Merge branch 'core/locking' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic...
[deliverable/linux.git] / kernel / lockdep.c
1 /*
2 * kernel/lockdep.c
3 *
4 * Runtime locking correctness validator
5 *
6 * Started by Ingo Molnar:
7 *
8 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
10 *
11 * this code maps all the lock dependencies as they occur in a live kernel
12 * and will warn about the following classes of locking bugs:
13 *
14 * - lock inversion scenarios
15 * - circular lock dependencies
16 * - hardirq/softirq safe/unsafe locking bugs
17 *
18 * Bugs are reported even if the current locking scenario does not cause
19 * any deadlock at this point.
20 *
21 * I.e. if anytime in the past two locks were taken in a different order,
22 * even if it happened for another task, even if those were different
23 * locks (but of the same class as this lock), this code will detect it.
24 *
25 * Thanks to Arjan van de Ven for coming up with the initial idea of
26 * mapping lock dependencies runtime.
27 */
28 #define DISABLE_BRANCH_PROFILING
29 #include <linux/mutex.h>
30 #include <linux/sched.h>
31 #include <linux/delay.h>
32 #include <linux/module.h>
33 #include <linux/proc_fs.h>
34 #include <linux/seq_file.h>
35 #include <linux/spinlock.h>
36 #include <linux/kallsyms.h>
37 #include <linux/interrupt.h>
38 #include <linux/stacktrace.h>
39 #include <linux/debug_locks.h>
40 #include <linux/irqflags.h>
41 #include <linux/utsname.h>
42 #include <linux/hash.h>
43 #include <linux/ftrace.h>
44 #include <linux/stringify.h>
45 #include <linux/bitops.h>
46 #include <linux/gfp.h>
47
48 #include <asm/sections.h>
49
50 #include "lockdep_internals.h"
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/lock.h>
54
55 #ifdef CONFIG_PROVE_LOCKING
56 int prove_locking = 1;
57 module_param(prove_locking, int, 0644);
58 #else
59 #define prove_locking 0
60 #endif
61
62 #ifdef CONFIG_LOCK_STAT
63 int lock_stat = 1;
64 module_param(lock_stat, int, 0644);
65 #else
66 #define lock_stat 0
67 #endif
68
69 /*
70 * lockdep_lock: protects the lockdep graph, the hashes and the
71 * class/list/hash allocators.
72 *
73 * This is one of the rare exceptions where it's justified
74 * to use a raw spinlock - we really dont want the spinlock
75 * code to recurse back into the lockdep code...
76 */
77 static arch_spinlock_t lockdep_lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
78
79 static int graph_lock(void)
80 {
81 arch_spin_lock(&lockdep_lock);
82 /*
83 * Make sure that if another CPU detected a bug while
84 * walking the graph we dont change it (while the other
85 * CPU is busy printing out stuff with the graph lock
86 * dropped already)
87 */
88 if (!debug_locks) {
89 arch_spin_unlock(&lockdep_lock);
90 return 0;
91 }
92 /* prevent any recursions within lockdep from causing deadlocks */
93 current->lockdep_recursion++;
94 return 1;
95 }
96
97 static inline int graph_unlock(void)
98 {
99 if (debug_locks && !arch_spin_is_locked(&lockdep_lock))
100 return DEBUG_LOCKS_WARN_ON(1);
101
102 current->lockdep_recursion--;
103 arch_spin_unlock(&lockdep_lock);
104 return 0;
105 }
106
107 /*
108 * Turn lock debugging off and return with 0 if it was off already,
109 * and also release the graph lock:
110 */
111 static inline int debug_locks_off_graph_unlock(void)
112 {
113 int ret = debug_locks_off();
114
115 arch_spin_unlock(&lockdep_lock);
116
117 return ret;
118 }
119
120 static int lockdep_initialized;
121
122 unsigned long nr_list_entries;
123 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
124
125 /*
126 * All data structures here are protected by the global debug_lock.
127 *
128 * Mutex key structs only get allocated, once during bootup, and never
129 * get freed - this significantly simplifies the debugging code.
130 */
131 unsigned long nr_lock_classes;
132 static struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
133
134 static inline struct lock_class *hlock_class(struct held_lock *hlock)
135 {
136 if (!hlock->class_idx) {
137 DEBUG_LOCKS_WARN_ON(1);
138 return NULL;
139 }
140 return lock_classes + hlock->class_idx - 1;
141 }
142
143 #ifdef CONFIG_LOCK_STAT
144 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS],
145 cpu_lock_stats);
146
147 static inline u64 lockstat_clock(void)
148 {
149 return cpu_clock(smp_processor_id());
150 }
151
152 static int lock_point(unsigned long points[], unsigned long ip)
153 {
154 int i;
155
156 for (i = 0; i < LOCKSTAT_POINTS; i++) {
157 if (points[i] == 0) {
158 points[i] = ip;
159 break;
160 }
161 if (points[i] == ip)
162 break;
163 }
164
165 return i;
166 }
167
168 static void lock_time_inc(struct lock_time *lt, u64 time)
169 {
170 if (time > lt->max)
171 lt->max = time;
172
173 if (time < lt->min || !lt->nr)
174 lt->min = time;
175
176 lt->total += time;
177 lt->nr++;
178 }
179
180 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
181 {
182 if (!src->nr)
183 return;
184
185 if (src->max > dst->max)
186 dst->max = src->max;
187
188 if (src->min < dst->min || !dst->nr)
189 dst->min = src->min;
190
191 dst->total += src->total;
192 dst->nr += src->nr;
193 }
194
195 struct lock_class_stats lock_stats(struct lock_class *class)
196 {
197 struct lock_class_stats stats;
198 int cpu, i;
199
200 memset(&stats, 0, sizeof(struct lock_class_stats));
201 for_each_possible_cpu(cpu) {
202 struct lock_class_stats *pcs =
203 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
204
205 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
206 stats.contention_point[i] += pcs->contention_point[i];
207
208 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
209 stats.contending_point[i] += pcs->contending_point[i];
210
211 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
212 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
213
214 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
215 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
216
217 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
218 stats.bounces[i] += pcs->bounces[i];
219 }
220
221 return stats;
222 }
223
224 void clear_lock_stats(struct lock_class *class)
225 {
226 int cpu;
227
228 for_each_possible_cpu(cpu) {
229 struct lock_class_stats *cpu_stats =
230 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
231
232 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
233 }
234 memset(class->contention_point, 0, sizeof(class->contention_point));
235 memset(class->contending_point, 0, sizeof(class->contending_point));
236 }
237
238 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
239 {
240 return &get_cpu_var(cpu_lock_stats)[class - lock_classes];
241 }
242
243 static void put_lock_stats(struct lock_class_stats *stats)
244 {
245 put_cpu_var(cpu_lock_stats);
246 }
247
248 static void lock_release_holdtime(struct held_lock *hlock)
249 {
250 struct lock_class_stats *stats;
251 u64 holdtime;
252
253 if (!lock_stat)
254 return;
255
256 holdtime = lockstat_clock() - hlock->holdtime_stamp;
257
258 stats = get_lock_stats(hlock_class(hlock));
259 if (hlock->read)
260 lock_time_inc(&stats->read_holdtime, holdtime);
261 else
262 lock_time_inc(&stats->write_holdtime, holdtime);
263 put_lock_stats(stats);
264 }
265 #else
266 static inline void lock_release_holdtime(struct held_lock *hlock)
267 {
268 }
269 #endif
270
271 /*
272 * We keep a global list of all lock classes. The list only grows,
273 * never shrinks. The list is only accessed with the lockdep
274 * spinlock lock held.
275 */
276 LIST_HEAD(all_lock_classes);
277
278 /*
279 * The lockdep classes are in a hash-table as well, for fast lookup:
280 */
281 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1)
282 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS)
283 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS)
284 #define classhashentry(key) (classhash_table + __classhashfn((key)))
285
286 static struct list_head classhash_table[CLASSHASH_SIZE];
287
288 /*
289 * We put the lock dependency chains into a hash-table as well, to cache
290 * their existence:
291 */
292 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1)
293 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS)
294 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS)
295 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain)))
296
297 static struct list_head chainhash_table[CHAINHASH_SIZE];
298
299 /*
300 * The hash key of the lock dependency chains is a hash itself too:
301 * it's a hash of all locks taken up to that lock, including that lock.
302 * It's a 64-bit hash, because it's important for the keys to be
303 * unique.
304 */
305 #define iterate_chain_key(key1, key2) \
306 (((key1) << MAX_LOCKDEP_KEYS_BITS) ^ \
307 ((key1) >> (64-MAX_LOCKDEP_KEYS_BITS)) ^ \
308 (key2))
309
310 void lockdep_off(void)
311 {
312 current->lockdep_recursion++;
313 }
314 EXPORT_SYMBOL(lockdep_off);
315
316 void lockdep_on(void)
317 {
318 current->lockdep_recursion--;
319 }
320 EXPORT_SYMBOL(lockdep_on);
321
322 /*
323 * Debugging switches:
324 */
325
326 #define VERBOSE 0
327 #define VERY_VERBOSE 0
328
329 #if VERBOSE
330 # define HARDIRQ_VERBOSE 1
331 # define SOFTIRQ_VERBOSE 1
332 # define RECLAIM_VERBOSE 1
333 #else
334 # define HARDIRQ_VERBOSE 0
335 # define SOFTIRQ_VERBOSE 0
336 # define RECLAIM_VERBOSE 0
337 #endif
338
339 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE || RECLAIM_VERBOSE
340 /*
341 * Quick filtering for interesting events:
342 */
343 static int class_filter(struct lock_class *class)
344 {
345 #if 0
346 /* Example */
347 if (class->name_version == 1 &&
348 !strcmp(class->name, "lockname"))
349 return 1;
350 if (class->name_version == 1 &&
351 !strcmp(class->name, "&struct->lockfield"))
352 return 1;
353 #endif
354 /* Filter everything else. 1 would be to allow everything else */
355 return 0;
356 }
357 #endif
358
359 static int verbose(struct lock_class *class)
360 {
361 #if VERBOSE
362 return class_filter(class);
363 #endif
364 return 0;
365 }
366
367 /*
368 * Stack-trace: tightly packed array of stack backtrace
369 * addresses. Protected by the graph_lock.
370 */
371 unsigned long nr_stack_trace_entries;
372 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
373
374 static int save_trace(struct stack_trace *trace)
375 {
376 trace->nr_entries = 0;
377 trace->max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries;
378 trace->entries = stack_trace + nr_stack_trace_entries;
379
380 trace->skip = 3;
381
382 save_stack_trace(trace);
383
384 /*
385 * Some daft arches put -1 at the end to indicate its a full trace.
386 *
387 * <rant> this is buggy anyway, since it takes a whole extra entry so a
388 * complete trace that maxes out the entries provided will be reported
389 * as incomplete, friggin useless </rant>
390 */
391 if (trace->nr_entries != 0 &&
392 trace->entries[trace->nr_entries-1] == ULONG_MAX)
393 trace->nr_entries--;
394
395 trace->max_entries = trace->nr_entries;
396
397 nr_stack_trace_entries += trace->nr_entries;
398
399 if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES-1) {
400 if (!debug_locks_off_graph_unlock())
401 return 0;
402
403 printk("BUG: MAX_STACK_TRACE_ENTRIES too low!\n");
404 printk("turning off the locking correctness validator.\n");
405 dump_stack();
406
407 return 0;
408 }
409
410 return 1;
411 }
412
413 unsigned int nr_hardirq_chains;
414 unsigned int nr_softirq_chains;
415 unsigned int nr_process_chains;
416 unsigned int max_lockdep_depth;
417
418 #ifdef CONFIG_DEBUG_LOCKDEP
419 /*
420 * We cannot printk in early bootup code. Not even early_printk()
421 * might work. So we mark any initialization errors and printk
422 * about it later on, in lockdep_info().
423 */
424 static int lockdep_init_error;
425 static unsigned long lockdep_init_trace_data[20];
426 static struct stack_trace lockdep_init_trace = {
427 .max_entries = ARRAY_SIZE(lockdep_init_trace_data),
428 .entries = lockdep_init_trace_data,
429 };
430
431 /*
432 * Various lockdep statistics:
433 */
434 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
435 #endif
436
437 /*
438 * Locking printouts:
439 */
440
441 #define __USAGE(__STATE) \
442 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \
443 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \
444 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
445 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
446
447 static const char *usage_str[] =
448 {
449 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
450 #include "lockdep_states.h"
451 #undef LOCKDEP_STATE
452 [LOCK_USED] = "INITIAL USE",
453 };
454
455 const char * __get_key_name(struct lockdep_subclass_key *key, char *str)
456 {
457 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
458 }
459
460 static inline unsigned long lock_flag(enum lock_usage_bit bit)
461 {
462 return 1UL << bit;
463 }
464
465 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
466 {
467 char c = '.';
468
469 if (class->usage_mask & lock_flag(bit + 2))
470 c = '+';
471 if (class->usage_mask & lock_flag(bit)) {
472 c = '-';
473 if (class->usage_mask & lock_flag(bit + 2))
474 c = '?';
475 }
476
477 return c;
478 }
479
480 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
481 {
482 int i = 0;
483
484 #define LOCKDEP_STATE(__STATE) \
485 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \
486 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
487 #include "lockdep_states.h"
488 #undef LOCKDEP_STATE
489
490 usage[i] = '\0';
491 }
492
493 static void print_lock_name(struct lock_class *class)
494 {
495 char str[KSYM_NAME_LEN], usage[LOCK_USAGE_CHARS];
496 const char *name;
497
498 get_usage_chars(class, usage);
499
500 name = class->name;
501 if (!name) {
502 name = __get_key_name(class->key, str);
503 printk(" (%s", name);
504 } else {
505 printk(" (%s", name);
506 if (class->name_version > 1)
507 printk("#%d", class->name_version);
508 if (class->subclass)
509 printk("/%d", class->subclass);
510 }
511 printk("){%s}", usage);
512 }
513
514 static void print_lockdep_cache(struct lockdep_map *lock)
515 {
516 const char *name;
517 char str[KSYM_NAME_LEN];
518
519 name = lock->name;
520 if (!name)
521 name = __get_key_name(lock->key->subkeys, str);
522
523 printk("%s", name);
524 }
525
526 static void print_lock(struct held_lock *hlock)
527 {
528 print_lock_name(hlock_class(hlock));
529 printk(", at: ");
530 print_ip_sym(hlock->acquire_ip);
531 }
532
533 static void lockdep_print_held_locks(struct task_struct *curr)
534 {
535 int i, depth = curr->lockdep_depth;
536
537 if (!depth) {
538 printk("no locks held by %s/%d.\n", curr->comm, task_pid_nr(curr));
539 return;
540 }
541 printk("%d lock%s held by %s/%d:\n",
542 depth, depth > 1 ? "s" : "", curr->comm, task_pid_nr(curr));
543
544 for (i = 0; i < depth; i++) {
545 printk(" #%d: ", i);
546 print_lock(curr->held_locks + i);
547 }
548 }
549
550 static void print_kernel_version(void)
551 {
552 printk("%s %.*s\n", init_utsname()->release,
553 (int)strcspn(init_utsname()->version, " "),
554 init_utsname()->version);
555 }
556
557 static int very_verbose(struct lock_class *class)
558 {
559 #if VERY_VERBOSE
560 return class_filter(class);
561 #endif
562 return 0;
563 }
564
565 /*
566 * Is this the address of a static object:
567 */
568 static int static_obj(void *obj)
569 {
570 unsigned long start = (unsigned long) &_stext,
571 end = (unsigned long) &_end,
572 addr = (unsigned long) obj;
573
574 /*
575 * static variable?
