kprobes: remove called_from argument
[deliverable/linux.git] / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/kdebug.h>
46
47 #include <asm-generic/sections.h>
48 #include <asm/cacheflush.h>
49 #include <asm/errno.h>
50 #include <asm/uaccess.h>
51
52 #define KPROBE_HASH_BITS 6
53 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
54
55
56 /*
57 * Some oddball architectures like 64bit powerpc have function descriptors
58 * so this must be overridable.
59 */
60 #ifndef kprobe_lookup_name
61 #define kprobe_lookup_name(name, addr) \
62 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
63 #endif
64
65 static int kprobes_initialized;
66 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
67 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
68
69 /* NOTE: change this value only with kprobe_mutex held */
70 static bool kprobe_enabled;
71
72 static DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */
73 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
74 static struct {
75 spinlock_t lock ____cacheline_aligned_in_smp;
76 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
77
78 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
79 {
80 return &(kretprobe_table_locks[hash].lock);
81 }
82
83 /*
84 * Normally, functions that we'd want to prohibit kprobes in, are marked
85 * __kprobes. But, there are cases where such functions already belong to
86 * a different section (__sched for preempt_schedule)
87 *
88 * For such cases, we now have a blacklist
89 */
90 static struct kprobe_blackpoint kprobe_blacklist[] = {
91 {"preempt_schedule",},
92 {NULL} /* Terminator */
93 };
94
95 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
96 /*
97 * kprobe->ainsn.insn points to the copy of the instruction to be
98 * single-stepped. x86_64, POWER4 and above have no-exec support and
99 * stepping on the instruction on a vmalloced/kmalloced/data page
100 * is a recipe for disaster
101 */
102 #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
103
104 struct kprobe_insn_page {
105 struct hlist_node hlist;
106 kprobe_opcode_t *insns; /* Page of instruction slots */
107 char slot_used[INSNS_PER_PAGE];
108 int nused;
109 int ngarbage;
110 };
111
112 enum kprobe_slot_state {
113 SLOT_CLEAN = 0,
114 SLOT_DIRTY = 1,
115 SLOT_USED = 2,
116 };
117
118 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_pages */
119 static struct hlist_head kprobe_insn_pages;
120 static int kprobe_garbage_slots;
121 static int collect_garbage_slots(void);
122
123 static int __kprobes check_safety(void)
124 {
125 int ret = 0;
126 #if defined(CONFIG_PREEMPT) && defined(CONFIG_PM)
127 ret = freeze_processes();
128 if (ret == 0) {
129 struct task_struct *p, *q;
130 do_each_thread(p, q) {
131 if (p != current && p->state == TASK_RUNNING &&
132 p->pid != 0) {
133 printk("Check failed: %s is running\n",p->comm);
134 ret = -1;
135 goto loop_end;
136 }
137 } while_each_thread(p, q);
138 }
139 loop_end:
140 thaw_processes();
141 #else
142 synchronize_sched();
143 #endif
144 return ret;
145 }
146
147 /**
148 * __get_insn_slot() - Find a slot on an executable page for an instruction.
149 * We allocate an executable page if there's no room on existing ones.
150 */
151 static kprobe_opcode_t __kprobes *__get_insn_slot(void)
152 {
153 struct kprobe_insn_page *kip;
154 struct hlist_node *pos;
155
156 retry:
157 hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
158 if (kip->nused < INSNS_PER_PAGE) {
159 int i;
160 for (i = 0; i < INSNS_PER_PAGE; i++) {
161 if (kip->slot_used[i] == SLOT_CLEAN) {
162 kip->slot_used[i] = SLOT_USED;
163 kip->nused++;
164 return kip->insns + (i * MAX_INSN_SIZE);
165 }
166 }
167 /* Surprise! No unused slots. Fix kip->nused. */
168 kip->nused = INSNS_PER_PAGE;
169 }
170 }
171
172 /* If there are any garbage slots, collect it and try again. */
173 if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
174 goto retry;
175 }
176 /* All out of space. Need to allocate a new page. Use slot 0. */
177 kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
178 if (!kip)
179 return NULL;
180
181 /*
182 * Use module_alloc so this page is within +/- 2GB of where the
183 * kernel image and loaded module images reside. This is required
184 * so x86_64 can correctly handle the %rip-relative fixups.
185 */
186 kip->insns = module_alloc(PAGE_SIZE);
187 if (!kip->insns) {
188 kfree(kip);
189 return NULL;
190 }
191 INIT_HLIST_NODE(&kip->hlist);
192 hlist_add_head(&kip->hlist, &kprobe_insn_pages);
193 memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
194 kip->slot_used[0] = SLOT_USED;
195 kip->nused = 1;
196 kip->ngarbage = 0;
197 return kip->insns;
198 }
199
200 kprobe_opcode_t __kprobes *get_insn_slot(void)
201 {
202 kprobe_opcode_t *ret;
203 mutex_lock(&kprobe_insn_mutex);
204 ret = __get_insn_slot();
205 mutex_unlock(&kprobe_insn_mutex);
206 return ret;
207 }
208
209 /* Return 1 if all garbages are collected, otherwise 0. */
210 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
211 {
212 kip->slot_used[idx] = SLOT_CLEAN;
213 kip->nused--;
214 if (kip->nused == 0) {
215 /*
216 * Page is no longer in use. Free it unless
217 * it's the last one. We keep the last one
218 * so as not to have to set it up again the
219 * next time somebody inserts a probe.
