Merge remote-tracking branches 'regmap/fix/irq', 'regmap/fix/rbtree' and 'regmap...
[deliverable/linux.git] / kernel / locking / mutex.c
1 /*
2 * kernel/locking/mutex.c
3 *
4 * Mutexes: blocking mutual exclusion locks
5 *
6 * Started by Ingo Molnar:
7 *
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 *
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
12 *
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 * and Sven Dietrich.
17 *
18 * Also see Documentation/locking/mutex-design.txt.
19 */
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched.h>
23 #include <linux/sched/rt.h>
24 #include <linux/export.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/debug_locks.h>
28 #include "mcs_spinlock.h"
29
30 /*
31 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
32 * which forces all calls into the slowpath:
33 */
34 #ifdef CONFIG_DEBUG_MUTEXES
35 # include "mutex-debug.h"
36 # include <asm-generic/mutex-null.h>
37 /*
38 * Must be 0 for the debug case so we do not do the unlock outside of the
39 * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
40 * case.
41 */
42 # undef __mutex_slowpath_needs_to_unlock
43 # define __mutex_slowpath_needs_to_unlock() 0
44 #else
45 # include "mutex.h"
46 # include <asm/mutex.h>
47 #endif
48
49 void
50 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
51 {
52 atomic_set(&lock->count, 1);
53 spin_lock_init(&lock->wait_lock);
54 INIT_LIST_HEAD(&lock->wait_list);
55 mutex_clear_owner(lock);
56 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
57 osq_lock_init(&lock->osq);
58 #endif
59
60 debug_mutex_init(lock, name, key);
61 }
62
63 EXPORT_SYMBOL(__mutex_init);
64
65 #ifndef CONFIG_DEBUG_LOCK_ALLOC
66 /*
67 * We split the mutex lock/unlock logic into separate fastpath and
68 * slowpath functions, to reduce the register pressure on the fastpath.
69 * We also put the fastpath first in the kernel image, to make sure the
70 * branch is predicted by the CPU as default-untaken.
71 */
72 __visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
73
74 /**
75 * mutex_lock - acquire the mutex
76 * @lock: the mutex to be acquired
77 *
78 * Lock the mutex exclusively for this task. If the mutex is not
79 * available right now, it will sleep until it can get it.
80 *
81 * The mutex must later on be released by the same task that
82 * acquired it. Recursive locking is not allowed. The task
83 * may not exit without first unlocking the mutex. Also, kernel
84 * memory where the mutex resides must not be freed with
85 * the mutex still locked. The mutex must first be initialized
86 * (or statically defined) before it can be locked. memset()-ing
87 * the mutex to 0 is not allowed.
88 *
89 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
90 * checks that will enforce the restrictions and will also do
91 * deadlock debugging. )
92 *
93 * This function is similar to (but not equivalent to) down().
94 */
95 void __sched mutex_lock(struct mutex *lock)
96 {
97 might_sleep();
98 /*
99 * The locking fastpath is the 1->0 transition from
100 * 'unlocked' into 'locked' state.
101 */
102 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
103 mutex_set_owner(lock);
104 }
105
106 EXPORT_SYMBOL(mutex_lock);
107 #endif
108
109 static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
110 struct ww_acquire_ctx *ww_ctx)
111 {
112 #ifdef CONFIG_DEBUG_MUTEXES
113 /*
114 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
115 * but released with a normal mutex_unlock in this call.
116 *
117 * This should never happen, always use ww_mutex_unlock.
118 */
119 DEBUG_LOCKS_WARN_ON(ww->ctx);
120
121 /*
122 * Not quite done after calling ww_acquire_done() ?
123 */
124 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
125
126 if (ww_ctx->contending_lock) {
127 /*
128 * After -EDEADLK you tried to
129 * acquire a different ww_mutex? Bad!
130 */
131 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
132
133 /*
134 * You called ww_mutex_lock after receiving -EDEADLK,
135 * but 'forgot' to unlock everything else first?
136 */
137 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
138 ww_ctx->contending_lock = NULL;
139 }
140
141 /*
142 * Naughty, using a different class will lead to undefined behavior!
