md/bitmap: update dirty flag when bitmap bits are explicitly set.
[deliverable/linux.git] / kernel / lockdep.c
1 /*
2 * kernel/lockdep.c
3 *
4 * Runtime locking correctness validator
5 *
6 * Started by Ingo Molnar:
7 *
8 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
10 *
11 * this code maps all the lock dependencies as they occur in a live kernel
12 * and will warn about the following classes of locking bugs:
13 *
14 * - lock inversion scenarios
15 * - circular lock dependencies
16 * - hardirq/softirq safe/unsafe locking bugs
17 *
18 * Bugs are reported even if the current locking scenario does not cause
19 * any deadlock at this point.
20 *
21 * I.e. if anytime in the past two locks were taken in a different order,
22 * even if it happened for another task, even if those were different
23 * locks (but of the same class as this lock), this code will detect it.
24 *
25 * Thanks to Arjan van de Ven for coming up with the initial idea of
26 * mapping lock dependencies runtime.
27 */
28 #define DISABLE_BRANCH_PROFILING
29 #include <linux/mutex.h>
30 #include <linux/sched.h>
31 #include <linux/delay.h>
32 #include <linux/module.h>
33 #include <linux/proc_fs.h>
34 #include <linux/seq_file.h>
35 #include <linux/spinlock.h>
36 #include <linux/kallsyms.h>
37 #include <linux/interrupt.h>
38 #include <linux/stacktrace.h>
39 #include <linux/debug_locks.h>
40 #include <linux/irqflags.h>
41 #include <linux/utsname.h>
42 #include <linux/hash.h>
43 #include <linux/ftrace.h>
44 #include <linux/stringify.h>
45 #include <linux/bitops.h>
46
47 #include <asm/sections.h>
48
49 #include "lockdep_internals.h"
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/lock.h>
53
54 #ifdef CONFIG_PROVE_LOCKING
55 int prove_locking = 1;
56 module_param(prove_locking, int, 0644);
57 #else
58 #define prove_locking 0
59 #endif
60
61 #ifdef CONFIG_LOCK_STAT
62 int lock_stat = 1;
63 module_param(lock_stat, int, 0644);
64 #else
65 #define lock_stat 0
66 #endif
67
68 /*
69 * lockdep_lock: protects the lockdep graph, the hashes and the
70 * class/list/hash allocators.
71 *
72 * This is one of the rare exceptions where it's justified
73 * to use a raw spinlock - we really dont want the spinlock
74 * code to recurse back into the lockdep code...
75 */
76 static raw_spinlock_t lockdep_lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
77
78 static int graph_lock(void)
79 {
80 __raw_spin_lock(&lockdep_lock);
81 /*
82 * Make sure that if another CPU detected a bug while
83 * walking the graph we dont change it (while the other
84 * CPU is busy printing out stuff with the graph lock
85 * dropped already)
86 */
87 if (!debug_locks) {
88 __raw_spin_unlock(&lockdep_lock);
89 return 0;
90 }
91 /* prevent any recursions within lockdep from causing deadlocks */
92 current->lockdep_recursion++;
93 return 1;
94 }
95
96 static inline int graph_unlock(void)
97 {
98 if (debug_locks && !__raw_spin_is_locked(&lockdep_lock))
99 return DEBUG_LOCKS_WARN_ON(1);
100
101 current->lockdep_recursion--;
102 __raw_spin_unlock(&lockdep_lock);
103 return 0;
104 }
105
106 /*
107 * Turn lock debugging off and return with 0 if it was off already,
108 * and also release the graph lock:
109 */
110 static inline int debug_locks_off_graph_unlock(void)
111 {
112 int ret = debug_locks_off();
113
114 __raw_spin_unlock(&lockdep_lock);
115
116 return ret;
117 }
118
119 static int lockdep_initialized;
120
121 unsigned long nr_list_entries;
122 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
123
124 /*
125 * All data structures here are protected by the global debug_lock.
126 *
127 * Mutex key structs only get allocated, once during bootup, and never
128 * get freed - this significantly simplifies the debugging code.
129 */
130 unsigned long nr_lock_classes;
131 static struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
132
133 static inline struct lock_class *hlock_class(struct held_lock *hlock)
134 {
135 if (!hlock->class_idx) {
136 DEBUG_LOCKS_WARN_ON(1);
137 return NULL;
138 }
139 return lock_classes + hlock->class_idx - 1;
140 }
141
142 #ifdef CONFIG_LOCK_STAT
143 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], lock_stats);
144
145 static inline u64 lockstat_clock(void)
146 {
147 return cpu_clock(smp_processor_id());
148 }
149
150 static int lock_point(unsigned long points[], unsigned long ip)
151 {
152 int i;
153
154 for (i = 0; i < LOCKSTAT_POINTS; i++) {
155 if (points[i] == 0) {
156 points[i] = ip;
157 break;
158 }
159 if (points[i] == ip)
160 break;
161 }
162
163 return i;
164 }
165
166 static void lock_time_inc(struct lock_time *lt, u64 time)
167 {
168 if (time > lt->max)
169 lt->max = time;
170
171 if (time < lt->min || !lt->nr)
172 lt->min = time;
173
174 lt->total += time;
175 lt->nr++;
176 }
177
178 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
179 {
180 if (!src->nr)
181 return;
182
183 if (src->max > dst->max)
184 dst->max = src->max;
185
186 if (src->min < dst->min || !dst->nr)
187 dst->min = src->min;
188
189 dst->total += src->total;
190 dst->nr += src->nr;
191 }
192
193 struct lock_class_stats lock_stats(struct lock_class *class)
194 {
195 struct lock_class_stats stats;
196 int cpu, i;
197
198 memset(&stats, 0, sizeof(struct lock_class_stats));
199 for_each_possible_cpu(cpu) {
200 struct lock_class_stats *pcs =
201 &per_cpu(lock_stats, cpu)[class - lock_classes];
202
203 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
204 stats.contention_point[i] += pcs->contention_point[i];
205
206 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
207 stats.contending_point[i] += pcs->contending_point[i];
208
209 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
210 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
211
212 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
213 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
214
215 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
216 stats.bounces[i] += pcs->bounces[i];
217 }
218
219 return stats;
220 }
221
222 void clear_lock_stats(struct lock_class *class)
223 {
224 int cpu;
225
226 for_each_possible_cpu(cpu) {
227 struct lock_class_stats *cpu_stats =
228 &per_cpu(lock_stats, cpu)[class - lock_classes];
229
230 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
231 }
232 memset(class->contention_point, 0, sizeof(class->contention_point));
233 memset(class->contending_point, 0, sizeof(class->contending_point));
234 }
235
236 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
237 {
238 return &get_cpu_var(lock_stats)[class - lock_classes];
239 }
240
241 static void put_lock_stats(struct lock_class_stats *stats)
242 {
243 put_cpu_var(lock_stats);
244 }
245
246 static void lock_release_holdtime(struct held_lock *hlock)
247 {
248 struct lock_class_stats *stats;
249 u64 holdtime;
250
251 if (!lock_stat)
252 return;
253
254 holdtime = lockstat_clock() - hlock->holdtime_stamp;
255
256 stats = get_lock_stats(hlock_class(hlock));
257 if (hlock->read)
258 lock_time_inc(&stats->read_holdtime, holdtime);
259 else
260 lock_time_inc(&stats->write_holdtime, holdtime);
261 put_lock_stats(stats);
262 }
263 #else
264 static inline void lock_release_holdtime(struct held_lock *hlock)
265 {
266 }
267 #endif
268
269 /*
270 * We keep a global list of all lock classes. The list only grows,
271 * never shrinks. The list is only accessed with the lockdep
272 * spinlock lock held.
273 */
274 LIST_HEAD(all_lock_classes);
275
276 /*
277 * The lockdep classes are in a hash-table as well, for fast lookup:
278 */
279 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1)
280 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS)
281 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS)
282 #define classhashentry(key) (classhash_table + __classhashfn((key)))
283
284 static struct list_head classhash_table[CLASSHASH_SIZE];
285
286 /*
287 * We put the lock dependency chains into a hash-table as well, to cache
288 * their existence:
289 */
290 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1)
291 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS)
292 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS)
293 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain)))
294
295 static struct list_head chainhash_table[CHAINHASH_SIZE];
296
297 /*
298 * The hash key of the lock dependency chains is a hash itself too:
299 * it's a hash of all locks taken up to that lock, including that lock.
300 * It's a 64-bit hash, because it's important for the keys to be
301 * unique.
302 */
303 #define iterate_chain_key(key1, key2) \
304 (((key1) << MAX_LOCKDEP_KEYS_BITS) ^ \
305 ((key1) >> (64-MAX_LOCKDEP_KEYS_BITS)) ^ \
306 (key2))
307
308 void lockdep_off(void)
309 {
310 current->lockdep_recursion++;
311 }
312 EXPORT_SYMBOL(lockdep_off);
313
314 void lockdep_on(void)
315 {
316 current->lockdep_recursion--;
317 }
318 EXPORT_SYMBOL(lockdep_on);
319
320 /*
321 * Debugging switches:
322 */
323
324 #define VERBOSE 0
325 #define VERY_VERBOSE 0
326
327 #if VERBOSE
328 # define HARDIRQ_VERBOSE 1
329 # define SOFTIRQ_VERBOSE 1
330 # define RECLAIM_VERBOSE 1
331 #else
332 # define HARDIRQ_VERBOSE 0
333 # define SOFTIRQ_VERBOSE 0
334 # define RECLAIM_VERBOSE 0
335 #endif
336
337 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE || RECLAIM_VERBOSE
338 /*
339 * Quick filtering for interesting events:
340 */
341 static int class_filter(struct lock_class *class)
342 {
343 #if 0
344 /* Example */
345 if (class->name_version == 1 &&
346 !strcmp(class->name, "lockname"))
347 return 1;
348 if (class->name_version == 1 &&
349 !strcmp(class->name, "&struct->lockfield"))
350 return 1;
351 #endif
352 /* Filter everything else. 1 would be to allow everything else */
353 return 0;
354 }
355 #endif
356
357 static int verbose(struct lock_class *class)
358 {
359 #if VERBOSE
360 return class_filter(class);
361 #endif
362 return 0;
363 }
364
365 /*
366 * Stack-trace: tightly packed array of stack backtrace
367 * addresses. Protected by the graph_lock.
368 */
369 unsigned long nr_stack_trace_entries;
370 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
371
372 static int save_trace(struct stack_trace *trace)
373 {
374 trace->nr_entries = 0;
375 trace->max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries;
376 trace->entries = stack_trace + nr_stack_trace_entries;
377
378 trace->skip = 3;
379
380 save_stack_trace(trace);
381
382 /*
383 * Some daft arches put -1 at the end to indicate its a full trace.
384 *
385 * <rant> this is buggy anyway, since it takes a whole extra entry so a
386 * complete trace that maxes out the entries provided will be reported
387 * as incomplete, friggin useless </rant>
388 */
389 if (trace->nr_entries != 0 &&
390 trace->entries[trace->nr_entries-1] == ULONG_MAX)
391 trace->nr_entries--;
392
393 trace->max_entries = trace->nr_entries;
394
395 nr_stack_trace_entries += trace->nr_entries;
396
397 if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES-1) {
398 if (!debug_locks_off_graph_unlock())
399 return 0;
400
401 printk("BUG: MAX_STACK_TRACE_ENTRIES too low!\n");
402 printk("turning off the locking correctness validator.\n");
403 dump_stack();
404
405 return 0;
406 }
407
408 return 1;
409 }
410
411 unsigned int nr_hardirq_chains;
412 unsigned int nr_softirq_chains;
413 unsigned int nr_process_chains;
414 unsigned int max_lockdep_depth;
415
416 #ifdef CONFIG_DEBUG_LOCKDEP
417 /*
418 * We cannot printk in early bootup code. Not even early_printk()
419 * might work. So we mark any initialization errors and printk
420 * about it later on, in lockdep_info().
421 */
422 static int lockdep_init_error;
423 static unsigned long lockdep_init_trace_data[20];
424 static struct stack_trace lockdep_init_trace = {
425 .max_entries = ARRAY_SIZE(lockdep_init_trace_data),
426 .entries = lockdep_init_trace_data,
427 };
428
429 /*
430 * Various lockdep statistics:
431 */
432 atomic_t chain_lookup_hits;
433 atomic_t chain_lookup_misses;
434 atomic_t hardirqs_on_events;
435 atomic_t hardirqs_off_events;
436 atomic_t redundant_hardirqs_on;
437 atomic_t redundant_hardirqs_off;
438 atomic_t softirqs_on_events;
439 atomic_t softirqs_off_events;
440 atomic_t redundant_softirqs_on;
441 atomic_t redundant_softirqs_off;
442 atomic_t nr_unused_locks;
443 atomic_t nr_cyclic_checks;
444 atomic_t nr_find_usage_forwards_checks;
445 atomic_t nr_find_usage_backwards_checks;
446 #endif
447
448 /*
449 * Locking printouts:
450 */
451
452 #define __USAGE(__STATE) \
453 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \
454 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \
455 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
456 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
457
458 static const char *usage_str[] =
459 {
460 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
461 #include "lockdep_states.h"
462 #undef LOCKDEP_STATE
463 [LOCK_USED] = "INITIAL USE",
464 };
465
466 const char * __get_key_name(struct lockdep_subclass_key *key, char *str)
467 {
468 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
469 }
470
471 static inline unsigned long lock_flag(enum lock_usage_bit bit)
472 {
473 return 1UL << bit;
474 }
475
476 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
477 {
478 char c = '.';
479
480 if (class->usage_mask & lock_flag(bit + 2))
481 c = '+';
482 if (class->usage_mask & lock_flag(bit)) {
483 c = '-';
484 if (class->usage_mask & lock_flag(bit + 2))
485 c = '?';
486 }
487
488 return c;
489 }
490
491 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
492 {
493 int i = 0;
494
495 #define LOCKDEP_STATE(__STATE) \
496 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \
497 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
498 #include "lockdep_states.h"
499 #undef LOCKDEP_STATE
500
501 usage[i] = '\0';
502 }
503
504 static void print_lock_name(struct lock_class *class)
505 {
506 char str[KSYM_NAME_LEN], usage[LOCK_USAGE_CHARS];
507 const char *name;
508
509 get_usage_chars(class, usage);
510
511 name = class->name;
512 if (!name) {
513 name = __get_key_name(class->key, str);
514 printk(" (%s", name);
515 } else {
516 printk(" (%s", name);
517 if (class->name_version > 1)
518 printk("#%d", class->name_version);
519 if (class->subclass)
520 printk("/%d", class->subclass);
521 }
522 printk("){%s}", usage);
523 }
524
525 static void print_lockdep_cache(struct lockdep_map *lock)
526 {
527 const char *name;
528 char str[KSYM_NAME_LEN];
529
530 name = lock->name;
531 if (!name)
532 name = __get_key_name(lock->key->subkeys, str);
533
534 printk("%s", name);
535 }
536
537 static void print_lock(struct held_lock *hlock)
538 {
539 print_lock_name(hlock_class(hlock));
540 printk(", at: ");
541 print_ip_sym(hlock->acquire_ip);
542 }
543
544 static void lockdep_print_held_locks(struct task_struct *curr)
545 {
546 int i, depth = curr->lockdep_depth;
547
548 if (!depth) {
549 printk("no locks held by %s/%d.\n", curr->comm, task_pid_nr(curr));
550 return;
551 }
552 printk("%d lock%s held by %s/%d:\n",
553 depth, depth > 1 ? "s" : "", curr->comm, task_pid_nr(curr));
554
555 for (i = 0; i < depth; i++) {
556 printk(" #%d: ", i);
557 print_lock(curr->held_locks + i);
558 }
559 }
560
561 static void print_kernel_version(void)
562 {
563 printk("%s %.*s\n", init_utsname()->release,
564 (int)strcspn(init_utsname()->version, " "),
565 init_utsname()->version);
566 }
567
568 static int very_verbose(struct lock_class *class)
569 {
570 #if VERY_VERBOSE
571 return class_filter(class);
572 #endif
573 return 0;
574 }
575
576 /*
577 * Is this the address of a static object:
578 */
579 static int static_obj(void *obj)
580 {
581 unsigned long start = (unsigned long) &_stext,
582 end = (unsigned long) &_end,
583 addr = (unsigned long) obj;
584 #ifdef CONFIG_SMP
585 int i;
586 #endif
587
588 /*
589 * static variable?
