kernel/module.c: use generic module param operaters for sig_enforce
[deliverable/linux.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/ftrace_event.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/sysfs.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/elf.h>
31 #include <linux/proc_fs.h>
32 #include <linux/security.h>
33 #include <linux/seq_file.h>
34 #include <linux/syscalls.h>
35 #include <linux/fcntl.h>
36 #include <linux/rcupdate.h>
37 #include <linux/capability.h>
38 #include <linux/cpu.h>
39 #include <linux/moduleparam.h>
40 #include <linux/errno.h>
41 #include <linux/err.h>
42 #include <linux/vermagic.h>
43 #include <linux/notifier.h>
44 #include <linux/sched.h>
45 #include <linux/device.h>
46 #include <linux/string.h>
47 #include <linux/mutex.h>
48 #include <linux/rculist.h>
49 #include <asm/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/mmu_context.h>
52 #include <linux/license.h>
53 #include <asm/sections.h>
54 #include <linux/tracepoint.h>
55 #include <linux/ftrace.h>
56 #include <linux/async.h>
57 #include <linux/percpu.h>
58 #include <linux/kmemleak.h>
59 #include <linux/jump_label.h>
60 #include <linux/pfn.h>
61 #include <linux/bsearch.h>
62 #include <uapi/linux/module.h>
63 #include "module-internal.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67
68 #ifndef ARCH_SHF_SMALL
69 #define ARCH_SHF_SMALL 0
70 #endif
71
72 /*
73 * Modules' sections will be aligned on page boundaries
74 * to ensure complete separation of code and data, but
75 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
76 */
77 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
78 # define debug_align(X) ALIGN(X, PAGE_SIZE)
79 #else
80 # define debug_align(X) (X)
81 #endif
82
83 /*
84 * Given BASE and SIZE this macro calculates the number of pages the
85 * memory regions occupies
86 */
87 #define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ? \
88 (PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) - \
89 PFN_DOWN((unsigned long)BASE) + 1) \
90 : (0UL))
91
92 /* If this is set, the section belongs in the init part of the module */
93 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
94
95 /*
96 * Mutex protects:
97 * 1) List of modules (also safely readable with preempt_disable),
98 * 2) module_use links,
99 * 3) module_addr_min/module_addr_max.
100 * (delete and add uses RCU list operations). */
101 DEFINE_MUTEX(module_mutex);
102 EXPORT_SYMBOL_GPL(module_mutex);
103 static LIST_HEAD(modules);
104
105 #ifdef CONFIG_MODULES_TREE_LOOKUP
106
107 /*
108 * Use a latched RB-tree for __module_address(); this allows us to use
109 * RCU-sched lookups of the address from any context.
110 *
111 * Because modules have two address ranges: init and core, we need two
112 * latch_tree_nodes entries. Therefore we need the back-pointer from
113 * mod_tree_node.
114 *
115 * Because init ranges are short lived we mark them unlikely and have placed
116 * them outside the critical cacheline in struct module.
117 *
118 * This is conditional on PERF_EVENTS || TRACING because those can really hit
119 * __module_address() hard by doing a lot of stack unwinding; potentially from
120 * NMI context.
121 */
122
123 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
124 {
125 struct mod_tree_node *mtn = container_of(n, struct mod_tree_node, node);
126 struct module *mod = mtn->mod;
127
128 if (unlikely(mtn == &mod->mtn_init))
129 return (unsigned long)mod->module_init;
130
131 return (unsigned long)mod->module_core;
132 }
133
134 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
135 {
136 struct mod_tree_node *mtn = container_of(n, struct mod_tree_node, node);
137 struct module *mod = mtn->mod;
138
139 if (unlikely(mtn == &mod->mtn_init))
140 return (unsigned long)mod->init_size;
141
142 return (unsigned long)mod->core_size;
143 }
144
145 static __always_inline bool
146 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
147 {
148 return __mod_tree_val(a) < __mod_tree_val(b);
149 }
150
151 static __always_inline int
152 mod_tree_comp(void *key, struct latch_tree_node *n)
153 {
154 unsigned long val = (unsigned long)key;
155 unsigned long start, end;
156
157 start = __mod_tree_val(n);
158 if (val < start)
159 return -1;
160
161 end = start + __mod_tree_size(n);
162 if (val >= end)
163 return 1;
164
165 return 0;
166 }
167
168 static const struct latch_tree_ops mod_tree_ops = {
169 .less = mod_tree_less,
170 .comp = mod_tree_comp,
171 };
172
173 static struct mod_tree_root {
174 struct latch_tree_root root;
175 unsigned long addr_min;
176 unsigned long addr_max;
177 } mod_tree __cacheline_aligned = {
178 .addr_min = -1UL,
179 };
180
181 #define module_addr_min mod_tree.addr_min
182 #define module_addr_max mod_tree.addr_max
183
184 static noinline void __mod_tree_insert(struct mod_tree_node *node)
185 {
186 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
187 }
188
189 static void __mod_tree_remove(struct mod_tree_node *node)
190 {
191 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
192 }
193
194 /*
195 * These modifications: insert, remove_init and remove; are serialized by the
196 * module_mutex.