143 */
144 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
145 #endif
146 ww_ctx->acquired++;
147 }
148
149 /*
150 * After acquiring lock with fastpath or when we lost out in contested
151 * slowpath, set ctx and wake up any waiters so they can recheck.
152 *
153 * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
154 * as the fastpath and opportunistic spinning are disabled in that case.
155 */
156 static __always_inline void
157 ww_mutex_set_context_fastpath(struct ww_mutex *lock,
158 struct ww_acquire_ctx *ctx)
159 {
160 unsigned long flags;
161 struct mutex_waiter *cur;
162
163 ww_mutex_lock_acquired(lock, ctx);
164
165 lock->ctx = ctx;
166
167 /*
168 * The lock->ctx update should be visible on all cores before
169 * the atomic read is done, otherwise contended waiters might be
170 * missed. The contended waiters will either see ww_ctx == NULL
171 * and keep spinning, or it will acquire wait_lock, add itself
172 * to waiter list and sleep.
173 */
174 smp_mb(); /* ^^^ */
175
176 /*
177 * Check if lock is contended, if not there is nobody to wake up
178 */
179 if (likely(atomic_read(&lock->base.count) == 0))
180 return;
181
182 /*
183 * Uh oh, we raced in fastpath, wake up everyone in this case,
184 * so they can see the new lock->ctx.
185 */
186 spin_lock_mutex(&lock->base.wait_lock, flags);
187 list_for_each_entry(cur, &lock->base.wait_list, list) {
188 debug_mutex_wake_waiter(&lock->base, cur);
189 wake_up_process(cur->task);
190 }
191 spin_unlock_mutex(&lock->base.wait_lock, flags);
192 }
193
194 /*
195 * After acquiring lock in the slowpath set ctx and wake up any
196 * waiters so they can recheck.
197 *
198 * Callers must hold the mutex wait_lock.
199 */
200 static __always_inline void
201 ww_mutex_set_context_slowpath(struct ww_mutex *lock,
202 struct ww_acquire_ctx *ctx)
203 {
204 struct mutex_waiter *cur;
205
206 ww_mutex_lock_acquired(lock, ctx);
207 lock->ctx = ctx;
208
209 /*
210 * Give any possible sleeping processes the chance to wake up,
211 * so they can recheck if they have to back off.
212 */
213 list_for_each_entry(cur, &lock->base.wait_list, list) {
214 debug_mutex_wake_waiter(&lock->base, cur);
215 wake_up_process(cur->task);
216 }
217 }
218
219 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
220 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
221 {
222 if (lock->owner != owner)
223 return false;
224
225 /*
226 * Ensure we emit the owner->on_cpu, dereference _after_ checking
227 * lock->owner still matches owner, if that fails, owner might
228 * point to free()d memory, if it still matches, the rcu_read_lock()
229 * ensures the memory stays valid.
230 */
231 barrier();
232
233 return owner->on_cpu;
234 }
235
236 /*
237 * Look out! "owner" is an entirely speculative pointer
238 * access and not reliable.
239 */
240 static noinline
241 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
242 {
243 rcu_read_lock();
244 while (owner_running(lock, owner)) {
245 if (need_resched())
246 break;
247
248 cpu_relax_lowlatency();
249 }
250 rcu_read_unlock();
251
252 /*
253 * We break out the loop above on need_resched() and when the
254 * owner changed, which is a sign for heavy contention. Return
255 * success only when lock->owner is NULL.
256 */
257 return lock->owner == NULL;
258 }
259
260 /*
261 * Initial check for entering the mutex spinning loop
262 */
263 static inline int mutex_can_spin_on_owner(struct mutex *lock)
264 {
265 struct task_struct *owner;
266 int retval = 1;
267
268 if (need_resched())
269 return 0;
270
271 rcu_read_lock();
272 owner = ACCESS_ONCE(lock->owner);
273 if (owner)
274 retval = owner->on_cpu;
275 rcu_read_unlock();
276 /*
277 * if lock->owner is not set, the mutex owner may have just acquired
278 * it and not set the owner yet or the mutex has been released.