576 */
577 if ((addr >= start) && (addr < end))
578 return 1;
579
580 if (arch_is_kernel_data(addr))
581 return 1;
582
583 /*
584 * in-kernel percpu var?
585 */
586 if (is_kernel_percpu_address(addr))
587 return 1;
588
589 /*
590 * module static or percpu var?
591 */
592 return is_module_address(addr) || is_module_percpu_address(addr);
593 }
594
595 /*
596 * To make lock name printouts unique, we calculate a unique
597 * class->name_version generation counter:
598 */
599 static int count_matching_names(struct lock_class *new_class)
600 {
601 struct lock_class *class;
602 int count = 0;
603
604 if (!new_class->name)
605 return 0;
606
607 list_for_each_entry(class, &all_lock_classes, lock_entry) {
608 if (new_class->key - new_class->subclass == class->key)
609 return class->name_version;
610 if (class->name && !strcmp(class->name, new_class->name))
611 count = max(count, class->name_version);
612 }
613
614 return count + 1;
615 }
616
617 /*
618 * Register a lock's class in the hash-table, if the class is not present
619 * yet. Otherwise we look it up. We cache the result in the lock object
620 * itself, so actual lookup of the hash should be once per lock object.
621 */
622 static inline struct lock_class *
623 look_up_lock_class(struct lockdep_map *lock, unsigned int subclass)
624 {
625 struct lockdep_subclass_key *key;
626 struct list_head *hash_head;
627 struct lock_class *class;
628
629 #ifdef CONFIG_DEBUG_LOCKDEP
630 /*
631 * If the architecture calls into lockdep before initializing
632 * the hashes then we'll warn about it later. (we cannot printk
633 * right now)
634 */
635 if (unlikely(!lockdep_initialized)) {
636 lockdep_init();
637 lockdep_init_error = 1;
638 save_stack_trace(&lockdep_init_trace);
639 }
640 #endif
641
642 /*
643 * Static locks do not have their class-keys yet - for them the key
644 * is the lock object itself:
645 */
646 if (unlikely(!lock->key))
647 lock->key = (void *)lock;
648
649 /*
650 * NOTE: the class-key must be unique. For dynamic locks, a static
651 * lock_class_key variable is passed in through the mutex_init()
652 * (or spin_lock_init()) call - which acts as the key. For static
653 * locks we use the lock object itself as the key.
654 */
655 BUILD_BUG_ON(sizeof(struct lock_class_key) >
656 sizeof(struct lockdep_map));
657
658 key = lock->key->subkeys + subclass;
659
660 hash_head = classhashentry(key);
661
662 /*
663 * We can walk the hash lockfree, because the hash only
664 * grows, and we are careful when adding entries to the end:
665 */
666 list_for_each_entry(class, hash_head, hash_entry) {
667 if (class->key == key) {
668 WARN_ON_ONCE(class->name != lock->name);
669 return class;
670 }
671 }
672
673 return NULL;
674 }
675
676 /*
677 * Register a lock's class in the hash-table, if the class is not present
678 * yet. Otherwise we look it up. We cache the result in the lock object
679 * itself, so actual lookup of the hash should be once per lock object.
680 */
681 static inline struct lock_class *
682 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
683 {
684 struct lockdep_subclass_key *key;
685 struct list_head *hash_head;
686 struct lock_class *class;
687 unsigned long flags;
688
689 class = look_up_lock_class(lock, subclass);
690 if (likely(class))
691 return class;
692
693 /*
694 * Debug-check: all keys must be persistent!
695 */
696 if (!static_obj(lock->key)) {
697 debug_locks_off();
698 printk("INFO: trying to register non-static key.\n");
699 printk("the code is fine but needs lockdep annotation.\n");
700 printk("turning off the locking correctness validator.\n");
701 dump_stack();
702
703 return NULL;
704 }
705
706 key = lock->key->subkeys + subclass;
707 hash_head = classhashentry(key);
708
709 raw_local_irq_save(flags);
710 if (!graph_lock()) {
711 raw_local_irq_restore(flags);
712 return NULL;
713 }
714 /*
715 * We have to do the hash-walk again, to avoid races
716 * with another CPU:
717 */
718 list_for_each_entry(class, hash_head, hash_entry)
719 if (class->key == key)
720 goto out_unlock_set;
721 /*
722 * Allocate a new key from the static array, and add it to
723 * the hash:
724 */
725 if (nr_lock_classes >= MAX_LOCKDEP_KEYS) {
726 if (!debug_locks_off_graph_unlock()) {
727 raw_local_irq_restore(flags);
728 return NULL;
729 }
730 raw_local_irq_restore(flags);
731
732 printk("BUG: MAX_LOCKDEP_KEYS too low!\n");
733 printk("turning off the locking correctness validator.\n");
734 dump_stack();
735 return NULL;
736 }
737 class = lock_classes + nr_lock_classes++;
738 debug_atomic_inc(nr_unused_locks);
739 class->key = key;
740 class->name = lock->name;
741 class->subclass = subclass;
742 INIT_LIST_HEAD(&class->lock_entry);
743 INIT_LIST_HEAD(&class->locks_before);
744 INIT_LIST_HEAD(&class->locks_after);
745 class->name_version = count_matching_names(class);
746 /*
747 * We use RCU's safe list-add method to make
748 * parallel walking of the hash-list safe:
749 */
750 list_add_tail_rcu(&class->hash_entry, hash_head);
751 /*
752 * Add it to the global list of classes:
753 */
754 list_add_tail_rcu(&class->lock_entry, &all_lock_classes);
755
756 if (verbose(class)) {
757 graph_unlock();
758 raw_local_irq_restore(flags);
759
760 printk("\nnew class %p: %s", class->key, class->name);
761 if (class->name_version > 1)
762 printk("#%d", class->name_version);
763 printk("\n");
764 dump_stack();
765
766 raw_local_irq_save(flags);
767 if (!graph_lock()) {
768 raw_local_irq_restore(flags);
769 return NULL;
770 }
771 }
772 out_unlock_set:
773 graph_unlock();
774 raw_local_irq_restore(flags);
775
776 if (!subclass || force)
777 lock->class_cache = class;
778
779 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
780 return NULL;
781
782 return class;
783 }
784
785 #ifdef CONFIG_PROVE_LOCKING
786 /*
787 * Allocate a lockdep entry. (assumes the graph_lock held, returns
788 * with NULL on failure)
789 */
790 static struct lock_list *alloc_list_entry(void)
791 {
792 if (nr_list_entries >= MAX_LOCKDEP_ENTRIES) {
793 if (!debug_locks_off_graph_unlock())
794 return NULL;
795
796 printk("BUG: MAX_LOCKDEP_ENTRIES too low!\n");
797 printk("turning off the locking correctness validator.\n");
798 dump_stack();
799 return NULL;
800 }
801 return list_entries + nr_list_entries++;
802 }
803
804 /*
805 * Add a new dependency to the head of the list:
806 */
807 static int add_lock_to_list(struct lock_class *class, struct lock_class *this,
808 struct list_head *head, unsigned long ip, int distance)
809 {
810 struct lock_list *entry;
811 /*
812 * Lock not present yet - get a new dependency struct and
813 * add it to the list:
814 */
815 entry = alloc_list_entry();
816 if (!entry)
817 return 0;
818
819 if (!save_trace(&entry->trace))
820 return 0;
821
822 entry->class = this;
823 entry->distance = distance;
824 /*
825 * Since we never remove from the dependency list, the list can
826 * be walked lockless by other CPUs, it's only allocation
827 * that must be protected by the spinlock. But this also means
828 * we must make new entries visible only once writes to the
829 * entry become visible - hence the RCU op:
830 */
831 list_add_tail_rcu(&entry->entry, head);
832
833 return 1;
834 }
835
836 /*
837 * For good efficiency of modular, we use power of 2
838 */
839 #define MAX_CIRCULAR_QUEUE_SIZE 4096UL
840 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1)
841
842 /*
843 * The circular_queue and helpers is used to implement the
844 * breadth-first search(BFS)algorithem, by which we can build
845 * the shortest path from the next lock to be acquired to the
846 * previous held lock if there is a circular between them.
847 */
848 struct circular_queue {
849 unsigned long element[MAX_CIRCULAR_QUEUE_SIZE];
850 unsigned int front, rear;
851 };
852
853 static struct circular_queue lock_cq;
854
855 unsigned int max_bfs_queue_depth;
856
857 static unsigned int lockdep_dependency_gen_id;
858
859 static inline void __cq_init(struct circular_queue *cq)
860 {
861 cq->front = cq->rear = 0;
862 lockdep_dependency_gen_id++;
863 }
864
865 static inline int __cq_empty(struct circular_queue *cq)
866 {
867 return (cq->front == cq->rear);
868 }
869
870 static inline int __cq_full(struct circular_queue *cq)
871 {
872 return ((cq->rear + 1) & CQ_MASK) == cq->front;
873 }
874
875 static inline int __cq_enqueue(struct circular_queue *cq, unsigned long elem)
876 {
877 if (__cq_full(cq))
878 return -1;
879
880 cq->element[cq->rear] = elem;
881 cq->rear = (cq->rear + 1) & CQ_MASK;
882 return 0;
883 }
884
885 static inline int __cq_dequeue(struct circular_queue *cq, unsigned long *elem)
886 {
887 if (__cq_empty(cq))
888 return -1;
889
890 *elem = cq->element[cq->front];
891 cq->front = (cq->front + 1) & CQ_MASK;
892 return 0;
893 }
894
895 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq)
896 {
897 return (cq->rear - cq->front) & CQ_MASK;
898 }
899
900 static inline void mark_lock_accessed(struct lock_list *lock,
901 struct lock_list *parent)
902 {
903 unsigned long nr;
904
905 nr = lock - list_entries;
906 WARN_ON(nr >= nr_list_entries);
907 lock->parent = parent;
908 lock->class->dep_gen_id = lockdep_dependency_gen_id;
909 }
910
911 static inline unsigned long lock_accessed(struct lock_list *lock)
912 {
913 unsigned long nr;
914
915 nr = lock - list_entries;
916 WARN_ON(nr >= nr_list_entries);
917 return lock->class->dep_gen_id == lockdep_dependency_gen_id;
918 }
919
920 static inline struct lock_list *get_lock_parent(struct lock_list *child)
921 {
922 return child->parent;
923 }
924
925 static inline int get_lock_depth(struct lock_list *child)
926 {
927 int depth = 0;
928 struct lock_list *parent;
929
930 while ((parent = get_lock_parent(child))) {
931 child = parent;
932 depth++;
933 }
934 return depth;
935 }
936
937 static int __bfs(struct lock_list *source_entry,
938 void *data,
939 int (*match)(struct lock_list *entry, void *data),
940 struct lock_list **target_entry,
941 int forward)
942 {
943 struct lock_list *entry;
944 struct list_head *head;
945 struct circular_queue *cq = &lock_cq;
946 int ret = 1;
947
948 if (match(source_entry, data)) {
949 *target_entry = source_entry;
950 ret = 0;
951 goto exit;
952 }
953
954 if (forward)
955 head = &source_entry->class->locks_after;
956 else
957 head = &source_entry->class->locks_before;
958
959 if (list_empty(head))
960 goto exit;
961
962 __cq_init(cq);
963 __cq_enqueue(cq, (unsigned long)source_entry);
964
965 while (!__cq_empty(cq)) {
966 struct lock_list *lock;
967
968 __cq_dequeue(cq, (unsigned long *)&lock);
969
970 if (!lock->class) {
971 ret = -2;
972 goto exit;
973 }
974
975 if (forward)
976 head = &lock->class->locks_after;
977 else
978 head = &lock->class->locks_before;
979
980 list_for_each_entry(entry, head, entry) {
981 if (!lock_accessed(entry)) {
982 unsigned int cq_depth;
983 mark_lock_accessed(entry, lock);
984 if (match(entry, data)) {
985 *target_entry = entry;
986 ret = 0;
987 goto exit;
988 }
989
990 if (__cq_enqueue(cq, (unsigned long)entry)) {
991 ret = -1;
992 goto exit;
993 }
994 cq_depth = __cq_get_elem_count(cq);
995 if (max_bfs_queue_depth < cq_depth)
996 max_bfs_queue_depth = cq_depth;
997 }
998 }
999 }
1000 exit:
1001 return ret;
1002 }
1003
1004 static inline int __bfs_forwards(struct lock_list *src_entry,
1005 void *data,
1006 int (*match)(struct lock_list *entry, void *data),
1007 struct lock_list **target_entry)
1008 {
1009 return __bfs(src_entry, data, match, target_entry, 1);
1010
1011 }
1012
1013 static inline int __bfs_backwards(struct lock_list *src_entry,
1014 void *data,
1015 int (*match)(struct lock_list *entry, void *data),
1016 struct lock_list **target_entry)
1017 {
1018 return __bfs(src_entry, data, match, target_entry, 0);
1019
1020 }
1021
1022 /*
1023 * Recursive, forwards-direction lock-dependency checking, used for
1024 * both noncyclic checking and for hardirq-unsafe/softirq-unsafe
1025 * checking.
