910 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
911 hlist_del(&ri->hlist);
912 kfree(ri);
913 }
914 }
915
916 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
917 {
918 unsigned long flags, hash;
919 struct kretprobe_instance *ri;
920 struct hlist_node *pos, *next;
921 struct hlist_head *head;
922
923 /* No race here */
924 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
925 kretprobe_table_lock(hash, &flags);
926 head = &kretprobe_inst_table[hash];
927 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
928 if (ri->rp == rp)
929 ri->rp = NULL;
930 }
931 kretprobe_table_unlock(hash, &flags);
932 }
933 free_rp_inst(rp);
934 }
935
936 /*
937 * Add the new probe to ap->list. Fail if this is the
938 * second jprobe at the address - two jprobes can't coexist
939 */
940 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
941 {
942 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
943
944 if (p->break_handler || p->post_handler)
945 unoptimize_kprobe(ap); /* Fall back to normal kprobe */
946
947 if (p->break_handler) {
948 if (ap->break_handler)
949 return -EEXIST;
950 list_add_tail_rcu(&p->list, &ap->list);
951 ap->break_handler = aggr_break_handler;
952 } else
953 list_add_rcu(&p->list, &ap->list);
954 if (p->post_handler && !ap->post_handler)
955 ap->post_handler = aggr_post_handler;
956
957 if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
958 ap->flags &= ~KPROBE_FLAG_DISABLED;
959 if (!kprobes_all_disarmed)
960 /* Arm the breakpoint again. */
961 __arm_kprobe(ap);
962 }
963 return 0;
964 }
965
966 /*
967 * Fill in the required fields of the "manager kprobe". Replace the
968 * earlier kprobe in the hlist with the manager kprobe
969 */
970 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
971 {
972 /* Copy p's insn slot to ap */
973 copy_kprobe(p, ap);
974 flush_insn_slot(ap);
975 ap->addr = p->addr;
976 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
977 ap->pre_handler = aggr_pre_handler;
978 ap->fault_handler = aggr_fault_handler;
979 /* We don't care the kprobe which has gone. */
980 if (p->post_handler && !kprobe_gone(p))
981 ap->post_handler = aggr_post_handler;
982 if (p->break_handler && !kprobe_gone(p))
983 ap->break_handler = aggr_break_handler;
984
985 INIT_LIST_HEAD(&ap->list);
986 INIT_HLIST_NODE(&ap->hlist);
987
988 list_add_rcu(&p->list, &ap->list);
989 hlist_replace_rcu(&p->hlist, &ap->hlist);
990 }
991
992 /*
993 * This is the second or subsequent kprobe at the address - handle
994 * the intricacies
995 */
996 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
997 struct kprobe *p)
998 {
999 int ret = 0;
1000 struct kprobe *ap = old_p;
1001
1002 if (!kprobe_aggrprobe(old_p)) {
1003 /* If old_p is not an aggr_kprobe, create new aggr_kprobe. */
1004 ap = alloc_aggr_kprobe(old_p);
1005 if (!ap)
1006 return -ENOMEM;
1007 init_aggr_kprobe(ap, old_p);
1008 }
1009
1010 if (kprobe_gone(ap)) {
1011 /*
1012 * Attempting to insert new probe at the same location that
1013 * had a probe in the module vaddr area which already
1014 * freed. So, the instruction slot has already been
1015 * released. We need a new slot for the new probe.
1016 */
1017 ret = arch_prepare_kprobe(ap);
1018 if (ret)
1019 /*
1020 * Even if fail to allocate new slot, don't need to
1021 * free aggr_probe. It will be used next time, or
1022 * freed by unregister_kprobe.
1023 */
1024 return ret;
1025
1026 /* Prepare optimized instructions if possible. */
1027 prepare_optimized_kprobe(ap);
1028
1029 /*
1030 * Clear gone flag to prevent allocating new slot again, and
1031 * set disabled flag because it is not armed yet.
1032 */
1033 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1034 | KPROBE_FLAG_DISABLED;
1035 }
1036
1037 /* Copy ap's insn slot to p */
1038 copy_kprobe(ap, p);
1039 return add_new_kprobe(ap, p);
1040 }
1041
1042 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/
1043 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
1044 {
1045 struct kprobe *kp;
1046
1047 list_for_each_entry_rcu(kp, &p->list, list) {
1048 if (!kprobe_disabled(kp))
1049 /*
1050 * There is an active probe on the list.
1051 * We can't disable aggr_kprobe.