197 */
198 static void mod_tree_insert(struct module *mod)
199 {
200 mod->mtn_core.mod = mod;
201 mod->mtn_init.mod = mod;
202
203 __mod_tree_insert(&mod->mtn_core);
204 if (mod->init_size)
205 __mod_tree_insert(&mod->mtn_init);
206 }
207
208 static void mod_tree_remove_init(struct module *mod)
209 {
210 if (mod->init_size)
211 __mod_tree_remove(&mod->mtn_init);
212 }
213
214 static void mod_tree_remove(struct module *mod)
215 {
216 __mod_tree_remove(&mod->mtn_core);
217 mod_tree_remove_init(mod);
218 }
219
220 static struct module *mod_find(unsigned long addr)
221 {
222 struct latch_tree_node *ltn;
223
224 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
225 if (!ltn)
226 return NULL;
227
228 return container_of(ltn, struct mod_tree_node, node)->mod;
229 }
230
231 #else /* MODULES_TREE_LOOKUP */
232
233 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
234
235 static void mod_tree_insert(struct module *mod) { }
236 static void mod_tree_remove_init(struct module *mod) { }
237 static void mod_tree_remove(struct module *mod) { }
238
239 static struct module *mod_find(unsigned long addr)
240 {
241 struct module *mod;
242
243 list_for_each_entry_rcu(mod, &modules, list) {
244 if (within_module(addr, mod))
245 return mod;
246 }
247
248 return NULL;
249 }
250
251 #endif /* MODULES_TREE_LOOKUP */
252
253 /*
254 * Bounds of module text, for speeding up __module_address.
255 * Protected by module_mutex.
256 */
257 static void __mod_update_bounds(void *base, unsigned int size)
258 {
259 unsigned long min = (unsigned long)base;
260 unsigned long max = min + size;
261
262 if (min < module_addr_min)
263 module_addr_min = min;
264 if (max > module_addr_max)
265 module_addr_max = max;
266 }
267
268 static void mod_update_bounds(struct module *mod)
269 {
270 __mod_update_bounds(mod->module_core, mod->core_size);
271 if (mod->init_size)
272 __mod_update_bounds(mod->module_init, mod->init_size);
273 }
274
275 #ifdef CONFIG_KGDB_KDB
276 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
277 #endif /* CONFIG_KGDB_KDB */
278
279 static void module_assert_mutex(void)
280 {
281 lockdep_assert_held(&module_mutex);
282 }
283
284 static void module_assert_mutex_or_preempt(void)
285 {
286 #ifdef CONFIG_LOCKDEP
287 if (unlikely(!debug_locks))
288 return;
289
290 WARN_ON(!rcu_read_lock_sched_held() &&
291 !lockdep_is_held(&module_mutex));
292 #endif
293 }
294
295 #ifdef CONFIG_MODULE_SIG
296 #ifdef CONFIG_MODULE_SIG_FORCE
297 static bool sig_enforce = true;
298 #else
299 static bool sig_enforce = false;
300
301 static int param_set_bool_enable_only(const char *val,
302 const struct kernel_param *kp)
303 {
304 int err = 0;
305 bool new_value;
306 bool orig_value = *(bool *)kp->arg;
307 struct kernel_param dummy_kp = *kp;
308
309 dummy_kp.arg = &new_value;
310
311 err = param_set_bool(val, &dummy_kp);
312 if (err)
313 return err;
314
315 /* Don't let them unset it once it's set! */
316 if (!new_value && orig_value)
317 return -EROFS;
318
319 if (new_value)
320 err = param_set_bool(val, kp);
321
322 return err;
323 }
324
325 static const struct kernel_param_ops param_ops_bool_enable_only = {
326 .flags = KERNEL_PARAM_OPS_FL_NOARG,
327 .set = param_set_bool_enable_only,
328 .get = param_get_bool,
329 };
330 #define param_check_bool_enable_only param_check_bool
331
332 module_param(sig_enforce, bool_enable_only, 0644);
333 #endif /* !CONFIG_MODULE_SIG_FORCE */
334 #endif /* CONFIG_MODULE_SIG */
335
336 /* Block module loading/unloading? */
337 int modules_disabled = 0;
338 core_param(nomodule, modules_disabled, bint, 0);
339
340 /* Waiting for a module to finish initializing? */
341 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
342
343 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
344
345 int register_module_notifier(struct notifier_block *nb)
346 {
347 return blocking_notifier_chain_register(&module_notify_list, nb);
348 }
349 EXPORT_SYMBOL(register_module_notifier);
350
351 int unregister_module_notifier(struct notifier_block *nb)
352 {
353 return blocking_notifier_chain_unregister(&module_notify_list, nb);
354 }
355 EXPORT_SYMBOL(unregister_module_notifier);
356
357 struct load_info {
358 Elf_Ehdr *hdr;
359 unsigned long len;
360 Elf_Shdr *sechdrs;
361 char *secstrings, *strtab;
362 unsigned long symoffs, stroffs;