1026 */
1027
1028 /*
1029 * Print a dependency chain entry (this is only done when a deadlock
1030 * has been detected):
1031 */
1032 static noinline int
1033 print_circular_bug_entry(struct lock_list *target, int depth)
1034 {
1035 if (debug_locks_silent)
1036 return 0;
1037 printk("\n-> #%u", depth);
1038 print_lock_name(target->class);
1039 printk(":\n");
1040 print_stack_trace(&target->trace, 6);
1041
1042 return 0;
1043 }
1044
1045 /*
1046 * When a circular dependency is detected, print the
1047 * header first:
1048 */
1049 static noinline int
1050 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1051 struct held_lock *check_src,
1052 struct held_lock *check_tgt)
1053 {
1054 struct task_struct *curr = current;
1055
1056 if (debug_locks_silent)
1057 return 0;
1058
1059 printk("\n=======================================================\n");
1060 printk( "[ INFO: possible circular locking dependency detected ]\n");
1061 print_kernel_version();
1062 printk( "-------------------------------------------------------\n");
1063 printk("%s/%d is trying to acquire lock:\n",
1064 curr->comm, task_pid_nr(curr));
1065 print_lock(check_src);
1066 printk("\nbut task is already holding lock:\n");
1067 print_lock(check_tgt);
1068 printk("\nwhich lock already depends on the new lock.\n\n");
1069 printk("\nthe existing dependency chain (in reverse order) is:\n");
1070
1071 print_circular_bug_entry(entry, depth);
1072
1073 return 0;
1074 }
1075
1076 static inline int class_equal(struct lock_list *entry, void *data)
1077 {
1078 return entry->class == data;
1079 }
1080
1081 static noinline int print_circular_bug(struct lock_list *this,
1082 struct lock_list *target,
1083 struct held_lock *check_src,
1084 struct held_lock *check_tgt)
1085 {
1086 struct task_struct *curr = current;
1087 struct lock_list *parent;
1088 int depth;
1089
1090 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1091 return 0;
1092
1093 if (!save_trace(&this->trace))
1094 return 0;
1095
1096 depth = get_lock_depth(target);
1097
1098 print_circular_bug_header(target, depth, check_src, check_tgt);
1099
1100 parent = get_lock_parent(target);
1101
1102 while (parent) {
1103 print_circular_bug_entry(parent, --depth);
1104 parent = get_lock_parent(parent);
1105 }
1106
1107 printk("\nother info that might help us debug this:\n\n");
1108 lockdep_print_held_locks(curr);
1109
1110 printk("\nstack backtrace:\n");
1111 dump_stack();
1112
1113 return 0;
1114 }
1115
1116 static noinline int print_bfs_bug(int ret)
1117 {
1118 if (!debug_locks_off_graph_unlock())
1119 return 0;
1120
1121 WARN(1, "lockdep bfs error:%d\n", ret);
1122
1123 return 0;
1124 }
1125
1126 static int noop_count(struct lock_list *entry, void *data)
1127 {
1128 (*(unsigned long *)data)++;
1129 return 0;
1130 }
1131
1132 unsigned long __lockdep_count_forward_deps(struct lock_list *this)
1133 {
1134 unsigned long count = 0;
1135 struct lock_list *uninitialized_var(target_entry);
1136
1137 __bfs_forwards(this, (void *)&count, noop_count, &target_entry);
1138
1139 return count;
1140 }
1141 unsigned long lockdep_count_forward_deps(struct lock_class *class)
1142 {
1143 unsigned long ret, flags;
1144 struct lock_list this;
1145
1146 this.parent = NULL;
1147 this.class = class;
1148
1149 local_irq_save(flags);
1150 arch_spin_lock(&lockdep_lock);
1151 ret = __lockdep_count_forward_deps(&this);
1152 arch_spin_unlock(&lockdep_lock);
1153 local_irq_restore(flags);
1154
1155 return ret;
1156 }
1157
1158 unsigned long __lockdep_count_backward_deps(struct lock_list *this)
1159 {
1160 unsigned long count = 0;
1161 struct lock_list *uninitialized_var(target_entry);
1162
1163 __bfs_backwards(this, (void *)&count, noop_count, &target_entry);
1164
1165 return count;
1166 }
1167
1168 unsigned long lockdep_count_backward_deps(struct lock_class *class)
1169 {
1170 unsigned long ret, flags;
1171 struct lock_list this;
1172
1173 this.parent = NULL;
1174 this.class = class;
1175
1176 local_irq_save(flags);
1177 arch_spin_lock(&lockdep_lock);
1178 ret = __lockdep_count_backward_deps(&this);
1179 arch_spin_unlock(&lockdep_lock);
1180 local_irq_restore(flags);
1181
1182 return ret;
1183 }
1184
1185 /*
1186 * Prove that the dependency graph starting at <entry> can not
1187 * lead to <target>. Print an error and return 0 if it does.
1188 */
1189 static noinline int
1190 check_noncircular(struct lock_list *root, struct lock_class *target,
1191 struct lock_list **target_entry)
1192 {
1193 int result;
1194
1195 debug_atomic_inc(nr_cyclic_checks);
1196
1197 result = __bfs_forwards(root, target, class_equal, target_entry);
1198
1199 return result;
1200 }
1201
1202 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
1203 /*
1204 * Forwards and backwards subgraph searching, for the purposes of
1205 * proving that two subgraphs can be connected by a new dependency
1206 * without creating any illegal irq-safe -> irq-unsafe lock dependency.
1207 */
1208
1209 static inline int usage_match(struct lock_list *entry, void *bit)
1210 {
1211 return entry->class->usage_mask & (1 << (enum lock_usage_bit)bit);
1212 }
1213
1214
1215
1216 /*
1217 * Find a node in the forwards-direction dependency sub-graph starting
1218 * at @root->class that matches @bit.
1219 *
1220 * Return 0 if such a node exists in the subgraph, and put that node
1221 * into *@target_entry.
1222 *
1223 * Return 1 otherwise and keep *@target_entry unchanged.
1224 * Return <0 on error.
1225 */
1226 static int
1227 find_usage_forwards(struct lock_list *root, enum lock_usage_bit bit,
1228 struct lock_list **target_entry)
1229 {
1230 int result;
1231
1232 debug_atomic_inc(nr_find_usage_forwards_checks);
1233
1234 result = __bfs_forwards(root, (void *)bit, usage_match, target_entry);
1235
1236 return result;
1237 }
1238
1239 /*
1240 * Find a node in the backwards-direction dependency sub-graph starting
1241 * at @root->class that matches @bit.
1242 *
1243 * Return 0 if such a node exists in the subgraph, and put that node
1244 * into *@target_entry.
1245 *
1246 * Return 1 otherwise and keep *@target_entry unchanged.
1247 * Return <0 on error.
1248 */
1249 static int
1250 find_usage_backwards(struct lock_list *root, enum lock_usage_bit bit,
1251 struct lock_list **target_entry)
1252 {
1253 int result;
1254
1255 debug_atomic_inc(nr_find_usage_backwards_checks);
1256
1257 result = __bfs_backwards(root, (void *)bit, usage_match, target_entry);
1258
1259 return result;
1260 }
1261
1262 static void print_lock_class_header(struct lock_class *class, int depth)
1263 {
1264 int bit;
1265
1266 printk("%*s->", depth, "");
1267 print_lock_name(class);
1268 printk(" ops: %lu", class->ops);
1269 printk(" {\n");
1270
1271 for (bit = 0; bit < LOCK_USAGE_STATES; bit++) {
1272 if (class->usage_mask & (1 << bit)) {
1273 int len = depth;
1274
1275 len += printk("%*s %s", depth, "", usage_str[bit]);
1276 len += printk(" at:\n");
1277 print_stack_trace(class->usage_traces + bit, len);
1278 }
1279 }
1280 printk("%*s }\n", depth, "");
1281
1282 printk("%*s ... key at: ",depth,"");
1283 print_ip_sym((unsigned long)class->key);
1284 }
1285
1286 /*
1287 * printk the shortest lock dependencies from @start to @end in reverse order:
1288 */
1289 static void __used
1290 print_shortest_lock_dependencies(struct lock_list *leaf,
1291 struct lock_list *root)
1292 {
1293 struct lock_list *entry = leaf;
1294 int depth;
1295
1296 /*compute depth from generated tree by BFS*/
1297 depth = get_lock_depth(leaf);
1298
1299 do {
1300 print_lock_class_header(entry->class, depth);
1301 printk("%*s ... acquired at:\n", depth, "");
1302 print_stack_trace(&entry->trace, 2);
1303 printk("\n");
1304
1305 if (depth == 0 && (entry != root)) {
1306 printk("lockdep:%s bad BFS generated tree\n", __func__);
1307 break;
1308 }
1309
1310 entry = get_lock_parent(entry);
1311 depth--;
1312 } while (entry && (depth >= 0));
1313
1314 return;
1315 }
1316
1317 static int
1318 print_bad_irq_dependency(struct task_struct *curr,
1319 struct lock_list *prev_root,
1320 struct lock_list *next_root,
1321 struct lock_list *backwards_entry,
1322 struct lock_list *forwards_entry,
1323 struct held_lock *prev,
1324 struct held_lock *next,
1325 enum lock_usage_bit bit1,
1326 enum lock_usage_bit bit2,
1327 const char *irqclass)
1328 {
1329 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1330 return 0;
1331
1332 printk("\n======================================================\n");
1333 printk( "[ INFO: %s-safe -> %s-unsafe lock order detected ]\n",
1334 irqclass, irqclass);
1335 print_kernel_version();
1336 printk( "------------------------------------------------------\n");
1337 printk("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
1338 curr->comm, task_pid_nr(curr),
1339 curr->hardirq_context, hardirq_count() >> HARDIRQ_SHIFT,
1340 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
1341 curr->hardirqs_enabled,
1342 curr->softirqs_enabled);
1343 print_lock(next);
1344
1345 printk("\nand this task is already holding:\n");
1346 print_lock(prev);
1347 printk("which would create a new lock dependency:\n");
1348 print_lock_name(hlock_class(prev));
1349 printk(" ->");
1350 print_lock_name(hlock_class(next));
1351 printk("\n");
1352
1353 printk("\nbut this new dependency connects a %s-irq-safe lock:\n",
1354 irqclass);
1355 print_lock_name(backwards_entry->class);
1356 printk("\n... which became %s-irq-safe at:\n", irqclass);
1357
1358 print_stack_trace(backwards_entry->class->usage_traces + bit1, 1);
1359
1360 printk("\nto a %s-irq-unsafe lock:\n", irqclass);
1361 print_lock_name(forwards_entry->class);
1362 printk("\n... which became %s-irq-unsafe at:\n", irqclass);
1363 printk("...");
1364
1365 print_stack_trace(forwards_entry->class->usage_traces + bit2, 1);
1366
1367 printk("\nother info that might help us debug this:\n\n");
1368 lockdep_print_held_locks(curr);
1369
1370 printk("\nthe dependencies between %s-irq-safe lock", irqclass);
1371 printk(" and the holding lock:\n");
1372 if (!save_trace(&prev_root->trace))
1373 return 0;
1374 print_shortest_lock_dependencies(backwards_entry, prev_root);
1375
1376 printk("\nthe dependencies between the lock to be acquired");
1377 printk(" and %s-irq-unsafe lock:\n", irqclass);
1378 if (!save_trace(&next_root->trace))
1379 return 0;
1380 print_shortest_lock_dependencies(forwards_entry, next_root);
1381
1382 printk("\nstack backtrace:\n");
1383 dump_stack();
1384
1385 return 0;
1386 }
1387
1388 static int
1389 check_usage(struct task_struct *curr, struct held_lock *prev,
1390 struct held_lock *next, enum lock_usage_bit bit_backwards,
1391 enum lock_usage_bit bit_forwards, const char *irqclass)
1392 {
1393 int ret;
1394 struct lock_list this, that;
1395 struct lock_list *uninitialized_var(target_entry);
1396 struct lock_list *uninitialized_var(target_entry1);
1397
1398 this.parent = NULL;
1399
1400 this.class = hlock_class(prev);
1401 ret = find_usage_backwards(&this, bit_backwards, &target_entry);
1402 if (ret < 0)
1403 return print_bfs_bug(ret);
1404 if (ret == 1)
1405 return ret;
1406
1407 that.parent = NULL;
1408 that.class = hlock_class(next);
1409 ret = find_usage_forwards(&that, bit_forwards, &target_entry1);
1410 if (ret < 0)
1411 return print_bfs_bug(ret);
1412 if (ret == 1)
1413 return ret;
1414
1415 return print_bad_irq_dependency(curr, &this, &that,
1416 target_entry, target_entry1,
1417 prev, next,
1418 bit_backwards, bit_forwards, irqclass);
1419 }
1420
1421 static const char *state_names[] = {
1422 #define LOCKDEP_STATE(__STATE) \
1423 __stringify(__STATE),
1424 #include "lockdep_states.h"
1425 #undef LOCKDEP_STATE
1426 };
1427
1428 static const char *state_rnames[] = {
1429 #define LOCKDEP_STATE(__STATE) \
1430 __stringify(__STATE)"-READ",
1431 #include "lockdep_states.h"
1432 #undef LOCKDEP_STATE
1433 };
1434
1435 static inline const char *state_name(enum lock_usage_bit bit)
1436 {
1437 return (bit & 1) ? state_rnames[bit >> 2] : state_names[bit >> 2];
1438 }
1439
1440 static int exclusive_bit(int new_bit)
1441 {
1442 /*
1443 * USED_IN
1444 * USED_IN_READ
1445 * ENABLED
1446 * ENABLED_READ
1447 *
1448 * bit 0 - write/read
1449 * bit 1 - used_in/enabled
1450 * bit 2+ state
1451 */
1452
1453 int state = new_bit & ~3;
1454 int dir = new_bit & 2;
1455
1456 /*
1457 * keep state, bit flip the direction and strip read.
1458 */
1459 return state | (dir ^ 2);
1460 }
1461
1462 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
1463 struct held_lock *next, enum lock_usage_bit bit)
1464 {
1465 /*
1466 * Prove that the new dependency does not connect a hardirq-safe
1467 * lock with a hardirq-unsafe lock - to achieve this we search
1468 * the backwards-subgraph starting at <prev>, and the
1469 * forwards-subgraph starting at <next>:
1470 */
1471 if (!check_usage(curr, prev, next, bit,
1472 exclusive_bit(bit), state_name(bit)))
1473 return 0;
1474
1475 bit++; /* _READ */
1476
1477 /*
1478 * Prove that the new dependency does not connect a hardirq-safe-read
1479 * lock with a hardirq-unsafe lock - to achieve this we search
1480 * the backwards-subgraph starting at <prev>, and the
1481 * forwards-subgraph starting at <next>:
1482 */
1483 if (!check_usage(curr, prev, next, bit,
1484 exclusive_bit(bit), state_name(bit)))
1485 return 0;
1486
1487 return 1;
1488 }
1489
1490 static int
1491 check_prev_add_irq(struct task_struct *curr, struct held_lock *prev,
1492 struct held_lock *next)
1493 {
1494 #define LOCKDEP_STATE(__STATE) \
1495 if (!check_irq_usage(curr, prev, next, LOCK_USED_IN_##__STATE)) \
1496 return 0;
1497 #include "lockdep_states.h"
1498 #undef LOCKDEP_STATE
1499
1500 return 1;
1501 }
1502
1503 static void inc_chains(void)
1504 {
1505 if (current->hardirq_context)
1506 nr_hardirq_chains++;
1507 else {
1508 if (current->softirq_context)
1509 nr_softirq_chains++;
1510 else
1511 nr_process_chains++;
1512 }
1513 }
1514
1515 #else
1516
1517 static inline int
1518 check_prev_add_irq(struct task_struct *curr, struct held_lock *prev,
1519 struct held_lock *next)
1520 {
1521 return 1;
1522 }
1523
1524 static inline void inc_chains(void)
1525 {
1526 nr_process_chains++;
1527 }
1528
1529 #endif
1530
1531 static int
1532 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
1533 struct held_lock *next)
1534 {
1535 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1536 return 0;
1537
1538 printk("\n=============================================\n");
1539 printk( "[ INFO: possible recursive locking detected ]\n");
1540 print_kernel_version();
1541 printk( "---------------------------------------------\n");
1542 printk("%s/%d is trying to acquire lock:\n",
1543 curr->comm, task_pid_nr(curr));
1544 print_lock(next);
1545 printk("\nbut task is already holding lock:\n");
1546 print_lock(prev);
1547
1548 printk("\nother info that might help us debug this:\n");
1549 lockdep_print_held_locks(curr);
1550
1551 printk("\nstack backtrace:\n");
1552 dump_stack();
1553
1554 return 0;
1555 }
1556
1557 /*
1558 * Check whether we are holding such a class already.