220 */
221 hlist_del(&kip->hlist);
222 if (hlist_empty(&kprobe_insn_pages)) {
223 INIT_HLIST_NODE(&kip->hlist);
224 hlist_add_head(&kip->hlist,
225 &kprobe_insn_pages);
226 } else {
227 module_free(NULL, kip->insns);
228 kfree(kip);
229 }
230 return 1;
231 }
232 return 0;
233 }
234
235 static int __kprobes collect_garbage_slots(void)
236 {
237 struct kprobe_insn_page *kip;
238 struct hlist_node *pos, *next;
239 int safety;
240
241 /* Ensure no-one is preepmted on the garbages */
242 mutex_unlock(&kprobe_insn_mutex);
243 safety = check_safety();
244 mutex_lock(&kprobe_insn_mutex);
245 if (safety != 0)
246 return -EAGAIN;
247
248 hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) {
249 int i;
250 if (kip->ngarbage == 0)
251 continue;
252 kip->ngarbage = 0; /* we will collect all garbages */
253 for (i = 0; i < INSNS_PER_PAGE; i++) {
254 if (kip->slot_used[i] == SLOT_DIRTY &&
255 collect_one_slot(kip, i))
256 break;
257 }
258 }
259 kprobe_garbage_slots = 0;
260 return 0;
261 }
262
263 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
264 {
265 struct kprobe_insn_page *kip;
266 struct hlist_node *pos;
267
268 mutex_lock(&kprobe_insn_mutex);
269 hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
270 if (kip->insns <= slot &&
271 slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
272 int i = (slot - kip->insns) / MAX_INSN_SIZE;
273 if (dirty) {
274 kip->slot_used[i] = SLOT_DIRTY;
275 kip->ngarbage++;
276 } else {
277 collect_one_slot(kip, i);
278 }
279 break;
280 }
281 }
282
283 if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
284 collect_garbage_slots();
285
286 mutex_unlock(&kprobe_insn_mutex);
287 }
288 #endif
289
290 /* We have preemption disabled.. so it is safe to use __ versions */
291 static inline void set_kprobe_instance(struct kprobe *kp)
292 {
293 __get_cpu_var(kprobe_instance) = kp;
294 }
295
296 static inline void reset_kprobe_instance(void)
297 {
298 __get_cpu_var(kprobe_instance) = NULL;
299 }
300
301 /*
302 * This routine is called either:
303 * - under the kprobe_mutex - during kprobe_[un]register()
304 * OR
305 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
306 */
307 struct kprobe __kprobes *get_kprobe(void *addr)
308 {
309 struct hlist_head *head;
310 struct hlist_node *node;
311 struct kprobe *p;
312
313 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
314 hlist_for_each_entry_rcu(p, node, head, hlist) {
315 if (p->addr == addr)
316 return p;
317 }
318 return NULL;
319 }
320
321 /*
322 * Aggregate handlers for multiple kprobes support - these handlers
323 * take care of invoking the individual kprobe handlers on p->list
324 */
325 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
326 {
327 struct kprobe *kp;
328
329 list_for_each_entry_rcu(kp, &p->list, list) {
330 if (kp->pre_handler && !kprobe_gone(kp)) {
331 set_kprobe_instance(kp);
332 if (kp->pre_handler(kp, regs))
333 return 1;
334 }
335 reset_kprobe_instance();
336 }
337 return 0;
338 }
339
340 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
341 unsigned long flags)
342 {
343 struct kprobe *kp;
344
345 list_for_each_entry_rcu(kp, &p->list, list) {
346 if (kp->post_handler && !kprobe_gone(kp)) {
347 set_kprobe_instance(kp);
348 kp->post_handler(kp, regs, flags);
349 reset_kprobe_instance();
350 }
351 }
352 }
353
354 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
355 int trapnr)
356 {
357 struct kprobe *cur = __get_cpu_var(kprobe_instance);
358
359 /*
360 * if we faulted "during" the execution of a user specified
361 * probe handler, invoke just that probe's fault handler
362 */
363 if (cur && cur->fault_handler) {
364 if (cur->fault_handler(cur, regs, trapnr))
365 return 1;
366 }
367 return 0;
368 }
369
370 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
371 {
372 struct kprobe *cur = __get_cpu_var(kprobe_instance);
373 int ret = 0;
374
375 if (cur && cur->break_handler) {
376 if (cur->break_handler(cur, regs))
377 ret = 1;
378 }
379 reset_kprobe_instance();
380 return ret;
381 }
382
383 /* Walks the list and increments nmissed count for multiprobe case */
384 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
385 {
386 struct kprobe *kp;
387 if (p->pre_handler != aggr_pre_handler) {
388 p->nmissed++;
389 } else {
390 list_for_each_entry_rcu(kp, &p->list, list)
391 kp->nmissed++;
392 }
393 return;
394 }
395
396 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
397 struct hlist_head *head)
398 {
399 struct kretprobe *rp = ri->rp;
400
401 /* remove rp inst off the rprobe_inst_table */
402 hlist_del(&ri->hlist);
403 INIT_HLIST_NODE(&ri->hlist);
404 if (likely(rp)) {
405 spin_lock(&rp->lock);
406 hlist_add_head(&ri->hlist, &rp->free_instances);
407 spin_unlock(&rp->lock);
408 } else
409 /* Unregistering */
410 hlist_add_head(&ri->hlist, head);
411 }
412
413 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
414 struct hlist_head **head, unsigned long *flags)
415 {
416 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
417 spinlock_t *hlist_lock;
418
419 *head = &kretprobe_inst_table[hash];
420 hlist_lock = kretprobe_table_lock_ptr(hash);
421 spin_lock_irqsave(hlist_lock, *flags);
422 }
423
424 static void __kprobes kretprobe_table_lock(unsigned long hash,
425 unsigned long *flags)
426 {
427 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
428 spin_lock_irqsave(hlist_lock, *flags);
429 }
430
431 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
432 unsigned long *flags)
433 {
434 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
435 spinlock_t *hlist_lock;
436
437 hlist_lock = kretprobe_table_lock_ptr(hash);
438 spin_unlock_irqrestore(hlist_lock, *flags);
439 }
440
441 void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
442 {
443 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
444 spin_unlock_irqrestore(hlist_lock, *flags);
445 }
446
447 /*
448 * This function is called from finish_task_switch when task tk becomes dead,
449 * so that we can recycle any function-return probe instances associated
450 * with this task. These left over instances represent probed functions
451 * that have been called but will never return.