363 struct _ddebug *debug;
364 unsigned int num_debug;
365 bool sig_ok;
366 struct {
367 unsigned int sym, str, mod, vers, info, pcpu;
368 } index;
369 };
370
371 /* We require a truly strong try_module_get(): 0 means failure due to
372 ongoing or failed initialization etc. */
373 static inline int strong_try_module_get(struct module *mod)
374 {
375 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
376 if (mod && mod->state == MODULE_STATE_COMING)
377 return -EBUSY;
378 if (try_module_get(mod))
379 return 0;
380 else
381 return -ENOENT;
382 }
383
384 static inline void add_taint_module(struct module *mod, unsigned flag,
385 enum lockdep_ok lockdep_ok)
386 {
387 add_taint(flag, lockdep_ok);
388 mod->taints |= (1U << flag);
389 }
390
391 /*
392 * A thread that wants to hold a reference to a module only while it
393 * is running can call this to safely exit. nfsd and lockd use this.
394 */
395 void __module_put_and_exit(struct module *mod, long code)
396 {
397 module_put(mod);
398 do_exit(code);
399 }
400 EXPORT_SYMBOL(__module_put_and_exit);
401
402 /* Find a module section: 0 means not found. */
403 static unsigned int find_sec(const struct load_info *info, const char *name)
404 {
405 unsigned int i;
406
407 for (i = 1; i < info->hdr->e_shnum; i++) {
408 Elf_Shdr *shdr = &info->sechdrs[i];
409 /* Alloc bit cleared means "ignore it." */
410 if ((shdr->sh_flags & SHF_ALLOC)
411 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
412 return i;
413 }
414 return 0;
415 }
416
417 /* Find a module section, or NULL. */
418 static void *section_addr(const struct load_info *info, const char *name)
419 {
420 /* Section 0 has sh_addr 0. */
421 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
422 }
423
424 /* Find a module section, or NULL. Fill in number of "objects" in section. */
425 static void *section_objs(const struct load_info *info,
426 const char *name,
427 size_t object_size,
428 unsigned int *num)
429 {
430 unsigned int sec = find_sec(info, name);
431
432 /* Section 0 has sh_addr 0 and sh_size 0. */
433 *num = info->sechdrs[sec].sh_size / object_size;
434 return (void *)info->sechdrs[sec].sh_addr;
435 }
436
437 /* Provided by the linker */
438 extern const struct kernel_symbol __start___ksymtab[];
439 extern const struct kernel_symbol __stop___ksymtab[];
440 extern const struct kernel_symbol __start___ksymtab_gpl[];
441 extern const struct kernel_symbol __stop___ksymtab_gpl[];
442 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
443 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
444 extern const unsigned long __start___kcrctab[];
445 extern const unsigned long __start___kcrctab_gpl[];
446 extern const unsigned long __start___kcrctab_gpl_future[];
447 #ifdef CONFIG_UNUSED_SYMBOLS
448 extern const struct kernel_symbol __start___ksymtab_unused[];
449 extern const struct kernel_symbol __stop___ksymtab_unused[];
450 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
451 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
452 extern const unsigned long __start___kcrctab_unused[];
453 extern const unsigned long __start___kcrctab_unused_gpl[];
454 #endif
455
456 #ifndef CONFIG_MODVERSIONS
457 #define symversion(base, idx) NULL
458 #else
459 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
460 #endif
461
462 static bool each_symbol_in_section(const struct symsearch *arr,
463 unsigned int arrsize,
464 struct module *owner,
465 bool (*fn)(const struct symsearch *syms,
466 struct module *owner,
467 void *data),
468 void *data)
469 {
470 unsigned int j;
471
472 for (j = 0; j < arrsize; j++) {
473 if (fn(&arr[j], owner, data))
474 return true;
475 }
476
477 return false;
478 }
479
480 /* Returns true as soon as fn returns true, otherwise false. */
481 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
482 struct module *owner,
483 void *data),
484 void *data)
485 {
486 struct module *mod;
487 static const struct symsearch arr[] = {
488 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
489 NOT_GPL_ONLY, false },
490 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
491 __start___kcrctab_gpl,
492 GPL_ONLY, false },
493 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
494 __start___kcrctab_gpl_future,
495 WILL_BE_GPL_ONLY, false },
496 #ifdef CONFIG_UNUSED_SYMBOLS
497 { __start___ksymtab_unused, __stop___ksymtab_unused,