279 */
280 return retval;
281 }
282
283 /*
284 * Atomically try to take the lock when it is available
285 */
286 static inline bool mutex_try_to_acquire(struct mutex *lock)
287 {
288 return !mutex_is_locked(lock) &&
289 (atomic_cmpxchg(&lock->count, 1, 0) == 1);
290 }
291
292 /*
293 * Optimistic spinning.
294 *
295 * We try to spin for acquisition when we find that the lock owner
296 * is currently running on a (different) CPU and while we don't
297 * need to reschedule. The rationale is that if the lock owner is
298 * running, it is likely to release the lock soon.
299 *
300 * Since this needs the lock owner, and this mutex implementation
301 * doesn't track the owner atomically in the lock field, we need to
302 * track it non-atomically.
303 *
304 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
305 * to serialize everything.
306 *
307 * The mutex spinners are queued up using MCS lock so that only one
308 * spinner can compete for the mutex. However, if mutex spinning isn't
309 * going to happen, there is no point in going through the lock/unlock
310 * overhead.
311 *
312 * Returns true when the lock was taken, otherwise false, indicating
313 * that we need to jump to the slowpath and sleep.
314 */
315 static bool mutex_optimistic_spin(struct mutex *lock,
316 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
317 {
318 struct task_struct *task = current;
319
320 if (!mutex_can_spin_on_owner(lock))
321 goto done;
322
323 /*
324 * In order to avoid a stampede of mutex spinners trying to
325 * acquire the mutex all at once, the spinners need to take a
326 * MCS (queued) lock first before spinning on the owner field.
327 */
328 if (!osq_lock(&lock->osq))
329 goto done;
330
331 while (true) {
332 struct task_struct *owner;
333
334 if (use_ww_ctx && ww_ctx->acquired > 0) {
335 struct ww_mutex *ww;
336
337 ww = container_of(lock, struct ww_mutex, base);
338 /*
339 * If ww->ctx is set the contents are undefined, only
340 * by acquiring wait_lock there is a guarantee that
341 * they are not invalid when reading.
342 *
343 * As such, when deadlock detection needs to be
344 * performed the optimistic spinning cannot be done.
345 */
346 if (ACCESS_ONCE(ww->ctx))
347 break;
348 }
349
350 /*
351 * If there's an owner, wait for it to either
352 * release the lock or go to sleep.
353 */
354 owner = ACCESS_ONCE(lock->owner);
355 if (owner && !mutex_spin_on_owner(lock, owner))
356 break;
357
358 /* Try to acquire the mutex if it is unlocked. */
359 if (mutex_try_to_acquire(lock)) {
360 lock_acquired(&lock->dep_map, ip);
361
362 if (use_ww_ctx) {
363 struct ww_mutex *ww;
364 ww = container_of(lock, struct ww_mutex, base);
365
366 ww_mutex_set_context_fastpath(ww, ww_ctx);
367 }
368
369 mutex_set_owner(lock);
370 osq_unlock(&lock->osq);
371 return true;
372 }
373
374 /*
375 * When there's no owner, we might have preempted between the
376 * owner acquiring the lock and setting the owner field. If
377 * we're an RT task that will live-lock because we won't let
378 * the owner complete.
379 */
380 if (!owner && (need_resched() || rt_task(task)))
381 break;
382
383 /*
384 * The cpu_relax() call is a compiler barrier which forces
385 * everything in this loop to be re-loaded. We don't need
386 * memory barriers as we'll eventually observe the right
387 * values at the cost of a few extra spins.
388 */
389 cpu_relax_lowlatency();
390 }
391
392 osq_unlock(&lock->osq);
393 done:
394 /*
395 * If we fell out of the spin path because of need_resched(),
396 * reschedule now, before we try-lock the mutex. This avoids getting
397 * scheduled out right after we obtained the mutex.
398 */
399 if (need_resched()) {
400 /*
401 * We _should_ have TASK_RUNNING here, but just in case
402 * we do not, make it so, otherwise we might get stuck.