452 */
453 void __kprobes kprobe_flush_task(struct task_struct *tk)
454 {
455 struct kretprobe_instance *ri;
456 struct hlist_head *head, empty_rp;
457 struct hlist_node *node, *tmp;
458 unsigned long hash, flags = 0;
459
460 if (unlikely(!kprobes_initialized))
461 /* Early boot. kretprobe_table_locks not yet initialized. */
462 return;
463
464 hash = hash_ptr(tk, KPROBE_HASH_BITS);
465 head = &kretprobe_inst_table[hash];
466 kretprobe_table_lock(hash, &flags);
467 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
468 if (ri->task == tk)
469 recycle_rp_inst(ri, &empty_rp);
470 }
471 kretprobe_table_unlock(hash, &flags);
472 INIT_HLIST_HEAD(&empty_rp);
473 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
474 hlist_del(&ri->hlist);
475 kfree(ri);
476 }
477 }
478
479 static inline void free_rp_inst(struct kretprobe *rp)
480 {
481 struct kretprobe_instance *ri;
482 struct hlist_node *pos, *next;
483
484 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
485 hlist_del(&ri->hlist);
486 kfree(ri);
487 }
488 }
489
490 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
491 {
492 unsigned long flags, hash;
493 struct kretprobe_instance *ri;
494 struct hlist_node *pos, *next;
495 struct hlist_head *head;
496
497 /* No race here */
498 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
499 kretprobe_table_lock(hash, &flags);
500 head = &kretprobe_inst_table[hash];
501 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
502 if (ri->rp == rp)
503 ri->rp = NULL;
504 }
505 kretprobe_table_unlock(hash, &flags);
506 }
507 free_rp_inst(rp);
508 }
509
510 /*
511 * Keep all fields in the kprobe consistent
512 */
513 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
514 {
515 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
516 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
517 }
518
519 /*
520 * Add the new probe to old_p->list. Fail if this is the
521 * second jprobe at the address - two jprobes can't coexist
522 */
523 static int __kprobes add_new_kprobe(struct kprobe *old_p, struct kprobe *p)
524 {
525 if (p->break_handler) {
526 if (old_p->break_handler)
527 return -EEXIST;
528 list_add_tail_rcu(&p->list, &old_p->list);
529 old_p->break_handler = aggr_break_handler;
530 } else
531 list_add_rcu(&p->list, &old_p->list);
532 if (p->post_handler && !old_p->post_handler)
533 old_p->post_handler = aggr_post_handler;
534 return 0;
535 }
536
537 /*
538 * Fill in the required fields of the "manager kprobe". Replace the
539 * earlier kprobe in the hlist with the manager kprobe
540 */
541 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
542 {
543 copy_kprobe(p, ap);
544 flush_insn_slot(ap);
545 ap->addr = p->addr;
546 ap->pre_handler = aggr_pre_handler;
547 ap->fault_handler = aggr_fault_handler;
548 /* We don't care the kprobe which has gone. */
549 if (p->post_handler && !kprobe_gone(p))
550 ap->post_handler = aggr_post_handler;
551 if (p->break_handler && !kprobe_gone(p))
552 ap->break_handler = aggr_break_handler;
553
554 INIT_LIST_HEAD(&ap->list);
555 list_add_rcu(&p->list, &ap->list);
556
557 hlist_replace_rcu(&p->hlist, &ap->hlist);
558 }
559
560 /*
561 * This is the second or subsequent kprobe at the address - handle
562 * the intricacies
563 */
564 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
565 struct kprobe *p)
566 {
567 int ret = 0;
568 struct kprobe *ap;
569
570 if (kprobe_gone(old_p)) {
571 /*
572 * Attempting to insert new probe at the same location that
573 * had a probe in the module vaddr area which already
574 * freed. So, the instruction slot has already been
575 * released. We need a new slot for the new probe.