498 __start___kcrctab_unused,
499 NOT_GPL_ONLY, true },
500 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
501 __start___kcrctab_unused_gpl,
502 GPL_ONLY, true },
503 #endif
504 };
505
506 module_assert_mutex_or_preempt();
507
508 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
509 return true;
510
511 list_for_each_entry_rcu(mod, &modules, list) {
512 struct symsearch arr[] = {
513 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
514 NOT_GPL_ONLY, false },
515 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
516 mod->gpl_crcs,
517 GPL_ONLY, false },
518 { mod->gpl_future_syms,
519 mod->gpl_future_syms + mod->num_gpl_future_syms,
520 mod->gpl_future_crcs,
521 WILL_BE_GPL_ONLY, false },
522 #ifdef CONFIG_UNUSED_SYMBOLS
523 { mod->unused_syms,
524 mod->unused_syms + mod->num_unused_syms,
525 mod->unused_crcs,
526 NOT_GPL_ONLY, true },
527 { mod->unused_gpl_syms,
528 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
529 mod->unused_gpl_crcs,
530 GPL_ONLY, true },
531 #endif
532 };
533
534 if (mod->state == MODULE_STATE_UNFORMED)
535 continue;
536
537 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
538 return true;
539 }
540 return false;
541 }
542 EXPORT_SYMBOL_GPL(each_symbol_section);
543
544 struct find_symbol_arg {
545 /* Input */
546 const char *name;
547 bool gplok;
548 bool warn;
549
550 /* Output */
551 struct module *owner;
552 const unsigned long *crc;
553 const struct kernel_symbol *sym;
554 };
555
556 static bool check_symbol(const struct symsearch *syms,
557 struct module *owner,
558 unsigned int symnum, void *data)
559 {
560 struct find_symbol_arg *fsa = data;
561
562 if (!fsa->gplok) {
563 if (syms->licence == GPL_ONLY)
564 return false;
565 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
566 pr_warn("Symbol %s is being used by a non-GPL module, "
567 "which will not be allowed in the future\n",
568 fsa->name);
569 }
570 }
571
572 #ifdef CONFIG_UNUSED_SYMBOLS
573 if (syms->unused && fsa->warn) {
574 pr_warn("Symbol %s is marked as UNUSED, however this module is "
575 "using it.\n", fsa->name);
576 pr_warn("This symbol will go away in the future.\n");
577 pr_warn("Please evaluate if this is the right api to use and "
578 "if it really is, submit a report to the linux kernel "
579 "mailing list together with submitting your code for "
580 "inclusion.\n");
581 }
582 #endif
583
584 fsa->owner = owner;
585 fsa->crc = symversion(syms->crcs, symnum);
586 fsa->sym = &syms->start[symnum];
587 return true;
588 }
589
590 static int cmp_name(const void *va, const void *vb)
591 {
592 const char *a;
593 const struct kernel_symbol *b;
594 a = va; b = vb;
595 return strcmp(a, b->name);
596 }
597
598 static bool find_symbol_in_section(const struct symsearch *syms,
599 struct module *owner,
600 void *data)
601 {
602 struct find_symbol_arg *fsa = data;
603 struct kernel_symbol *sym;
604
605 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
606 sizeof(struct kernel_symbol), cmp_name);
607
608 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
609 return true;
610
611 return false;
612 }
613
614 /* Find a symbol and return it, along with, (optional) crc and
615 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
616 const struct kernel_symbol *find_symbol(const char *name,
617 struct module **owner,
618 const unsigned long **crc,
619 bool gplok,
620 bool warn)
621 {
622 struct find_symbol_arg fsa;
623
624 fsa.name = name;
625 fsa.gplok = gplok;
626 fsa.warn = warn;
627
628 if (each_symbol_section(find_symbol_in_section, &fsa)) {
629 if (owner)
630 *owner = fsa.owner;
631 if (crc)
632 *crc = fsa.crc;
633 return fsa.sym;
634 }
635
636 pr_debug("Failed to find symbol %s\n", name);
637 return NULL;
638 }
639 EXPORT_SYMBOL_GPL(find_symbol);
640
641 /* Search for module by name: must hold module_mutex. */
642 static struct module *find_module_all(const char *name, size_t len,
643 bool even_unformed)
644 {
645 struct module *mod;
646
647 module_assert_mutex();
648
649 list_for_each_entry(mod, &modules, list) {
650 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
651 continue;
652 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
653 return mod;
654 }
655 return NULL;
656 }
657
658 struct module *find_module(const char *name)
659 {
660 return find_module_all(name, strlen(name), false);