1052 */
1053 return 0;
1054 }
1055 p->flags |= KPROBE_FLAG_DISABLED;
1056 return 1;
1057 }
1058
1059 static int __kprobes in_kprobes_functions(unsigned long addr)
1060 {
1061 struct kprobe_blackpoint *kb;
1062
1063 if (addr >= (unsigned long)__kprobes_text_start &&
1064 addr < (unsigned long)__kprobes_text_end)
1065 return -EINVAL;
1066 /*
1067 * If there exists a kprobe_blacklist, verify and
1068 * fail any probe registration in the prohibited area
1069 */
1070 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1071 if (kb->start_addr) {
1072 if (addr >= kb->start_addr &&
1073 addr < (kb->start_addr + kb->range))
1074 return -EINVAL;
1075 }
1076 }
1077 return 0;
1078 }
1079
1080 /*
1081 * If we have a symbol_name argument, look it up and add the offset field
1082 * to it. This way, we can specify a relative address to a symbol.
1083 */
1084 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1085 {
1086 kprobe_opcode_t *addr = p->addr;
1087 if (p->symbol_name) {
1088 if (addr)
1089 return NULL;
1090 kprobe_lookup_name(p->symbol_name, addr);
1091 }
1092
1093 if (!addr)
1094 return NULL;
1095 return (kprobe_opcode_t *)(((char *)addr) + p->offset);
1096 }
1097
1098 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1099 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1100 {
1101 struct kprobe *old_p, *list_p;
1102
1103 old_p = get_kprobe(p->addr);
1104 if (unlikely(!old_p))
1105 return NULL;
1106
1107 if (p != old_p) {
1108 list_for_each_entry_rcu(list_p, &old_p->list, list)
1109 if (list_p == p)
1110 /* kprobe p is a valid probe */
1111 goto valid;
1112 return NULL;
1113 }
1114 valid:
1115 return old_p;
1116 }
1117
1118 /* Return error if the kprobe is being re-registered */
1119 static inline int check_kprobe_rereg(struct kprobe *p)
1120 {
1121 int ret = 0;
1122 struct kprobe *old_p;
1123
1124 mutex_lock(&kprobe_mutex);
1125 old_p = __get_valid_kprobe(p);
1126 if (old_p)
1127 ret = -EINVAL;
1128 mutex_unlock(&kprobe_mutex);
1129 return ret;
1130 }
1131
1132 int __kprobes register_kprobe(struct kprobe *p)
1133 {
1134 int ret = 0;
1135 struct kprobe *old_p;
1136 struct module *probed_mod;
1137 kprobe_opcode_t *addr;
1138
1139 addr = kprobe_addr(p);
1140 if (!addr)
1141 return -EINVAL;
1142 p->addr = addr;
1143
1144 ret = check_kprobe_rereg(p);
1145 if (ret)
1146 return ret;
1147
1148 jump_label_lock();
1149 preempt_disable();
1150 if (!kernel_text_address((unsigned long) p->addr) ||
1151 in_kprobes_functions((unsigned long) p->addr) ||
1152 ftrace_text_reserved(p->addr, p->addr) ||
1153 jump_label_text_reserved(p->addr, p->addr))
1154 goto fail_with_jump_label;
1155
1156 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1157 p->flags &= KPROBE_FLAG_DISABLED;
1158
1159 /*
1160 * Check if are we probing a module.
1161 */
1162 probed_mod = __module_text_address((unsigned long) p->addr);
1163 if (probed_mod) {
1164 /*
1165 * We must hold a refcount of the probed module while updating
1166 * its code to prohibit unexpected unloading.
1167 */
1168 if (unlikely(!try_module_get(probed_mod)))
1169 goto fail_with_jump_label;
1170
1171 /*
1172 * If the module freed .init.text, we couldn't insert
1173 * kprobes in there.