1559 *
1560 * (Note that this has to be done separately, because the graph cannot
1561 * detect such classes of deadlocks.)
1562 *
1563 * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read
1564 */
1565 static int
1566 check_deadlock(struct task_struct *curr, struct held_lock *next,
1567 struct lockdep_map *next_instance, int read)
1568 {
1569 struct held_lock *prev;
1570 struct held_lock *nest = NULL;
1571 int i;
1572
1573 for (i = 0; i < curr->lockdep_depth; i++) {
1574 prev = curr->held_locks + i;
1575
1576 if (prev->instance == next->nest_lock)
1577 nest = prev;
1578
1579 if (hlock_class(prev) != hlock_class(next))
1580 continue;
1581
1582 /*
1583 * Allow read-after-read recursion of the same
1584 * lock class (i.e. read_lock(lock)+read_lock(lock)):
1585 */
1586 if ((read == 2) && prev->read)
1587 return 2;
1588
1589 /*
1590 * We're holding the nest_lock, which serializes this lock's
1591 * nesting behaviour.
1592 */
1593 if (nest)
1594 return 2;
1595
1596 return print_deadlock_bug(curr, prev, next);
1597 }
1598 return 1;
1599 }
1600
1601 /*
1602 * There was a chain-cache miss, and we are about to add a new dependency
1603 * to a previous lock. We recursively validate the following rules:
1604 *
1605 * - would the adding of the <prev> -> <next> dependency create a
1606 * circular dependency in the graph? [== circular deadlock]
1607 *
1608 * - does the new prev->next dependency connect any hardirq-safe lock
1609 * (in the full backwards-subgraph starting at <prev>) with any
1610 * hardirq-unsafe lock (in the full forwards-subgraph starting at
1611 * <next>)? [== illegal lock inversion with hardirq contexts]
1612 *
1613 * - does the new prev->next dependency connect any softirq-safe lock
1614 * (in the full backwards-subgraph starting at <prev>) with any
1615 * softirq-unsafe lock (in the full forwards-subgraph starting at
1616 * <next>)? [== illegal lock inversion with softirq contexts]
1617 *
1618 * any of these scenarios could lead to a deadlock.
1619 *
1620 * Then if all the validations pass, we add the forwards and backwards
1621 * dependency.
1622 */
1623 static int
1624 check_prev_add(struct task_struct *curr, struct held_lock *prev,
1625 struct held_lock *next, int distance)
1626 {
1627 struct lock_list *entry;
1628 int ret;
1629 struct lock_list this;
1630 struct lock_list *uninitialized_var(target_entry);
1631
1632 /*
1633 * Prove that the new <prev> -> <next> dependency would not
1634 * create a circular dependency in the graph. (We do this by
1635 * forward-recursing into the graph starting at <next>, and
1636 * checking whether we can reach <prev>.)
1637 *
1638 * We are using global variables to control the recursion, to
1639 * keep the stackframe size of the recursive functions low:
1640 */
1641 this.class = hlock_class(next);
1642 this.parent = NULL;
1643 ret = check_noncircular(&this, hlock_class(prev), &target_entry);
1644 if (unlikely(!ret))
1645 return print_circular_bug(&this, target_entry, next, prev);
1646 else if (unlikely(ret < 0))
1647 return print_bfs_bug(ret);
1648
1649 if (!check_prev_add_irq(curr, prev, next))
1650 return 0;
1651
1652 /*
1653 * For recursive read-locks we do all the dependency checks,
1654 * but we dont store read-triggered dependencies (only
1655 * write-triggered dependencies). This ensures that only the
1656 * write-side dependencies matter, and that if for example a
1657 * write-lock never takes any other locks, then the reads are
1658 * equivalent to a NOP.
1659 */
1660 if (next->read == 2 || prev->read == 2)
1661 return 1;
1662 /*
1663 * Is the <prev> -> <next> dependency already present?
1664 *
1665 * (this may occur even though this is a new chain: consider
1666 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
1667 * chains - the second one will be new, but L1 already has
1668 * L2 added to its dependency list, due to the first chain.)
1669 */
1670 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
1671 if (entry->class == hlock_class(next)) {
1672 if (distance == 1)
1673 entry->distance = 1;
1674 return 2;
1675 }
1676 }
1677
1678 /*
1679 * Ok, all validations passed, add the new lock
1680 * to the previous lock's dependency list:
1681 */
1682 ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
1683 &hlock_class(prev)->locks_after,
1684 next->acquire_ip, distance);
1685
1686 if (!ret)
1687 return 0;
1688
1689 ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
1690 &hlock_class(next)->locks_before,
1691 next->acquire_ip, distance);
1692 if (!ret)
1693 return 0;
1694
1695 /*
1696 * Debugging printouts:
1697 */
1698 if (verbose(hlock_class(prev)) || verbose(hlock_class(next))) {
1699 graph_unlock();
1700 printk("\n new dependency: ");
1701 print_lock_name(hlock_class(prev));
1702 printk(" => ");
1703 print_lock_name(hlock_class(next));
1704 printk("\n");
1705 dump_stack();
1706 return graph_lock();
1707 }
1708 return 1;
1709 }
1710
1711 /*
1712 * Add the dependency to all directly-previous locks that are 'relevant'.
1713 * The ones that are relevant are (in increasing distance from curr):
1714 * all consecutive trylock entries and the final non-trylock entry - or
1715 * the end of this context's lock-chain - whichever comes first.
1716 */
1717 static int
1718 check_prevs_add(struct task_struct *curr, struct held_lock *next)
1719 {
1720 int depth = curr->lockdep_depth;
1721 struct held_lock *hlock;
1722
1723 /*
1724 * Debugging checks.
1725 *
1726 * Depth must not be zero for a non-head lock:
1727 */
1728 if (!depth)
1729 goto out_bug;
1730 /*
1731 * At least two relevant locks must exist for this
1732 * to be a head:
1733 */
1734 if (curr->held_locks[depth].irq_context !=
1735 curr->held_locks[depth-1].irq_context)
1736 goto out_bug;
1737
1738 for (;;) {
1739 int distance = curr->lockdep_depth - depth + 1;
1740 hlock = curr->held_locks + depth-1;
1741 /*
1742 * Only non-recursive-read entries get new dependencies
1743 * added:
1744 */
1745 if (hlock->read != 2) {
1746 if (!check_prev_add(curr, hlock, next, distance))
1747 return 0;
1748 /*
1749 * Stop after the first non-trylock entry,
1750 * as non-trylock entries have added their
1751 * own direct dependencies already, so this
1752 * lock is connected to them indirectly:
1753 */
1754 if (!hlock->trylock)
1755 break;
1756 }
1757 depth--;
1758 /*
1759 * End of lock-stack?
1760 */
1761 if (!depth)
1762 break;
1763 /*
1764 * Stop the search if we cross into another context:
1765 */
1766 if (curr->held_locks[depth].irq_context !=
1767 curr->held_locks[depth-1].irq_context)
1768 break;
1769 }
1770 return 1;
1771 out_bug:
1772 if (!debug_locks_off_graph_unlock())
1773 return 0;
1774
1775 WARN_ON(1);
1776
1777 return 0;
1778 }
1779
1780 unsigned long nr_lock_chains;
1781 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
1782 int nr_chain_hlocks;
1783 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1784
1785 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
1786 {
1787 return lock_classes + chain_hlocks[chain->base + i];
1788 }
1789
1790 /*
1791 * Look up a dependency chain. If the key is not present yet then
1792 * add it and return 1 - in this case the new dependency chain is
1793 * validated. If the key is already hashed, return 0.
1794 * (On return with 1 graph_lock is held.)
1795 */
1796 static inline int lookup_chain_cache(struct task_struct *curr,
1797 struct held_lock *hlock,
1798 u64 chain_key)
1799 {
1800 struct lock_class *class = hlock_class(hlock);
1801 struct list_head *hash_head = chainhashentry(chain_key);
1802 struct lock_chain *chain;
1803 struct held_lock *hlock_curr, *hlock_next;
1804 int i, j, n, cn;
1805
1806 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
1807 return 0;
1808 /*
1809 * We can walk it lock-free, because entries only get added
1810 * to the hash:
1811 */
1812 list_for_each_entry(chain, hash_head, entry) {
1813 if (chain->chain_key == chain_key) {
1814 cache_hit:
1815 debug_atomic_inc(chain_lookup_hits);
1816 if (very_verbose(class))
1817 printk("\nhash chain already cached, key: "
1818 "%016Lx tail class: [%p] %s\n",
1819 (unsigned long long)chain_key,
1820 class->key, class->name);
1821 return 0;
1822 }
1823 }
1824 if (very_verbose(class))
1825 printk("\nnew hash chain, key: %016Lx tail class: [%p] %s\n",
1826 (unsigned long long)chain_key, class->key, class->name);
1827 /*
1828 * Allocate a new chain entry from the static array, and add
1829 * it to the hash:
1830 */
1831 if (!graph_lock())
1832 return 0;
1833 /*
1834 * We have to walk the chain again locked - to avoid duplicates:
1835 */
1836 list_for_each_entry(chain, hash_head, entry) {
1837 if (chain->chain_key == chain_key) {
1838 graph_unlock();
1839 goto cache_hit;
1840 }
1841 }
1842 if (unlikely(nr_lock_chains >= MAX_LOCKDEP_CHAINS)) {
1843 if (!debug_locks_off_graph_unlock())
1844 return 0;
1845
1846 printk("BUG: MAX_LOCKDEP_CHAINS too low!\n");
1847 printk("turning off the locking correctness validator.\n");
1848 dump_stack();
1849 return 0;
1850 }
1851 chain = lock_chains + nr_lock_chains++;
1852 chain->chain_key = chain_key;
1853 chain->irq_context = hlock->irq_context;
1854 /* Find the first held_lock of current chain */
1855 hlock_next = hlock;
1856 for (i = curr->lockdep_depth - 1; i >= 0; i--) {
1857 hlock_curr = curr->held_locks + i;
1858 if (hlock_curr->irq_context != hlock_next->irq_context)
1859 break;
1860 hlock_next = hlock;
1861 }
1862 i++;
1863 chain->depth = curr->lockdep_depth + 1 - i;
1864 cn = nr_chain_hlocks;
1865 while (cn + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS) {
1866 n = cmpxchg(&nr_chain_hlocks, cn, cn + chain->depth);
1867 if (n == cn)
1868 break;
1869 cn = n;
1870 }
1871 if (likely(cn + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS)) {
1872 chain->base = cn;
1873 for (j = 0; j < chain->depth - 1; j++, i++) {
1874 int lock_id = curr->held_locks[i].class_idx - 1;
1875 chain_hlocks[chain->base + j] = lock_id;
1876 }
1877 chain_hlocks[chain->base + j] = class - lock_classes;
1878 }
1879 list_add_tail_rcu(&chain->entry, hash_head);
1880 debug_atomic_inc(chain_lookup_misses);
1881 inc_chains();
1882
1883 return 1;
1884 }
1885
1886 static int validate_chain(struct task_struct *curr, struct lockdep_map *lock,
1887 struct held_lock *hlock, int chain_head, u64 chain_key)
1888 {
1889 /*
1890 * Trylock needs to maintain the stack of held locks, but it
1891 * does not add new dependencies, because trylock can be done
1892 * in any order.
1893 *
1894 * We look up the chain_key and do the O(N^2) check and update of
1895 * the dependencies only if this is a new dependency chain.
1896 * (If lookup_chain_cache() returns with 1 it acquires
1897 * graph_lock for us)
1898 */
1899 if (!hlock->trylock && (hlock->check == 2) &&
1900 lookup_chain_cache(curr, hlock, chain_key)) {
1901 /*
1902 * Check whether last held lock:
1903 *
1904 * - is irq-safe, if this lock is irq-unsafe
1905 * - is softirq-safe, if this lock is hardirq-unsafe
1906 *
1907 * And check whether the new lock's dependency graph
1908 * could lead back to the previous lock.