661 }
662 EXPORT_SYMBOL_GPL(find_module);
663
664 #ifdef CONFIG_SMP
665
666 static inline void __percpu *mod_percpu(struct module *mod)
667 {
668 return mod->percpu;
669 }
670
671 static int percpu_modalloc(struct module *mod, struct load_info *info)
672 {
673 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
674 unsigned long align = pcpusec->sh_addralign;
675
676 if (!pcpusec->sh_size)
677 return 0;
678
679 if (align > PAGE_SIZE) {
680 pr_warn("%s: per-cpu alignment %li > %li\n",
681 mod->name, align, PAGE_SIZE);
682 align = PAGE_SIZE;
683 }
684
685 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
686 if (!mod->percpu) {
687 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
688 mod->name, (unsigned long)pcpusec->sh_size);
689 return -ENOMEM;
690 }
691 mod->percpu_size = pcpusec->sh_size;
692 return 0;
693 }
694
695 static void percpu_modfree(struct module *mod)
696 {
697 free_percpu(mod->percpu);
698 }
699
700 static unsigned int find_pcpusec(struct load_info *info)
701 {
702 return find_sec(info, ".data..percpu");
703 }
704
705 static void percpu_modcopy(struct module *mod,
706 const void *from, unsigned long size)
707 {
708 int cpu;
709
710 for_each_possible_cpu(cpu)
711 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
712 }
713
714 /**
715 * is_module_percpu_address - test whether address is from module static percpu
716 * @addr: address to test
717 *
718 * Test whether @addr belongs to module static percpu area.
719 *
720 * RETURNS:
721 * %true if @addr is from module static percpu area
722 */
723 bool is_module_percpu_address(unsigned long addr)
724 {
725 struct module *mod;
726 unsigned int cpu;
727
728 preempt_disable();
729
730 list_for_each_entry_rcu(mod, &modules, list) {
731 if (mod->state == MODULE_STATE_UNFORMED)
732 continue;
733 if (!mod->percpu_size)
734 continue;
735 for_each_possible_cpu(cpu) {
736 void *start = per_cpu_ptr(mod->percpu, cpu);
737
738 if ((void *)addr >= start &&
739 (void *)addr < start + mod->percpu_size) {
740 preempt_enable();
741 return true;
742 }
743 }
744 }
745
746 preempt_enable();
747 return false;
748 }
749
750 #else /* ... !CONFIG_SMP */
751
752 static inline void __percpu *mod_percpu(struct module *mod)
753 {
754 return NULL;
755 }
756 static int percpu_modalloc(struct module *mod, struct load_info *info)
757 {
758 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
759 if (info->sechdrs[info->index.pcpu].sh_size != 0)
760 return -ENOMEM;
761 return 0;
762 }
763 static inline void percpu_modfree(struct module *mod)
764 {
765 }
766 static unsigned int find_pcpusec(struct load_info *info)
767 {
768 return 0;
769 }
770 static inline void percpu_modcopy(struct module *mod,
771 const void *from, unsigned long size)
772 {
773 /* pcpusec should be 0, and size of that section should be 0. */
774 BUG_ON(size != 0);
775 }
776 bool is_module_percpu_address(unsigned long addr)
777 {
778 return false;
779 }
780
781 #endif /* CONFIG_SMP */
782
783 #define MODINFO_ATTR(field) \
784 static void setup_modinfo_##field(struct module *mod, const char *s) \
785 { \
786 mod->field = kstrdup(s, GFP_KERNEL); \
787 } \
788 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
789 struct module_kobject *mk, char *buffer) \
790 { \
791 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
792 } \
793 static int modinfo_##field##_exists(struct module *mod) \
794 { \
795 return mod->field != NULL; \
796 } \
797 static void free_modinfo_##field(struct module *mod) \
798 { \
799 kfree(mod->field); \
800 mod->field = NULL; \
801 } \
802 static struct module_attribute modinfo_##field = { \
803 .attr = { .name = __stringify(field), .mode = 0444 }, \
804 .show = show_modinfo_##field, \
805 .setup = setup_modinfo_##field, \
806 .test = modinfo_##field##_exists, \
807 .free = free_modinfo_##field, \
808 };
809
810 MODINFO_ATTR(version);
811 MODINFO_ATTR(srcversion);
812
813 static char last_unloaded_module[MODULE_NAME_LEN+1];
814
815 #ifdef CONFIG_MODULE_UNLOAD
816
817 EXPORT_TRACEPOINT_SYMBOL(module_get);
818
819 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
820 #define MODULE_REF_BASE 1
821
822 /* Init the unload section of the module. */
823 static int module_unload_init(struct module *mod)
824 {
825 /*
826 * Initialize reference counter to MODULE_REF_BASE.