1174 */
1175 if (within_module_init((unsigned long)p->addr, probed_mod) &&
1176 probed_mod->state != MODULE_STATE_COMING) {
1177 module_put(probed_mod);
1178 goto fail_with_jump_label;
1179 }
1180 }
1181 preempt_enable();
1182 jump_label_unlock();
1183
1184 p->nmissed = 0;
1185 INIT_LIST_HEAD(&p->list);
1186 mutex_lock(&kprobe_mutex);
1187
1188 jump_label_lock(); /* needed to call jump_label_text_reserved() */
1189
1190 get_online_cpus(); /* For avoiding text_mutex deadlock. */
1191 mutex_lock(&text_mutex);
1192
1193 old_p = get_kprobe(p->addr);
1194 if (old_p) {
1195 /* Since this may unoptimize old_p, locking text_mutex. */
1196 ret = register_aggr_kprobe(old_p, p);
1197 goto out;
1198 }
1199
1200 ret = arch_prepare_kprobe(p);
1201 if (ret)
1202 goto out;
1203
1204 INIT_HLIST_NODE(&p->hlist);
1205 hlist_add_head_rcu(&p->hlist,
1206 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1207
1208 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1209 __arm_kprobe(p);
1210
1211 /* Try to optimize kprobe */
1212 try_to_optimize_kprobe(p);
1213
1214 out:
1215 mutex_unlock(&text_mutex);
1216 put_online_cpus();
1217 jump_label_unlock();
1218 mutex_unlock(&kprobe_mutex);
1219
1220 if (probed_mod)
1221 module_put(probed_mod);
1222
1223 return ret;
1224
1225 fail_with_jump_label:
1226 preempt_enable();
1227 jump_label_unlock();
1228 return -EINVAL;
1229 }
1230 EXPORT_SYMBOL_GPL(register_kprobe);
1231
1232 /*
1233 * Unregister a kprobe without a scheduler synchronization.
1234 */
1235 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1236 {
1237 struct kprobe *old_p, *list_p;
1238
1239 old_p = __get_valid_kprobe(p);
1240 if (old_p == NULL)
1241 return -EINVAL;
1242
1243 if (old_p == p ||
1244 (kprobe_aggrprobe(old_p) &&
1245 list_is_singular(&old_p->list))) {
1246 /*
1247 * Only probe on the hash list. Disarm only if kprobes are
1248 * enabled and not gone - otherwise, the breakpoint would
1249 * already have been removed. We save on flushing icache.
1250 */
1251 if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
1252 disarm_kprobe(old_p);
1253 hlist_del_rcu(&old_p->hlist);
1254 } else {
1255 if (p->break_handler && !kprobe_gone(p))
1256 old_p->break_handler = NULL;
1257 if (p->post_handler && !kprobe_gone(p)) {
1258 list_for_each_entry_rcu(list_p, &old_p->list, list) {
1259 if ((list_p != p) && (list_p->post_handler))
1260 goto noclean;
1261 }
1262 old_p->post_handler = NULL;
1263 }
1264 noclean:
1265 list_del_rcu(&p->list);
1266 if (!kprobe_disabled(old_p)) {
1267 try_to_disable_aggr_kprobe(old_p);
1268 if (!kprobes_all_disarmed) {
1269 if (kprobe_disabled(old_p))
1270 disarm_kprobe(old_p);
1271 else
1272 /* Try to optimize this probe again */
1273 optimize_kprobe(old_p);
1274 }
1275 }
1276 }
1277 return 0;
1278 }
1279
1280 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1281 {
1282 struct kprobe *old_p;
1283
1284 if (list_empty(&p->list))
1285 arch_remove_kprobe(p);
1286 else if (list_is_singular(&p->list)) {
1287 /* "p" is the last child of an aggr_kprobe */
1288 old_p = list_entry(p->list.next, struct kprobe, list);
1289 list_del(&p->list);
1290 arch_remove_kprobe(old_p);
1291 free_aggr_kprobe(old_p);
1292 }
1293 }
1294
1295 int __kprobes register_kprobes(struct kprobe **kps, int num)
1296 {
1297 int i, ret = 0;
1298
1299 if (num <= 0)
1300 return -EINVAL;
1301 for (i = 0; i < num; i++) {
1302 ret = register_kprobe(kps[i]);
1303 if (ret < 0) {
1304 if (i > 0)
1305 unregister_kprobes(kps, i);
1306 break;
1307 }
1308 }
1309 return ret;
1310 }
1311 EXPORT_SYMBOL_GPL(register_kprobes);
1312
1313 void __kprobes unregister_kprobe(struct kprobe *p)
1314 {
1315 unregister_kprobes(&p, 1);
1316 }
1317 EXPORT_SYMBOL_GPL(unregister_kprobe);
1318
1319 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1320 {