403 */
404 __set_current_state(TASK_RUNNING);
405 schedule_preempt_disabled();
406 }
407
408 return false;
409 }
410 #else
411 static bool mutex_optimistic_spin(struct mutex *lock,
412 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
413 {
414 return false;
415 }
416 #endif
417
418 __visible __used noinline
419 void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
420
421 /**
422 * mutex_unlock - release the mutex
423 * @lock: the mutex to be released
424 *
425 * Unlock a mutex that has been locked by this task previously.
426 *
427 * This function must not be used in interrupt context. Unlocking
428 * of a not locked mutex is not allowed.
429 *
430 * This function is similar to (but not equivalent to) up().
431 */
432 void __sched mutex_unlock(struct mutex *lock)
433 {
434 /*
435 * The unlocking fastpath is the 0->1 transition from 'locked'
436 * into 'unlocked' state:
437 */
438 #ifndef CONFIG_DEBUG_MUTEXES
439 /*
440 * When debugging is enabled we must not clear the owner before time,
441 * the slow path will always be taken, and that clears the owner field
442 * after verifying that it was indeed current.
443 */
444 mutex_clear_owner(lock);
445 #endif
446 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
447 }
448
449 EXPORT_SYMBOL(mutex_unlock);
450
451 /**
452 * ww_mutex_unlock - release the w/w mutex
453 * @lock: the mutex to be released
454 *
455 * Unlock a mutex that has been locked by this task previously with any of the
456 * ww_mutex_lock* functions (with or without an acquire context). It is
457 * forbidden to release the locks after releasing the acquire context.
458 *
459 * This function must not be used in interrupt context. Unlocking
460 * of a unlocked mutex is not allowed.
461 */
462 void __sched ww_mutex_unlock(struct ww_mutex *lock)
463 {
464 /*
465 * The unlocking fastpath is the 0->1 transition from 'locked'
466 * into 'unlocked' state:
467 */
468 if (lock->ctx) {
469 #ifdef CONFIG_DEBUG_MUTEXES
470 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
471 #endif
472 if (lock->ctx->acquired > 0)
473 lock->ctx->acquired--;
474 lock->ctx = NULL;
475 }
476
477 #ifndef CONFIG_DEBUG_MUTEXES
478 /*
479 * When debugging is enabled we must not clear the owner before time,
480 * the slow path will always be taken, and that clears the owner field
481 * after verifying that it was indeed current.
482 */
483 mutex_clear_owner(&lock->base);
484 #endif
485 __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
486 }
487 EXPORT_SYMBOL(ww_mutex_unlock);
488
489 static inline int __sched
490 __ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
491 {
492 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
493 struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);
494
495 if (!hold_ctx)
496 return 0;
497
498 if (unlikely(ctx == hold_ctx))
499 return -EALREADY;
500
501 if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
502 (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
503 #ifdef CONFIG_DEBUG_MUTEXES
504 DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
505 ctx->contending_lock = ww;
506 #endif
507 return -EDEADLK;
508 }
509
510 return 0;
511 }
512
513 /*
514 * Lock a mutex (possibly interruptible), slowpath:
515 */
516 static __always_inline int __sched
517 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
518 struct lockdep_map *nest_lock, unsigned long ip,
519 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
520 {
521 struct task_struct *task = current;
522 struct mutex_waiter waiter;
523 unsigned long flags;
524 int ret;
525
526 preempt_disable();
527 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
528
529 if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
530 /* got the lock, yay! */
531 preempt_enable();
532 return 0;
533 }
534
535 spin_lock_mutex(&lock->wait_lock, flags);
536
537 /*
538 * Once more, try to acquire the lock. Only try-lock the mutex if
539 * it is unlocked to reduce unnecessary xchg() operations.
540 */
541 if (!mutex_is_locked(lock) && (atomic_xchg(&lock->count, 0) == 1))
542 goto skip_wait;
543
544 debug_mutex_lock_common(lock, &waiter);
545 debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
546
547 /* add waiting tasks to the end of the waitqueue (FIFO): */
548 list_add_tail(&waiter.list, &lock->wait_list);
549 waiter.task = task;
550
551 lock_contended(&lock->dep_map, ip);
552
553 for (;;) {
554 /*
555 * Lets try to take the lock again - this is needed even if
556 * we get here for the first time (shortly after failing to
557 * acquire the lock), to make sure that we get a wakeup once
558 * it's unlocked. Later on, if we sleep, this is the
559 * operation that gives us the lock. We xchg it to -1, so
560 * that when we release the lock, we properly wake up the
561 * other waiters. We only attempt the xchg if the count is
562 * non-negative in order to avoid unnecessary xchg operations:
563 */
564 if (atomic_read(&lock->count) >= 0 &&
565 (atomic_xchg(&lock->count, -1) == 1))
566 break;
567
568 /*
569 * got a signal? (This code gets eliminated in the
570 * TASK_UNINTERRUPTIBLE case.)