590 */
591 if ((addr >= start) && (addr < end))
592 return 1;
593
594 if (arch_is_kernel_data(addr))
595 return 1;
596
597 #ifdef CONFIG_SMP
598 /*
599 * percpu var?
600 */
601 for_each_possible_cpu(i) {
602 start = (unsigned long) &__per_cpu_start + per_cpu_offset(i);
603 end = (unsigned long) &__per_cpu_start + PERCPU_ENOUGH_ROOM
604 + per_cpu_offset(i);
605
606 if ((addr >= start) && (addr < end))
607 return 1;
608 }
609 #endif
610
611 /*
612 * module var?
613 */
614 return is_module_address(addr);
615 }
616
617 /*
618 * To make lock name printouts unique, we calculate a unique
619 * class->name_version generation counter:
620 */
621 static int count_matching_names(struct lock_class *new_class)
622 {
623 struct lock_class *class;
624 int count = 0;
625
626 if (!new_class->name)
627 return 0;
628
629 list_for_each_entry(class, &all_lock_classes, lock_entry) {
630 if (new_class->key - new_class->subclass == class->key)
631 return class->name_version;
632 if (class->name && !strcmp(class->name, new_class->name))
633 count = max(count, class->name_version);
634 }
635
636 return count + 1;
637 }
638
639 /*
640 * Register a lock's class in the hash-table, if the class is not present
641 * yet. Otherwise we look it up. We cache the result in the lock object
642 * itself, so actual lookup of the hash should be once per lock object.
643 */
644 static inline struct lock_class *
645 look_up_lock_class(struct lockdep_map *lock, unsigned int subclass)
646 {
647 struct lockdep_subclass_key *key;
648 struct list_head *hash_head;
649 struct lock_class *class;
650
651 #ifdef CONFIG_DEBUG_LOCKDEP
652 /*
653 * If the architecture calls into lockdep before initializing
654 * the hashes then we'll warn about it later. (we cannot printk
655 * right now)
656 */
657 if (unlikely(!lockdep_initialized)) {
658 lockdep_init();
659 lockdep_init_error = 1;
660 save_stack_trace(&lockdep_init_trace);
661 }
662 #endif
663
664 /*
665 * Static locks do not have their class-keys yet - for them the key
666 * is the lock object itself:
667 */
668 if (unlikely(!lock->key))
669 lock->key = (void *)lock;
670
671 /*
672 * NOTE: the class-key must be unique. For dynamic locks, a static
673 * lock_class_key variable is passed in through the mutex_init()
674 * (or spin_lock_init()) call - which acts as the key. For static
675 * locks we use the lock object itself as the key.
676 */
677 BUILD_BUG_ON(sizeof(struct lock_class_key) >
678 sizeof(struct lockdep_map));
679
680 key = lock->key->subkeys + subclass;
681
682 hash_head = classhashentry(key);
683
684 /*
685 * We can walk the hash lockfree, because the hash only
686 * grows, and we are careful when adding entries to the end:
687 */
688 list_for_each_entry(class, hash_head, hash_entry) {
689 if (class->key == key) {
690 WARN_ON_ONCE(class->name != lock->name);
691 return class;
692 }
693 }
694
695 return NULL;
696 }
697
698 /*
699 * Register a lock's class in the hash-table, if the class is not present
700 * yet. Otherwise we look it up. We cache the result in the lock object
701 * itself, so actual lookup of the hash should be once per lock object.
702 */
703 static inline struct lock_class *
704 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
705 {
706 struct lockdep_subclass_key *key;
707 struct list_head *hash_head;
708 struct lock_class *class;
709 unsigned long flags;
710
711 class = look_up_lock_class(lock, subclass);
712 if (likely(class))
713 return class;
714
715 /*
716 * Debug-check: all keys must be persistent!
717 */
718 if (!static_obj(lock->key)) {
719 debug_locks_off();
720 printk("INFO: trying to register non-static key.\n");
721 printk("the code is fine but needs lockdep annotation.\n");
722 printk("turning off the locking correctness validator.\n");
723 dump_stack();
724
725 return NULL;
726 }
727
728 key = lock->key->subkeys + subclass;
729 hash_head = classhashentry(key);
730
731 raw_local_irq_save(flags);
732 if (!graph_lock()) {
733 raw_local_irq_restore(flags);
734 return NULL;
735 }
736 /*
737 * We have to do the hash-walk again, to avoid races
738 * with another CPU:
739 */
740 list_for_each_entry(class, hash_head, hash_entry)
741 if (class->key == key)
742 goto out_unlock_set;
743 /*
744 * Allocate a new key from the static array, and add it to
745 * the hash:
746 */
747 if (nr_lock_classes >= MAX_LOCKDEP_KEYS) {
748 if (!debug_locks_off_graph_unlock()) {
749 raw_local_irq_restore(flags);
750 return NULL;
751 }
752 raw_local_irq_restore(flags);
753
754 printk("BUG: MAX_LOCKDEP_KEYS too low!\n");
755 printk("turning off the locking correctness validator.\n");
756 dump_stack();
757 return NULL;
758 }
759 class = lock_classes + nr_lock_classes++;
760 debug_atomic_inc(&nr_unused_locks);
761 class->key = key;
762 class->name = lock->name;
763 class->subclass = subclass;
764 INIT_LIST_HEAD(&class->lock_entry);
765 INIT_LIST_HEAD(&class->locks_before);
766 INIT_LIST_HEAD(&class->locks_after);
767 class->name_version = count_matching_names(class);
768 /*
769 * We use RCU's safe list-add method to make
770 * parallel walking of the hash-list safe:
771 */
772 list_add_tail_rcu(&class->hash_entry, hash_head);
773 /*
774 * Add it to the global list of classes:
775 */
776 list_add_tail_rcu(&class->lock_entry, &all_lock_classes);
777
778 if (verbose(class)) {
779 graph_unlock();
780 raw_local_irq_restore(flags);
781
782 printk("\nnew class %p: %s", class->key, class->name);
783 if (class->name_version > 1)
784 printk("#%d", class->name_version);
785 printk("\n");
786 dump_stack();
787
788 raw_local_irq_save(flags);
789 if (!graph_lock()) {
790 raw_local_irq_restore(flags);
791 return NULL;
792 }
793 }
794 out_unlock_set:
795 graph_unlock();
796 raw_local_irq_restore(flags);
797
798 if (!subclass || force)
799 lock->class_cache = class;
800
801 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
802 return NULL;
803
804 return class;
805 }
806
807 #ifdef CONFIG_PROVE_LOCKING
808 /*
809 * Allocate a lockdep entry. (assumes the graph_lock held, returns
810 * with NULL on failure)
811 */
812 static struct lock_list *alloc_list_entry(void)
813 {
814 if (nr_list_entries >= MAX_LOCKDEP_ENTRIES) {
815 if (!debug_locks_off_graph_unlock())
816 return NULL;
817
818 printk("BUG: MAX_LOCKDEP_ENTRIES too low!\n");
819 printk("turning off the locking correctness validator.\n");
820 dump_stack();
821 return NULL;
822 }
823 return list_entries + nr_list_entries++;
824 }
825
826 /*
827 * Add a new dependency to the head of the list:
828 */
829 static int add_lock_to_list(struct lock_class *class, struct lock_class *this,
830 struct list_head *head, unsigned long ip, int distance)
831 {
832 struct lock_list *entry;
833 /*
834 * Lock not present yet - get a new dependency struct and
835 * add it to the list:
836 */
837 entry = alloc_list_entry();
838 if (!entry)
839 return 0;
840
841 if (!save_trace(&entry->trace))
842 return 0;
843
844 entry->class = this;
845 entry->distance = distance;
846 /*
847 * Since we never remove from the dependency list, the list can
848 * be walked lockless by other CPUs, it's only allocation
849 * that must be protected by the spinlock. But this also means
850 * we must make new entries visible only once writes to the
851 * entry become visible - hence the RCU op:
852 */
853 list_add_tail_rcu(&entry->entry, head);
854
855 return 1;
856 }
857
858 /*
859 * For good efficiency of modular, we use power of 2
860 */
861 #define MAX_CIRCULAR_QUEUE_SIZE 4096UL
862 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1)
863
864 /*
865 * The circular_queue and helpers is used to implement the
866 * breadth-first search(BFS)algorithem, by which we can build
867 * the shortest path from the next lock to be acquired to the
868 * previous held lock if there is a circular between them.
869 */
870 struct circular_queue {
871 unsigned long element[MAX_CIRCULAR_QUEUE_SIZE];
872 unsigned int front, rear;
873 };
874
875 static struct circular_queue lock_cq;
876
877 unsigned int max_bfs_queue_depth;
878
879 static unsigned int lockdep_dependency_gen_id;
880
881 static inline void __cq_init(struct circular_queue *cq)
882 {
883 cq->front = cq->rear = 0;
884 lockdep_dependency_gen_id++;
885 }
886
887 static inline int __cq_empty(struct circular_queue *cq)
888 {
889 return (cq->front == cq->rear);
890 }
891
892 static inline int __cq_full(struct circular_queue *cq)
893 {
894 return ((cq->rear + 1) & CQ_MASK) == cq->front;
895 }
896
897 static inline int __cq_enqueue(struct circular_queue *cq, unsigned long elem)
898 {
899 if (__cq_full(cq))
900 return -1;
901
902 cq->element[cq->rear] = elem;
903 cq->rear = (cq->rear + 1) & CQ_MASK;
904 return 0;
905 }
906
907 static inline int __cq_dequeue(struct circular_queue *cq, unsigned long *elem)
908 {
909 if (__cq_empty(cq))
910 return -1;
911
912 *elem = cq->element[cq->front];
913 cq->front = (cq->front + 1) & CQ_MASK;
914 return 0;
915 }
916
917 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq)
918 {
919 return (cq->rear - cq->front) & CQ_MASK;
920 }
921
922 static inline void mark_lock_accessed(struct lock_list *lock,
923 struct lock_list *parent)
924 {
925 unsigned long nr;
926
927 nr = lock - list_entries;
928 WARN_ON(nr >= nr_list_entries);
929 lock->parent = parent;
930 lock->class->dep_gen_id = lockdep_dependency_gen_id;
931 }
932
933 static inline unsigned long lock_accessed(struct lock_list *lock)
934 {
935 unsigned long nr;
936
937 nr = lock - list_entries;
938 WARN_ON(nr >= nr_list_entries);
939 return lock->class->dep_gen_id == lockdep_dependency_gen_id;
940 }
941
942 static inline struct lock_list *get_lock_parent(struct lock_list *child)
943 {
944 return child->parent;
945 }
946
947 static inline int get_lock_depth(struct lock_list *child)
948 {
949 int depth = 0;
950 struct lock_list *parent;
951
952 while ((parent = get_lock_parent(child))) {
953 child = parent;
954 depth++;
955 }
956 return depth;
957 }
958
959 static int __bfs(struct lock_list *source_entry,
960 void *data,
961 int (*match)(struct lock_list *entry, void *data),
962 struct lock_list **target_entry,
963 int forward)
964 {
965 struct lock_list *entry;
966 struct list_head *head;
967 struct circular_queue *cq = &lock_cq;
968 int ret = 1;
969
970 if (match(source_entry, data)) {
971 *target_entry = source_entry;
972 ret = 0;
973 goto exit;
974 }
975
976 if (forward)
977 head = &source_entry->class->locks_after;
978 else
979 head = &source_entry->class->locks_before;
980
981 if (list_empty(head))
982 goto exit;
983
984 __cq_init(cq);
985 __cq_enqueue(cq, (unsigned long)source_entry);
986
987 while (!__cq_empty(cq)) {
988 struct lock_list *lock;
989
990 __cq_dequeue(cq, (unsigned long *)&lock);
991
992 if (!lock->class) {
993 ret = -2;
994 goto exit;
995 }
996
997 if (forward)
998 head = &lock->class->locks_after;
999 else
1000 head = &lock->class->locks_before;
1001
1002 list_for_each_entry(entry, head, entry) {
1003 if (!lock_accessed(entry)) {
1004 unsigned int cq_depth;
1005 mark_lock_accessed(entry, lock);
1006 if (match(entry, data)) {
1007 *target_entry = entry;
1008 ret = 0;
1009 goto exit;
1010 }
1011
1012 if (__cq_enqueue(cq, (unsigned long)entry)) {
1013 ret = -1;
1014 goto exit;
1015 }
1016 cq_depth = __cq_get_elem_count(cq);
1017 if (max_bfs_queue_depth < cq_depth)
1018 max_bfs_queue_depth = cq_depth;
1019 }
1020 }
1021 }
1022 exit:
1023 return ret;
1024 }
1025
1026 static inline int __bfs_forwards(struct lock_list *src_entry,
1027 void *data,
1028 int (*match)(struct lock_list *entry, void *data),
1029 struct lock_list **target_entry)
1030 {
1031 return __bfs(src_entry, data, match, target_entry, 1);
1032
1033 }
1034
1035 static inline int __bfs_backwards(struct lock_list *src_entry,
1036 void *data,
1037 int (*match)(struct lock_list *entry, void *data),
1038 struct lock_list **target_entry)
1039 {
1040 return __bfs(src_entry, data, match, target_entry, 0);
1041
1042 }
1043
1044 /*
1045 * Recursive, forwards-direction lock-dependency checking, used for
1046 * both noncyclic checking and for hardirq-unsafe/softirq-unsafe
1047 * checking.