827 * refcnt == 0 means module is going.
828 */
829 atomic_set(&mod->refcnt, MODULE_REF_BASE);
830
831 INIT_LIST_HEAD(&mod->source_list);
832 INIT_LIST_HEAD(&mod->target_list);
833
834 /* Hold reference count during initialization. */
835 atomic_inc(&mod->refcnt);
836
837 return 0;
838 }
839
840 /* Does a already use b? */
841 static int already_uses(struct module *a, struct module *b)
842 {
843 struct module_use *use;
844
845 list_for_each_entry(use, &b->source_list, source_list) {
846 if (use->source == a) {
847 pr_debug("%s uses %s!\n", a->name, b->name);
848 return 1;
849 }
850 }
851 pr_debug("%s does not use %s!\n", a->name, b->name);
852 return 0;
853 }
854
855 /*
856 * Module a uses b
857 * - we add 'a' as a "source", 'b' as a "target" of module use
858 * - the module_use is added to the list of 'b' sources (so
859 * 'b' can walk the list to see who sourced them), and of 'a'
860 * targets (so 'a' can see what modules it targets).
861 */
862 static int add_module_usage(struct module *a, struct module *b)
863 {
864 struct module_use *use;
865
866 pr_debug("Allocating new usage for %s.\n", a->name);
867 use = kmalloc(sizeof(*use), GFP_ATOMIC);
868 if (!use) {
869 pr_warn("%s: out of memory loading\n", a->name);
870 return -ENOMEM;
871 }
872
873 use->source = a;
874 use->target = b;
875 list_add(&use->source_list, &b->source_list);
876 list_add(&use->target_list, &a->target_list);
877 return 0;
878 }
879
880 /* Module a uses b: caller needs module_mutex() */
881 int ref_module(struct module *a, struct module *b)
882 {
883 int err;
884
885 if (b == NULL || already_uses(a, b))
886 return 0;
887
888 /* If module isn't available, we fail. */
889 err = strong_try_module_get(b);
890 if (err)
891 return err;
892
893 err = add_module_usage(a, b);
894 if (err) {
895 module_put(b);
896 return err;
897 }
898 return 0;
899 }
900 EXPORT_SYMBOL_GPL(ref_module);
901
902 /* Clear the unload stuff of the module. */
903 static void module_unload_free(struct module *mod)
904 {
905 struct module_use *use, *tmp;
906
907 mutex_lock(&module_mutex);
908 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
909 struct module *i = use->target;
910 pr_debug("%s unusing %s\n", mod->name, i->name);
911 module_put(i);
912 list_del(&use->source_list);
913 list_del(&use->target_list);
914 kfree(use);
915 }
916 mutex_unlock(&module_mutex);
917 }
918
919 #ifdef CONFIG_MODULE_FORCE_UNLOAD
920 static inline int try_force_unload(unsigned int flags)
921 {
922 int ret = (flags & O_TRUNC);
923 if (ret)
924 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
925 return ret;
926 }
927 #else
928 static inline int try_force_unload(unsigned int flags)
929 {
930 return 0;
931 }
932 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
933
934 /* Try to release refcount of module, 0 means success. */
935 static int try_release_module_ref(struct module *mod)
936 {
937 int ret;
938
939 /* Try to decrement refcnt which we set at loading */
940 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
941 BUG_ON(ret < 0);
942 if (ret)
943 /* Someone can put this right now, recover with checking */
944 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