1909 *
1910 * any of these scenarios could lead to a deadlock. If
1911 * All validations
1912 */
1913 int ret = check_deadlock(curr, hlock, lock, hlock->read);
1914
1915 if (!ret)
1916 return 0;
1917 /*
1918 * Mark recursive read, as we jump over it when
1919 * building dependencies (just like we jump over
1920 * trylock entries):
1921 */
1922 if (ret == 2)
1923 hlock->read = 2;
1924 /*
1925 * Add dependency only if this lock is not the head
1926 * of the chain, and if it's not a secondary read-lock:
1927 */
1928 if (!chain_head && ret != 2)
1929 if (!check_prevs_add(curr, hlock))
1930 return 0;
1931 graph_unlock();
1932 } else
1933 /* after lookup_chain_cache(): */
1934 if (unlikely(!debug_locks))
1935 return 0;
1936
1937 return 1;
1938 }
1939 #else
1940 static inline int validate_chain(struct task_struct *curr,
1941 struct lockdep_map *lock, struct held_lock *hlock,
1942 int chain_head, u64 chain_key)
1943 {
1944 return 1;
1945 }
1946 #endif
1947
1948 /*
1949 * We are building curr_chain_key incrementally, so double-check
1950 * it from scratch, to make sure that it's done correctly:
1951 */
1952 static void check_chain_key(struct task_struct *curr)
1953 {
1954 #ifdef CONFIG_DEBUG_LOCKDEP
1955 struct held_lock *hlock, *prev_hlock = NULL;
1956 unsigned int i, id;
1957 u64 chain_key = 0;
1958
1959 for (i = 0; i < curr->lockdep_depth; i++) {
1960 hlock = curr->held_locks + i;
1961 if (chain_key != hlock->prev_chain_key) {
1962 debug_locks_off();
1963 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
1964 curr->lockdep_depth, i,
1965 (unsigned long long)chain_key,
1966 (unsigned long long)hlock->prev_chain_key);
1967 return;
1968 }
1969 id = hlock->class_idx - 1;
1970 if (DEBUG_LOCKS_WARN_ON(id >= MAX_LOCKDEP_KEYS))
1971 return;
1972
1973 if (prev_hlock && (prev_hlock->irq_context !=
1974 hlock->irq_context))
1975 chain_key = 0;
1976 chain_key = iterate_chain_key(chain_key, id);
1977 prev_hlock = hlock;
1978 }
1979 if (chain_key != curr->curr_chain_key) {
1980 debug_locks_off();
1981 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
1982 curr->lockdep_depth, i,
1983 (unsigned long long)chain_key,
1984 (unsigned long long)curr->curr_chain_key);
1985 }
1986 #endif
1987 }
1988
1989 static int
1990 print_usage_bug(struct task_struct *curr, struct held_lock *this,
1991 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
1992 {
1993 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1994 return 0;
1995
1996 printk("\n=================================\n");
1997 printk( "[ INFO: inconsistent lock state ]\n");
1998 print_kernel_version();
1999 printk( "---------------------------------\n");
2000
2001 printk("inconsistent {%s} -> {%s} usage.\n",
2002 usage_str[prev_bit], usage_str[new_bit]);
2003
2004 printk("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
2005 curr->comm, task_pid_nr(curr),
2006 trace_hardirq_context(curr), hardirq_count() >> HARDIRQ_SHIFT,
2007 trace_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
2008 trace_hardirqs_enabled(curr),
2009 trace_softirqs_enabled(curr));
2010 print_lock(this);
2011
2012 printk("{%s} state was registered at:\n", usage_str[prev_bit]);
2013 print_stack_trace(hlock_class(this)->usage_traces + prev_bit, 1);
2014
2015 print_irqtrace_events(curr);
2016 printk("\nother info that might help us debug this:\n");
2017 lockdep_print_held_locks(curr);
2018
2019 printk("\nstack backtrace:\n");
2020 dump_stack();
2021
2022 return 0;
2023 }
2024
2025 /*
2026 * Print out an error if an invalid bit is set:
2027 */
2028 static inline int
2029 valid_state(struct task_struct *curr, struct held_lock *this,
2030 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
2031 {
2032 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit)))
2033 return print_usage_bug(curr, this, bad_bit, new_bit);
2034 return 1;
2035 }
2036
2037 static int mark_lock(struct task_struct *curr, struct held_lock *this,
2038 enum lock_usage_bit new_bit);
2039
2040 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
2041
2042 /*
2043 * print irq inversion bug:
2044 */
2045 static int
2046 print_irq_inversion_bug(struct task_struct *curr,
2047 struct lock_list *root, struct lock_list *other,
2048 struct held_lock *this, int forwards,
2049 const char *irqclass)
2050 {
2051 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2052 return 0;
2053
2054 printk("\n=========================================================\n");
2055 printk( "[ INFO: possible irq lock inversion dependency detected ]\n");
2056 print_kernel_version();
2057 printk( "---------------------------------------------------------\n");
2058 printk("%s/%d just changed the state of lock:\n",
2059 curr->comm, task_pid_nr(curr));
2060 print_lock(this);
2061 if (forwards)
2062 printk("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
2063 else
2064 printk("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
2065 print_lock_name(other->class);
2066 printk("\n\nand interrupts could create inverse lock ordering between them.\n\n");
2067
2068 printk("\nother info that might help us debug this:\n");
2069 lockdep_print_held_locks(curr);
2070
2071 printk("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
2072 if (!save_trace(&root->trace))
2073 return 0;
2074 print_shortest_lock_dependencies(other, root);
2075
2076 printk("\nstack backtrace:\n");
2077 dump_stack();
2078
2079 return 0;
2080 }
2081
2082 /*
2083 * Prove that in the forwards-direction subgraph starting at <this>
2084 * there is no lock matching <mask>:
2085 */
2086 static int
2087 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
2088 enum lock_usage_bit bit, const char *irqclass)
2089 {
2090 int ret;
2091 struct lock_list root;
2092 struct lock_list *uninitialized_var(target_entry);
2093
2094 root.parent = NULL;
2095 root.class = hlock_class(this);
2096 ret = find_usage_forwards(&root, bit, &target_entry);
2097 if (ret < 0)
2098 return print_bfs_bug(ret);
2099 if (ret == 1)
2100 return ret;
2101
2102 return print_irq_inversion_bug(curr, &root, target_entry,
2103 this, 1, irqclass);
2104 }
2105
2106 /*
2107 * Prove that in the backwards-direction subgraph starting at <this>
2108 * there is no lock matching <mask>:
2109 */
2110 static int
2111 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
2112 enum lock_usage_bit bit, const char *irqclass)
2113 {
2114 int ret;
2115 struct lock_list root;
2116 struct lock_list *uninitialized_var(target_entry);
2117
2118 root.parent = NULL;
2119 root.class = hlock_class(this);
2120 ret = find_usage_backwards(&root, bit, &target_entry);
2121 if (ret < 0)
2122 return print_bfs_bug(ret);
2123 if (ret == 1)
2124 return ret;
2125
2126 return print_irq_inversion_bug(curr, &root, target_entry,
2127 this, 0, irqclass);
2128 }
2129
2130 void print_irqtrace_events(struct task_struct *curr)
2131 {
2132 printk("irq event stamp: %u\n", curr->irq_events);
2133 printk("hardirqs last enabled at (%u): ", curr->hardirq_enable_event);
2134 print_ip_sym(curr->hardirq_enable_ip);
2135 printk("hardirqs last disabled at (%u): ", curr->hardirq_disable_event);
2136 print_ip_sym(curr->hardirq_disable_ip);
2137 printk("softirqs last enabled at (%u): ", curr->softirq_enable_event);
2138 print_ip_sym(curr->softirq_enable_ip);
2139 printk("softirqs last disabled at (%u): ", curr->softirq_disable_event);
2140 print_ip_sym(curr->softirq_disable_ip);
2141 }
2142
2143 static int HARDIRQ_verbose(struct lock_class *class)
2144 {
2145 #if HARDIRQ_VERBOSE
2146 return class_filter(class);
2147 #endif
2148 return 0;
2149 }
2150
2151 static int SOFTIRQ_verbose(struct lock_class *class)
2152 {
2153 #if SOFTIRQ_VERBOSE
2154 return class_filter(class);
2155 #endif
2156 return 0;
2157 }
2158
2159 static int RECLAIM_FS_verbose(struct lock_class *class)
2160 {
2161 #if RECLAIM_VERBOSE
2162 return class_filter(class);
2163 #endif
2164 return 0;
2165 }
2166
2167 #define STRICT_READ_CHECKS 1
2168
2169 static int (*state_verbose_f[])(struct lock_class *class) = {
2170 #define LOCKDEP_STATE(__STATE) \
2171 __STATE##_verbose,
2172 #include "lockdep_states.h"
2173 #undef LOCKDEP_STATE
2174 };
2175
2176 static inline int state_verbose(enum lock_usage_bit bit,
2177 struct lock_class *class)
2178 {
2179 return state_verbose_f[bit >> 2](class);
2180 }
2181
2182 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
2183 enum lock_usage_bit bit, const char *name);
2184
2185 static int
2186 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
2187 enum lock_usage_bit new_bit)
2188 {
2189 int excl_bit = exclusive_bit(new_bit);
2190 int read = new_bit & 1;
2191 int dir = new_bit & 2;
2192
2193 /*
2194 * mark USED_IN has to look forwards -- to ensure no dependency
2195 * has ENABLED state, which would allow recursion deadlocks.
2196 *
2197 * mark ENABLED has to look backwards -- to ensure no dependee
2198 * has USED_IN state, which, again, would allow recursion deadlocks.
2199 */
2200 check_usage_f usage = dir ?
2201 check_usage_backwards : check_usage_forwards;
2202
2203 /*
2204 * Validate that this particular lock does not have conflicting
2205 * usage states.
2206 */
2207 if (!valid_state(curr, this, new_bit, excl_bit))
2208 return 0;
2209
2210 /*
2211 * Validate that the lock dependencies don't have conflicting usage
2212 * states.
2213 */
2214 if ((!read || !dir || STRICT_READ_CHECKS) &&
2215 !usage(curr, this, excl_bit, state_name(new_bit & ~1)))
2216 return 0;
2217
2218 /*
2219 * Check for read in write conflicts
2220 */
2221 if (!read) {
2222 if (!valid_state(curr, this, new_bit, excl_bit + 1))
2223 return 0;
2224
2225 if (STRICT_READ_CHECKS &&
2226 !usage(curr, this, excl_bit + 1,
2227 state_name(new_bit + 1)))
2228 return 0;
2229 }
2230
2231 if (state_verbose(new_bit, hlock_class(this)))
2232 return 2;
2233
2234 return 1;
2235 }
2236
2237 enum mark_type {
2238 #define LOCKDEP_STATE(__STATE) __STATE,
2239 #include "lockdep_states.h"
2240 #undef LOCKDEP_STATE
2241 };
2242
2243 /*
2244 * Mark all held locks with a usage bit:
2245 */
2246 static int
2247 mark_held_locks(struct task_struct *curr, enum mark_type mark)
2248 {
2249 enum lock_usage_bit usage_bit;
2250 struct held_lock *hlock;
2251 int i;
2252
2253 for (i = 0; i < curr->lockdep_depth; i++) {
2254 hlock = curr->held_locks + i;
2255
2256 usage_bit = 2 + (mark << 2); /* ENABLED */
2257 if (hlock->read)
2258 usage_bit += 1; /* READ */
2259
2260 BUG_ON(usage_bit >= LOCK_USAGE_STATES);
2261
2262 if (!mark_lock(curr, hlock, usage_bit))
2263 return 0;
2264 }
2265
2266 return 1;
2267 }
2268
2269 /*
2270 * Debugging helper: via this flag we know that we are in
2271 * 'early bootup code', and will warn about any invalid irqs-on event:
2272 */
2273 static int early_boot_irqs_enabled;
2274
2275 void early_boot_irqs_off(void)
2276 {
2277 early_boot_irqs_enabled = 0;
2278 }
2279
2280 void early_boot_irqs_on(void)
2281 {
2282 early_boot_irqs_enabled = 1;
2283 }
2284
2285 /*
2286 * Hardirqs will be enabled:
2287 */
2288 void trace_hardirqs_on_caller(unsigned long ip)
2289 {
2290 struct task_struct *curr = current;
2291
2292 time_hardirqs_on(CALLER_ADDR0, ip);
2293
2294 if (unlikely(!debug_locks || current->lockdep_recursion))
2295 return;
2296
2297 if (DEBUG_LOCKS_WARN_ON(unlikely(!early_boot_irqs_enabled)))
2298 return;
2299
2300 if (unlikely(curr->hardirqs_enabled)) {
2301 /*
2302 * Neither irq nor preemption are disabled here
2303 * so this is racy by nature but loosing one hit
2304 * in a stat is not a big deal.