1048 */
1049
1050 /*
1051 * Print a dependency chain entry (this is only done when a deadlock
1052 * has been detected):
1053 */
1054 static noinline int
1055 print_circular_bug_entry(struct lock_list *target, int depth)
1056 {
1057 if (debug_locks_silent)
1058 return 0;
1059 printk("\n-> #%u", depth);
1060 print_lock_name(target->class);
1061 printk(":\n");
1062 print_stack_trace(&target->trace, 6);
1063
1064 return 0;
1065 }
1066
1067 /*
1068 * When a circular dependency is detected, print the
1069 * header first:
1070 */
1071 static noinline int
1072 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1073 struct held_lock *check_src,
1074 struct held_lock *check_tgt)
1075 {
1076 struct task_struct *curr = current;
1077
1078 if (debug_locks_silent)
1079 return 0;
1080
1081 printk("\n=======================================================\n");
1082 printk( "[ INFO: possible circular locking dependency detected ]\n");
1083 print_kernel_version();
1084 printk( "-------------------------------------------------------\n");
1085 printk("%s/%d is trying to acquire lock:\n",
1086 curr->comm, task_pid_nr(curr));
1087 print_lock(check_src);
1088 printk("\nbut task is already holding lock:\n");
1089 print_lock(check_tgt);
1090 printk("\nwhich lock already depends on the new lock.\n\n");
1091 printk("\nthe existing dependency chain (in reverse order) is:\n");
1092
1093 print_circular_bug_entry(entry, depth);
1094
1095 return 0;
1096 }
1097
1098 static inline int class_equal(struct lock_list *entry, void *data)
1099 {
1100 return entry->class == data;
1101 }
1102
1103 static noinline int print_circular_bug(struct lock_list *this,
1104 struct lock_list *target,
1105 struct held_lock *check_src,
1106 struct held_lock *check_tgt)
1107 {
1108 struct task_struct *curr = current;
1109 struct lock_list *parent;
1110 int depth;
1111
1112 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1113 return 0;
1114
1115 if (!save_trace(&this->trace))
1116 return 0;
1117
1118 depth = get_lock_depth(target);
1119
1120 print_circular_bug_header(target, depth, check_src, check_tgt);
1121
1122 parent = get_lock_parent(target);
1123
1124 while (parent) {
1125 print_circular_bug_entry(parent, --depth);
1126 parent = get_lock_parent(parent);
1127 }
1128
1129 printk("\nother info that might help us debug this:\n\n");
1130 lockdep_print_held_locks(curr);
1131
1132 printk("\nstack backtrace:\n");
1133 dump_stack();
1134
1135 return 0;
1136 }
1137
1138 static noinline int print_bfs_bug(int ret)
1139 {
1140 if (!debug_locks_off_graph_unlock())
1141 return 0;
1142
1143 WARN(1, "lockdep bfs error:%d\n", ret);
1144
1145 return 0;
1146 }
1147
1148 static int noop_count(struct lock_list *entry, void *data)
1149 {
1150 (*(unsigned long *)data)++;
1151 return 0;
1152 }
1153
1154 unsigned long __lockdep_count_forward_deps(struct lock_list *this)
1155 {
1156 unsigned long count = 0;
1157 struct lock_list *uninitialized_var(target_entry);
1158
1159 __bfs_forwards(this, (void *)&count, noop_count, &target_entry);
1160
1161 return count;
1162 }
1163 unsigned long lockdep_count_forward_deps(struct lock_class *class)
1164 {
1165 unsigned long ret, flags;
1166 struct lock_list this;
1167
1168 this.parent = NULL;
1169 this.class = class;
1170
1171 local_irq_save(flags);
1172 __raw_spin_lock(&lockdep_lock);
1173 ret = __lockdep_count_forward_deps(&this);
1174 __raw_spin_unlock(&lockdep_lock);
1175 local_irq_restore(flags);
1176
1177 return ret;
1178 }
1179
1180 unsigned long __lockdep_count_backward_deps(struct lock_list *this)
1181 {
1182 unsigned long count = 0;
1183 struct lock_list *uninitialized_var(target_entry);
1184
1185 __bfs_backwards(this, (void *)&count, noop_count, &target_entry);
1186
1187 return count;
1188 }
1189
1190 unsigned long lockdep_count_backward_deps(struct lock_class *class)
1191 {
1192 unsigned long ret, flags;
1193 struct lock_list this;
1194
1195 this.parent = NULL;
1196 this.class = class;
1197
1198 local_irq_save(flags);
1199 __raw_spin_lock(&lockdep_lock);
1200 ret = __lockdep_count_backward_deps(&this);
1201 __raw_spin_unlock(&lockdep_lock);
1202 local_irq_restore(flags);
1203
1204 return ret;
1205 }
1206
1207 /*
1208 * Prove that the dependency graph starting at <entry> can not
1209 * lead to <target>. Print an error and return 0 if it does.
1210 */
1211 static noinline int
1212 check_noncircular(struct lock_list *root, struct lock_class *target,
1213 struct lock_list **target_entry)
1214 {
1215 int result;
1216
1217 debug_atomic_inc(&nr_cyclic_checks);
1218
1219 result = __bfs_forwards(root, target, class_equal, target_entry);
1220
1221 return result;
1222 }
1223
1224 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
1225 /*
1226 * Forwards and backwards subgraph searching, for the purposes of
1227 * proving that two subgraphs can be connected by a new dependency
1228 * without creating any illegal irq-safe -> irq-unsafe lock dependency.
1229 */
1230
1231 static inline int usage_match(struct lock_list *entry, void *bit)
1232 {
1233 return entry->class->usage_mask & (1 << (enum lock_usage_bit)bit);
1234 }
1235
1236
1237
1238 /*
1239 * Find a node in the forwards-direction dependency sub-graph starting
1240 * at @root->class that matches @bit.
1241 *
1242 * Return 0 if such a node exists in the subgraph, and put that node
1243 * into *@target_entry.
1244 *
1245 * Return 1 otherwise and keep *@target_entry unchanged.
1246 * Return <0 on error.
1247 */
1248 static int
1249 find_usage_forwards(struct lock_list *root, enum lock_usage_bit bit,
1250 struct lock_list **target_entry)
1251 {
1252 int result;
1253
1254 debug_atomic_inc(&nr_find_usage_forwards_checks);
1255
1256 result = __bfs_forwards(root, (void *)bit, usage_match, target_entry);
1257
1258 return result;
1259 }
1260
1261 /*
1262 * Find a node in the backwards-direction dependency sub-graph starting
1263 * at @root->class that matches @bit.
1264 *
1265 * Return 0 if such a node exists in the subgraph, and put that node
1266 * into *@target_entry.
1267 *
1268 * Return 1 otherwise and keep *@target_entry unchanged.
1269 * Return <0 on error.
1270 */
1271 static int
1272 find_usage_backwards(struct lock_list *root, enum lock_usage_bit bit,
1273 struct lock_list **target_entry)
1274 {
1275 int result;
1276
1277 debug_atomic_inc(&nr_find_usage_backwards_checks);
1278
1279 result = __bfs_backwards(root, (void *)bit, usage_match, target_entry);
1280
1281 return result;
1282 }
1283
1284 static void print_lock_class_header(struct lock_class *class, int depth)
1285 {
1286 int bit;
1287
1288 printk("%*s->", depth, "");
1289 print_lock_name(class);
1290 printk(" ops: %lu", class->ops);
1291 printk(" {\n");
1292
1293 for (bit = 0; bit < LOCK_USAGE_STATES; bit++) {
1294 if (class->usage_mask & (1 << bit)) {
1295 int len = depth;
1296
1297 len += printk("%*s %s", depth, "", usage_str[bit]);
1298 len += printk(" at:\n");
1299 print_stack_trace(class->usage_traces + bit, len);
1300 }
1301 }
1302 printk("%*s }\n", depth, "");
1303
1304 printk("%*s ... key at: ",depth,"");
1305 print_ip_sym((unsigned long)class->key);
1306 }
1307
1308 /*
1309 * printk the shortest lock dependencies from @start to @end in reverse order:
1310 */
1311 static void __used
1312 print_shortest_lock_dependencies(struct lock_list *leaf,
1313 struct lock_list *root)
1314 {
1315 struct lock_list *entry = leaf;
1316 int depth;
1317
1318 /*compute depth from generated tree by BFS*/
1319 depth = get_lock_depth(leaf);
1320
1321 do {
1322 print_lock_class_header(entry->class, depth);
1323 printk("%*s ... acquired at:\n", depth, "");
1324 print_stack_trace(&entry->trace, 2);
1325 printk("\n");
1326
1327 if (depth == 0 && (entry != root)) {
1328 printk("lockdep:%s bad BFS generated tree\n", __func__);
1329 break;
1330 }
1331
1332 entry = get_lock_parent(entry);
1333 depth--;
1334 } while (entry && (depth >= 0));
1335
1336 return;
1337 }
1338
1339 static int
1340 print_bad_irq_dependency(struct task_struct *curr,
1341 struct lock_list *prev_root,
1342 struct lock_list *next_root,
1343 struct lock_list *backwards_entry,
1344 struct lock_list *forwards_entry,
1345 struct held_lock *prev,
1346 struct held_lock *next,
1347 enum lock_usage_bit bit1,
1348 enum lock_usage_bit bit2,
1349 const char *irqclass)
1350 {
1351 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1352 return 0;
1353
1354 printk("\n======================================================\n");
1355 printk( "[ INFO: %s-safe -> %s-unsafe lock order detected ]\n",
1356 irqclass, irqclass);
1357 print_kernel_version();
1358 printk( "------------------------------------------------------\n");
1359 printk("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
1360 curr->comm, task_pid_nr(curr),
1361 curr->hardirq_context, hardirq_count() >> HARDIRQ_SHIFT,
1362 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
1363 curr->hardirqs_enabled,
1364 curr->softirqs_enabled);
1365 print_lock(next);
1366
1367 printk("\nand this task is already holding:\n");
1368 print_lock(prev);
1369 printk("which would create a new lock dependency:\n");
1370 print_lock_name(hlock_class(prev));
1371 printk(" ->");
1372 print_lock_name(hlock_class(next));
1373 printk("\n");
1374
1375 printk("\nbut this new dependency connects a %s-irq-safe lock:\n",
1376 irqclass);
1377 print_lock_name(backwards_entry->class);
1378 printk("\n... which became %s-irq-safe at:\n", irqclass);
1379
1380 print_stack_trace(backwards_entry->class->usage_traces + bit1, 1);
1381
1382 printk("\nto a %s-irq-unsafe lock:\n", irqclass);
1383 print_lock_name(forwards_entry->class);
1384 printk("\n... which became %s-irq-unsafe at:\n", irqclass);
1385 printk("...");
1386
1387 print_stack_trace(forwards_entry->class->usage_traces + bit2, 1);
1388
1389 printk("\nother info that might help us debug this:\n\n");
1390 lockdep_print_held_locks(curr);
1391
1392 printk("\nthe dependencies between %s-irq-safe lock", irqclass);
1393 printk(" and the holding lock:\n");
1394 if (!save_trace(&prev_root->trace))
1395 return 0;
1396 print_shortest_lock_dependencies(backwards_entry, prev_root);
1397
1398 printk("\nthe dependencies between the lock to be acquired");
1399 printk(" and %s-irq-unsafe lock:\n", irqclass);
1400 if (!save_trace(&next_root->trace))
1401 return 0;
1402 print_shortest_lock_dependencies(forwards_entry, next_root);
1403
1404 printk("\nstack backtrace:\n");
1405 dump_stack();
1406
1407 return 0;
1408 }
1409
1410 static int
1411 check_usage(struct task_struct *curr, struct held_lock *prev,
1412 struct held_lock *next, enum lock_usage_bit bit_backwards,
1413 enum lock_usage_bit bit_forwards, const char *irqclass)
1414 {
1415 int ret;
1416 struct lock_list this, that;
1417 struct lock_list *uninitialized_var(target_entry);
1418 struct lock_list *uninitialized_var(target_entry1);
1419
1420 this.parent = NULL;
1421
1422 this.class = hlock_class(prev);
1423 ret = find_usage_backwards(&this, bit_backwards, &target_entry);
1424 if (ret < 0)
1425 return print_bfs_bug(ret);
1426 if (ret == 1)
1427 return ret;
1428
1429 that.parent = NULL;
1430 that.class = hlock_class(next);
1431 ret = find_usage_forwards(&that, bit_forwards, &target_entry1);
1432 if (ret < 0)
1433 return print_bfs_bug(ret);
1434 if (ret == 1)
1435 return ret;
1436
1437 return print_bad_irq_dependency(curr, &this, &that,
1438 target_entry, target_entry1,
1439 prev, next,
1440 bit_backwards, bit_forwards, irqclass);
1441 }
1442
1443 static const char *state_names[] = {
1444 #define LOCKDEP_STATE(__STATE) \
1445 __stringify(__STATE),
1446 #include "lockdep_states.h"
1447 #undef LOCKDEP_STATE
1448 };
1449
1450 static const char *state_rnames[] = {
1451 #define LOCKDEP_STATE(__STATE) \
1452 __stringify(__STATE)"-READ",
1453 #include "lockdep_states.h"
1454 #undef LOCKDEP_STATE
1455 };
1456
1457 static inline const char *state_name(enum lock_usage_bit bit)
1458 {
1459 return (bit & 1) ? state_rnames[bit >> 2] : state_names[bit >> 2];
1460 }
1461
1462 static int exclusive_bit(int new_bit)
1463 {
1464 /*
1465 * USED_IN
1466 * USED_IN_READ
1467 * ENABLED
1468 * ENABLED_READ
1469 *
1470 * bit 0 - write/read
1471 * bit 1 - used_in/enabled
1472 * bit 2+ state
1473 */
1474
1475 int state = new_bit & ~3;
1476 int dir = new_bit & 2;
1477
1478 /*
1479 * keep state, bit flip the direction and strip read.