945
946 return ret;
947 }
948
949 static int try_stop_module(struct module *mod, int flags, int *forced)
950 {
951 /* If it's not unused, quit unless we're forcing. */
952 if (try_release_module_ref(mod) != 0) {
953 *forced = try_force_unload(flags);
954 if (!(*forced))
955 return -EWOULDBLOCK;
956 }
957
958 /* Mark it as dying. */
959 mod->state = MODULE_STATE_GOING;
960
961 return 0;
962 }
963
964 /**
965 * module_refcount - return the refcount or -1 if unloading
966 *
967 * @mod: the module we're checking
968 *
969 * Returns:
970 * -1 if the module is in the process of unloading
971 * otherwise the number of references in the kernel to the module
972 */
973 int module_refcount(struct module *mod)
974 {
975 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
976 }
977 EXPORT_SYMBOL(module_refcount);
978
979 /* This exists whether we can unload or not */
980 static void free_module(struct module *mod);
981
982 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
983 unsigned int, flags)
984 {
985 struct module *mod;
986 char name[MODULE_NAME_LEN];
987 int ret, forced = 0;
988
989 if (!capable(CAP_SYS_MODULE) || modules_disabled)
990 return -EPERM;
991
992 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
993 return -EFAULT;
994 name[MODULE_NAME_LEN-1] = '\0';
995
996 if (mutex_lock_interruptible(&module_mutex) != 0)
997 return -EINTR;
998
999 mod = find_module(name);
1000 if (!mod) {
1001 ret = -ENOENT;
1002 goto out;
1003 }
1004
1005 if (!list_empty(&mod->source_list)) {
1006 /* Other modules depend on us: get rid of them first. */
1007 ret = -EWOULDBLOCK;
1008 goto out;
1009 }
1010
1011 /* Doing init or already dying? */
1012 if (mod->state != MODULE_STATE_LIVE) {
1013 /* FIXME: if (force), slam module count damn the torpedoes */
1014 pr_debug("%s already dying\n", mod->name);
1015 ret = -EBUSY;
1016 goto out;
1017 }
1018
1019 /* If it has an init func, it must have an exit func to unload */
1020 if (mod->init && !mod->exit) {
1021 forced = try_force_unload(flags);
1022 if (!forced) {
1023 /* This module can't be removed */
1024 ret = -EBUSY;
1025 goto out;
1026 }
1027 }
1028
1029 /* Stop the machine so refcounts can't move and disable module. */
1030 ret = try_stop_module(mod, flags, &forced);
1031 if (ret != 0)
1032 goto out;
1033
1034 mutex_unlock(&module_mutex);
1035 /* Final destruction now no one is using it. */
1036 if (mod->exit != NULL)
1037 mod->exit();
1038 blocking_notifier_call_chain(&module_notify_list,
1039 MODULE_STATE_GOING, mod);
1040 async_synchronize_full();
1041
1042 /* Store the name of the last unloaded module for diagnostic purposes */
1043 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1044
1045 free_module(mod);
1046 return 0;
1047 out:
1048 mutex_unlock(&module_mutex);
1049 return ret;
1050 }
1051
1052 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1053 {
1054 struct module_use *use;
1055 int printed_something = 0;
1056
1057 seq_printf(m, " %i ", module_refcount(mod));
1058
1059 /*
1060 * Always include a trailing , so userspace can differentiate
1061 * between this and the old multi-field proc format.