2305 */
2306 this_cpu_inc(lockdep_stats.redundant_hardirqs_on);
2307 return;
2308 }
2309 /* we'll do an OFF -> ON transition: */
2310 curr->hardirqs_enabled = 1;
2311
2312 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2313 return;
2314 if (DEBUG_LOCKS_WARN_ON(current->hardirq_context))
2315 return;
2316 /*
2317 * We are going to turn hardirqs on, so set the
2318 * usage bit for all held locks:
2319 */
2320 if (!mark_held_locks(curr, HARDIRQ))
2321 return;
2322 /*
2323 * If we have softirqs enabled, then set the usage
2324 * bit for all held locks. (disabled hardirqs prevented
2325 * this bit from being set before)
2326 */
2327 if (curr->softirqs_enabled)
2328 if (!mark_held_locks(curr, SOFTIRQ))
2329 return;
2330
2331 curr->hardirq_enable_ip = ip;
2332 curr->hardirq_enable_event = ++curr->irq_events;
2333 debug_atomic_inc(hardirqs_on_events);
2334 }
2335 EXPORT_SYMBOL(trace_hardirqs_on_caller);
2336
2337 void trace_hardirqs_on(void)
2338 {
2339 trace_hardirqs_on_caller(CALLER_ADDR0);
2340 }
2341 EXPORT_SYMBOL(trace_hardirqs_on);
2342
2343 /*
2344 * Hardirqs were disabled:
2345 */
2346 void trace_hardirqs_off_caller(unsigned long ip)
2347 {
2348 struct task_struct *curr = current;
2349
2350 time_hardirqs_off(CALLER_ADDR0, ip);
2351
2352 if (unlikely(!debug_locks || current->lockdep_recursion))
2353 return;
2354
2355 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2356 return;
2357
2358 if (curr->hardirqs_enabled) {
2359 /*
2360 * We have done an ON -> OFF transition:
2361 */
2362 curr->hardirqs_enabled = 0;
2363 curr->hardirq_disable_ip = ip;
2364 curr->hardirq_disable_event = ++curr->irq_events;
2365 debug_atomic_inc(hardirqs_off_events);
2366 } else
2367 debug_atomic_inc(redundant_hardirqs_off);
2368 }
2369 EXPORT_SYMBOL(trace_hardirqs_off_caller);
2370
2371 void trace_hardirqs_off(void)
2372 {
2373 trace_hardirqs_off_caller(CALLER_ADDR0);
2374 }
2375 EXPORT_SYMBOL(trace_hardirqs_off);
2376
2377 /*
2378 * Softirqs will be enabled:
2379 */
2380 void trace_softirqs_on(unsigned long ip)
2381 {
2382 struct task_struct *curr = current;
2383
2384 if (unlikely(!debug_locks))
2385 return;
2386
2387 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2388 return;
2389
2390 if (curr->softirqs_enabled) {
2391 debug_atomic_inc(redundant_softirqs_on);
2392 return;
2393 }
2394
2395 /*
2396 * We'll do an OFF -> ON transition:
2397 */
2398 curr->softirqs_enabled = 1;
2399 curr->softirq_enable_ip = ip;
2400 curr->softirq_enable_event = ++curr->irq_events;
2401 debug_atomic_inc(softirqs_on_events);
2402 /*
2403 * We are going to turn softirqs on, so set the
2404 * usage bit for all held locks, if hardirqs are
2405 * enabled too:
2406 */
2407 if (curr->hardirqs_enabled)
2408 mark_held_locks(curr, SOFTIRQ);
2409 }
2410
2411 /*
2412 * Softirqs were disabled:
2413 */
2414 void trace_softirqs_off(unsigned long ip)
2415 {
2416 struct task_struct *curr = current;
2417
2418 if (unlikely(!debug_locks))
2419 return;
2420
2421 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2422 return;
2423
2424 if (curr->softirqs_enabled) {
2425 /*
2426 * We have done an ON -> OFF transition:
2427 */
2428 curr->softirqs_enabled = 0;
2429 curr->softirq_disable_ip = ip;
2430 curr->softirq_disable_event = ++curr->irq_events;
2431 debug_atomic_inc(softirqs_off_events);
2432 DEBUG_LOCKS_WARN_ON(!softirq_count());
2433 } else
2434 debug_atomic_inc(redundant_softirqs_off);
2435 }
2436
2437 static void __lockdep_trace_alloc(gfp_t gfp_mask, unsigned long flags)
2438 {
2439 struct task_struct *curr = current;
2440
2441 if (unlikely(!debug_locks))
2442 return;
2443
2444 /* no reclaim without waiting on it */
2445 if (!(gfp_mask & __GFP_WAIT))
2446 return;
2447
2448 /* this guy won't enter reclaim */
2449 if ((curr->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
2450 return;
2451
2452 /* We're only interested __GFP_FS allocations for now */
2453 if (!(gfp_mask & __GFP_FS))
2454 return;
2455
2456 if (DEBUG_LOCKS_WARN_ON(irqs_disabled_flags(flags)))
2457 return;
2458
2459 mark_held_locks(curr, RECLAIM_FS);
2460 }
2461
2462 static void check_flags(unsigned long flags);
2463
2464 void lockdep_trace_alloc(gfp_t gfp_mask)
2465 {
2466 unsigned long flags;
2467
2468 if (unlikely(current->lockdep_recursion))
2469 return;
2470
2471 raw_local_irq_save(flags);
2472 check_flags(flags);
2473 current->lockdep_recursion = 1;
2474 __lockdep_trace_alloc(gfp_mask, flags);
2475 current->lockdep_recursion = 0;
2476 raw_local_irq_restore(flags);
2477 }
2478
2479 static int mark_irqflags(struct task_struct *curr, struct held_lock *hlock)
2480 {
2481 /*
2482 * If non-trylock use in a hardirq or softirq context, then
2483 * mark the lock as used in these contexts:
2484 */
2485 if (!hlock->trylock) {
2486 if (hlock->read) {
2487 if (curr->hardirq_context)
2488 if (!mark_lock(curr, hlock,
2489 LOCK_USED_IN_HARDIRQ_READ))
2490 return 0;
2491 if (curr->softirq_context)
2492 if (!mark_lock(curr, hlock,
2493 LOCK_USED_IN_SOFTIRQ_READ))
2494 return 0;
2495 } else {
2496 if (curr->hardirq_context)
2497 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
2498 return 0;
2499 if (curr->softirq_context)
2500 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
2501 return 0;
2502 }
2503 }
2504 if (!hlock->hardirqs_off) {
2505 if (hlock->read) {
2506 if (!mark_lock(curr, hlock,
2507 LOCK_ENABLED_HARDIRQ_READ))
2508 return 0;
2509 if (curr->softirqs_enabled)
2510 if (!mark_lock(curr, hlock,
2511 LOCK_ENABLED_SOFTIRQ_READ))
2512 return 0;
2513 } else {
2514 if (!mark_lock(curr, hlock,
2515 LOCK_ENABLED_HARDIRQ))
2516 return 0;
2517 if (curr->softirqs_enabled)
2518 if (!mark_lock(curr, hlock,
2519 LOCK_ENABLED_SOFTIRQ))
2520 return 0;
2521 }
2522 }
2523
2524 /*
2525 * We reuse the irq context infrastructure more broadly as a general
2526 * context checking code. This tests GFP_FS recursion (a lock taken
2527 * during reclaim for a GFP_FS allocation is held over a GFP_FS
2528 * allocation).
2529 */
2530 if (!hlock->trylock && (curr->lockdep_reclaim_gfp & __GFP_FS)) {
2531 if (hlock->read) {
2532 if (!mark_lock(curr, hlock, LOCK_USED_IN_RECLAIM_FS_READ))
2533 return 0;
2534 } else {
2535 if (!mark_lock(curr, hlock, LOCK_USED_IN_RECLAIM_FS))
2536 return 0;
2537 }
2538 }
2539
2540 return 1;
2541 }
2542
2543 static int separate_irq_context(struct task_struct *curr,
2544 struct held_lock *hlock)
2545 {
2546 unsigned int depth = curr->lockdep_depth;
2547
2548 /*
2549 * Keep track of points where we cross into an interrupt context:
2550 */
2551 hlock->irq_context = 2*(curr->hardirq_context ? 1 : 0) +
2552 curr->softirq_context;
2553 if (depth) {
2554 struct held_lock *prev_hlock;
2555
2556 prev_hlock = curr->held_locks + depth-1;
2557 /*
2558 * If we cross into another context, reset the
2559 * hash key (this also prevents the checking and the
2560 * adding of the dependency to 'prev'):
2561 */
2562 if (prev_hlock->irq_context != hlock->irq_context)
2563 return 1;
2564 }
2565 return 0;
2566 }
2567
2568 #else
2569
2570 static inline
2571 int mark_lock_irq(struct task_struct *curr, struct held_lock *this,
2572 enum lock_usage_bit new_bit)
2573 {
2574 WARN_ON(1);
2575 return 1;
2576 }
2577
2578 static inline int mark_irqflags(struct task_struct *curr,
2579 struct held_lock *hlock)
2580 {
2581 return 1;
2582 }
2583
2584 static inline int separate_irq_context(struct task_struct *curr,
2585 struct held_lock *hlock)
2586 {
2587 return 0;
2588 }
2589
2590 void lockdep_trace_alloc(gfp_t gfp_mask)
2591 {
2592 }
2593
2594 #endif
2595
2596 /*
2597 * Mark a lock with a usage bit, and validate the state transition:
2598 */
2599 static int mark_lock(struct task_struct *curr, struct held_lock *this,
2600 enum lock_usage_bit new_bit)
2601 {
2602 unsigned int new_mask = 1 << new_bit, ret = 1;
2603
2604 /*
2605 * If already set then do not dirty the cacheline,
2606 * nor do any checks:
2607 */
2608 if (likely(hlock_class(this)->usage_mask & new_mask))
2609 return 1;
2610
2611 if (!graph_lock())
2612 return 0;
2613 /*
2614 * Make sure we didnt race:
2615 */
2616 if (unlikely(hlock_class(this)->usage_mask & new_mask)) {
2617 graph_unlock();
2618 return 1;
2619 }
2620
2621 hlock_class(this)->usage_mask |= new_mask;
2622
2623 if (!save_trace(hlock_class(this)->usage_traces + new_bit))
2624 return 0;
2625
2626 switch (new_bit) {
2627 #define LOCKDEP_STATE(__STATE) \
2628 case LOCK_USED_IN_##__STATE: \
2629 case LOCK_USED_IN_##__STATE##_READ: \
2630 case LOCK_ENABLED_##__STATE: \
2631 case LOCK_ENABLED_##__STATE##_READ:
2632 #include "lockdep_states.h"
2633 #undef LOCKDEP_STATE
2634 ret = mark_lock_irq(curr, this, new_bit);
2635 if (!ret)
2636 return 0;
2637 break;
2638 case LOCK_USED:
2639 debug_atomic_dec(nr_unused_locks);
2640 break;
2641 default:
2642 if (!debug_locks_off_graph_unlock())
2643 return 0;
2644 WARN_ON(1);
2645 return 0;
2646 }
2647
2648 graph_unlock();
2649
2650 /*
2651 * We must printk outside of the graph_lock:
2652 */
2653 if (ret == 2) {
2654 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
2655 print_lock(this);
2656 print_irqtrace_events(curr);
2657 dump_stack();
2658 }
2659
2660 return ret;
2661 }
2662
2663 /*
2664 * Initialize a lock instance's lock-class mapping info:
2665 */
2666 void lockdep_init_map(struct lockdep_map *lock, const char *name,
2667 struct lock_class_key *key, int subclass)
2668 {
2669 lock->class_cache = NULL;
2670 #ifdef CONFIG_LOCK_STAT
2671 lock->cpu = raw_smp_processor_id();
2672 #endif
2673
2674 if (DEBUG_LOCKS_WARN_ON(!name)) {
2675 lock->name = "NULL";
2676 return;
2677 }
2678
2679 lock->name = name;
2680
2681 if (DEBUG_LOCKS_WARN_ON(!key))
2682 return;
2683 /*
2684 * Sanity check, the lock-class key must be persistent:
2685 */
2686 if (!static_obj(key)) {
2687 printk("BUG: key %p not in .data!\n", key);
2688 DEBUG_LOCKS_WARN_ON(1);
2689 return;
2690 }
2691 lock->key = key;
2692
2693 if (unlikely(!debug_locks))
2694 return;
2695
2696 if (subclass)
2697 register_lock_class(lock, subclass, 1);
2698 }
2699 EXPORT_SYMBOL_GPL(lockdep_init_map);
2700
2701 /*
2702 * This gets called for every mutex_lock*()/spin_lock*() operation.
2703 * We maintain the dependency maps and validate the locking attempt:
2704 */
2705 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
2706 int trylock, int read, int check, int hardirqs_off,
2707 struct lockdep_map *nest_lock, unsigned long ip,
2708 int references)
2709 {
2710 struct task_struct *curr = current;
2711 struct lock_class *class = NULL;
2712 struct held_lock *hlock;
2713 unsigned int depth, id;
2714 int chain_head = 0;
2715 int class_idx;
2716 u64 chain_key;
2717
2718 if (!prove_locking)
2719 check = 1;
2720
2721 if (unlikely(!debug_locks))
2722 return 0;
2723
2724 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2725 return 0;
2726
2727 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
2728 debug_locks_off();
2729 printk("BUG: MAX_LOCKDEP_SUBCLASSES too low!\n");
2730 printk("turning off the locking correctness validator.\n");
2731 dump_stack();
2732 return 0;
2733 }
2734
2735 if (!subclass)
2736 class = lock->class_cache;
2737 /*
2738 * Not cached yet or subclass?
2739 */
2740 if (unlikely(!class)) {
2741 class = register_lock_class(lock, subclass, 0);
2742 if (!class)
2743 return 0;
2744 }
2745 atomic_inc((atomic_t *)&class->ops);
2746 if (very_verbose(class)) {
2747 printk("\nacquire class [%p] %s", class->key, class->name);
2748 if (class->name_version > 1)
2749 printk("#%d", class->name_version);
2750 printk("\n");
2751 dump_stack();
2752 }
2753
2754 /*
2755 * Add the lock to the list of currently held locks.
2756 * (we dont increase the depth just yet, up until the
2757 * dependency checks are done)
2758 */
2759 depth = curr->lockdep_depth;
2760 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
2761 return 0;
2762
2763 class_idx = class - lock_classes + 1;
2764
2765 if (depth) {
2766 hlock = curr->held_locks + depth - 1;
2767 if (hlock->class_idx == class_idx && nest_lock) {
2768 if (hlock->references)
2769 hlock->references++;
2770 else
2771 hlock->references = 2;
2772
2773 return 1;
2774 }
2775 }
2776
2777 hlock = curr->held_locks + depth;
2778 if (DEBUG_LOCKS_WARN_ON(!class))
2779 return 0;
2780 hlock->class_idx = class_idx;
2781 hlock->acquire_ip = ip;
2782 hlock->instance = lock;
2783 hlock->nest_lock = nest_lock;
2784 hlock->trylock = trylock;
2785 hlock->read = read;
2786 hlock->check = check;
2787 hlock->hardirqs_off = !!hardirqs_off;
2788 hlock->references = references;
2789 #ifdef CONFIG_LOCK_STAT
2790 hlock->waittime_stamp = 0;
2791 hlock->holdtime_stamp = lockstat_clock();
2792 #endif
2793
2794 if (check == 2 && !mark_irqflags(curr, hlock))
2795 return 0;
2796
2797 /* mark it as used: */
2798 if (!mark_lock(curr, hlock, LOCK_USED))
2799 return 0;
2800
2801 /*
2802 * Calculate the chain hash: it's the combined hash of all the
2803 * lock keys along the dependency chain. We save the hash value
2804 * at every step so that we can get the current hash easily
2805 * after unlock. The chain hash is then used to cache dependency
2806 * results.
2807 *
2808 * The 'key ID' is what is the most compact key value to drive
2809 * the hash, not class->key.