1480 */
1481 return state | (dir ^ 2);
1482 }
1483
1484 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
1485 struct held_lock *next, enum lock_usage_bit bit)
1486 {
1487 /*
1488 * Prove that the new dependency does not connect a hardirq-safe
1489 * lock with a hardirq-unsafe lock - to achieve this we search
1490 * the backwards-subgraph starting at <prev>, and the
1491 * forwards-subgraph starting at <next>:
1492 */
1493 if (!check_usage(curr, prev, next, bit,
1494 exclusive_bit(bit), state_name(bit)))
1495 return 0;
1496
1497 bit++; /* _READ */
1498
1499 /*
1500 * Prove that the new dependency does not connect a hardirq-safe-read
1501 * lock with a hardirq-unsafe lock - to achieve this we search
1502 * the backwards-subgraph starting at <prev>, and the
1503 * forwards-subgraph starting at <next>:
1504 */
1505 if (!check_usage(curr, prev, next, bit,
1506 exclusive_bit(bit), state_name(bit)))
1507 return 0;
1508
1509 return 1;
1510 }
1511
1512 static int
1513 check_prev_add_irq(struct task_struct *curr, struct held_lock *prev,
1514 struct held_lock *next)
1515 {
1516 #define LOCKDEP_STATE(__STATE) \
1517 if (!check_irq_usage(curr, prev, next, LOCK_USED_IN_##__STATE)) \
1518 return 0;
1519 #include "lockdep_states.h"
1520 #undef LOCKDEP_STATE
1521
1522 return 1;
1523 }
1524
1525 static void inc_chains(void)
1526 {
1527 if (current->hardirq_context)
1528 nr_hardirq_chains++;
1529 else {
1530 if (current->softirq_context)
1531 nr_softirq_chains++;
1532 else
1533 nr_process_chains++;
1534 }
1535 }
1536
1537 #else
1538
1539 static inline int
1540 check_prev_add_irq(struct task_struct *curr, struct held_lock *prev,
1541 struct held_lock *next)
1542 {
1543 return 1;
1544 }
1545
1546 static inline void inc_chains(void)
1547 {
1548 nr_process_chains++;
1549 }
1550
1551 #endif
1552
1553 static int
1554 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
1555 struct held_lock *next)
1556 {
1557 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1558 return 0;
1559
1560 printk("\n=============================================\n");
1561 printk( "[ INFO: possible recursive locking detected ]\n");
1562 print_kernel_version();
1563 printk( "---------------------------------------------\n");
1564 printk("%s/%d is trying to acquire lock:\n",
1565 curr->comm, task_pid_nr(curr));
1566 print_lock(next);
1567 printk("\nbut task is already holding lock:\n");
1568 print_lock(prev);
1569
1570 printk("\nother info that might help us debug this:\n");
1571 lockdep_print_held_locks(curr);
1572
1573 printk("\nstack backtrace:\n");
1574 dump_stack();
1575
1576 return 0;
1577 }
1578
1579 /*
1580 * Check whether we are holding such a class already.
1581 *
1582 * (Note that this has to be done separately, because the graph cannot
1583 * detect such classes of deadlocks.)
1584 *
1585 * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read
1586 */
1587 static int
1588 check_deadlock(struct task_struct *curr, struct held_lock *next,
1589 struct lockdep_map *next_instance, int read)
1590 {
1591 struct held_lock *prev;
1592 struct held_lock *nest = NULL;
1593 int i;
1594
1595 for (i = 0; i < curr->lockdep_depth; i++) {
1596 prev = curr->held_locks + i;
1597
1598 if (prev->instance == next->nest_lock)
1599 nest = prev;
1600
1601 if (hlock_class(prev) != hlock_class(next))
1602 continue;
1603
1604 /*
1605 * Allow read-after-read recursion of the same
1606 * lock class (i.e. read_lock(lock)+read_lock(lock)):
1607 */
1608 if ((read == 2) && prev->read)
1609 return 2;
1610
1611 /*
1612 * We're holding the nest_lock, which serializes this lock's
1613 * nesting behaviour.
1614 */
1615 if (nest)
1616 return 2;
1617
1618 return print_deadlock_bug(curr, prev, next);
1619 }
1620 return 1;
1621 }
1622
1623 /*
1624 * There was a chain-cache miss, and we are about to add a new dependency
1625 * to a previous lock. We recursively validate the following rules:
1626 *
1627 * - would the adding of the <prev> -> <next> dependency create a
1628 * circular dependency in the graph? [== circular deadlock]
1629 *
1630 * - does the new prev->next dependency connect any hardirq-safe lock
1631 * (in the full backwards-subgraph starting at <prev>) with any
1632 * hardirq-unsafe lock (in the full forwards-subgraph starting at
1633 * <next>)? [== illegal lock inversion with hardirq contexts]
1634 *
1635 * - does the new prev->next dependency connect any softirq-safe lock
1636 * (in the full backwards-subgraph starting at <prev>) with any
1637 * softirq-unsafe lock (in the full forwards-subgraph starting at
1638 * <next>)? [== illegal lock inversion with softirq contexts]
1639 *
1640 * any of these scenarios could lead to a deadlock.
1641 *
1642 * Then if all the validations pass, we add the forwards and backwards
1643 * dependency.
1644 */
1645 static int
1646 check_prev_add(struct task_struct *curr, struct held_lock *prev,
1647 struct held_lock *next, int distance)
1648 {
1649 struct lock_list *entry;
1650 int ret;
1651 struct lock_list this;
1652 struct lock_list *uninitialized_var(target_entry);
1653
1654 /*
1655 * Prove that the new <prev> -> <next> dependency would not
1656 * create a circular dependency in the graph. (We do this by
1657 * forward-recursing into the graph starting at <next>, and
1658 * checking whether we can reach <prev>.)
1659 *
1660 * We are using global variables to control the recursion, to
1661 * keep the stackframe size of the recursive functions low:
1662 */
1663 this.class = hlock_class(next);
1664 this.parent = NULL;
1665 ret = check_noncircular(&this, hlock_class(prev), &target_entry);
1666 if (unlikely(!ret))
1667 return print_circular_bug(&this, target_entry, next, prev);
1668 else if (unlikely(ret < 0))
1669 return print_bfs_bug(ret);
1670
1671 if (!check_prev_add_irq(curr, prev, next))
1672 return 0;
1673
1674 /*
1675 * For recursive read-locks we do all the dependency checks,
1676 * but we dont store read-triggered dependencies (only
1677 * write-triggered dependencies). This ensures that only the
1678 * write-side dependencies matter, and that if for example a
1679 * write-lock never takes any other locks, then the reads are
1680 * equivalent to a NOP.
1681 */
1682 if (next->read == 2 || prev->read == 2)
1683 return 1;
1684 /*
1685 * Is the <prev> -> <next> dependency already present?
1686 *
1687 * (this may occur even though this is a new chain: consider
1688 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
1689 * chains - the second one will be new, but L1 already has
1690 * L2 added to its dependency list, due to the first chain.)
1691 */
1692 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
1693 if (entry->class == hlock_class(next)) {
1694 if (distance == 1)
1695 entry->distance = 1;
1696 return 2;
1697 }
1698 }
1699
1700 /*
1701 * Ok, all validations passed, add the new lock
1702 * to the previous lock's dependency list:
1703 */
1704 ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
1705 &hlock_class(prev)->locks_after,
1706 next->acquire_ip, distance);
1707
1708 if (!ret)
1709 return 0;
1710
1711 ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
1712 &hlock_class(next)->locks_before,
1713 next->acquire_ip, distance);
1714 if (!ret)
1715 return 0;
1716
1717 /*
1718 * Debugging printouts:
1719 */
1720 if (verbose(hlock_class(prev)) || verbose(hlock_class(next))) {
1721 graph_unlock();
1722 printk("\n new dependency: ");
1723 print_lock_name(hlock_class(prev));
1724 printk(" => ");
1725 print_lock_name(hlock_class(next));
1726 printk("\n");
1727 dump_stack();
1728 return graph_lock();
1729 }
1730 return 1;
1731 }
1732
1733 /*
1734 * Add the dependency to all directly-previous locks that are 'relevant'.
1735 * The ones that are relevant are (in increasing distance from curr):
1736 * all consecutive trylock entries and the final non-trylock entry - or
1737 * the end of this context's lock-chain - whichever comes first.
1738 */
1739 static int
1740 check_prevs_add(struct task_struct *curr, struct held_lock *next)
1741 {
1742 int depth = curr->lockdep_depth;
1743 struct held_lock *hlock;
1744
1745 /*
1746 * Debugging checks.
1747 *
1748 * Depth must not be zero for a non-head lock:
1749 */
1750 if (!depth)
1751 goto out_bug;
1752 /*
1753 * At least two relevant locks must exist for this
1754 * to be a head:
1755 */
1756 if (curr->held_locks[depth].irq_context !=
1757 curr->held_locks[depth-1].irq_context)
1758 goto out_bug;
1759
1760 for (;;) {
1761 int distance = curr->lockdep_depth - depth + 1;
1762 hlock = curr->held_locks + depth-1;
1763 /*
1764 * Only non-recursive-read entries get new dependencies
1765 * added:
1766 */
1767 if (hlock->read != 2) {
1768 if (!check_prev_add(curr, hlock, next, distance))
1769 return 0;
1770 /*
1771 * Stop after the first non-trylock entry,
1772 * as non-trylock entries have added their
1773 * own direct dependencies already, so this
1774 * lock is connected to them indirectly:
1775 */
1776 if (!hlock->trylock)
1777 break;
1778 }
1779 depth--;
1780 /*
1781 * End of lock-stack?
1782 */
1783 if (!depth)
1784 break;
1785 /*
1786 * Stop the search if we cross into another context:
1787 */
1788 if (curr->held_locks[depth].irq_context !=
1789 curr->held_locks[depth-1].irq_context)
1790 break;
1791 }
1792 return 1;
1793 out_bug:
1794 if (!debug_locks_off_graph_unlock())
1795 return 0;
1796
1797 WARN_ON(1);
1798
1799 return 0;
1800 }
1801
1802 unsigned long nr_lock_chains;
1803 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
1804 int nr_chain_hlocks;
1805 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1806
1807 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
1808 {
1809 return lock_classes + chain_hlocks[chain->base + i];
1810 }
1811
1812 /*
1813 * Look up a dependency chain. If the key is not present yet then
1814 * add it and return 1 - in this case the new dependency chain is
1815 * validated. If the key is already hashed, return 0.
1816 * (On return with 1 graph_lock is held.)
1817 */
1818 static inline int lookup_chain_cache(struct task_struct *curr,
1819 struct held_lock *hlock,
1820 u64 chain_key)
1821 {
1822 struct lock_class *class = hlock_class(hlock);
1823 struct list_head *hash_head = chainhashentry(chain_key);
1824 struct lock_chain *chain;
1825 struct held_lock *hlock_curr, *hlock_next;
1826 int i, j, n, cn;
1827
1828 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
1829 return 0;
1830 /*
1831 * We can walk it lock-free, because entries only get added
1832 * to the hash:
1833 */
1834 list_for_each_entry(chain, hash_head, entry) {
1835 if (chain->chain_key == chain_key) {
1836 cache_hit:
1837 debug_atomic_inc(&chain_lookup_hits);
1838 if (very_verbose(class))
1839 printk("\nhash chain already cached, key: "
1840 "%016Lx tail class: [%p] %s\n",
1841 (unsigned long long)chain_key,
1842 class->key, class->name);
1843 return 0;
1844 }
1845 }
1846 if (very_verbose(class))
1847 printk("\nnew hash chain, key: %016Lx tail class: [%p] %s\n",
1848 (unsigned long long)chain_key, class->key, class->name);
1849 /*
1850 * Allocate a new chain entry from the static array, and add
1851 * it to the hash:
1852 */
1853 if (!graph_lock())
1854 return 0;
1855 /*
1856 * We have to walk the chain again locked - to avoid duplicates:
1857 */
1858 list_for_each_entry(chain, hash_head, entry) {
1859 if (chain->chain_key == chain_key) {
1860 graph_unlock();
1861 goto cache_hit;
1862 }
1863 }
1864 if (unlikely(nr_lock_chains >= MAX_LOCKDEP_CHAINS)) {
1865 if (!debug_locks_off_graph_unlock())
1866 return 0;
1867
1868 printk("BUG: MAX_LOCKDEP_CHAINS too low!\n");
1869 printk("turning off the locking correctness validator.\n");
1870 dump_stack();
1871 return 0;
1872 }
1873 chain = lock_chains + nr_lock_chains++;
1874 chain->chain_key = chain_key;
1875 chain->irq_context = hlock->irq_context;
1876 /* Find the first held_lock of current chain */
1877 hlock_next = hlock;
1878 for (i = curr->lockdep_depth - 1; i >= 0; i--) {
1879 hlock_curr = curr->held_locks + i;
1880 if (hlock_curr->irq_context != hlock_next->irq_context)
1881 break;
1882 hlock_next = hlock;
1883 }
1884 i++;
1885 chain->depth = curr->lockdep_depth + 1 - i;
1886 cn = nr_chain_hlocks;
1887 while (cn + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS) {
1888 n = cmpxchg(&nr_chain_hlocks, cn, cn + chain->depth);
1889 if (n == cn)
1890 break;
1891 cn = n;
1892 }
1893 if (likely(cn + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS)) {
1894 chain->base = cn;
1895 for (j = 0; j < chain->depth - 1; j++, i++) {
1896 int lock_id = curr->held_locks[i].class_idx - 1;
1897 chain_hlocks[chain->base + j] = lock_id;
1898 }
1899 chain_hlocks[chain->base + j] = class - lock_classes;
1900 }
1901 list_add_tail_rcu(&chain->entry, hash_head);
1902 debug_atomic_inc(&chain_lookup_misses);
1903 inc_chains();
1904
1905 return 1;
1906 }
1907
1908 static int validate_chain(struct task_struct *curr, struct lockdep_map *lock,
1909 struct held_lock *hlock, int chain_head, u64 chain_key)
1910 {
1911 /*
1912 * Trylock needs to maintain the stack of held locks, but it
1913 * does not add new dependencies, because trylock can be done
1914 * in any order.
1915 *
1916 * We look up the chain_key and do the O(N^2) check and update of
1917 * the dependencies only if this is a new dependency chain.
1918 * (If lookup_chain_cache() returns with 1 it acquires
1919 * graph_lock for us)
1920 */
1921 if (!hlock->trylock && (hlock->check == 2) &&
1922 lookup_chain_cache(curr, hlock, chain_key)) {
1923 /*
1924 * Check whether last held lock:
1925 *
1926 * - is irq-safe, if this lock is irq-unsafe
1927 * - is softirq-safe, if this lock is hardirq-unsafe
1928 *
1929 * And check whether the new lock's dependency graph
1930 * could lead back to the previous lock.