576 */
577 ret = arch_prepare_kprobe(old_p);
578 if (ret)
579 return ret;
580 }
581 if (old_p->pre_handler == aggr_pre_handler) {
582 copy_kprobe(old_p, p);
583 ret = add_new_kprobe(old_p, p);
584 ap = old_p;
585 } else {
586 ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
587 if (!ap) {
588 if (kprobe_gone(old_p))
589 arch_remove_kprobe(old_p);
590 return -ENOMEM;
591 }
592 add_aggr_kprobe(ap, old_p);
593 copy_kprobe(ap, p);
594 ret = add_new_kprobe(ap, p);
595 }
596 if (kprobe_gone(old_p)) {
597 /*
598 * If the old_p has gone, its breakpoint has been disarmed.
599 * We have to arm it again after preparing real kprobes.
600 */
601 ap->flags &= ~KPROBE_FLAG_GONE;
602 if (kprobe_enabled)
603 arch_arm_kprobe(ap);
604 }
605 return ret;
606 }
607
608 static int __kprobes in_kprobes_functions(unsigned long addr)
609 {
610 struct kprobe_blackpoint *kb;
611
612 if (addr >= (unsigned long)__kprobes_text_start &&
613 addr < (unsigned long)__kprobes_text_end)
614 return -EINVAL;
615 /*
616 * If there exists a kprobe_blacklist, verify and
617 * fail any probe registration in the prohibited area
618 */
619 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
620 if (kb->start_addr) {
621 if (addr >= kb->start_addr &&
622 addr < (kb->start_addr + kb->range))
623 return -EINVAL;
624 }
625 }
626 return 0;
627 }
628
629 /*
630 * If we have a symbol_name argument, look it up and add the offset field
631 * to it. This way, we can specify a relative address to a symbol.
632 */
633 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
634 {
635 kprobe_opcode_t *addr = p->addr;
636 if (p->symbol_name) {
637 if (addr)
638 return NULL;
639 kprobe_lookup_name(p->symbol_name, addr);
640 }
641
642 if (!addr)
643 return NULL;
644 return (kprobe_opcode_t *)(((char *)addr) + p->offset);
645 }
646
647 int __kprobes register_kprobe(struct kprobe *p)
648 {
649 int ret = 0;
650 struct kprobe *old_p;
651 struct module *probed_mod;
652 kprobe_opcode_t *addr;
653
654 addr = kprobe_addr(p);
655 if (!addr)
656 return -EINVAL;
657 p->addr = addr;
658
659 preempt_disable();
660 if (!__kernel_text_address((unsigned long) p->addr) ||
661 in_kprobes_functions((unsigned long) p->addr)) {
662 preempt_enable();
663 return -EINVAL;
664 }
665
666 p->flags = 0;
667 /*
668 * Check if are we probing a module.
669 */
670 probed_mod = __module_text_address((unsigned long) p->addr);
671 if (probed_mod) {
672 /*
673 * We must hold a refcount of the probed module while updating
674 * its code to prohibit unexpected unloading.
675 */
676 if (unlikely(!try_module_get(probed_mod))) {
677 preempt_enable();
678 return -EINVAL;
679 }
680 }
681 preempt_enable();
682
683 p->nmissed = 0;
684 INIT_LIST_HEAD(&p->list);
685 mutex_lock(&kprobe_mutex);
686 old_p = get_kprobe(p->addr);
687 if (old_p) {
688 ret = register_aggr_kprobe(old_p, p);
689 goto out;
690 }
691
692 ret = arch_prepare_kprobe(p);
693 if (ret)
694 goto out;
695
696 INIT_HLIST_NODE(&p->hlist);
697 hlist_add_head_rcu(&p->hlist,
698 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
699
700 if (kprobe_enabled)
701 arch_arm_kprobe(p);
702
703 out:
704 mutex_unlock(&kprobe_mutex);
705
706 if (probed_mod)
707 module_put(probed_mod);
708
709 return ret;
710 }
711
712 /*
713 * Unregister a kprobe without a scheduler synchronization.
714 */
715 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
716 {
717 struct kprobe *old_p, *list_p;
718
719 old_p = get_kprobe(p->addr);
720 if (unlikely(!old_p))
721 return -EINVAL;
722
723 if (p != old_p) {
724 list_for_each_entry_rcu(list_p, &old_p->list, list)
725 if (list_p == p)
726 /* kprobe p is a valid probe */
727 goto valid_p;
728 return -EINVAL;
729 }
730 valid_p:
731 if (old_p == p ||
732 (old_p->pre_handler == aggr_pre_handler &&
733 list_is_singular(&old_p->list))) {
734 /*
735 * Only probe on the hash list. Disarm only if kprobes are
736 * enabled and not gone - otherwise, the breakpoint would
737 * already have been removed. We save on flushing icache.