2810 */
2811 id = class - lock_classes;
2812 if (DEBUG_LOCKS_WARN_ON(id >= MAX_LOCKDEP_KEYS))
2813 return 0;
2814
2815 chain_key = curr->curr_chain_key;
2816 if (!depth) {
2817 if (DEBUG_LOCKS_WARN_ON(chain_key != 0))
2818 return 0;
2819 chain_head = 1;
2820 }
2821
2822 hlock->prev_chain_key = chain_key;
2823 if (separate_irq_context(curr, hlock)) {
2824 chain_key = 0;
2825 chain_head = 1;
2826 }
2827 chain_key = iterate_chain_key(chain_key, id);
2828
2829 if (!validate_chain(curr, lock, hlock, chain_head, chain_key))
2830 return 0;
2831
2832 curr->curr_chain_key = chain_key;
2833 curr->lockdep_depth++;
2834 check_chain_key(curr);
2835 #ifdef CONFIG_DEBUG_LOCKDEP
2836 if (unlikely(!debug_locks))
2837 return 0;
2838 #endif
2839 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
2840 debug_locks_off();
2841 printk("BUG: MAX_LOCK_DEPTH too low!\n");
2842 printk("turning off the locking correctness validator.\n");
2843 dump_stack();
2844 return 0;
2845 }
2846
2847 if (unlikely(curr->lockdep_depth > max_lockdep_depth))
2848 max_lockdep_depth = curr->lockdep_depth;
2849
2850 return 1;
2851 }
2852
2853 static int
2854 print_unlock_inbalance_bug(struct task_struct *curr, struct lockdep_map *lock,
2855 unsigned long ip)
2856 {
2857 if (!debug_locks_off())
2858 return 0;
2859 if (debug_locks_silent)
2860 return 0;
2861
2862 printk("\n=====================================\n");
2863 printk( "[ BUG: bad unlock balance detected! ]\n");
2864 printk( "-------------------------------------\n");
2865 printk("%s/%d is trying to release lock (",
2866 curr->comm, task_pid_nr(curr));
2867 print_lockdep_cache(lock);
2868 printk(") at:\n");
2869 print_ip_sym(ip);
2870 printk("but there are no more locks to release!\n");
2871 printk("\nother info that might help us debug this:\n");
2872 lockdep_print_held_locks(curr);
2873
2874 printk("\nstack backtrace:\n");
2875 dump_stack();
2876
2877 return 0;
2878 }
2879
2880 /*
2881 * Common debugging checks for both nested and non-nested unlock:
2882 */
2883 static int check_unlock(struct task_struct *curr, struct lockdep_map *lock,
2884 unsigned long ip)
2885 {
2886 if (unlikely(!debug_locks))
2887 return 0;
2888 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2889 return 0;
2890
2891 if (curr->lockdep_depth <= 0)
2892 return print_unlock_inbalance_bug(curr, lock, ip);
2893
2894 return 1;
2895 }
2896
2897 static int match_held_lock(struct held_lock *hlock, struct lockdep_map *lock)
2898 {
2899 if (hlock->instance == lock)
2900 return 1;
2901
2902 if (hlock->references) {
2903 struct lock_class *class = lock->class_cache;
2904
2905 if (!class)
2906 class = look_up_lock_class(lock, 0);
2907
2908 if (DEBUG_LOCKS_WARN_ON(!class))
2909 return 0;
2910
2911 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
2912 return 0;
2913
2914 if (hlock->class_idx == class - lock_classes + 1)
2915 return 1;
2916 }
2917
2918 return 0;
2919 }
2920
2921 static int
2922 __lock_set_class(struct lockdep_map *lock, const char *name,
2923 struct lock_class_key *key, unsigned int subclass,
2924 unsigned long ip)
2925 {
2926 struct task_struct *curr = current;
2927 struct held_lock *hlock, *prev_hlock;
2928 struct lock_class *class;
2929 unsigned int depth;
2930 int i;
2931
2932 depth = curr->lockdep_depth;
2933 if (DEBUG_LOCKS_WARN_ON(!depth))
2934 return 0;
2935
2936 prev_hlock = NULL;
2937 for (i = depth-1; i >= 0; i--) {
2938 hlock = curr->held_locks + i;
2939 /*
2940 * We must not cross into another context:
2941 */
2942 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
2943 break;
2944 if (match_held_lock(hlock, lock))
2945 goto found_it;
2946 prev_hlock = hlock;
2947 }
2948 return print_unlock_inbalance_bug(curr, lock, ip);
2949
2950 found_it:
2951 lockdep_init_map(lock, name, key, 0);
2952 class = register_lock_class(lock, subclass, 0);
2953 hlock->class_idx = class - lock_classes + 1;
2954
2955 curr->lockdep_depth = i;
2956 curr->curr_chain_key = hlock->prev_chain_key;
2957
2958 for (; i < depth; i++) {
2959 hlock = curr->held_locks + i;
2960 if (!__lock_acquire(hlock->instance,
2961 hlock_class(hlock)->subclass, hlock->trylock,
2962 hlock->read, hlock->check, hlock->hardirqs_off,
2963 hlock->nest_lock, hlock->acquire_ip,
2964 hlock->references))
2965 return 0;
2966 }
2967
2968 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
2969 return 0;
2970 return 1;
2971 }
2972
2973 /*
2974 * Remove the lock to the list of currently held locks in a
2975 * potentially non-nested (out of order) manner. This is a
2976 * relatively rare operation, as all the unlock APIs default
2977 * to nested mode (which uses lock_release()):
2978 */
2979 static int
2980 lock_release_non_nested(struct task_struct *curr,
2981 struct lockdep_map *lock, unsigned long ip)
2982 {
2983 struct held_lock *hlock, *prev_hlock;
2984 unsigned int depth;
2985 int i;
2986
2987 /*
2988 * Check whether the lock exists in the current stack
2989 * of held locks:
2990 */
2991 depth = curr->lockdep_depth;
2992 if (DEBUG_LOCKS_WARN_ON(!depth))
2993 return 0;
2994
2995 prev_hlock = NULL;
2996 for (i = depth-1; i >= 0; i--) {
2997 hlock = curr->held_locks + i;
2998 /*
2999 * We must not cross into another context:
3000 */
3001 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3002 break;
3003 if (match_held_lock(hlock, lock))
3004 goto found_it;
3005 prev_hlock = hlock;
3006 }
3007 return print_unlock_inbalance_bug(curr, lock, ip);
3008
3009 found_it:
3010 if (hlock->instance == lock)
3011 lock_release_holdtime(hlock);
3012
3013 if (hlock->references) {
3014 hlock->references--;
3015 if (hlock->references) {
3016 /*
3017 * We had, and after removing one, still have
3018 * references, the current lock stack is still
3019 * valid. We're done!
3020 */
3021 return 1;
3022 }
3023 }
3024
3025 /*
3026 * We have the right lock to unlock, 'hlock' points to it.
3027 * Now we remove it from the stack, and add back the other
3028 * entries (if any), recalculating the hash along the way:
3029 */
3030
3031 curr->lockdep_depth = i;
3032 curr->curr_chain_key = hlock->prev_chain_key;
3033
3034 for (i++; i < depth; i++) {
3035 hlock = curr->held_locks + i;
3036 if (!__lock_acquire(hlock->instance,
3037 hlock_class(hlock)->subclass, hlock->trylock,
3038 hlock->read, hlock->check, hlock->hardirqs_off,
3039 hlock->nest_lock, hlock->acquire_ip,
3040 hlock->references))
3041 return 0;
3042 }
3043
3044 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - 1))
3045 return 0;
3046 return 1;
3047 }
3048
3049 /*
3050 * Remove the lock to the list of currently held locks - this gets
3051 * called on mutex_unlock()/spin_unlock*() (or on a failed
3052 * mutex_lock_interruptible()). This is done for unlocks that nest
3053 * perfectly. (i.e. the current top of the lock-stack is unlocked)
3054 */
3055 static int lock_release_nested(struct task_struct *curr,
3056 struct lockdep_map *lock, unsigned long ip)
3057 {
3058 struct held_lock *hlock;
3059 unsigned int depth;
3060
3061 /*
3062 * Pop off the top of the lock stack:
3063 */
3064 depth = curr->lockdep_depth - 1;
3065 hlock = curr->held_locks + depth;
3066
3067 /*
3068 * Is the unlock non-nested:
3069 */
3070 if (hlock->instance != lock || hlock->references)
3071 return lock_release_non_nested(curr, lock, ip);
3072 curr->lockdep_depth--;
3073
3074 if (DEBUG_LOCKS_WARN_ON(!depth && (hlock->prev_chain_key != 0)))
3075 return 0;
3076
3077 curr->curr_chain_key = hlock->prev_chain_key;
3078
3079 lock_release_holdtime(hlock);
3080
3081 #ifdef CONFIG_DEBUG_LOCKDEP
3082 hlock->prev_chain_key = 0;
3083 hlock->class_idx = 0;
3084 hlock->acquire_ip = 0;
3085 hlock->irq_context = 0;
3086 #endif
3087 return 1;
3088 }
3089
3090 /*
3091 * Remove the lock to the list of currently held locks - this gets
3092 * called on mutex_unlock()/spin_unlock*() (or on a failed
3093 * mutex_lock_interruptible()). This is done for unlocks that nest
3094 * perfectly. (i.e. the current top of the lock-stack is unlocked)
3095 */
3096 static void
3097 __lock_release(struct lockdep_map *lock, int nested, unsigned long ip)
3098 {
3099 struct task_struct *curr = current;
3100
3101 if (!check_unlock(curr, lock, ip))
3102 return;
3103
3104 if (nested) {
3105 if (!lock_release_nested(curr, lock, ip))
3106 return;
3107 } else {
3108 if (!lock_release_non_nested(curr, lock, ip))
3109 return;
3110 }
3111
3112 check_chain_key(curr);
3113 }
3114
3115 static int __lock_is_held(struct lockdep_map *lock)
3116 {
3117 struct task_struct *curr = current;
3118 int i;
3119
3120 for (i = 0; i < curr->lockdep_depth; i++) {
3121 struct held_lock *hlock = curr->held_locks + i;
3122
3123 if (match_held_lock(hlock, lock))
3124 return 1;
3125 }
3126
3127 return 0;
3128 }
3129
3130 /*
3131 * Check whether we follow the irq-flags state precisely:
3132 */
3133 static void check_flags(unsigned long flags)
3134 {
3135 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) && \
3136 defined(CONFIG_TRACE_IRQFLAGS)
3137 if (!debug_locks)
3138 return;
3139
3140 if (irqs_disabled_flags(flags)) {
3141 if (DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)) {
3142 printk("possible reason: unannotated irqs-off.\n");
3143 }
3144 } else {
3145 if (DEBUG_LOCKS_WARN_ON(!current->hardirqs_enabled)) {
3146 printk("possible reason: unannotated irqs-on.\n");
3147 }
3148 }
3149
3150 /*
3151 * We dont accurately track softirq state in e.g.
3152 * hardirq contexts (such as on 4KSTACKS), so only
3153 * check if not in hardirq contexts:
3154 */
3155 if (!hardirq_count()) {
3156 if (softirq_count())
3157 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
3158 else
3159 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
3160 }
3161
3162 if (!debug_locks)
3163 print_irqtrace_events(current);
3164 #endif
3165 }
3166
3167 void lock_set_class(struct lockdep_map *lock, const char *name,
3168 struct lock_class_key *key, unsigned int subclass,
3169 unsigned long ip)
3170 {
3171 unsigned long flags;
3172
3173 if (unlikely(current->lockdep_recursion))
3174 return;
3175
3176 raw_local_irq_save(flags);
3177 current->lockdep_recursion = 1;
3178 check_flags(flags);
3179 if (__lock_set_class(lock, name, key, subclass, ip))
3180 check_chain_key(current);
3181 current->lockdep_recursion = 0;
3182 raw_local_irq_restore(flags);
3183 }
3184 EXPORT_SYMBOL_GPL(lock_set_class);
3185
3186 /*
3187 * We are not always called with irqs disabled - do that here,
3188 * and also avoid lockdep recursion:
3189 */
3190 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
3191 int trylock, int read, int check,
3192 struct lockdep_map *nest_lock, unsigned long ip)
3193 {
3194 unsigned long flags;
3195
3196 if (unlikely(current->lockdep_recursion))
3197 return;
3198
3199 raw_local_irq_save(flags);
3200 check_flags(flags);
3201
3202 current->lockdep_recursion = 1;
3203 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
3204 __lock_acquire(lock, subclass, trylock, read, check,
3205 irqs_disabled_flags(flags), nest_lock, ip, 0);
3206 current->lockdep_recursion = 0;
3207 raw_local_irq_restore(flags);
3208 }
3209 EXPORT_SYMBOL_GPL(lock_acquire);
3210
3211 void lock_release(struct lockdep_map *lock, int nested,
3212 unsigned long ip)
3213 {
3214 unsigned long flags;
3215
3216 if (unlikely(current->lockdep_recursion))
3217 return;
3218
3219 raw_local_irq_save(flags);
3220 check_flags(flags);
3221 current->lockdep_recursion = 1;
3222 trace_lock_release(lock, nested, ip);
3223 __lock_release(lock, nested, ip);
3224 current->lockdep_recursion = 0;
3225 raw_local_irq_restore(flags);
3226 }
3227 EXPORT_SYMBOL_GPL(lock_release);
3228
3229 int lock_is_held(struct lockdep_map *lock)
3230 {
3231 unsigned long flags;
3232 int ret = 0;
3233
3234 if (unlikely(current->lockdep_recursion))
3235 return ret;
3236
3237 raw_local_irq_save(flags);
3238 check_flags(flags);
3239
3240 current->lockdep_recursion = 1;
3241 ret = __lock_is_held(lock);
3242 current->lockdep_recursion = 0;
3243 raw_local_irq_restore(flags);
3244
3245 return ret;
3246 }
3247 EXPORT_SYMBOL_GPL(lock_is_held);
3248
3249 void lockdep_set_current_reclaim_state(gfp_t gfp_mask)
3250 {
3251 current->lockdep_reclaim_gfp = gfp_mask;
3252 }
3253
3254 void lockdep_clear_current_reclaim_state(void)
3255 {
3256 current->lockdep_reclaim_gfp = 0;
3257 }
3258
3259 #ifdef CONFIG_LOCK_STAT
3260 static int
3261 print_lock_contention_bug(struct task_struct *curr, struct lockdep_map *lock,
3262 unsigned long ip)
3263 {
3264 if (!debug_locks_off())
3265 return 0;
3266 if (debug_locks_silent)
3267 return 0;
3268
3269 printk("\n=================================\n");
3270 printk( "[ BUG: bad contention detected! ]\n");
3271 printk( "---------------------------------\n");
3272 printk("%s/%d is trying to contend lock (",
3273 curr->comm, task_pid_nr(curr));
3274 print_lockdep_cache(lock);
3275 printk(") at:\n");
3276 print_ip_sym(ip);
3277 printk("but there are no locks held!\n");
3278 printk("\nother info that might help us debug this:\n");
3279 lockdep_print_held_locks(curr);
3280
3281 printk("\nstack backtrace:\n");
3282 dump_stack();
3283
3284 return 0;
3285 }
3286
3287 static void
3288 __lock_contended(struct lockdep_map *lock, unsigned long ip)
3289 {
3290 struct task_struct *curr = current;
3291 struct held_lock *hlock, *prev_hlock;
3292 struct lock_class_stats *stats;
3293 unsigned int depth;
3294 int i, contention_point, contending_point;
3295
3296 depth = curr->lockdep_depth;
3297 if (DEBUG_LOCKS_WARN_ON(!depth))
3298 return;
3299
3300 prev_hlock = NULL;
3301 for (i = depth-1; i >= 0; i--) {
3302 hlock = curr->held_locks + i;
3303 /*
3304 * We must not cross into another context:
3305 */
3306 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3307 break;
3308 if (match_held_lock(hlock, lock))
3309 goto found_it;
3310 prev_hlock = hlock;
3311 }
3312 print_lock_contention_bug(curr, lock, ip);
3313 return;
3314
3315 found_it:
3316 if (hlock->instance != lock)
3317 return;
3318
3319 hlock->waittime_stamp = lockstat_clock();