1931 *
1932 * any of these scenarios could lead to a deadlock. If
1933 * All validations
1934 */
1935 int ret = check_deadlock(curr, hlock, lock, hlock->read);
1936
1937 if (!ret)
1938 return 0;
1939 /*
1940 * Mark recursive read, as we jump over it when
1941 * building dependencies (just like we jump over
1942 * trylock entries):
1943 */
1944 if (ret == 2)
1945 hlock->read = 2;
1946 /*
1947 * Add dependency only if this lock is not the head
1948 * of the chain, and if it's not a secondary read-lock:
1949 */
1950 if (!chain_head && ret != 2)
1951 if (!check_prevs_add(curr, hlock))
1952 return 0;
1953 graph_unlock();
1954 } else
1955 /* after lookup_chain_cache(): */
1956 if (unlikely(!debug_locks))
1957 return 0;
1958
1959 return 1;
1960 }
1961 #else
1962 static inline int validate_chain(struct task_struct *curr,
1963 struct lockdep_map *lock, struct held_lock *hlock,
1964 int chain_head, u64 chain_key)
1965 {
1966 return 1;
1967 }
1968 #endif
1969
1970 /*
1971 * We are building curr_chain_key incrementally, so double-check
1972 * it from scratch, to make sure that it's done correctly:
1973 */
1974 static void check_chain_key(struct task_struct *curr)
1975 {
1976 #ifdef CONFIG_DEBUG_LOCKDEP
1977 struct held_lock *hlock, *prev_hlock = NULL;
1978 unsigned int i, id;
1979 u64 chain_key = 0;
1980
1981 for (i = 0; i < curr->lockdep_depth; i++) {
1982 hlock = curr->held_locks + i;
1983 if (chain_key != hlock->prev_chain_key) {
1984 debug_locks_off();
1985 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
1986 curr->lockdep_depth, i,
1987 (unsigned long long)chain_key,
1988 (unsigned long long)hlock->prev_chain_key);
1989 return;
1990 }
1991 id = hlock->class_idx - 1;
1992 if (DEBUG_LOCKS_WARN_ON(id >= MAX_LOCKDEP_KEYS))
1993 return;
1994
1995 if (prev_hlock && (prev_hlock->irq_context !=
1996 hlock->irq_context))
1997 chain_key = 0;
1998 chain_key = iterate_chain_key(chain_key, id);
1999 prev_hlock = hlock;
2000 }
2001 if (chain_key != curr->curr_chain_key) {
2002 debug_locks_off();
2003 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
2004 curr->lockdep_depth, i,
2005 (unsigned long long)chain_key,
2006 (unsigned long long)curr->curr_chain_key);
2007 }
2008 #endif
2009 }
2010
2011 static int
2012 print_usage_bug(struct task_struct *curr, struct held_lock *this,
2013 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
2014 {
2015 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2016 return 0;
2017
2018 printk("\n=================================\n");
2019 printk( "[ INFO: inconsistent lock state ]\n");
2020 print_kernel_version();
2021 printk( "---------------------------------\n");
2022
2023 printk("inconsistent {%s} -> {%s} usage.\n",
2024 usage_str[prev_bit], usage_str[new_bit]);
2025
2026 printk("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
2027 curr->comm, task_pid_nr(curr),
2028 trace_hardirq_context(curr), hardirq_count() >> HARDIRQ_SHIFT,
2029 trace_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
2030 trace_hardirqs_enabled(curr),
2031 trace_softirqs_enabled(curr));
2032 print_lock(this);
2033
2034 printk("{%s} state was registered at:\n", usage_str[prev_bit]);
2035 print_stack_trace(hlock_class(this)->usage_traces + prev_bit, 1);
2036
2037 print_irqtrace_events(curr);
2038 printk("\nother info that might help us debug this:\n");
2039 lockdep_print_held_locks(curr);
2040
2041 printk("\nstack backtrace:\n");
2042 dump_stack();
2043
2044 return 0;
2045 }
2046
2047 /*
2048 * Print out an error if an invalid bit is set:
2049 */
2050 static inline int
2051 valid_state(struct task_struct *curr, struct held_lock *this,
2052 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
2053 {
2054 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit)))
2055 return print_usage_bug(curr, this, bad_bit, new_bit);
2056 return 1;
2057 }
2058
2059 static int mark_lock(struct task_struct *curr, struct held_lock *this,
2060 enum lock_usage_bit new_bit);
2061
2062 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
2063
2064 /*
2065 * print irq inversion bug:
2066 */
2067 static int
2068 print_irq_inversion_bug(struct task_struct *curr,
2069 struct lock_list *root, struct lock_list *other,
2070 struct held_lock *this, int forwards,
2071 const char *irqclass)
2072 {
2073 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2074 return 0;
2075
2076 printk("\n=========================================================\n");
2077 printk( "[ INFO: possible irq lock inversion dependency detected ]\n");
2078 print_kernel_version();
2079 printk( "---------------------------------------------------------\n");
2080 printk("%s/%d just changed the state of lock:\n",
2081 curr->comm, task_pid_nr(curr));
2082 print_lock(this);
2083 if (forwards)
2084 printk("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
2085 else
2086 printk("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
2087 print_lock_name(other->class);
2088 printk("\n\nand interrupts could create inverse lock ordering between them.\n\n");
2089
2090 printk("\nother info that might help us debug this:\n");
2091 lockdep_print_held_locks(curr);
2092
2093 printk("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
2094 if (!save_trace(&root->trace))
2095 return 0;
2096 print_shortest_lock_dependencies(other, root);
2097
2098 printk("\nstack backtrace:\n");
2099 dump_stack();
2100
2101 return 0;
2102 }
2103
2104 /*
2105 * Prove that in the forwards-direction subgraph starting at <this>
2106 * there is no lock matching <mask>:
2107 */
2108 static int
2109 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
2110 enum lock_usage_bit bit, const char *irqclass)
2111 {
2112 int ret;
2113 struct lock_list root;
2114 struct lock_list *uninitialized_var(target_entry);
2115
2116 root.parent = NULL;
2117 root.class = hlock_class(this);
2118 ret = find_usage_forwards(&root, bit, &target_entry);
2119 if (ret < 0)
2120 return print_bfs_bug(ret);
2121 if (ret == 1)
2122 return ret;
2123
2124 return print_irq_inversion_bug(curr, &root, target_entry,
2125 this, 1, irqclass);
2126 }
2127
2128 /*
2129 * Prove that in the backwards-direction subgraph starting at <this>
2130 * there is no lock matching <mask>:
2131 */
2132 static int
2133 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
2134 enum lock_usage_bit bit, const char *irqclass)
2135 {
2136 int ret;
2137 struct lock_list root;
2138 struct lock_list *uninitialized_var(target_entry);
2139
2140 root.parent = NULL;
2141 root.class = hlock_class(this);
2142 ret = find_usage_backwards(&root, bit, &target_entry);
2143 if (ret < 0)
2144 return print_bfs_bug(ret);
2145 if (ret == 1)
2146 return ret;
2147
2148 return print_irq_inversion_bug(curr, &root, target_entry,
2149 this, 1, irqclass);
2150 }
2151
2152 void print_irqtrace_events(struct task_struct *curr)
2153 {
2154 printk("irq event stamp: %u\n", curr->irq_events);
2155 printk("hardirqs last enabled at (%u): ", curr->hardirq_enable_event);
2156 print_ip_sym(curr->hardirq_enable_ip);
2157 printk("hardirqs last disabled at (%u): ", curr->hardirq_disable_event);
2158 print_ip_sym(curr->hardirq_disable_ip);
2159 printk("softirqs last enabled at (%u): ", curr->softirq_enable_event);
2160 print_ip_sym(curr->softirq_enable_ip);
2161 printk("softirqs last disabled at (%u): ", curr->softirq_disable_event);
2162 print_ip_sym(curr->softirq_disable_ip);
2163 }
2164
2165 static int HARDIRQ_verbose(struct lock_class *class)
2166 {
2167 #if HARDIRQ_VERBOSE
2168 return class_filter(class);
2169 #endif
2170 return 0;
2171 }
2172
2173 static int SOFTIRQ_verbose(struct lock_class *class)
2174 {
2175 #if SOFTIRQ_VERBOSE
2176 return class_filter(class);
2177 #endif
2178 return 0;
2179 }
2180
2181 static int RECLAIM_FS_verbose(struct lock_class *class)
2182 {
2183 #if RECLAIM_VERBOSE
2184 return class_filter(class);
2185 #endif
2186 return 0;
2187 }
2188
2189 #define STRICT_READ_CHECKS 1
2190
2191 static int (*state_verbose_f[])(struct lock_class *class) = {
2192 #define LOCKDEP_STATE(__STATE) \
2193 __STATE##_verbose,
2194 #include "lockdep_states.h"
2195 #undef LOCKDEP_STATE
2196 };
2197
2198 static inline int state_verbose(enum lock_usage_bit bit,
2199 struct lock_class *class)
2200 {
2201 return state_verbose_f[bit >> 2](class);
2202 }
2203
2204 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
2205 enum lock_usage_bit bit, const char *name);
2206
2207 static int
2208 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
2209 enum lock_usage_bit new_bit)
2210 {
2211 int excl_bit = exclusive_bit(new_bit);
2212 int read = new_bit & 1;
2213 int dir = new_bit & 2;
2214
2215 /*
2216 * mark USED_IN has to look forwards -- to ensure no dependency
2217 * has ENABLED state, which would allow recursion deadlocks.
2218 *
2219 * mark ENABLED has to look backwards -- to ensure no dependee
2220 * has USED_IN state, which, again, would allow recursion deadlocks.
2221 */
2222 check_usage_f usage = dir ?
2223 check_usage_backwards : check_usage_forwards;
2224
2225 /*
2226 * Validate that this particular lock does not have conflicting
2227 * usage states.
2228 */
2229 if (!valid_state(curr, this, new_bit, excl_bit))
2230 return 0;
2231
2232 /*
2233 * Validate that the lock dependencies don't have conflicting usage
2234 * states.
2235 */
2236 if ((!read || !dir || STRICT_READ_CHECKS) &&
2237 !usage(curr, this, excl_bit, state_name(new_bit & ~1)))
2238 return 0;
2239
2240 /*
2241 * Check for read in write conflicts
2242 */
2243 if (!read) {
2244 if (!valid_state(curr, this, new_bit, excl_bit + 1))
2245 return 0;
2246
2247 if (STRICT_READ_CHECKS &&
2248 !usage(curr, this, excl_bit + 1,
2249 state_name(new_bit + 1)))
2250 return 0;
2251 }
2252
2253 if (state_verbose(new_bit, hlock_class(this)))
2254 return 2;
2255
2256 return 1;
2257 }
2258
2259 enum mark_type {
2260 #define LOCKDEP_STATE(__STATE) __STATE,
2261 #include "lockdep_states.h"
2262 #undef LOCKDEP_STATE
2263 };
2264
2265 /*
2266 * Mark all held locks with a usage bit:
2267 */
2268 static int
2269 mark_held_locks(struct task_struct *curr, enum mark_type mark)
2270 {
2271 enum lock_usage_bit usage_bit;
2272 struct held_lock *hlock;
2273 int i;
2274
2275 for (i = 0; i < curr->lockdep_depth; i++) {
2276 hlock = curr->held_locks + i;
2277
2278 usage_bit = 2 + (mark << 2); /* ENABLED */
2279 if (hlock->read)
2280 usage_bit += 1; /* READ */
2281
2282 BUG_ON(usage_bit >= LOCK_USAGE_STATES);
2283
2284 if (!mark_lock(curr, hlock, usage_bit))
2285 return 0;
2286 }
2287
2288 return 1;
2289 }
2290
2291 /*
2292 * Debugging helper: via this flag we know that we are in
2293 * 'early bootup code', and will warn about any invalid irqs-on event:
2294 */
2295 static int early_boot_irqs_enabled;
2296
2297 void early_boot_irqs_off(void)
2298 {
2299 early_boot_irqs_enabled = 0;
2300 }
2301
2302 void early_boot_irqs_on(void)
2303 {
2304 early_boot_irqs_enabled = 1;
2305 }
2306
2307 /*
2308 * Hardirqs will be enabled:
2309 */
2310 void trace_hardirqs_on_caller(unsigned long ip)
2311 {
2312 struct task_struct *curr = current;
2313
2314 time_hardirqs_on(CALLER_ADDR0, ip);
2315
2316 if (unlikely(!debug_locks || current->lockdep_recursion))
2317 return;
2318
2319 if (DEBUG_LOCKS_WARN_ON(unlikely(!early_boot_irqs_enabled)))
2320 return;
2321
2322 if (unlikely(curr->hardirqs_enabled)) {
2323 debug_atomic_inc(&redundant_hardirqs_on);
2324 return;
2325 }
2326 /* we'll do an OFF -> ON transition: */
2327 curr->hardirqs_enabled = 1;
2328
2329 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2330 return;
2331 if (DEBUG_LOCKS_WARN_ON(current->hardirq_context))
2332 return;
2333 /*
2334 * We are going to turn hardirqs on, so set the
2335 * usage bit for all held locks:
2336 */
2337 if (!mark_held_locks(curr, HARDIRQ))
2338 return;
2339 /*
2340 * If we have softirqs enabled, then set the usage
2341 * bit for all held locks. (disabled hardirqs prevented
2342 * this bit from being set before)
2343 */
2344 if (curr->softirqs_enabled)
2345 if (!mark_held_locks(curr, SOFTIRQ))
2346 return;
2347
2348 curr->hardirq_enable_ip = ip;
2349 curr->hardirq_enable_event = ++curr->irq_events;
2350 debug_atomic_inc(&hardirqs_on_events);
2351 }
2352 EXPORT_SYMBOL(trace_hardirqs_on_caller);
2353
2354 void trace_hardirqs_on(void)