1321 int i;
1322
1323 if (num <= 0)
1324 return;
1325 mutex_lock(&kprobe_mutex);
1326 for (i = 0; i < num; i++)
1327 if (__unregister_kprobe_top(kps[i]) < 0)
1328 kps[i]->addr = NULL;
1329 mutex_unlock(&kprobe_mutex);
1330
1331 synchronize_sched();
1332 for (i = 0; i < num; i++)
1333 if (kps[i]->addr)
1334 __unregister_kprobe_bottom(kps[i]);
1335 }
1336 EXPORT_SYMBOL_GPL(unregister_kprobes);
1337
1338 static struct notifier_block kprobe_exceptions_nb = {
1339 .notifier_call = kprobe_exceptions_notify,
1340 .priority = 0x7fffffff /* we need to be notified first */
1341 };
1342
1343 unsigned long __weak arch_deref_entry_point(void *entry)
1344 {
1345 return (unsigned long)entry;
1346 }
1347
1348 int __kprobes register_jprobes(struct jprobe **jps, int num)
1349 {
1350 struct jprobe *jp;
1351 int ret = 0, i;
1352
1353 if (num <= 0)
1354 return -EINVAL;
1355 for (i = 0; i < num; i++) {
1356 unsigned long addr, offset;
1357 jp = jps[i];
1358 addr = arch_deref_entry_point(jp->entry);
1359
1360 /* Verify probepoint is a function entry point */
1361 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1362 offset == 0) {
1363 jp->kp.pre_handler = setjmp_pre_handler;
1364 jp->kp.break_handler = longjmp_break_handler;
1365 ret = register_kprobe(&jp->kp);
1366 } else
1367 ret = -EINVAL;
1368
1369 if (ret < 0) {
1370 if (i > 0)
1371 unregister_jprobes(jps, i);
1372 break;
1373 }
1374 }
1375 return ret;
1376 }
1377 EXPORT_SYMBOL_GPL(register_jprobes);
1378
1379 int __kprobes register_jprobe(struct jprobe *jp)
1380 {
1381 return register_jprobes(&jp, 1);
1382 }
1383 EXPORT_SYMBOL_GPL(register_jprobe);
1384
1385 void __kprobes unregister_jprobe(struct jprobe *jp)
1386 {
1387 unregister_jprobes(&jp, 1);
1388 }
1389 EXPORT_SYMBOL_GPL(unregister_jprobe);
1390
1391 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1392 {
1393 int i;
1394
1395 if (num <= 0)
1396 return;
1397 mutex_lock(&kprobe_mutex);
1398 for (i = 0; i < num; i++)
1399 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1400 jps[i]->kp.addr = NULL;
1401 mutex_unlock(&kprobe_mutex);
1402
1403 synchronize_sched();
1404 for (i = 0; i < num; i++) {
1405 if (jps[i]->kp.addr)
1406 __unregister_kprobe_bottom(&jps[i]->kp);
1407 }
1408 }
1409 EXPORT_SYMBOL_GPL(unregister_jprobes);
1410
1411 #ifdef CONFIG_KRETPROBES
1412 /*
1413 * This kprobe pre_handler is registered with every kretprobe. When probe
1414 * hits it will set up the return probe.
1415 */
1416 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1417 struct pt_regs *regs)
1418 {
1419 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1420 unsigned long hash, flags = 0;
1421 struct kretprobe_instance *ri;
1422
1423 /*TODO: consider to only swap the RA after the last pre_handler fired */
1424 hash = hash_ptr(current, KPROBE_HASH_BITS);
1425 spin_lock_irqsave(&rp->lock, flags);
1426 if (!hlist_empty(&rp->free_instances)) {
1427 ri = hlist_entry(rp->free_instances.first,
1428 struct kretprobe_instance, hlist);
1429 hlist_del(&ri->hlist);
1430 spin_unlock_irqrestore(&rp->lock, flags);
1431
1432 ri->rp = rp;
1433 ri->task = current;
1434
1435 if (rp->entry_handler && rp->entry_handler(ri, regs))
1436 return 0;
1437
1438 arch_prepare_kretprobe(ri, regs);
1439
1440 /* XXX(hch): why is there no hlist_move_head? */
1441 INIT_HLIST_NODE(&ri->hlist);
1442 kretprobe_table_lock(hash, &flags);
1443 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1444 kretprobe_table_unlock(hash, &flags);
1445 } else {
1446 rp->nmissed++;
1447 spin_unlock_irqrestore(&rp->lock, flags);
1448 }
1449 return 0;
1450 }
1451
1452 int __kprobes register_kretprobe(struct kretprobe *rp)
1453 {
1454 int ret = 0;
1455 struct kretprobe_instance *inst;
1456 int i;
1457 void *addr;
1458
1459 if (kretprobe_blacklist_size) {