3320
3321 contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
3322 contending_point = lock_point(hlock_class(hlock)->contending_point,
3323 lock->ip);
3324
3325 stats = get_lock_stats(hlock_class(hlock));
3326 if (contention_point < LOCKSTAT_POINTS)
3327 stats->contention_point[contention_point]++;
3328 if (contending_point < LOCKSTAT_POINTS)
3329 stats->contending_point[contending_point]++;
3330 if (lock->cpu != smp_processor_id())
3331 stats->bounces[bounce_contended + !!hlock->read]++;
3332 put_lock_stats(stats);
3333 }
3334
3335 static void
3336 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
3337 {
3338 struct task_struct *curr = current;
3339 struct held_lock *hlock, *prev_hlock;
3340 struct lock_class_stats *stats;
3341 unsigned int depth;
3342 u64 now, waittime = 0;
3343 int i, cpu;
3344
3345 depth = curr->lockdep_depth;
3346 if (DEBUG_LOCKS_WARN_ON(!depth))
3347 return;
3348
3349 prev_hlock = NULL;
3350 for (i = depth-1; i >= 0; i--) {
3351 hlock = curr->held_locks + i;
3352 /*
3353 * We must not cross into another context:
3354 */
3355 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3356 break;
3357 if (match_held_lock(hlock, lock))
3358 goto found_it;
3359 prev_hlock = hlock;
3360 }
3361 print_lock_contention_bug(curr, lock, _RET_IP_);
3362 return;
3363
3364 found_it:
3365 if (hlock->instance != lock)
3366 return;
3367
3368 cpu = smp_processor_id();
3369 if (hlock->waittime_stamp) {
3370 now = lockstat_clock();
3371 waittime = now - hlock->waittime_stamp;
3372 hlock->holdtime_stamp = now;
3373 }
3374
3375 trace_lock_acquired(lock, ip, waittime);
3376
3377 stats = get_lock_stats(hlock_class(hlock));
3378 if (waittime) {
3379 if (hlock->read)
3380 lock_time_inc(&stats->read_waittime, waittime);
3381 else
3382 lock_time_inc(&stats->write_waittime, waittime);
3383 }
3384 if (lock->cpu != cpu)
3385 stats->bounces[bounce_acquired + !!hlock->read]++;
3386 put_lock_stats(stats);
3387
3388 lock->cpu = cpu;
3389 lock->ip = ip;
3390 }
3391
3392 void lock_contended(struct lockdep_map *lock, unsigned long ip)
3393 {
3394 unsigned long flags;
3395
3396 if (unlikely(!lock_stat))
3397 return;
3398
3399 if (unlikely(current->lockdep_recursion))
3400 return;
3401
3402 raw_local_irq_save(flags);
3403 check_flags(flags);
3404 current->lockdep_recursion = 1;
3405 trace_lock_contended(lock, ip);
3406 __lock_contended(lock, ip);
3407 current->lockdep_recursion = 0;
3408 raw_local_irq_restore(flags);
3409 }
3410 EXPORT_SYMBOL_GPL(lock_contended);
3411
3412 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
3413 {
3414 unsigned long flags;
3415
3416 if (unlikely(!lock_stat))
3417 return;
3418
3419 if (unlikely(current->lockdep_recursion))
3420 return;
3421
3422 raw_local_irq_save(flags);
3423 check_flags(flags);
3424 current->lockdep_recursion = 1;
3425 __lock_acquired(lock, ip);
3426 current->lockdep_recursion = 0;
3427 raw_local_irq_restore(flags);
3428 }
3429 EXPORT_SYMBOL_GPL(lock_acquired);
3430 #endif
3431
3432 /*
3433 * Used by the testsuite, sanitize the validator state
3434 * after a simulated failure:
3435 */
3436
3437 void lockdep_reset(void)
3438 {
3439 unsigned long flags;
3440 int i;
3441
3442 raw_local_irq_save(flags);
3443 current->curr_chain_key = 0;
3444 current->lockdep_depth = 0;
3445 current->lockdep_recursion = 0;
3446 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
3447 nr_hardirq_chains = 0;
3448 nr_softirq_chains = 0;
3449 nr_process_chains = 0;
3450 debug_locks = 1;
3451 for (i = 0; i < CHAINHASH_SIZE; i++)
3452 INIT_LIST_HEAD(chainhash_table + i);
3453 raw_local_irq_restore(flags);
3454 }
3455
3456 static void zap_class(struct lock_class *class)
3457 {
3458 int i;
3459
3460 /*
3461 * Remove all dependencies this lock is
3462 * involved in:
3463 */
3464 for (i = 0; i < nr_list_entries; i++) {
3465 if (list_entries[i].class == class)
3466 list_del_rcu(&list_entries[i].entry);
3467 }
3468 /*
3469 * Unhash the class and remove it from the all_lock_classes list:
3470 */
3471 list_del_rcu(&class->hash_entry);
3472 list_del_rcu(&class->lock_entry);
3473
3474 class->key = NULL;
3475 }
3476
3477 static inline int within(const void *addr, void *start, unsigned long size)
3478 {
3479 return addr >= start && addr < start + size;
3480 }
3481
3482 void lockdep_free_key_range(void *start, unsigned long size)
3483 {
3484 struct lock_class *class, *next;
3485 struct list_head *head;
3486 unsigned long flags;
3487 int i;
3488 int locked;
3489
3490 raw_local_irq_save(flags);
3491 locked = graph_lock();
3492
3493 /*
3494 * Unhash all classes that were created by this module:
3495 */
3496 for (i = 0; i < CLASSHASH_SIZE; i++) {
3497 head = classhash_table + i;
3498 if (list_empty(head))
3499 continue;
3500 list_for_each_entry_safe(class, next, head, hash_entry) {
3501 if (within(class->key, start, size))
3502 zap_class(class);
3503 else if (within(class->name, start, size))
3504 zap_class(class);
3505 }
3506 }
3507
3508 if (locked)
3509 graph_unlock();
3510 raw_local_irq_restore(flags);
3511 }
3512
3513 void lockdep_reset_lock(struct lockdep_map *lock)
3514 {
3515 struct lock_class *class, *next;
3516 struct list_head *head;
3517 unsigned long flags;
3518 int i, j;
3519 int locked;
3520
3521 raw_local_irq_save(flags);
3522
3523 /*
3524 * Remove all classes this lock might have:
3525 */
3526 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
3527 /*
3528 * If the class exists we look it up and zap it:
3529 */
3530 class = look_up_lock_class(lock, j);
3531 if (class)
3532 zap_class(class);
3533 }
3534 /*
3535 * Debug check: in the end all mapped classes should
3536 * be gone.
3537 */
3538 locked = graph_lock();
3539 for (i = 0; i < CLASSHASH_SIZE; i++) {
3540 head = classhash_table + i;
3541 if (list_empty(head))
3542 continue;
3543 list_for_each_entry_safe(class, next, head, hash_entry) {
3544 if (unlikely(class == lock->class_cache)) {
3545 if (debug_locks_off_graph_unlock())
3546 WARN_ON(1);
3547 goto out_restore;
3548 }
3549 }
3550 }
3551 if (locked)
3552 graph_unlock();
3553
3554 out_restore:
3555 raw_local_irq_restore(flags);
3556 }
3557
3558 void lockdep_init(void)
3559 {
3560 int i;
3561
3562 /*
3563 * Some architectures have their own start_kernel()
3564 * code which calls lockdep_init(), while we also
3565 * call lockdep_init() from the start_kernel() itself,
3566 * and we want to initialize the hashes only once:
3567 */
3568 if (lockdep_initialized)
3569 return;
3570
3571 for (i = 0; i < CLASSHASH_SIZE; i++)
3572 INIT_LIST_HEAD(classhash_table + i);
3573
3574 for (i = 0; i < CHAINHASH_SIZE; i++)
3575 INIT_LIST_HEAD(chainhash_table + i);
3576
3577 lockdep_initialized = 1;
3578 }
3579
3580 void __init lockdep_info(void)
3581 {
3582 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
3583
3584 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES);
3585 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH);
3586 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS);
3587 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE);
3588 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES);
3589 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS);
3590 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE);
3591
3592 printk(" memory used by lock dependency info: %lu kB\n",
3593 (sizeof(struct lock_class) * MAX_LOCKDEP_KEYS +
3594 sizeof(struct list_head) * CLASSHASH_SIZE +
3595 sizeof(struct lock_list) * MAX_LOCKDEP_ENTRIES +
3596 sizeof(struct lock_chain) * MAX_LOCKDEP_CHAINS +
3597 sizeof(struct list_head) * CHAINHASH_SIZE
3598 #ifdef CONFIG_PROVE_LOCKING
3599 + sizeof(struct circular_queue)
3600 #endif
3601 ) / 1024
3602 );
3603
3604 printk(" per task-struct memory footprint: %lu bytes\n",
3605 sizeof(struct held_lock) * MAX_LOCK_DEPTH);
3606
3607 #ifdef CONFIG_DEBUG_LOCKDEP
3608 if (lockdep_init_error) {
3609 printk("WARNING: lockdep init error! Arch code didn't call lockdep_init() early enough?\n");
3610 printk("Call stack leading to lockdep invocation was:\n");
3611 print_stack_trace(&lockdep_init_trace, 0);
3612 }
3613 #endif
3614 }
3615
3616 static void
3617 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
3618 const void *mem_to, struct held_lock *hlock)
3619 {
3620 if (!debug_locks_off())
3621 return;
3622 if (debug_locks_silent)
3623 return;
3624
3625 printk("\n=========================\n");
3626 printk( "[ BUG: held lock freed! ]\n");
3627 printk( "-------------------------\n");
3628 printk("%s/%d is freeing memory %p-%p, with a lock still held there!\n",
3629 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
3630 print_lock(hlock);
3631 lockdep_print_held_locks(curr);
3632
3633 printk("\nstack backtrace:\n");
3634 dump_stack();
3635 }
3636
3637 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
3638 const void* lock_from, unsigned long lock_len)
3639 {
3640 return lock_from + lock_len <= mem_from ||
3641 mem_from + mem_len <= lock_from;
3642 }
3643
3644 /*
3645 * Called when kernel memory is freed (or unmapped), or if a lock
3646 * is destroyed or reinitialized - this code checks whether there is
3647 * any held lock in the memory range of <from> to <to>:
3648 */
3649 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
3650 {
3651 struct task_struct *curr = current;
3652 struct held_lock *hlock;
3653 unsigned long flags;
3654 int i;
3655
3656 if (unlikely(!debug_locks))
3657 return;
3658
3659 local_irq_save(flags);
3660 for (i = 0; i < curr->lockdep_depth; i++) {
3661 hlock = curr->held_locks + i;
3662
3663 if (not_in_range(mem_from, mem_len, hlock->instance,
3664 sizeof(*hlock->instance)))
3665 continue;
3666
3667 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
3668 break;
3669 }
3670 local_irq_restore(flags);
3671 }
3672 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
3673
3674 static void print_held_locks_bug(struct task_struct *curr)
3675 {
3676 if (!debug_locks_off())
3677 return;
3678 if (debug_locks_silent)
3679 return;
3680
3681 printk("\n=====================================\n");
3682 printk( "[ BUG: lock held at task exit time! ]\n");
3683 printk( "-------------------------------------\n");
3684 printk("%s/%d is exiting with locks still held!\n",
3685 curr->comm, task_pid_nr(curr));
3686 lockdep_print_held_locks(curr);
3687
3688 printk("\nstack backtrace:\n");
3689 dump_stack();
3690 }
3691
3692 void debug_check_no_locks_held(struct task_struct *task)
3693 {
3694 if (unlikely(task->lockdep_depth > 0))
3695 print_held_locks_bug(task);
3696 }
3697
3698 void debug_show_all_locks(void)
3699 {
3700 struct task_struct *g, *p;
3701 int count = 10;
3702 int unlock = 1;
3703
3704 if (unlikely(!debug_locks)) {
3705 printk("INFO: lockdep is turned off.\n");
3706 return;
3707 }
3708 printk("\nShowing all locks held in the system:\n");
3709
3710 /*
3711 * Here we try to get the tasklist_lock as hard as possible,
3712 * if not successful after 2 seconds we ignore it (but keep
3713 * trying). This is to enable a debug printout even if a
3714 * tasklist_lock-holding task deadlocks or crashes.
3715 */
3716 retry:
3717 if (!read_trylock(&tasklist_lock)) {
3718 if (count == 10)
3719 printk("hm, tasklist_lock locked, retrying... ");
3720 if (count) {
3721 count--;
3722 printk(" #%d", 10-count);
3723 mdelay(200);
3724 goto retry;
3725 }
3726 printk(" ignoring it.\n");
3727 unlock = 0;
3728 } else {
3729 if (count != 10)
3730 printk(KERN_CONT " locked it.\n");
3731 }
3732
3733 do_each_thread(g, p) {
3734 /*
3735 * It's not reliable to print a task's held locks
3736 * if it's not sleeping (or if it's not the current
3737 * task):
3738 */
3739 if (p->state == TASK_RUNNING && p != current)
3740 continue;
3741 if (p->lockdep_depth)
3742 lockdep_print_held_locks(p);
3743 if (!unlock)
3744 if (read_trylock(&tasklist_lock))
3745 unlock = 1;
3746 } while_each_thread(g, p);
3747
3748 printk("\n");
3749 printk("=============================================\n\n");
3750
3751 if (unlock)
3752 read_unlock(&tasklist_lock);
3753 }
3754 EXPORT_SYMBOL_GPL(debug_show_all_locks);
3755
3756 /*
3757 * Careful: only use this function if you are sure that
3758 * the task cannot run in parallel!
3759 */
3760 void __debug_show_held_locks(struct task_struct *task)
3761 {
3762 if (unlikely(!debug_locks)) {
3763 printk("INFO: lockdep is turned off.\n");
3764 return;
3765 }
3766 lockdep_print_held_locks(task);
3767 }
3768 EXPORT_SYMBOL_GPL(__debug_show_held_locks);
3769
3770 void debug_show_held_locks(struct task_struct *task)
3771 {
3772 __debug_show_held_locks(task);
3773 }
3774 EXPORT_SYMBOL_GPL(debug_show_held_locks);
3775
3776 void lockdep_sys_exit(void)
3777 {
3778 struct task_struct *curr = current;
3779
3780 if (unlikely(curr->lockdep_depth)) {
3781 if (!debug_locks_off())
3782 return;
3783 printk("\n================================================\n");
3784 printk( "[ BUG: lock held when returning to user space! ]\n");
3785 printk( "------------------------------------------------\n");
3786 printk("%s/%d is leaving the kernel with locks still held!\n",
3787 curr->comm, curr->pid);
3788 lockdep_print_held_locks(curr);
3789 }
3790 }
3791
3792 void lockdep_rcu_dereference(const char *file, const int line)
3793 {
3794 struct task_struct *curr = current;
3795
3796 if (!debug_locks_off())
3797 return;
3798 printk("\n===================================================\n");
3799 printk( "[ INFO: suspicious rcu_dereference_check() usage. ]\n");
3800 printk( "---------------------------------------------------\n");
3801 printk("%s:%d invoked rcu_dereference_check() without protection!\n",
3802 file, line);
3803 printk("\nother info that might help us debug this:\n\n");
3804 printk("\nrcu_scheduler_active = %d, debug_locks = %d\n", rcu_scheduler_active, debug_locks);
3805 lockdep_print_held_locks(curr);
3806 printk("\nstack backtrace:\n");
3807 dump_stack();
3808 }
3809 EXPORT_SYMBOL_GPL(lockdep_rcu_dereference);
This page took 0.110014 seconds and 6 git commands to generate.