2355 {
2356 trace_hardirqs_on_caller(CALLER_ADDR0);
2357 }
2358 EXPORT_SYMBOL(trace_hardirqs_on);
2359
2360 /*
2361 * Hardirqs were disabled:
2362 */
2363 void trace_hardirqs_off_caller(unsigned long ip)
2364 {
2365 struct task_struct *curr = current;
2366
2367 time_hardirqs_off(CALLER_ADDR0, ip);
2368
2369 if (unlikely(!debug_locks || current->lockdep_recursion))
2370 return;
2371
2372 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2373 return;
2374
2375 if (curr->hardirqs_enabled) {
2376 /*
2377 * We have done an ON -> OFF transition:
2378 */
2379 curr->hardirqs_enabled = 0;
2380 curr->hardirq_disable_ip = ip;
2381 curr->hardirq_disable_event = ++curr->irq_events;
2382 debug_atomic_inc(&hardirqs_off_events);
2383 } else
2384 debug_atomic_inc(&redundant_hardirqs_off);
2385 }
2386 EXPORT_SYMBOL(trace_hardirqs_off_caller);
2387
2388 void trace_hardirqs_off(void)
2389 {
2390 trace_hardirqs_off_caller(CALLER_ADDR0);
2391 }
2392 EXPORT_SYMBOL(trace_hardirqs_off);
2393
2394 /*
2395 * Softirqs will be enabled:
2396 */
2397 void trace_softirqs_on(unsigned long ip)
2398 {
2399 struct task_struct *curr = current;
2400
2401 if (unlikely(!debug_locks))
2402 return;
2403
2404 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2405 return;
2406
2407 if (curr->softirqs_enabled) {
2408 debug_atomic_inc(&redundant_softirqs_on);
2409 return;
2410 }
2411
2412 /*
2413 * We'll do an OFF -> ON transition:
2414 */
2415 curr->softirqs_enabled = 1;
2416 curr->softirq_enable_ip = ip;
2417 curr->softirq_enable_event = ++curr->irq_events;
2418 debug_atomic_inc(&softirqs_on_events);
2419 /*
2420 * We are going to turn softirqs on, so set the
2421 * usage bit for all held locks, if hardirqs are
2422 * enabled too:
2423 */
2424 if (curr->hardirqs_enabled)
2425 mark_held_locks(curr, SOFTIRQ);
2426 }
2427
2428 /*
2429 * Softirqs were disabled:
2430 */
2431 void trace_softirqs_off(unsigned long ip)
2432 {
2433 struct task_struct *curr = current;
2434
2435 if (unlikely(!debug_locks))
2436 return;
2437
2438 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2439 return;
2440
2441 if (curr->softirqs_enabled) {
2442 /*
2443 * We have done an ON -> OFF transition:
2444 */
2445 curr->softirqs_enabled = 0;
2446 curr->softirq_disable_ip = ip;
2447 curr->softirq_disable_event = ++curr->irq_events;
2448 debug_atomic_inc(&softirqs_off_events);
2449 DEBUG_LOCKS_WARN_ON(!softirq_count());
2450 } else
2451 debug_atomic_inc(&redundant_softirqs_off);
2452 }
2453
2454 static void __lockdep_trace_alloc(gfp_t gfp_mask, unsigned long flags)
2455 {
2456 struct task_struct *curr = current;
2457
2458 if (unlikely(!debug_locks))
2459 return;
2460
2461 /* no reclaim without waiting on it */
2462 if (!(gfp_mask & __GFP_WAIT))
2463 return;
2464
2465 /* this guy won't enter reclaim */
2466 if ((curr->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
2467 return;
2468
2469 /* We're only interested __GFP_FS allocations for now */
2470 if (!(gfp_mask & __GFP_FS))
2471 return;
2472
2473 if (DEBUG_LOCKS_WARN_ON(irqs_disabled_flags(flags)))
2474 return;
2475
2476 mark_held_locks(curr, RECLAIM_FS);
2477 }
2478
2479 static void check_flags(unsigned long flags);
2480
2481 void lockdep_trace_alloc(gfp_t gfp_mask)
2482 {
2483 unsigned long flags;
2484
2485 if (unlikely(current->lockdep_recursion))
2486 return;
2487
2488 raw_local_irq_save(flags);
2489 check_flags(flags);
2490 current->lockdep_recursion = 1;
2491 __lockdep_trace_alloc(gfp_mask, flags);
2492 current->lockdep_recursion = 0;
2493 raw_local_irq_restore(flags);
2494 }
2495
2496 static int mark_irqflags(struct task_struct *curr, struct held_lock *hlock)
2497 {
2498 /*
2499 * If non-trylock use in a hardirq or softirq context, then
2500 * mark the lock as used in these contexts:
2501 */
2502 if (!hlock->trylock) {
2503 if (hlock->read) {
2504 if (curr->hardirq_context)
2505 if (!mark_lock(curr, hlock,
2506 LOCK_USED_IN_HARDIRQ_READ))
2507 return 0;
2508 if (curr->softirq_context)
2509 if (!mark_lock(curr, hlock,
2510 LOCK_USED_IN_SOFTIRQ_READ))
2511 return 0;
2512 } else {
2513 if (curr->hardirq_context)
2514 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
2515 return 0;
2516 if (curr->softirq_context)
2517 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
2518 return 0;
2519 }
2520 }
2521 if (!hlock->hardirqs_off) {
2522 if (hlock->read) {
2523 if (!mark_lock(curr, hlock,
2524 LOCK_ENABLED_HARDIRQ_READ))
2525 return 0;
2526 if (curr->softirqs_enabled)
2527 if (!mark_lock(curr, hlock,
2528 LOCK_ENABLED_SOFTIRQ_READ))
2529 return 0;
2530 } else {
2531 if (!mark_lock(curr, hlock,
2532 LOCK_ENABLED_HARDIRQ))
2533 return 0;
2534 if (curr->softirqs_enabled)
2535 if (!mark_lock(curr, hlock,
2536 LOCK_ENABLED_SOFTIRQ))
2537 return 0;
2538 }
2539 }
2540
2541 /*
2542 * We reuse the irq context infrastructure more broadly as a general
2543 * context checking code. This tests GFP_FS recursion (a lock taken
2544 * during reclaim for a GFP_FS allocation is held over a GFP_FS
2545 * allocation).
2546 */
2547 if (!hlock->trylock && (curr->lockdep_reclaim_gfp & __GFP_FS)) {
2548 if (hlock->read) {
2549 if (!mark_lock(curr, hlock, LOCK_USED_IN_RECLAIM_FS_READ))
2550 return 0;
2551 } else {
2552 if (!mark_lock(curr, hlock, LOCK_USED_IN_RECLAIM_FS))
2553 return 0;
2554 }
2555 }
2556
2557 return 1;
2558 }
2559
2560 static int separate_irq_context(struct task_struct *curr,
2561 struct held_lock *hlock)
2562 {
2563 unsigned int depth = curr->lockdep_depth;
2564
2565 /*
2566 * Keep track of points where we cross into an interrupt context:
2567 */
2568 hlock->irq_context = 2*(curr->hardirq_context ? 1 : 0) +
2569 curr->softirq_context;
2570 if (depth) {
2571 struct held_lock *prev_hlock;
2572
2573 prev_hlock = curr->held_locks + depth-1;
2574 /*
2575 * If we cross into another context, reset the
2576 * hash key (this also prevents the checking and the
2577 * adding of the dependency to 'prev'):
2578 */
2579 if (prev_hlock->irq_context != hlock->irq_context)
2580 return 1;
2581 }
2582 return 0;
2583 }
2584
2585 #else
2586
2587 static inline
2588 int mark_lock_irq(struct task_struct *curr, struct held_lock *this,
2589 enum lock_usage_bit new_bit)
2590 {
2591 WARN_ON(1);
2592 return 1;
2593 }
2594
2595 static inline int mark_irqflags(struct task_struct *curr,
2596 struct held_lock *hlock)
2597 {
2598 return 1;
2599 }
2600
2601 static inline int separate_irq_context(struct task_struct *curr,
2602 struct held_lock *hlock)
2603 {
2604 return 0;
2605 }
2606
2607 void lockdep_trace_alloc(gfp_t gfp_mask)
2608 {
2609 }
2610
2611 #endif
2612
2613 /*
2614 * Mark a lock with a usage bit, and validate the state transition:
2615 */
2616 static int mark_lock(struct task_struct *curr, struct held_lock *this,
2617 enum lock_usage_bit new_bit)
2618 {
2619 unsigned int new_mask = 1 << new_bit, ret = 1;
2620
2621 /*
2622 * If already set then do not dirty the cacheline,
2623 * nor do any checks:
2624 */
2625 if (likely(hlock_class(this)->usage_mask & new_mask))
2626 return 1;
2627
2628 if (!graph_lock())
2629 return 0;
2630 /*
2631 * Make sure we didnt race:
2632 */
2633 if (unlikely(hlock_class(this)->usage_mask & new_mask)) {
2634 graph_unlock();
2635 return 1;
2636 }
2637
2638 hlock_class(this)->usage_mask |= new_mask;
2639
2640 if (!save_trace(hlock_class(this)->usage_traces + new_bit))
2641 return 0;
2642
2643 switch (new_bit) {
2644 #define LOCKDEP_STATE(__STATE) \
2645 case LOCK_USED_IN_##__STATE: \
2646 case LOCK_USED_IN_##__STATE##_READ: \
2647 case LOCK_ENABLED_##__STATE: \
2648 case LOCK_ENABLED_##__STATE##_READ:
2649 #include "lockdep_states.h"
2650 #undef LOCKDEP_STATE
2651 ret = mark_lock_irq(curr, this, new_bit);
2652 if (!ret)
2653 return 0;
2654 break;
2655 case LOCK_USED:
2656 debug_atomic_dec(&nr_unused_locks);
2657 break;
2658 default:
2659 if (!debug_locks_off_graph_unlock())
2660 return 0;
2661 WARN_ON(1);
2662 return 0;
2663 }
2664
2665 graph_unlock();
2666
2667 /*
2668 * We must printk outside of the graph_lock:
2669 */
2670 if (ret == 2) {
2671 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
2672 print_lock(this);
2673 print_irqtrace_events(curr);
2674 dump_stack();
2675 }
2676
2677 return ret;
2678 }
2679
2680 /*
2681 * Initialize a lock instance's lock-class mapping info:
2682 */
2683 void lockdep_init_map(struct lockdep_map *lock, const char *name,
2684 struct lock_class_key *key, int subclass)
2685 {
2686 lock->class_cache = NULL;
2687 #ifdef CONFIG_LOCK_STAT
2688 lock->cpu = raw_smp_processor_id();
2689 #endif
2690
2691 if (DEBUG_LOCKS_WARN_ON(!name)) {
2692 lock->name = "NULL";
2693 return;
2694 }
2695
2696 lock->name = name;
2697
2698 if (DEBUG_LOCKS_WARN_ON(!key))
2699 return;
2700 /*
2701 * Sanity check, the lock-class key must be persistent:
2702 */
2703 if (!static_obj(key)) {
2704 printk("BUG: key %p not in .data!\n", key);
2705 DEBUG_LOCKS_WARN_ON(1);
2706 return;
2707 }
2708 lock->key = key;
2709
2710 if (unlikely(!debug_locks))
2711 return;
2712
2713 if (subclass)
2714 register_lock_class(lock, subclass, 1);
2715 }
2716 EXPORT_SYMBOL_GPL(lockdep_init_map);
2717
2718 /*
2719 * This gets called for every mutex_lock*()/spin_lock*() operation.
2720 * We maintain the dependency maps and validate the locking attempt:
2721 */
2722 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
2723 int trylock, int read, int check, int hardirqs_off,
2724 struct lockdep_map *nest_lock, unsigned long ip,
2725 int references)
2726 {
2727 struct task_struct *curr = current;
2728 struct lock_class *class = NULL;
2729 struct held_lock *hlock;
2730 unsigned int depth, id;
2731 int chain_head = 0;
2732 int class_idx;
2733 u64 chain_key;
2734
2735 if (!prove_locking)
2736 check = 1;
2737
2738 if (unlikely(!debug_locks))
2739 return 0;
2740
2741 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2742 return 0;
2743
2744 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
2745 debug_locks_off();
2746 printk("BUG: MAX_LOCKDEP_SUBCLASSES too low!\n");
2747 printk("turning off the locking correctness validator.\n");
2748 dump_stack();
2749 return 0;
2750 }
2751
2752 if (!subclass)
2753 class = lock->class_cache;
2754 /*
2755 * Not cached yet or subclass?
2756 */
2757 if (unlikely(!class)) {
2758 class = register_lock_class(lock, subclass, 0);
2759 if (!class)
2760 return 0;
2761 }
2762 debug_atomic_inc((atomic_t *)&class->ops);
2763 if (very_verbose(class)) {
2764 printk("\nacquire class [%p] %s", class->key, class->name);
2765 if (class->name_version > 1)
2766 printk("#%d", class->name_version);
2767 printk("\n");
2768 dump_stack();
2769 }
2770
2771 /*
2772 * Add the lock to the list of currently held locks.
2773 * (we dont increase the depth just yet, up until the
2774 * dependency checks are done)
2775 */
2776 depth = curr->lockdep_depth;
2777 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
2778 return 0;
2779
2780 class_idx = class - lock_classes + 1;
2781
2782 if (depth) {
2783 hlock = curr->held_locks + depth - 1;
2784 if (hlock->class_idx == class_idx && nest_lock) {
2785 if (hlock->references)
2786 hlock->references++;
2787 else
2788 hlock->references = 2;
2789
2790 return 1;
2791 }
2792 }
2793
2794 hlock = curr->held_locks + depth;
2795 if (DEBUG_LOCKS_WARN_ON(!class))
2796 return 0;
2797 hlock->class_idx = class_idx;
2798 hlock->acquire_ip = ip;
2799 hlock->instance = lock;
2800 hlock->nest_lock = nest_lock;
2801 hlock->trylock = trylock;
2802 hlock->read = read;
2803 hlock->check = check;
2804 hlock->hardirqs_off = !!hardirqs_off;
2805 hlock->references = references;
2806 #ifdef CONFIG_LOCK_STAT
2807 hlock->waittime_stamp = 0;
2808 hlock->holdtime_stamp = lockstat_clock();
2809 #endif
2810
2811 if (check == 2 && !mark_irqflags(curr, hlock))
2812 return 0;
2813
2814 /* mark it as used: */
2815 if (!mark_lock(curr, hlock, LOCK_USED))
2816 return 0;
2817
2818 /*
2819 * Calculate the chain hash: it's the combined hash of all the
2820 * lock keys along the dependency chain. We save the hash value
2821 * at every step so that we can get the current hash easily
2822 * after unlock. The chain hash is then used to cache dependency
2823 * results.
2824 *
2825 * The 'key ID' is what is the most compact key value to drive
2826 * the hash, not class->key.