1460 addr = kprobe_addr(&rp->kp);
1461 if (!addr)
1462 return -EINVAL;
1463
1464 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1465 if (kretprobe_blacklist[i].addr == addr)
1466 return -EINVAL;
1467 }
1468 }
1469
1470 rp->kp.pre_handler = pre_handler_kretprobe;
1471 rp->kp.post_handler = NULL;
1472 rp->kp.fault_handler = NULL;
1473 rp->kp.break_handler = NULL;
1474
1475 /* Pre-allocate memory for max kretprobe instances */
1476 if (rp->maxactive <= 0) {
1477 #ifdef CONFIG_PREEMPT
1478 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1479 #else
1480 rp->maxactive = num_possible_cpus();
1481 #endif
1482 }
1483 spin_lock_init(&rp->lock);
1484 INIT_HLIST_HEAD(&rp->free_instances);
1485 for (i = 0; i < rp->maxactive; i++) {
1486 inst = kmalloc(sizeof(struct kretprobe_instance) +
1487 rp->data_size, GFP_KERNEL);
1488 if (inst == NULL) {
1489 free_rp_inst(rp);
1490 return -ENOMEM;
1491 }
1492 INIT_HLIST_NODE(&inst->hlist);
1493 hlist_add_head(&inst->hlist, &rp->free_instances);
1494 }
1495
1496 rp->nmissed = 0;
1497 /* Establish function entry probe point */
1498 ret = register_kprobe(&rp->kp);
1499 if (ret != 0)
1500 free_rp_inst(rp);
1501 return ret;
1502 }
1503 EXPORT_SYMBOL_GPL(register_kretprobe);
1504
1505 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1506 {
1507 int ret = 0, i;
1508
1509 if (num <= 0)
1510 return -EINVAL;
1511 for (i = 0; i < num; i++) {
1512 ret = register_kretprobe(rps[i]);
1513 if (ret < 0) {
1514 if (i > 0)
1515 unregister_kretprobes(rps, i);
1516 break;
1517 }
1518 }
1519 return ret;
1520 }
1521 EXPORT_SYMBOL_GPL(register_kretprobes);
1522
1523 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1524 {
1525 unregister_kretprobes(&rp, 1);
1526 }
1527 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1528
1529 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1530 {
1531 int i;
1532
1533 if (num <= 0)
1534 return;
1535 mutex_lock(&kprobe_mutex);
1536 for (i = 0; i < num; i++)
1537 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1538 rps[i]->kp.addr = NULL;
1539 mutex_unlock(&kprobe_mutex);
1540
1541 synchronize_sched();
1542 for (i = 0; i < num; i++) {
1543 if (rps[i]->kp.addr) {
1544 __unregister_kprobe_bottom(&rps[i]->kp);
1545 cleanup_rp_inst(rps[i]);
1546 }
1547 }
1548 }
1549 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1550
1551 #else /* CONFIG_KRETPROBES */
1552 int __kprobes register_kretprobe(struct kretprobe *rp)
1553 {
1554 return -ENOSYS;
1555 }
1556 EXPORT_SYMBOL_GPL(register_kretprobe);
1557
1558 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1559 {
1560 return -ENOSYS;
1561 }
1562 EXPORT_SYMBOL_GPL(register_kretprobes);
1563
1564 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1565 {
1566 }
1567 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1568
1569 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1570 {
1571 }
1572 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1573
1574 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1575 struct pt_regs *regs)
1576 {
1577 return 0;
1578 }
1579
1580 #endif /* CONFIG_KRETPROBES */
1581
1582 /* Set the kprobe gone and remove its instruction buffer. */
1583 static void __kprobes kill_kprobe(struct kprobe *p)
1584 {
1585 struct kprobe *kp;
1586
1587 p->flags |= KPROBE_FLAG_GONE;
1588 if (kprobe_aggrprobe(p)) {
1589 /*
1590 * If this is an aggr_kprobe, we have to list all the
1591 * chained probes and mark them GONE.
1592 */
1593 list_for_each_entry_rcu(kp, &p->list, list)
1594 kp->flags |= KPROBE_FLAG_GONE;
1595 p->post_handler = NULL;
1596 p->break_handler = NULL;
1597 kill_optimized_kprobe(p);
1598 }
1599 /*
1600 * Here, we can remove insn_slot safely, because no thread calls
1601 * the original probed function (which will be freed soon) any more.