738 */
739 if (kprobe_enabled && !kprobe_gone(old_p))
740 arch_disarm_kprobe(p);
741 hlist_del_rcu(&old_p->hlist);
742 } else {
743 if (p->break_handler && !kprobe_gone(p))
744 old_p->break_handler = NULL;
745 if (p->post_handler && !kprobe_gone(p)) {
746 list_for_each_entry_rcu(list_p, &old_p->list, list) {
747 if ((list_p != p) && (list_p->post_handler))
748 goto noclean;
749 }
750 old_p->post_handler = NULL;
751 }
752 noclean:
753 list_del_rcu(&p->list);
754 }
755 return 0;
756 }
757
758 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
759 {
760 struct kprobe *old_p;
761
762 if (list_empty(&p->list))
763 arch_remove_kprobe(p);
764 else if (list_is_singular(&p->list)) {
765 /* "p" is the last child of an aggr_kprobe */
766 old_p = list_entry(p->list.next, struct kprobe, list);
767 list_del(&p->list);
768 arch_remove_kprobe(old_p);
769 kfree(old_p);
770 }
771 }
772
773 int __kprobes register_kprobes(struct kprobe **kps, int num)
774 {
775 int i, ret = 0;
776
777 if (num <= 0)
778 return -EINVAL;
779 for (i = 0; i < num; i++) {
780 ret = register_kprobe(kps[i]);
781 if (ret < 0) {
782 if (i > 0)
783 unregister_kprobes(kps, i);
784 break;
785 }
786 }
787 return ret;
788 }
789
790 void __kprobes unregister_kprobe(struct kprobe *p)
791 {
792 unregister_kprobes(&p, 1);
793 }
794
795 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
796 {
797 int i;
798
799 if (num <= 0)
800 return;
801 mutex_lock(&kprobe_mutex);
802 for (i = 0; i < num; i++)
803 if (__unregister_kprobe_top(kps[i]) < 0)
804 kps[i]->addr = NULL;
805 mutex_unlock(&kprobe_mutex);
806
807 synchronize_sched();
808 for (i = 0; i < num; i++)
809 if (kps[i]->addr)
810 __unregister_kprobe_bottom(kps[i]);
811 }
812
813 static struct notifier_block kprobe_exceptions_nb = {
814 .notifier_call = kprobe_exceptions_notify,
815 .priority = 0x7fffffff /* we need to be notified first */
816 };
817
818 unsigned long __weak arch_deref_entry_point(void *entry)
819 {
820 return (unsigned long)entry;
821 }
822
823 int __kprobes register_jprobes(struct jprobe **jps, int num)
824 {
825 struct jprobe *jp;
826 int ret = 0, i;
827
828 if (num <= 0)
829 return -EINVAL;
830 for (i = 0; i < num; i++) {
831 unsigned long addr;
832 jp = jps[i];
833 addr = arch_deref_entry_point(jp->entry);
834
835 if (!kernel_text_address(addr))
836 ret = -EINVAL;
837 else {
838 /* Todo: Verify probepoint is a function entry point */
839 jp->kp.pre_handler = setjmp_pre_handler;
840 jp->kp.break_handler = longjmp_break_handler;
841 ret = register_kprobe(&jp->kp);
842 }
843 if (ret < 0) {
844 if (i > 0)
845 unregister_jprobes(jps, i);
846 break;
847 }
848 }
849 return ret;
850 }
851
852 int __kprobes register_jprobe(struct jprobe *jp)
853 {
854 return register_jprobes(&jp, 1);
855 }
856
857 void __kprobes unregister_jprobe(struct jprobe *jp)
858 {
859 unregister_jprobes(&jp, 1);
860 }
861
862 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
863 {
864 int i;
865
866 if (num <= 0)
867 return;
868 mutex_lock(&kprobe_mutex);
869 for (i = 0; i < num; i++)
870 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
871 jps[i]->kp.addr = NULL;
872 mutex_unlock(&kprobe_mutex);
873
874 synchronize_sched();
875 for (i = 0; i < num; i++) {
876 if (jps[i]->kp.addr)
877 __unregister_kprobe_bottom(&jps[i]->kp);
878 }
879 }
880
881 #ifdef CONFIG_KRETPROBES
882 /*
883 * This kprobe pre_handler is registered with every kretprobe. When probe
884 * hits it will set up the return probe.