571 */
572 if (unlikely(signal_pending_state(state, task))) {
573 ret = -EINTR;
574 goto err;
575 }
576
577 if (use_ww_ctx && ww_ctx->acquired > 0) {
578 ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
579 if (ret)
580 goto err;
581 }
582
583 __set_task_state(task, state);
584
585 /* didn't get the lock, go to sleep: */
586 spin_unlock_mutex(&lock->wait_lock, flags);
587 schedule_preempt_disabled();
588 spin_lock_mutex(&lock->wait_lock, flags);
589 }
590 __set_task_state(task, TASK_RUNNING);
591
592 mutex_remove_waiter(lock, &waiter, current_thread_info());
593 /* set it to 0 if there are no waiters left: */
594 if (likely(list_empty(&lock->wait_list)))
595 atomic_set(&lock->count, 0);
596 debug_mutex_free_waiter(&waiter);
597
598 skip_wait:
599 /* got the lock - cleanup and rejoice! */
600 lock_acquired(&lock->dep_map, ip);
601 mutex_set_owner(lock);
602
603 if (use_ww_ctx) {
604 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
605 ww_mutex_set_context_slowpath(ww, ww_ctx);
606 }
607
608 spin_unlock_mutex(&lock->wait_lock, flags);
609 preempt_enable();
610 return 0;
611
612 err:
613 mutex_remove_waiter(lock, &waiter, task_thread_info(task));
614 spin_unlock_mutex(&lock->wait_lock, flags);
615 debug_mutex_free_waiter(&waiter);
616 mutex_release(&lock->dep_map, 1, ip);
617 preempt_enable();
618 return ret;
619 }
620
621 #ifdef CONFIG_DEBUG_LOCK_ALLOC
622 void __sched
623 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
624 {
625 might_sleep();
626 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
627 subclass, NULL, _RET_IP_, NULL, 0);
628 }
629
630 EXPORT_SYMBOL_GPL(mutex_lock_nested);
631
632 void __sched
633 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
634 {
635 might_sleep();
636 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
637 0, nest, _RET_IP_, NULL, 0);
638 }
639
640 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
641
642 int __sched
643 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
644 {
645 might_sleep();
646 return __mutex_lock_common(lock, TASK_KILLABLE,
647 subclass, NULL, _RET_IP_, NULL, 0);
648 }
649 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
650
651 int __sched
652 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
653 {
654 might_sleep();
655 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
656 subclass, NULL, _RET_IP_, NULL, 0);
657 }
658
659 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
660
661 static inline int
662 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
663 {
664 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
665 unsigned tmp;
666
667 if (ctx->deadlock_inject_countdown-- == 0) {
668 tmp = ctx->deadlock_inject_interval;
669 if (tmp > UINT_MAX/4)
670 tmp = UINT_MAX;
671 else
672 tmp = tmp*2 + tmp + tmp/2;
673
674 ctx->deadlock_inject_interval = tmp;
675 ctx->deadlock_inject_countdown = tmp;
676 ctx->contending_lock = lock;
677
678 ww_mutex_unlock(lock);
679
680 return -EDEADLK;
681 }
682 #endif
683
684 return 0;
685 }
686
687 int __sched
688 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
689 {
690 int ret;
691
692 might_sleep();
693 ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
694 0, &ctx->dep_map, _RET_IP_, ctx, 1);
695 if (!ret && ctx->acquired > 1)
696 return ww_mutex_deadlock_injection(lock, ctx);
697
698 return ret;
699 }
700 EXPORT_SYMBOL_GPL(__ww_mutex_lock);
701
702 int __sched
703 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
704 {
705 int ret;
706
707 might_sleep();
708 ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
709 0, &ctx->dep_map, _RET_IP_, ctx, 1);
710
711 if (!ret && ctx->acquired > 1)
712 return ww_mutex_deadlock_injection(lock, ctx);
713
714 return ret;
715 }
716 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
717
718 #endif
719
720 /*
721 * Release the lock, slowpath:
722 */
723 static inline void
724 __mutex_unlock_common_slowpath(struct mutex *lock, int nested)
725 {
726 unsigned long flags;
727
728 /*
729 * As a performance measurement, release the lock before doing other
730 * wakeup related duties to follow. This allows other tasks to acquire
731 * the lock sooner, while still handling cleanups in past unlock calls.