1602 */
1603 arch_remove_kprobe(p);
1604 }
1605
1606 /* Disable one kprobe */
1607 int __kprobes disable_kprobe(struct kprobe *kp)
1608 {
1609 int ret = 0;
1610 struct kprobe *p;
1611
1612 mutex_lock(&kprobe_mutex);
1613
1614 /* Check whether specified probe is valid. */
1615 p = __get_valid_kprobe(kp);
1616 if (unlikely(p == NULL)) {
1617 ret = -EINVAL;
1618 goto out;
1619 }
1620
1621 /* If the probe is already disabled (or gone), just return */
1622 if (kprobe_disabled(kp))
1623 goto out;
1624
1625 kp->flags |= KPROBE_FLAG_DISABLED;
1626 if (p != kp)
1627 /* When kp != p, p is always enabled. */
1628 try_to_disable_aggr_kprobe(p);
1629
1630 if (!kprobes_all_disarmed && kprobe_disabled(p))
1631 disarm_kprobe(p);
1632 out:
1633 mutex_unlock(&kprobe_mutex);
1634 return ret;
1635 }
1636 EXPORT_SYMBOL_GPL(disable_kprobe);
1637
1638 /* Enable one kprobe */
1639 int __kprobes enable_kprobe(struct kprobe *kp)
1640 {
1641 int ret = 0;
1642 struct kprobe *p;
1643
1644 mutex_lock(&kprobe_mutex);
1645
1646 /* Check whether specified probe is valid. */
1647 p = __get_valid_kprobe(kp);
1648 if (unlikely(p == NULL)) {
1649 ret = -EINVAL;
1650 goto out;
1651 }
1652
1653 if (kprobe_gone(kp)) {
1654 /* This kprobe has gone, we couldn't enable it. */
1655 ret = -EINVAL;
1656 goto out;
1657 }
1658
1659 if (p != kp)
1660 kp->flags &= ~KPROBE_FLAG_DISABLED;
1661
1662 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1663 p->flags &= ~KPROBE_FLAG_DISABLED;
1664 arm_kprobe(p);
1665 }
1666 out:
1667 mutex_unlock(&kprobe_mutex);
1668 return ret;
1669 }
1670 EXPORT_SYMBOL_GPL(enable_kprobe);
1671
1672 void __kprobes dump_kprobe(struct kprobe *kp)
1673 {
1674 printk(KERN_WARNING "Dumping kprobe:\n");
1675 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1676 kp->symbol_name, kp->addr, kp->offset);
1677 }
1678
1679 /* Module notifier call back, checking kprobes on the module */
1680 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1681 unsigned long val, void *data)
1682 {
1683 struct module *mod = data;
1684 struct hlist_head *head;
1685 struct hlist_node *node;
1686 struct kprobe *p;
1687 unsigned int i;
1688 int checkcore = (val == MODULE_STATE_GOING);
1689
1690 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1691 return NOTIFY_DONE;
1692
1693 /*
1694 * When MODULE_STATE_GOING was notified, both of module .text and
1695 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1696 * notified, only .init.text section would be freed. We need to
1697 * disable kprobes which have been inserted in the sections.
1698 */
1699 mutex_lock(&kprobe_mutex);
1700 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1701 head = &kprobe_table[i];
1702 hlist_for_each_entry_rcu(p, node, head, hlist)
1703 if (within_module_init((unsigned long)p->addr, mod) ||
1704 (checkcore &&
1705 within_module_core((unsigned long)p->addr, mod))) {
1706 /*
1707 * The vaddr this probe is installed will soon
1708 * be vfreed buy not synced to disk. Hence,
1709 * disarming the breakpoint isn't needed.
1710 */
1711 kill_kprobe(p);
1712 }
1713 }
1714 mutex_unlock(&kprobe_mutex);
1715 return NOTIFY_DONE;
1716 }
1717
1718 static struct notifier_block kprobe_module_nb = {
1719 .notifier_call = kprobes_module_callback,
1720 .priority = 0
1721 };
1722
1723 static int __init init_kprobes(void)
1724 {
1725 int i, err = 0;
1726 unsigned long offset = 0, size = 0;
1727 char *modname, namebuf[128];
1728 const char *symbol_name;
1729 void *addr;
1730 struct kprobe_blackpoint *kb;
1731
1732 /* FIXME allocate the probe table, currently defined statically */
1733 /* initialize all list heads */
1734 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1735 INIT_HLIST_HEAD(&kprobe_table[i]);
1736 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1737 spin_lock_init(&(kretprobe_table_locks[i].lock));
1738 }
1739
1740 /*
1741 * Lookup and populate the kprobe_blacklist.
1742 *
1743 * Unlike the kretprobe blacklist, we'll need to determine
1744 * the range of addresses that belong to the said functions,
1745 * since a kprobe need not necessarily be at the beginning
1746 * of a function.