2827 */
2828 id = class - lock_classes;
2829 if (DEBUG_LOCKS_WARN_ON(id >= MAX_LOCKDEP_KEYS))
2830 return 0;
2831
2832 chain_key = curr->curr_chain_key;
2833 if (!depth) {
2834 if (DEBUG_LOCKS_WARN_ON(chain_key != 0))
2835 return 0;
2836 chain_head = 1;
2837 }
2838
2839 hlock->prev_chain_key = chain_key;
2840 if (separate_irq_context(curr, hlock)) {
2841 chain_key = 0;
2842 chain_head = 1;
2843 }
2844 chain_key = iterate_chain_key(chain_key, id);
2845
2846 if (!validate_chain(curr, lock, hlock, chain_head, chain_key))
2847 return 0;
2848
2849 curr->curr_chain_key = chain_key;
2850 curr->lockdep_depth++;
2851 check_chain_key(curr);
2852 #ifdef CONFIG_DEBUG_LOCKDEP
2853 if (unlikely(!debug_locks))
2854 return 0;
2855 #endif
2856 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
2857 debug_locks_off();
2858 printk("BUG: MAX_LOCK_DEPTH too low!\n");
2859 printk("turning off the locking correctness validator.\n");
2860 dump_stack();
2861 return 0;
2862 }
2863
2864 if (unlikely(curr->lockdep_depth > max_lockdep_depth))
2865 max_lockdep_depth = curr->lockdep_depth;
2866
2867 return 1;
2868 }
2869
2870 static int
2871 print_unlock_inbalance_bug(struct task_struct *curr, struct lockdep_map *lock,
2872 unsigned long ip)
2873 {
2874 if (!debug_locks_off())
2875 return 0;
2876 if (debug_locks_silent)
2877 return 0;
2878
2879 printk("\n=====================================\n");
2880 printk( "[ BUG: bad unlock balance detected! ]\n");
2881 printk( "-------------------------------------\n");
2882 printk("%s/%d is trying to release lock (",
2883 curr->comm, task_pid_nr(curr));
2884 print_lockdep_cache(lock);
2885 printk(") at:\n");
2886 print_ip_sym(ip);
2887 printk("but there are no more locks to release!\n");
2888 printk("\nother info that might help us debug this:\n");
2889 lockdep_print_held_locks(curr);
2890
2891 printk("\nstack backtrace:\n");
2892 dump_stack();
2893
2894 return 0;
2895 }
2896
2897 /*
2898 * Common debugging checks for both nested and non-nested unlock:
2899 */
2900 static int check_unlock(struct task_struct *curr, struct lockdep_map *lock,
2901 unsigned long ip)
2902 {
2903 if (unlikely(!debug_locks))
2904 return 0;
2905 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2906 return 0;
2907
2908 if (curr->lockdep_depth <= 0)
2909 return print_unlock_inbalance_bug(curr, lock, ip);
2910
2911 return 1;
2912 }
2913
2914 static int match_held_lock(struct held_lock *hlock, struct lockdep_map *lock)
2915 {
2916 if (hlock->instance == lock)
2917 return 1;
2918
2919 if (hlock->references) {
2920 struct lock_class *class = lock->class_cache;
2921
2922 if (!class)
2923 class = look_up_lock_class(lock, 0);
2924
2925 if (DEBUG_LOCKS_WARN_ON(!class))
2926 return 0;
2927
2928 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
2929 return 0;
2930
2931 if (hlock->class_idx == class - lock_classes + 1)
2932 return 1;
2933 }
2934
2935 return 0;
2936 }
2937
2938 static int
2939 __lock_set_class(struct lockdep_map *lock, const char *name,
2940 struct lock_class_key *key, unsigned int subclass,
2941 unsigned long ip)
2942 {
2943 struct task_struct *curr = current;
2944 struct held_lock *hlock, *prev_hlock;
2945 struct lock_class *class;
2946 unsigned int depth;
2947 int i;
2948
2949 depth = curr->lockdep_depth;
2950 if (DEBUG_LOCKS_WARN_ON(!depth))
2951 return 0;
2952
2953 prev_hlock = NULL;
2954 for (i = depth-1; i >= 0; i--) {
2955 hlock = curr->held_locks + i;
2956 /*
2957 * We must not cross into another context:
2958 */
2959 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
2960 break;
2961 if (match_held_lock(hlock, lock))
2962 goto found_it;
2963 prev_hlock = hlock;
2964 }
2965 return print_unlock_inbalance_bug(curr, lock, ip);
2966
2967 found_it:
2968 lockdep_init_map(lock, name, key, 0);
2969 class = register_lock_class(lock, subclass, 0);
2970 hlock->class_idx = class - lock_classes + 1;
2971
2972 curr->lockdep_depth = i;
2973 curr->curr_chain_key = hlock->prev_chain_key;
2974
2975 for (; i < depth; i++) {
2976 hlock = curr->held_locks + i;
2977 if (!__lock_acquire(hlock->instance,
2978 hlock_class(hlock)->subclass, hlock->trylock,
2979 hlock->read, hlock->check, hlock->hardirqs_off,
2980 hlock->nest_lock, hlock->acquire_ip,
2981 hlock->references))
2982 return 0;
2983 }
2984
2985 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
2986 return 0;
2987 return 1;
2988 }
2989
2990 /*
2991 * Remove the lock to the list of currently held locks in a
2992 * potentially non-nested (out of order) manner. This is a
2993 * relatively rare operation, as all the unlock APIs default
2994 * to nested mode (which uses lock_release()):
2995 */
2996 static int
2997 lock_release_non_nested(struct task_struct *curr,
2998 struct lockdep_map *lock, unsigned long ip)
2999 {
3000 struct held_lock *hlock, *prev_hlock;
3001 unsigned int depth;
3002 int i;
3003
3004 /*
3005 * Check whether the lock exists in the current stack
3006 * of held locks:
3007 */
3008 depth = curr->lockdep_depth;
3009 if (DEBUG_LOCKS_WARN_ON(!depth))
3010 return 0;
3011
3012 prev_hlock = NULL;
3013 for (i = depth-1; i >= 0; i--) {
3014 hlock = curr->held_locks + i;
3015 /*
3016 * We must not cross into another context:
3017 */
3018 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3019 break;
3020 if (match_held_lock(hlock, lock))
3021 goto found_it;
3022 prev_hlock = hlock;
3023 }
3024 return print_unlock_inbalance_bug(curr, lock, ip);
3025
3026 found_it:
3027 if (hlock->instance == lock)
3028 lock_release_holdtime(hlock);
3029
3030 if (hlock->references) {
3031 hlock->references--;
3032 if (hlock->references) {
3033 /*
3034 * We had, and after removing one, still have
3035 * references, the current lock stack is still
3036 * valid. We're done!
3037 */
3038 return 1;
3039 }
3040 }
3041
3042 /*
3043 * We have the right lock to unlock, 'hlock' points to it.
3044 * Now we remove it from the stack, and add back the other
3045 * entries (if any), recalculating the hash along the way:
3046 */
3047
3048 curr->lockdep_depth = i;
3049 curr->curr_chain_key = hlock->prev_chain_key;
3050
3051 for (i++; i < depth; i++) {
3052 hlock = curr->held_locks + i;
3053 if (!__lock_acquire(hlock->instance,
3054 hlock_class(hlock)->subclass, hlock->trylock,
3055 hlock->read, hlock->check, hlock->hardirqs_off,
3056 hlock->nest_lock, hlock->acquire_ip,
3057 hlock->references))
3058 return 0;
3059 }
3060
3061 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - 1))
3062 return 0;
3063 return 1;
3064 }
3065
3066 /*
3067 * Remove the lock to the list of currently held locks - this gets
3068 * called on mutex_unlock()/spin_unlock*() (or on a failed
3069 * mutex_lock_interruptible()). This is done for unlocks that nest
3070 * perfectly. (i.e. the current top of the lock-stack is unlocked)
3071 */
3072 static int lock_release_nested(struct task_struct *curr,
3073 struct lockdep_map *lock, unsigned long ip)
3074 {
3075 struct held_lock *hlock;
3076 unsigned int depth;
3077
3078 /*
3079 * Pop off the top of the lock stack:
3080 */
3081 depth = curr->lockdep_depth - 1;
3082 hlock = curr->held_locks + depth;
3083
3084 /*
3085 * Is the unlock non-nested:
3086 */
3087 if (hlock->instance != lock || hlock->references)
3088 return lock_release_non_nested(curr, lock, ip);
3089 curr->lockdep_depth--;
3090
3091 if (DEBUG_LOCKS_WARN_ON(!depth && (hlock->prev_chain_key != 0)))
3092 return 0;
3093
3094 curr->curr_chain_key = hlock->prev_chain_key;
3095
3096 lock_release_holdtime(hlock);
3097
3098 #ifdef CONFIG_DEBUG_LOCKDEP
3099 hlock->prev_chain_key = 0;
3100 hlock->class_idx = 0;
3101 hlock->acquire_ip = 0;
3102 hlock->irq_context = 0;
3103 #endif
3104 return 1;
3105 }
3106
3107 /*
3108 * Remove the lock to the list of currently held locks - this gets
3109 * called on mutex_unlock()/spin_unlock*() (or on a failed
3110 * mutex_lock_interruptible()). This is done for unlocks that nest
3111 * perfectly. (i.e. the current top of the lock-stack is unlocked)
3112 */
3113 static void
3114 __lock_release(struct lockdep_map *lock, int nested, unsigned long ip)
3115 {
3116 struct task_struct *curr = current;
3117
3118 if (!check_unlock(curr, lock, ip))
3119 return;
3120
3121 if (nested) {
3122 if (!lock_release_nested(curr, lock, ip))
3123 return;
3124 } else {
3125 if (!lock_release_non_nested(curr, lock, ip))
3126 return;
3127 }
3128
3129 check_chain_key(curr);
3130 }
3131
3132 static int __lock_is_held(struct lockdep_map *lock)
3133 {
3134 struct task_struct *curr = current;
3135 int i;
3136
3137 for (i = 0; i < curr->lockdep_depth; i++) {
3138 struct held_lock *hlock = curr->held_locks + i;
3139
3140 if (match_held_lock(hlock, lock))
3141 return 1;
3142 }
3143
3144 return 0;
3145 }
3146
3147 /*
3148 * Check whether we follow the irq-flags state precisely:
3149 */
3150 static void check_flags(unsigned long flags)
3151 {
3152 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) && \
3153 defined(CONFIG_TRACE_IRQFLAGS)
3154 if (!debug_locks)
3155 return;
3156
3157 if (irqs_disabled_flags(flags)) {
3158 if (DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)) {
3159 printk("possible reason: unannotated irqs-off.\n");
3160 }
3161 } else {
3162 if (DEBUG_LOCKS_WARN_ON(!current->hardirqs_enabled)) {
3163 printk("possible reason: unannotated irqs-on.\n");
3164 }
3165 }
3166
3167 /*
3168 * We dont accurately track softirq state in e.g.
3169 * hardirq contexts (such as on 4KSTACKS), so only
3170 * check if not in hardirq contexts:
3171 */
3172 if (!hardirq_count()) {
3173 if (softirq_count())
3174 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
3175 else
3176 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
3177 }
3178
3179 if (!debug_locks)
3180 print_irqtrace_events(current);
3181 #endif
3182 }
3183
3184 void lock_set_class(struct lockdep_map *lock, const char *name,
3185 struct lock_class_key *key, unsigned int subclass,
3186 unsigned long ip)
3187 {
3188 unsigned long flags;
3189
3190 if (unlikely(current->lockdep_recursion))
3191 return;
3192
3193 raw_local_irq_save(flags);
3194 current->lockdep_recursion = 1;
3195 check_flags(flags);
3196 if (__lock_set_class(lock, name, key, subclass, ip))
3197 check_chain_key(current);
3198 current->lockdep_recursion = 0;
3199 raw_local_irq_restore(flags);
3200 }
3201 EXPORT_SYMBOL_GPL(lock_set_class);
3202
3203 /*
3204 * We are not always called with irqs disabled - do that here,
3205 * and also avoid lockdep recursion:
3206 */
3207 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
3208 int trylock, int read, int check,
3209 struct lockdep_map *nest_lock, unsigned long ip)
3210 {
3211 unsigned long flags;
3212
3213 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
3214
3215 if (unlikely(current->lockdep_recursion))
3216 return;
3217
3218 raw_local_irq_save(flags);
3219 check_flags(flags);
3220
3221 current->lockdep_recursion = 1;
3222 __lock_acquire(lock, subclass, trylock, read, check,
3223 irqs_disabled_flags(flags), nest_lock, ip, 0);
3224 current->lockdep_recursion = 0;
3225 raw_local_irq_restore(flags);
3226 }
3227 EXPORT_SYMBOL_GPL(lock_acquire);
3228
3229 void lock_release(struct lockdep_map *lock, int nested,
3230 unsigned long ip)
3231 {
3232 unsigned long flags;
3233
3234 trace_lock_release(lock, nested, ip);
3235
3236 if (unlikely(current->lockdep_recursion))
3237 return;
3238
3239 raw_local_irq_save(flags);
3240 check_flags(flags);
3241 current->lockdep_recursion = 1;
3242 __lock_release(lock, nested, ip);
3243 current->lockdep_recursion = 0;
3244 raw_local_irq_restore(flags);
3245 }
3246 EXPORT_SYMBOL_GPL(lock_release);
3247
3248 int lock_is_held(struct lockdep_map *lock)
3249 {
3250 unsigned long flags;
3251 int ret = 0;
3252
3253 if (unlikely(current->lockdep_recursion))
3254 return ret;
3255
3256 raw_local_irq_save(flags);
3257 check_flags(flags);
3258
3259 current->lockdep_recursion = 1;
3260 ret = __lock_is_held(lock);
3261 current->lockdep_recursion = 0;
3262 raw_local_irq_restore(flags);
3263
3264 return ret;
3265 }
3266 EXPORT_SYMBOL_GPL(lock_is_held);
3267
3268 void lockdep_set_current_reclaim_state(gfp_t gfp_mask)
3269 {
3270 current->lockdep_reclaim_gfp = gfp_mask;
3271 }
3272
3273 void lockdep_clear_current_reclaim_state(void)
3274 {
3275 current->lockdep_reclaim_gfp = 0;
3276 }
3277
3278 #ifdef CONFIG_LOCK_STAT
3279 static int
3280 print_lock_contention_bug(struct task_struct *curr, struct lockdep_map *lock,
3281 unsigned long ip)
3282 {
3283 if (!debug_locks_off())
3284 return 0;
3285 if (debug_locks_silent)
3286 return 0;
3287
3288 printk("\n=================================\n");
3289 printk( "[ BUG: bad contention detected! ]\n");
3290 printk( "---------------------------------\n");
3291 printk("%s/%d is trying to contend lock (",
3292 curr->comm, task_pid_nr(curr));
3293 print_lockdep_cache(lock);
3294 printk(") at:\n");
3295 print_ip_sym(ip);
3296 printk("but there are no locks held!\n");
3297 printk("\nother info that might help us debug this:\n");
3298 lockdep_print_held_locks(curr);
3299
3300 printk("\nstack backtrace:\n");
3301 dump_stack();
3302
3303 return 0;
3304 }
3305
3306 static void
3307 __lock_contended(struct lockdep_map *lock, unsigned long ip)
3308 {
3309 struct task_struct *curr = current;
3310 struct held_lock *hlock, *prev_hlock;
3311 struct lock_class_stats *stats;
3312 unsigned int depth;
3313 int i, contention_point, contending_point;
3314
3315 depth = curr->lockdep_depth;
3316 if (DEBUG_LOCKS_WARN_ON(!depth))
3317 return;
3318
3319 prev_hlock = NULL;
3320 for (i = depth-1; i >= 0; i--) {
3321 hlock = curr->held_locks + i;