732 * This can be done as we do not enforce strict equivalence between the
733 * mutex counter and wait_list.
734 *
735 *
736 * Some architectures leave the lock unlocked in the fastpath failure
737 * case, others need to leave it locked. In the later case we have to
738 * unlock it here - as the lock counter is currently 0 or negative.
739 */
740 if (__mutex_slowpath_needs_to_unlock())
741 atomic_set(&lock->count, 1);
742
743 spin_lock_mutex(&lock->wait_lock, flags);
744 mutex_release(&lock->dep_map, nested, _RET_IP_);
745 debug_mutex_unlock(lock);
746
747 if (!list_empty(&lock->wait_list)) {
748 /* get the first entry from the wait-list: */
749 struct mutex_waiter *waiter =
750 list_entry(lock->wait_list.next,
751 struct mutex_waiter, list);
752
753 debug_mutex_wake_waiter(lock, waiter);
754
755 wake_up_process(waiter->task);
756 }
757
758 spin_unlock_mutex(&lock->wait_lock, flags);
759 }
760
761 /*
762 * Release the lock, slowpath:
763 */
764 __visible void
765 __mutex_unlock_slowpath(atomic_t *lock_count)
766 {
767 struct mutex *lock = container_of(lock_count, struct mutex, count);
768
769 __mutex_unlock_common_slowpath(lock, 1);
770 }
771
772 #ifndef CONFIG_DEBUG_LOCK_ALLOC
773 /*
774 * Here come the less common (and hence less performance-critical) APIs:
775 * mutex_lock_interruptible() and mutex_trylock().
776 */
777 static noinline int __sched
778 __mutex_lock_killable_slowpath(struct mutex *lock);
779
780 static noinline int __sched
781 __mutex_lock_interruptible_slowpath(struct mutex *lock);
782
783 /**
784 * mutex_lock_interruptible - acquire the mutex, interruptible
785 * @lock: the mutex to be acquired
786 *
787 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
788 * been acquired or sleep until the mutex becomes available. If a
789 * signal arrives while waiting for the lock then this function
790 * returns -EINTR.
791 *
792 * This function is similar to (but not equivalent to) down_interruptible().