1747 */
1748 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1749 kprobe_lookup_name(kb->name, addr);
1750 if (!addr)
1751 continue;
1752
1753 kb->start_addr = (unsigned long)addr;
1754 symbol_name = kallsyms_lookup(kb->start_addr,
1755 &size, &offset, &modname, namebuf);
1756 if (!symbol_name)
1757 kb->range = 0;
1758 else
1759 kb->range = size;
1760 }
1761
1762 if (kretprobe_blacklist_size) {
1763 /* lookup the function address from its name */
1764 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1765 kprobe_lookup_name(kretprobe_blacklist[i].name,
1766 kretprobe_blacklist[i].addr);
1767 if (!kretprobe_blacklist[i].addr)
1768 printk("kretprobe: lookup failed: %s\n",
1769 kretprobe_blacklist[i].name);
1770 }
1771 }
1772
1773 #if defined(CONFIG_OPTPROBES)
1774 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
1775 /* Init kprobe_optinsn_slots */
1776 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
1777 #endif
1778 /* By default, kprobes can be optimized */
1779 kprobes_allow_optimization = true;
1780 #endif
1781
1782 /* By default, kprobes are armed */
1783 kprobes_all_disarmed = false;
1784
1785 err = arch_init_kprobes();
1786 if (!err)
1787 err = register_die_notifier(&kprobe_exceptions_nb);
1788 if (!err)
1789 err = register_module_notifier(&kprobe_module_nb);
1790
1791 kprobes_initialized = (err == 0);
1792
1793 if (!err)
1794 init_test_probes();
1795 return err;
1796 }
1797
1798 #ifdef CONFIG_DEBUG_FS
1799 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1800 const char *sym, int offset, char *modname, struct kprobe *pp)
1801 {
1802 char *kprobe_type;
1803
1804 if (p->pre_handler == pre_handler_kretprobe)
1805 kprobe_type = "r";
1806 else if (p->pre_handler == setjmp_pre_handler)
1807 kprobe_type = "j";
1808 else
1809 kprobe_type = "k";
1810
1811 if (sym)
1812 seq_printf(pi, "%p %s %s+0x%x %s ",
1813 p->addr, kprobe_type, sym, offset,
1814 (modname ? modname : " "));
1815 else
1816 seq_printf(pi, "%p %s %p ",
1817 p->addr, kprobe_type, p->addr);
1818
1819 if (!pp)
1820 pp = p;
1821 seq_printf(pi, "%s%s%s\n",
1822 (kprobe_gone(p) ? "[GONE]" : ""),
1823 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
1824 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
1825 }
1826
1827 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1828 {
1829 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1830 }
1831
1832 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1833 {
1834 (*pos)++;
1835 if (*pos >= KPROBE_TABLE_SIZE)
1836 return NULL;
1837 return pos;
1838 }
1839
1840 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1841 {
1842 /* Nothing to do */
1843 }
1844
1845 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1846 {
1847 struct hlist_head *head;
1848 struct hlist_node *node;
1849 struct kprobe *p, *kp;
1850 const char *sym = NULL;
1851 unsigned int i = *(loff_t *) v;
1852 unsigned long offset = 0;
1853 char *modname, namebuf[128];
1854
1855 head = &kprobe_table[i];
1856 preempt_disable();
1857 hlist_for_each_entry_rcu(p, node, head, hlist) {
1858 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1859 &offset, &modname, namebuf);
1860 if (kprobe_aggrprobe(p)) {
1861 list_for_each_entry_rcu(kp, &p->list, list)
1862 report_probe(pi, kp, sym, offset, modname, p);
1863 } else
1864 report_probe(pi, p, sym, offset, modname, NULL);
1865 }
1866 preempt_enable();
1867 return 0;
1868 }
1869
1870 static const struct seq_operations kprobes_seq_ops = {
1871 .start = kprobe_seq_start,
1872 .next = kprobe_seq_next,
1873 .stop = kprobe_seq_stop,
1874 .show = show_kprobe_addr
1875 };
1876
1877 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1878 {
1879 return seq_open(filp, &kprobes_seq_ops);
1880 }
1881
1882 static const struct file_operations debugfs_kprobes_operations = {
1883 .open = kprobes_open,
1884 .read = seq_read,
1885 .llseek = seq_lseek,
1886 .release = seq_release,
1887 };
1888
1889 static void __kprobes arm_all_kprobes(void)
1890 {
1891 struct hlist_head *head;
1892 struct hlist_node *node;
1893 struct kprobe *p;
1894 unsigned int i;
1895
1896 mutex_lock(&kprobe_mutex);
1897
1898 /* If kprobes are armed, just return */
1899 if (!kprobes_all_disarmed)
1900 goto already_enabled;
1901
1902 /* Arming kprobes doesn't optimize kprobe itself */
1903 mutex_lock(&text_mutex);
1904 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1905 head = &kprobe_table[i];
1906 hlist_for_each_entry_rcu(p, node, head, hlist)
1907 if (!kprobe_disabled(p))
1908 __arm_kprobe(p);
1909 }
1910 mutex_unlock(&text_mutex);
1911
1912 kprobes_all_disarmed = false;
1913 printk(KERN_INFO "Kprobes globally enabled\n");
1914
1915 already_enabled:
1916 mutex_unlock(&kprobe_mutex);
1917 return;
1918 }
1919
1920 static void __kprobes disarm_all_kprobes(void)
1921 {
1922 struct hlist_head *head;
1923 struct hlist_node *node;
1924 struct kprobe *p;
1925 unsigned int i;
1926
1927 mutex_lock(&kprobe_mutex);
1928
1929 /* If kprobes are already disarmed, just return */
1930 if (kprobes_all_disarmed)
1931 goto already_disabled;
1932
1933 kprobes_all_disarmed = true;
1934 printk(KERN_INFO "Kprobes globally disabled\n");
1935
1936 /*
1937 * Here we call get_online_cpus() for avoiding text_mutex deadlock,
1938 * because disarming may also unoptimize kprobes.