3322 /*
3323 * We must not cross into another context:
3324 */
3325 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3326 break;
3327 if (match_held_lock(hlock, lock))
3328 goto found_it;
3329 prev_hlock = hlock;
3330 }
3331 print_lock_contention_bug(curr, lock, ip);
3332 return;
3333
3334 found_it:
3335 if (hlock->instance != lock)
3336 return;
3337
3338 hlock->waittime_stamp = lockstat_clock();
3339
3340 contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
3341 contending_point = lock_point(hlock_class(hlock)->contending_point,
3342 lock->ip);
3343
3344 stats = get_lock_stats(hlock_class(hlock));
3345 if (contention_point < LOCKSTAT_POINTS)
3346 stats->contention_point[contention_point]++;
3347 if (contending_point < LOCKSTAT_POINTS)
3348 stats->contending_point[contending_point]++;
3349 if (lock->cpu != smp_processor_id())
3350 stats->bounces[bounce_contended + !!hlock->read]++;
3351 put_lock_stats(stats);
3352 }
3353
3354 static void
3355 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
3356 {
3357 struct task_struct *curr = current;
3358 struct held_lock *hlock, *prev_hlock;
3359 struct lock_class_stats *stats;
3360 unsigned int depth;
3361 u64 now, waittime = 0;
3362 int i, cpu;
3363
3364 depth = curr->lockdep_depth;
3365 if (DEBUG_LOCKS_WARN_ON(!depth))
3366 return;
3367
3368 prev_hlock = NULL;
3369 for (i = depth-1; i >= 0; i--) {
3370 hlock = curr->held_locks + i;
3371 /*
3372 * We must not cross into another context:
3373 */
3374 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3375 break;
3376 if (match_held_lock(hlock, lock))
3377 goto found_it;
3378 prev_hlock = hlock;
3379 }
3380 print_lock_contention_bug(curr, lock, _RET_IP_);
3381 return;
3382
3383 found_it:
3384 if (hlock->instance != lock)
3385 return;
3386
3387 cpu = smp_processor_id();
3388 if (hlock->waittime_stamp) {
3389 now = lockstat_clock();
3390 waittime = now - hlock->waittime_stamp;
3391 hlock->holdtime_stamp = now;
3392 }
3393
3394 trace_lock_acquired(lock, ip, waittime);
3395
3396 stats = get_lock_stats(hlock_class(hlock));
3397 if (waittime) {
3398 if (hlock->read)
3399 lock_time_inc(&stats->read_waittime, waittime);
3400 else
3401 lock_time_inc(&stats->write_waittime, waittime);
3402 }
3403 if (lock->cpu != cpu)
3404 stats->bounces[bounce_acquired + !!hlock->read]++;
3405 put_lock_stats(stats);
3406
3407 lock->cpu = cpu;
3408 lock->ip = ip;
3409 }
3410
3411 void lock_contended(struct lockdep_map *lock, unsigned long ip)
3412 {
3413 unsigned long flags;
3414
3415 trace_lock_contended(lock, ip);
3416
3417 if (unlikely(!lock_stat))
3418 return;
3419
3420 if (unlikely(current->lockdep_recursion))
3421 return;
3422
3423 raw_local_irq_save(flags);
3424 check_flags(flags);
3425 current->lockdep_recursion = 1;
3426 __lock_contended(lock, ip);
3427 current->lockdep_recursion = 0;
3428 raw_local_irq_restore(flags);
3429 }
3430 EXPORT_SYMBOL_GPL(lock_contended);
3431
3432 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
3433 {
3434 unsigned long flags;
3435
3436 if (unlikely(!lock_stat))
3437 return;
3438
3439 if (unlikely(current->lockdep_recursion))
3440 return;
3441
3442 raw_local_irq_save(flags);
3443 check_flags(flags);
3444 current->lockdep_recursion = 1;
3445 __lock_acquired(lock, ip);
3446 current->lockdep_recursion = 0;
3447 raw_local_irq_restore(flags);
3448 }
3449 EXPORT_SYMBOL_GPL(lock_acquired);
3450 #endif
3451
3452 /*
3453 * Used by the testsuite, sanitize the validator state
3454 * after a simulated failure:
3455 */
3456
3457 void lockdep_reset(void)
3458 {
3459 unsigned long flags;
3460 int i;
3461
3462 raw_local_irq_save(flags);
3463 current->curr_chain_key = 0;
3464 current->lockdep_depth = 0;
3465 current->lockdep_recursion = 0;
3466 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
3467 nr_hardirq_chains = 0;
3468 nr_softirq_chains = 0;
3469 nr_process_chains = 0;
3470 debug_locks = 1;
3471 for (i = 0; i < CHAINHASH_SIZE; i++)
3472 INIT_LIST_HEAD(chainhash_table + i);
3473 raw_local_irq_restore(flags);
3474 }
3475
3476 static void zap_class(struct lock_class *class)
3477 {
3478 int i;
3479
3480 /*
3481 * Remove all dependencies this lock is
3482 * involved in:
3483 */
3484 for (i = 0; i < nr_list_entries; i++) {
3485 if (list_entries[i].class == class)
3486 list_del_rcu(&list_entries[i].entry);
3487 }
3488 /*
3489 * Unhash the class and remove it from the all_lock_classes list:
3490 */
3491 list_del_rcu(&class->hash_entry);
3492 list_del_rcu(&class->lock_entry);
3493
3494 class->key = NULL;
3495 }
3496
3497 static inline int within(const void *addr, void *start, unsigned long size)
3498 {
3499 return addr >= start && addr < start + size;
3500 }
3501
3502 void lockdep_free_key_range(void *start, unsigned long size)
3503 {
3504 struct lock_class *class, *next;
3505 struct list_head *head;
3506 unsigned long flags;
3507 int i;
3508 int locked;
3509
3510 raw_local_irq_save(flags);
3511 locked = graph_lock();
3512
3513 /*
3514 * Unhash all classes that were created by this module:
3515 */
3516 for (i = 0; i < CLASSHASH_SIZE; i++) {
3517 head = classhash_table + i;
3518 if (list_empty(head))
3519 continue;
3520 list_for_each_entry_safe(class, next, head, hash_entry) {
3521 if (within(class->key, start, size))
3522 zap_class(class);
3523 else if (within(class->name, start, size))
3524 zap_class(class);
3525 }
3526 }
3527
3528 if (locked)
3529 graph_unlock();
3530 raw_local_irq_restore(flags);
3531 }
3532
3533 void lockdep_reset_lock(struct lockdep_map *lock)
3534 {
3535 struct lock_class *class, *next;
3536 struct list_head *head;
3537 unsigned long flags;
3538 int i, j;
3539 int locked;
3540
3541 raw_local_irq_save(flags);
3542
3543 /*
3544 * Remove all classes this lock might have:
3545 */
3546 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
3547 /*
3548 * If the class exists we look it up and zap it:
3549 */
3550 class = look_up_lock_class(lock, j);
3551 if (class)
3552 zap_class(class);
3553 }
3554 /*
3555 * Debug check: in the end all mapped classes should
3556 * be gone.
3557 */
3558 locked = graph_lock();
3559 for (i = 0; i < CLASSHASH_SIZE; i++) {
3560 head = classhash_table + i;
3561 if (list_empty(head))
3562 continue;
3563 list_for_each_entry_safe(class, next, head, hash_entry) {
3564 if (unlikely(class == lock->class_cache)) {
3565 if (debug_locks_off_graph_unlock())
3566 WARN_ON(1);
3567 goto out_restore;
3568 }
3569 }
3570 }
3571 if (locked)
3572 graph_unlock();
3573
3574 out_restore:
3575 raw_local_irq_restore(flags);
3576 }
3577
3578 void lockdep_init(void)
3579 {
3580 int i;
3581
3582 /*
3583 * Some architectures have their own start_kernel()
3584 * code which calls lockdep_init(), while we also
3585 * call lockdep_init() from the start_kernel() itself,
3586 * and we want to initialize the hashes only once:
3587 */
3588 if (lockdep_initialized)
3589 return;
3590
3591 for (i = 0; i < CLASSHASH_SIZE; i++)
3592 INIT_LIST_HEAD(classhash_table + i);
3593
3594 for (i = 0; i < CHAINHASH_SIZE; i++)
3595 INIT_LIST_HEAD(chainhash_table + i);
3596
3597 lockdep_initialized = 1;
3598 }
3599
3600 void __init lockdep_info(void)
3601 {
3602 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
3603
3604 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES);
3605 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH);
3606 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS);
3607 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE);
3608 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES);
3609 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS);
3610 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE);
3611
3612 printk(" memory used by lock dependency info: %lu kB\n",
3613 (sizeof(struct lock_class) * MAX_LOCKDEP_KEYS +
3614 sizeof(struct list_head) * CLASSHASH_SIZE +
3615 sizeof(struct lock_list) * MAX_LOCKDEP_ENTRIES +
3616 sizeof(struct lock_chain) * MAX_LOCKDEP_CHAINS +
3617 sizeof(struct list_head) * CHAINHASH_SIZE
3618 #ifdef CONFIG_PROVE_LOCKING
3619 + sizeof(struct circular_queue)
3620 #endif
3621 ) / 1024
3622 );
3623
3624 printk(" per task-struct memory footprint: %lu bytes\n",
3625 sizeof(struct held_lock) * MAX_LOCK_DEPTH);
3626
3627 #ifdef CONFIG_DEBUG_LOCKDEP
3628 if (lockdep_init_error) {
3629 printk("WARNING: lockdep init error! Arch code didn't call lockdep_init() early enough?\n");
3630 printk("Call stack leading to lockdep invocation was:\n");
3631 print_stack_trace(&lockdep_init_trace, 0);
3632 }
3633 #endif
3634 }
3635
3636 static void
3637 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
3638 const void *mem_to, struct held_lock *hlock)
3639 {
3640 if (!debug_locks_off())
3641 return;
3642 if (debug_locks_silent)
3643 return;
3644
3645 printk("\n=========================\n");
3646 printk( "[ BUG: held lock freed! ]\n");
3647 printk( "-------------------------\n");
3648 printk("%s/%d is freeing memory %p-%p, with a lock still held there!\n",
3649 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
3650 print_lock(hlock);
3651 lockdep_print_held_locks(curr);
3652
3653 printk("\nstack backtrace:\n");
3654 dump_stack();
3655 }
3656
3657 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
3658 const void* lock_from, unsigned long lock_len)
3659 {
3660 return lock_from + lock_len <= mem_from ||
3661 mem_from + mem_len <= lock_from;
3662 }
3663
3664 /*
3665 * Called when kernel memory is freed (or unmapped), or if a lock
3666 * is destroyed or reinitialized - this code checks whether there is
3667 * any held lock in the memory range of <from> to <to>:
3668 */
3669 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
3670 {
3671 struct task_struct *curr = current;
3672 struct held_lock *hlock;
3673 unsigned long flags;
3674 int i;
3675
3676 if (unlikely(!debug_locks))
3677 return;
3678
3679 local_irq_save(flags);
3680 for (i = 0; i < curr->lockdep_depth; i++) {
3681 hlock = curr->held_locks + i;
3682
3683 if (not_in_range(mem_from, mem_len, hlock->instance,
3684 sizeof(*hlock->instance)))
3685 continue;
3686
3687 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
3688 break;
3689 }
3690 local_irq_restore(flags);
3691 }
3692 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
3693
3694 static void print_held_locks_bug(struct task_struct *curr)
3695 {
3696 if (!debug_locks_off())
3697 return;
3698 if (debug_locks_silent)
3699 return;
3700
3701 printk("\n=====================================\n");
3702 printk( "[ BUG: lock held at task exit time! ]\n");
3703 printk( "-------------------------------------\n");
3704 printk("%s/%d is exiting with locks still held!\n",
3705 curr->comm, task_pid_nr(curr));
3706 lockdep_print_held_locks(curr);
3707
3708 printk("\nstack backtrace:\n");
3709 dump_stack();
3710 }
3711
3712 void debug_check_no_locks_held(struct task_struct *task)
3713 {
3714 if (unlikely(task->lockdep_depth > 0))
3715 print_held_locks_bug(task);
3716 }
3717
3718 void debug_show_all_locks(void)
3719 {
3720 struct task_struct *g, *p;
3721 int count = 10;
3722 int unlock = 1;
3723
3724 if (unlikely(!debug_locks)) {
3725 printk("INFO: lockdep is turned off.\n");
3726 return;
3727 }
3728 printk("\nShowing all locks held in the system:\n");
3729
3730 /*
3731 * Here we try to get the tasklist_lock as hard as possible,
3732 * if not successful after 2 seconds we ignore it (but keep
3733 * trying). This is to enable a debug printout even if a
3734 * tasklist_lock-holding task deadlocks or crashes.
3735 */
3736 retry:
3737 if (!read_trylock(&tasklist_lock)) {
3738 if (count == 10)
3739 printk("hm, tasklist_lock locked, retrying... ");
3740 if (count) {
3741 count--;
3742 printk(" #%d", 10-count);
3743 mdelay(200);
3744 goto retry;
3745 }
3746 printk(" ignoring it.\n");
3747 unlock = 0;
3748 } else {
3749 if (count != 10)
3750 printk(KERN_CONT " locked it.\n");
3751 }
3752
3753 do_each_thread(g, p) {
3754 /*
3755 * It's not reliable to print a task's held locks
3756 * if it's not sleeping (or if it's not the current
3757 * task):
3758 */
3759 if (p->state == TASK_RUNNING && p != current)
3760 continue;
3761 if (p->lockdep_depth)
3762 lockdep_print_held_locks(p);
3763 if (!unlock)
3764 if (read_trylock(&tasklist_lock))
3765 unlock = 1;
3766 } while_each_thread(g, p);
3767
3768 printk("\n");
3769 printk("=============================================\n\n");
3770
3771 if (unlock)
3772 read_unlock(&tasklist_lock);
3773 }
3774 EXPORT_SYMBOL_GPL(debug_show_all_locks);
3775
3776 /*
3777 * Careful: only use this function if you are sure that
3778 * the task cannot run in parallel!
3779 */
3780 void __debug_show_held_locks(struct task_struct *task)
3781 {
3782 if (unlikely(!debug_locks)) {
3783 printk("INFO: lockdep is turned off.\n");
3784 return;
3785 }
3786 lockdep_print_held_locks(task);
3787 }
3788 EXPORT_SYMBOL_GPL(__debug_show_held_locks);
3789
3790 void debug_show_held_locks(struct task_struct *task)
3791 {
3792 __debug_show_held_locks(task);
3793 }
3794 EXPORT_SYMBOL_GPL(debug_show_held_locks);
3795
3796 void lockdep_sys_exit(void)
3797 {
3798 struct task_struct *curr = current;
3799
3800 if (unlikely(curr->lockdep_depth)) {
3801 if (!debug_locks_off())
3802 return;
3803 printk("\n================================================\n");
3804 printk( "[ BUG: lock held when returning to user space! ]\n");
3805 printk( "------------------------------------------------\n");
3806 printk("%s/%d is leaving the kernel with locks still held!\n",
3807 curr->comm, curr->pid);
3808 lockdep_print_held_locks(curr);
3809 }
3810 }
This page took 0.116916 seconds and 5 git commands to generate.