885 */
886 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
887 struct pt_regs *regs)
888 {
889 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
890 unsigned long hash, flags = 0;
891 struct kretprobe_instance *ri;
892
893 /*TODO: consider to only swap the RA after the last pre_handler fired */
894 hash = hash_ptr(current, KPROBE_HASH_BITS);
895 spin_lock_irqsave(&rp->lock, flags);
896 if (!hlist_empty(&rp->free_instances)) {
897 ri = hlist_entry(rp->free_instances.first,
898 struct kretprobe_instance, hlist);
899 hlist_del(&ri->hlist);
900 spin_unlock_irqrestore(&rp->lock, flags);
901
902 ri->rp = rp;
903 ri->task = current;
904
905 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
906 spin_unlock_irqrestore(&rp->lock, flags);
907 return 0;
908 }
909
910 arch_prepare_kretprobe(ri, regs);
911
912 /* XXX(hch): why is there no hlist_move_head? */
913 INIT_HLIST_NODE(&ri->hlist);
914 kretprobe_table_lock(hash, &flags);
915 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
916 kretprobe_table_unlock(hash, &flags);
917 } else {
918 rp->nmissed++;
919 spin_unlock_irqrestore(&rp->lock, flags);
920 }
921 return 0;
922 }
923
924 int __kprobes register_kretprobe(struct kretprobe *rp)
925 {
926 int ret = 0;
927 struct kretprobe_instance *inst;
928 int i;
929 void *addr;
930
931 if (kretprobe_blacklist_size) {
932 addr = kprobe_addr(&rp->kp);
933 if (!addr)
934 return -EINVAL;
935
936 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
937 if (kretprobe_blacklist[i].addr == addr)
938 return -EINVAL;
939 }
940 }
941
942 rp->kp.pre_handler = pre_handler_kretprobe;
943 rp->kp.post_handler = NULL;
944 rp->kp.fault_handler = NULL;
945 rp->kp.break_handler = NULL;
946
947 /* Pre-allocate memory for max kretprobe instances */
948 if (rp->maxactive <= 0) {
949 #ifdef CONFIG_PREEMPT
950 rp->maxactive = max(10, 2 * NR_CPUS);
951 #else
952 rp->maxactive = NR_CPUS;
953 #endif
954 }
955 spin_lock_init(&rp->lock);
956 INIT_HLIST_HEAD(&rp->free_instances);
957 for (i = 0; i < rp->maxactive; i++) {
958 inst = kmalloc(sizeof(struct kretprobe_instance) +
959 rp->data_size, GFP_KERNEL);
960 if (inst == NULL) {
961 free_rp_inst(rp);
962 return -ENOMEM;
963 }
964 INIT_HLIST_NODE(&inst->hlist);
965 hlist_add_head(&inst->hlist, &rp->free_instances);
966 }
967
968 rp->nmissed = 0;
969 /* Establish function entry probe point */
970 ret = register_kprobe(&rp->kp);
971 if (ret != 0)
972 free_rp_inst(rp);
973 return ret;
974 }
975
976 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
977 {
978 int ret = 0, i;
979
980 if (num <= 0)
981 return -EINVAL;
982 for (i = 0; i < num; i++) {
983 ret = register_kretprobe(rps[i]);
984 if (ret < 0) {
985 if (i > 0)
986 unregister_kretprobes(rps, i);
987 break;
988 }
989 }
990 return ret;
991 }
992
993 void __kprobes unregister_kretprobe(struct kretprobe *rp)
994 {
995 unregister_kretprobes(&rp, 1);
996 }
997
998 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
999 {
1000 int i;
1001
1002 if (num <= 0)
1003 return;
1004 mutex_lock(&kprobe_mutex);
1005 for (i = 0; i < num; i++)
1006 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1007 rps[i]->kp.addr = NULL;
1008 mutex_unlock(&kprobe_mutex);
1009
1010 synchronize_sched();
1011 for (i = 0; i < num; i++) {
1012 if (rps[i]->kp.addr) {
1013 __unregister_kprobe_bottom(&rps[i]->kp);
1014 cleanup_rp_inst(rps[i]);
1015 }
1016 }
1017 }
1018
1019 #else /* CONFIG_KRETPROBES */
1020 int __kprobes register_kretprobe(struct kretprobe *rp)
1021 {
1022 return -ENOSYS;
1023 }
1024
1025 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1026 {
1027 return -ENOSYS;
1028 }
1029 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1030 {
1031 }
1032
1033 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1034 {
1035 }
1036
1037 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1038 struct pt_regs *regs)
1039 {
1040 return 0;
1041 }
1042
1043 #endif /* CONFIG_KRETPROBES */
1044
1045 /* Set the kprobe gone and remove its instruction buffer. */
1046 static void __kprobes kill_kprobe(struct kprobe *p)
1047 {
1048 struct kprobe *kp;
1049 p->flags |= KPROBE_FLAG_GONE;
1050 if (p->pre_handler == aggr_pre_handler) {
1051 /*
1052 * If this is an aggr_kprobe, we have to list all the
1053 * chained probes and mark them GONE.
1054 */
1055 list_for_each_entry_rcu(kp, &p->list, list)
1056 kp->flags |= KPROBE_FLAG_GONE;
1057 p->post_handler = NULL;
1058 p->break_handler = NULL;
1059 }
1060 /*
1061 * Here, we can remove insn_slot safely, because no thread calls
1062 * the original probed function (which will be freed soon) any more.
1063 */
1064 arch_remove_kprobe(p);
1065 }
1066
1067 /* Module notifier call back, checking kprobes on the module */
1068 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1069 unsigned long val, void *data)
1070 {
1071 struct module *mod = data;
1072 struct hlist_head *head;
1073 struct hlist_node *node;
1074 struct kprobe *p;
1075 unsigned int i;
1076
1077 if (val != MODULE_STATE_GOING)
1078 return NOTIFY_DONE;
1079
1080 /*
1081 * module .text section will be freed. We need to
1082 * disable kprobes which have been inserted in the section.
1083 */
1084 mutex_lock(&kprobe_mutex);
1085 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1086 head = &kprobe_table[i];
1087 hlist_for_each_entry_rcu(p, node, head, hlist)
1088 if (within_module_core((unsigned long)p->addr, mod)) {
1089 /*
1090 * The vaddr this probe is installed will soon
1091 * be vfreed buy not synced to disk. Hence,
1092 * disarming the breakpoint isn't needed.