793 */
794 int __sched mutex_lock_interruptible(struct mutex *lock)
795 {
796 int ret;
797
798 might_sleep();
799 ret = __mutex_fastpath_lock_retval(&lock->count);
800 if (likely(!ret)) {
801 mutex_set_owner(lock);
802 return 0;
803 } else
804 return __mutex_lock_interruptible_slowpath(lock);
805 }
806
807 EXPORT_SYMBOL(mutex_lock_interruptible);
808
809 int __sched mutex_lock_killable(struct mutex *lock)
810 {
811 int ret;
812
813 might_sleep();
814 ret = __mutex_fastpath_lock_retval(&lock->count);
815 if (likely(!ret)) {
816 mutex_set_owner(lock);
817 return 0;
818 } else
819 return __mutex_lock_killable_slowpath(lock);
820 }
821 EXPORT_SYMBOL(mutex_lock_killable);
822
823 __visible void __sched
824 __mutex_lock_slowpath(atomic_t *lock_count)
825 {
826 struct mutex *lock = container_of(lock_count, struct mutex, count);
827
828 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
829 NULL, _RET_IP_, NULL, 0);
830 }
831
832 static noinline int __sched
833 __mutex_lock_killable_slowpath(struct mutex *lock)
834 {
835 return __mutex_lock_common(lock, TASK_KILLABLE, 0,
836 NULL, _RET_IP_, NULL, 0);
837 }
838
839 static noinline int __sched
840 __mutex_lock_interruptible_slowpath(struct mutex *lock)
841 {
842 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
843 NULL, _RET_IP_, NULL, 0);
844 }
845
846 static noinline int __sched
847 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
848 {
849 return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
850 NULL, _RET_IP_, ctx, 1);
851 }
852
853 static noinline int __sched
854 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
855 struct ww_acquire_ctx *ctx)
856 {
857 return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
858 NULL, _RET_IP_, ctx, 1);
859 }
860
861 #endif
862
863 /*
864 * Spinlock based trylock, we take the spinlock and check whether we
865 * can get the lock:
866 */
867 static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
868 {
869 struct mutex *lock = container_of(lock_count, struct mutex, count);
870 unsigned long flags;
871 int prev;
872
873 /* No need to trylock if the mutex is locked. */
874 if (mutex_is_locked(lock))
875 return 0;
876
877 spin_lock_mutex(&lock->wait_lock, flags);
878
879 prev = atomic_xchg(&lock->count, -1);
880 if (likely(prev == 1)) {
881 mutex_set_owner(lock);
882 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
883 }
884
885 /* Set it back to 0 if there are no waiters: */
886 if (likely(list_empty(&lock->wait_list)))
887 atomic_set(&lock->count, 0);
888
889 spin_unlock_mutex(&lock->wait_lock, flags);
890
891 return prev == 1;
892 }
893
894 /**
895 * mutex_trylock - try to acquire the mutex, without waiting
896 * @lock: the mutex to be acquired
897 *
898 * Try to acquire the mutex atomically. Returns 1 if the mutex
899 * has been acquired successfully, and 0 on contention.
900 *
901 * NOTE: this function follows the spin_trylock() convention, so
902 * it is negated from the down_trylock() return values! Be careful
903 * about this when converting semaphore users to mutexes.
904 *
905 * This function must not be used in interrupt context. The
906 * mutex must be released by the same task that acquired it.
907 */
908 int __sched mutex_trylock(struct mutex *lock)
909 {
910 int ret;
911
912 ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
913 if (ret)
914 mutex_set_owner(lock);
915
916 return ret;
917 }
918 EXPORT_SYMBOL(mutex_trylock);
919
920 #ifndef CONFIG_DEBUG_LOCK_ALLOC
921 int __sched
922 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
923 {
924 int ret;
925
926 might_sleep();
927
928 ret = __mutex_fastpath_lock_retval(&lock->base.count);
929
930 if (likely(!ret)) {
931 ww_mutex_set_context_fastpath(lock, ctx);
932 mutex_set_owner(&lock->base);
933 } else
934 ret = __ww_mutex_lock_slowpath(lock, ctx);
935 return ret;
936 }
937 EXPORT_SYMBOL(__ww_mutex_lock);
938
939 int __sched
940 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
941 {
942 int ret;
943
944 might_sleep();
945
946 ret = __mutex_fastpath_lock_retval(&lock->base.count);
947
948 if (likely(!ret)) {
949 ww_mutex_set_context_fastpath(lock, ctx);
950 mutex_set_owner(&lock->base);
951 } else
952 ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
953 return ret;
954 }
955 EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
956
957 #endif
958
959 /**
960 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
961 * @cnt: the atomic which we are to dec
962 * @lock: the mutex to return holding if we dec to 0
963 *
964 * return true and hold lock if we dec to 0, return false otherwise
965 */
966 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
967 {
968 /* dec if we can't possibly hit 0 */
969 if (atomic_add_unless(cnt, -1, 1))
970 return 0;
971 /* we might hit 0, so take the lock */
972 mutex_lock(lock);
973 if (!atomic_dec_and_test(cnt)) {
974 /* when we actually did the dec, we didn't hit 0 */
975 mutex_unlock(lock);
976 return 0;
977 }
978 /* we hit 0, and we hold the lock */
979 return 1;
980 }
981 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
This page took 0.096615 seconds and 5 git commands to generate.