1939 */
1940 get_online_cpus();
1941 mutex_lock(&text_mutex);
1942 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1943 head = &kprobe_table[i];
1944 hlist_for_each_entry_rcu(p, node, head, hlist) {
1945 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1946 __disarm_kprobe(p);
1947 }
1948 }
1949
1950 mutex_unlock(&text_mutex);
1951 put_online_cpus();
1952 mutex_unlock(&kprobe_mutex);
1953 /* Allow all currently running kprobes to complete */
1954 synchronize_sched();
1955 return;
1956
1957 already_disabled:
1958 mutex_unlock(&kprobe_mutex);
1959 return;
1960 }
1961
1962 /*
1963 * XXX: The debugfs bool file interface doesn't allow for callbacks
1964 * when the bool state is switched. We can reuse that facility when
1965 * available
1966 */
1967 static ssize_t read_enabled_file_bool(struct file *file,
1968 char __user *user_buf, size_t count, loff_t *ppos)
1969 {
1970 char buf[3];
1971
1972 if (!kprobes_all_disarmed)
1973 buf[0] = '1';
1974 else
1975 buf[0] = '0';
1976 buf[1] = '\n';
1977 buf[2] = 0x00;
1978 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1979 }
1980
1981 static ssize_t write_enabled_file_bool(struct file *file,
1982 const char __user *user_buf, size_t count, loff_t *ppos)
1983 {
1984 char buf[32];
1985 int buf_size;
1986
1987 buf_size = min(count, (sizeof(buf)-1));
1988 if (copy_from_user(buf, user_buf, buf_size))
1989 return -EFAULT;
1990
1991 switch (buf[0]) {
1992 case 'y':
1993 case 'Y':
1994 case '1':
1995 arm_all_kprobes();
1996 break;
1997 case 'n':
1998 case 'N':
1999 case '0':
2000 disarm_all_kprobes();
2001 break;
2002 }
2003
2004 return count;
2005 }
2006
2007 static const struct file_operations fops_kp = {
2008 .read = read_enabled_file_bool,
2009 .write = write_enabled_file_bool,
2010 .llseek = default_llseek,
2011 };
2012
2013 static int __kprobes debugfs_kprobe_init(void)
2014 {
2015 struct dentry *dir, *file;
2016 unsigned int value = 1;
2017
2018 dir = debugfs_create_dir("kprobes", NULL);
2019 if (!dir)
2020 return -ENOMEM;
2021
2022 file = debugfs_create_file("list", 0444, dir, NULL,
2023 &debugfs_kprobes_operations);
2024 if (!file) {
2025 debugfs_remove(dir);
2026 return -ENOMEM;
2027 }
2028
2029 file = debugfs_create_file("enabled", 0600, dir,
2030 &value, &fops_kp);
2031 if (!file) {
2032 debugfs_remove(dir);
2033 return -ENOMEM;
2034 }
2035
2036 return 0;
2037 }
2038
2039 late_initcall(debugfs_kprobe_init);
2040 #endif /* CONFIG_DEBUG_FS */
2041
2042 module_init(init_kprobes);
2043
2044 /* defined in arch/.../kernel/kprobes.c */
2045 EXPORT_SYMBOL_GPL(jprobe_return);
This page took 0.101264 seconds and 5 git commands to generate.