1093 */
1094 kill_kprobe(p);
1095 }
1096 }
1097 mutex_unlock(&kprobe_mutex);
1098 return NOTIFY_DONE;
1099 }
1100
1101 static struct notifier_block kprobe_module_nb = {
1102 .notifier_call = kprobes_module_callback,
1103 .priority = 0
1104 };
1105
1106 static int __init init_kprobes(void)
1107 {
1108 int i, err = 0;
1109 unsigned long offset = 0, size = 0;
1110 char *modname, namebuf[128];
1111 const char *symbol_name;
1112 void *addr;
1113 struct kprobe_blackpoint *kb;
1114
1115 /* FIXME allocate the probe table, currently defined statically */
1116 /* initialize all list heads */
1117 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1118 INIT_HLIST_HEAD(&kprobe_table[i]);
1119 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1120 spin_lock_init(&(kretprobe_table_locks[i].lock));
1121 }
1122
1123 /*
1124 * Lookup and populate the kprobe_blacklist.
1125 *
1126 * Unlike the kretprobe blacklist, we'll need to determine
1127 * the range of addresses that belong to the said functions,
1128 * since a kprobe need not necessarily be at the beginning
1129 * of a function.
1130 */
1131 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1132 kprobe_lookup_name(kb->name, addr);
1133 if (!addr)
1134 continue;
1135
1136 kb->start_addr = (unsigned long)addr;
1137 symbol_name = kallsyms_lookup(kb->start_addr,
1138 &size, &offset, &modname, namebuf);
1139 if (!symbol_name)
1140 kb->range = 0;
1141 else
1142 kb->range = size;
1143 }
1144
1145 if (kretprobe_blacklist_size) {
1146 /* lookup the function address from its name */
1147 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1148 kprobe_lookup_name(kretprobe_blacklist[i].name,
1149 kretprobe_blacklist[i].addr);
1150 if (!kretprobe_blacklist[i].addr)
1151 printk("kretprobe: lookup failed: %s\n",
1152 kretprobe_blacklist[i].name);
1153 }
1154 }
1155
1156 /* By default, kprobes are enabled */
1157 kprobe_enabled = true;
1158
1159 err = arch_init_kprobes();
1160 if (!err)
1161 err = register_die_notifier(&kprobe_exceptions_nb);
1162 if (!err)
1163 err = register_module_notifier(&kprobe_module_nb);
1164
1165 kprobes_initialized = (err == 0);
1166
1167 if (!err)
1168 init_test_probes();
1169 return err;
1170 }
1171
1172 #ifdef CONFIG_DEBUG_FS
1173 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1174 const char *sym, int offset,char *modname)
1175 {
1176 char *kprobe_type;
1177
1178 if (p->pre_handler == pre_handler_kretprobe)
1179 kprobe_type = "r";
1180 else if (p->pre_handler == setjmp_pre_handler)
1181 kprobe_type = "j";
1182 else
1183 kprobe_type = "k";
1184 if (sym)
1185 seq_printf(pi, "%p %s %s+0x%x %s %s\n", p->addr, kprobe_type,
1186 sym, offset, (modname ? modname : " "),
1187 (kprobe_gone(p) ? "[GONE]" : ""));
1188 else
1189 seq_printf(pi, "%p %s %p %s\n", p->addr, kprobe_type, p->addr,
1190 (kprobe_gone(p) ? "[GONE]" : ""));
1191 }
1192
1193 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1194 {
1195 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1196 }
1197
1198 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1199 {
1200 (*pos)++;
1201 if (*pos >= KPROBE_TABLE_SIZE)
1202 return NULL;
1203 return pos;
1204 }
1205
1206 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1207 {
1208 /* Nothing to do */
1209 }
1210
1211 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1212 {
1213 struct hlist_head *head;
1214 struct hlist_node *node;
1215 struct kprobe *p, *kp;
1216 const char *sym = NULL;
1217 unsigned int i = *(loff_t *) v;
1218 unsigned long offset = 0;
1219 char *modname, namebuf[128];
1220
1221 head = &kprobe_table[i];
1222 preempt_disable();
1223 hlist_for_each_entry_rcu(p, node, head, hlist) {
1224 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1225 &offset, &modname, namebuf);
1226 if (p->pre_handler == aggr_pre_handler) {
1227 list_for_each_entry_rcu(kp, &p->list, list)
1228 report_probe(pi, kp, sym, offset, modname);
1229 } else
1230 report_probe(pi, p, sym, offset, modname);
1231 }
1232 preempt_enable();
1233 return 0;
1234 }
1235
1236 static struct seq_operations kprobes_seq_ops = {
1237 .start = kprobe_seq_start,
1238 .next = kprobe_seq_next,
1239 .stop = kprobe_seq_stop,
1240 .show = show_kprobe_addr
1241 };
1242
1243 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1244 {
1245 return seq_open(filp, &kprobes_seq_ops);
1246 }
1247
1248 static struct file_operations debugfs_kprobes_operations = {
1249 .open = kprobes_open,
1250 .read = seq_read,
1251 .llseek = seq_lseek,
1252 .release = seq_release,
1253 };
1254
1255 static void __kprobes enable_all_kprobes(void)
1256 {
1257 struct hlist_head *head;
1258 struct hlist_node *node;
1259 struct kprobe *p;
1260 unsigned int i;
1261
1262 mutex_lock(&kprobe_mutex);
1263
1264 /* If kprobes are already enabled, just return */
1265 if (kprobe_enabled)
1266 goto already_enabled;
1267
1268 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1269 head = &kprobe_table[i];
1270 hlist_for_each_entry_rcu(p, node, head, hlist)
1271 if (!kprobe_gone(p))
1272 arch_arm_kprobe(p);
1273 }
1274
1275 kprobe_enabled = true;
1276 printk(KERN_INFO "Kprobes globally enabled\n");
1277
1278 already_enabled:
1279 mutex_unlock(&kprobe_mutex);
1280 return;
1281 }
1282
1283 static void __kprobes disable_all_kprobes(void)
1284 {
1285 struct hlist_head *head;
1286 struct hlist_node *node;
1287 struct kprobe *p;
1288 unsigned int i;
1289
1290 mutex_lock(&kprobe_mutex);
1291
1292 /* If kprobes are already disabled, just return */
1293 if (!kprobe_enabled)
1294 goto already_disabled;
1295
1296 kprobe_enabled = false;
1297 printk(KERN_INFO "Kprobes globally disabled\n");
1298 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1299 head = &kprobe_table[i];
1300 hlist_for_each_entry_rcu(p, node, head, hlist) {
1301 if (!arch_trampoline_kprobe(p) && !kprobe_gone(p))
1302 arch_disarm_kprobe(p);
1303 }
1304 }
1305
1306 mutex_unlock(&kprobe_mutex);
1307 /* Allow all currently running kprobes to complete */
1308 synchronize_sched();
1309 return;
1310
1311 already_disabled:
1312 mutex_unlock(&kprobe_mutex);
1313 return;
1314 }
1315
1316 /*
1317 * XXX: The debugfs bool file interface doesn't allow for callbacks
1318 * when the bool state is switched. We can reuse that facility when
1319 * available
1320 */
1321 static ssize_t read_enabled_file_bool(struct file *file,
1322 char __user *user_buf, size_t count, loff_t *ppos)
1323 {
1324 char buf[3];
1325
1326 if (kprobe_enabled)
1327 buf[0] = '1';
1328 else
1329 buf[0] = '0';
1330 buf[1] = '\n';
1331 buf[2] = 0x00;
1332 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1333 }
1334
1335 static ssize_t write_enabled_file_bool(struct file *file,
1336 const char __user *user_buf, size_t count, loff_t *ppos)
1337 {
1338 char buf[32];
1339 int buf_size;
1340
1341 buf_size = min(count, (sizeof(buf)-1));
1342 if (copy_from_user(buf, user_buf, buf_size))
1343 return -EFAULT;
1344
1345 switch (buf[0]) {
1346 case 'y':
1347 case 'Y':
1348 case '1':
1349 enable_all_kprobes();
1350 break;
1351 case 'n':
1352 case 'N':
1353 case '0':
1354 disable_all_kprobes();
1355 break;
1356 }
1357
1358 return count;
1359 }
1360
1361 static struct file_operations fops_kp = {
1362 .read = read_enabled_file_bool,
1363 .write = write_enabled_file_bool,
1364 };
1365
1366 static int __kprobes debugfs_kprobe_init(void)
1367 {
1368 struct dentry *dir, *file;
1369 unsigned int value = 1;
1370
1371 dir = debugfs_create_dir("kprobes", NULL);
1372 if (!dir)
1373 return -ENOMEM;
1374
1375 file = debugfs_create_file("list", 0444, dir, NULL,
1376 &debugfs_kprobes_operations);
1377 if (!file) {
1378 debugfs_remove(dir);
1379 return -ENOMEM;
1380 }
1381
1382 file = debugfs_create_file("enabled", 0600, dir,
1383 &value, &fops_kp);
1384 if (!file) {
1385 debugfs_remove(dir);
1386 return -ENOMEM;
1387 }
1388
1389 return 0;
1390 }
1391
1392 late_initcall(debugfs_kprobe_init);
1393 #endif /* CONFIG_DEBUG_FS */
1394
1395 module_init(init_kprobes);
1396
1397 EXPORT_SYMBOL_GPL(register_kprobe);
1398 EXPORT_SYMBOL_GPL(unregister_kprobe);
1399 EXPORT_SYMBOL_GPL(register_kprobes);
1400 EXPORT_SYMBOL_GPL(unregister_kprobes);
1401 EXPORT_SYMBOL_GPL(register_jprobe);
1402 EXPORT_SYMBOL_GPL(unregister_jprobe);
1403 EXPORT_SYMBOL_GPL(register_jprobes);
1404 EXPORT_SYMBOL_GPL(unregister_jprobes);
1405 EXPORT_SYMBOL_GPL(jprobe_return);
1406 EXPORT_SYMBOL_GPL(register_kretprobe);
1407 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1408 EXPORT_SYMBOL_GPL(register_kretprobes);
1409 EXPORT_SYMBOL_GPL(unregister_kretprobes);
This page took 0.258482 seconds and 5 git commands to generate.