1062 */
1063 list_for_each_entry(use, &mod->source_list, source_list) {
1064 printed_something = 1;
1065 seq_printf(m, "%s,", use->source->name);
1066 }
1067
1068 if (mod->init != NULL && mod->exit == NULL) {
1069 printed_something = 1;
1070 seq_puts(m, "[permanent],");
1071 }
1072
1073 if (!printed_something)
1074 seq_puts(m, "-");
1075 }
1076
1077 void __symbol_put(const char *symbol)
1078 {
1079 struct module *owner;
1080
1081 preempt_disable();
1082 if (!find_symbol(symbol, &owner, NULL, true, false))
1083 BUG();
1084 module_put(owner);
1085 preempt_enable();
1086 }
1087 EXPORT_SYMBOL(__symbol_put);
1088
1089 /* Note this assumes addr is a function, which it currently always is. */
1090 void symbol_put_addr(void *addr)
1091 {
1092 struct module *modaddr;
1093 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1094
1095 if (core_kernel_text(a))
1096 return;
1097
1098 /* module_text_address is safe here: we're supposed to have reference
1099 * to module from symbol_get, so it can't go away. */
1100 modaddr = __module_text_address(a);
1101 BUG_ON(!modaddr);
1102 module_put(modaddr);
1103 }
1104 EXPORT_SYMBOL_GPL(symbol_put_addr);
1105
1106 static ssize_t show_refcnt(struct module_attribute *mattr,
1107 struct module_kobject *mk, char *buffer)
1108 {
1109 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1110 }
1111
1112 static struct module_attribute modinfo_refcnt =
1113 __ATTR(refcnt, 0444, show_refcnt, NULL);
1114
1115 void __module_get(struct module *module)
1116 {
1117 if (module) {
1118 preempt_disable();
1119 atomic_inc(&module->refcnt);
1120 trace_module_get(module, _RET_IP_);
1121 preempt_enable();
1122 }
1123 }
1124 EXPORT_SYMBOL(__module_get);
1125
1126 bool try_module_get(struct module *module)
1127 {
1128 bool ret = true;
1129
1130 if (module) {
1131 preempt_disable();
1132 /* Note: here, we can fail to get a reference */
1133 if (likely(module_is_live(module) &&
1134 atomic_inc_not_zero(&module->refcnt) != 0))
1135 trace_module_get(module, _RET_IP_);
1136 else
1137 ret = false;
1138
1139 preempt_enable();
1140 }
1141 return ret;
1142 }
1143 EXPORT_SYMBOL(try_module_get);
1144
1145 void module_put(struct module *module)
1146 {
1147 int ret;
1148
1149 if (module) {
1150 preempt_disable();
1151 ret = atomic_dec_if_positive(&module->refcnt);
1152 WARN_ON(ret < 0); /* Failed to put refcount */
1153 trace_module_put(module, _RET_IP_);
1154 preempt_enable();
1155 }
1156 }
1157 EXPORT_SYMBOL(module_put);
1158
1159 #else /* !CONFIG_MODULE_UNLOAD */
1160 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1161 {
1162 /* We don't know the usage count, or what modules are using. */
1163 seq_puts(m, " - -");
1164 }
1165
1166 static inline void module_unload_free(struct module *mod)
1167 {
1168 }
1169
1170 int ref_module(struct module *a, struct module *b)
1171 {
1172 return strong_try_module_get(b);
1173 }
1174 EXPORT_SYMBOL_GPL(ref_module);
1175
1176 static inline int module_unload_init(struct module *mod)
1177 {
1178 return 0;
1179 }
1180 #endif /* CONFIG_MODULE_UNLOAD */
1181
1182 static size_t module_flags_taint(struct module *mod, char *buf)
1183 {
1184 size_t l = 0;
1185
1186 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1187 buf[l++] = 'P';
1188 if (mod->taints & (1 << TAINT_OOT_MODULE))
1189 buf[l++] = 'O';
1190 if (mod->taints & (1 << TAINT_FORCED_MODULE))
1191 buf[l++] = 'F';
1192 if (mod->taints & (1 << TAINT_CRAP))
1193 buf[l++] = 'C';
1194 if (mod->taints & (1 << TAINT_UNSIGNED_MODULE))
1195 buf[l++] = 'E';
1196 /*
1197 * TAINT_FORCED_RMMOD: could be added.
1198 * TAINT_CPU_OUT_OF_SPEC, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1199 * apply to modules.
1200 */
1201 return l;
1202 }
1203
1204 static ssize_t show_initstate(struct module_attribute *mattr,
1205 struct module_kobject *mk, char *buffer)
1206 {
1207 const char *state = "unknown";
1208
1209 switch (mk->mod->state) {
1210 case MODULE_STATE_LIVE:
1211 state = "live";
1212 break;
1213 case MODULE_STATE_COMING:
1214 state = "coming";
1215 break;
1216 case MODULE_STATE_GOING:
1217 state = "going";
1218 break;
1219 default:
1220 BUG();
1221 }
1222 return sprintf(buffer, "%s\n", state);
1223 }
1224
1225 static struct module_attribute modinfo_initstate =
1226 __ATTR(initstate, 0444, show_initstate, NULL);
1227
1228 static ssize_t store_uevent(struct module_attribute *mattr,
1229 struct module_kobject *mk,
1230 const char *buffer, size_t count)
1231 {
1232 enum kobject_action action;
1233
1234 if (kobject_action_type(buffer, count, &action) == 0)
1235 kobject_uevent(&mk->kobj, action);
1236 return count;
1237 }
1238
1239 struct module_attribute module_uevent =
1240 __ATTR(uevent, 0200, NULL, store_uevent);
1241
1242 static ssize_t show_coresize(struct module_attribute *mattr,
1243 struct module_kobject *mk, char *buffer)
1244 {
1245 return sprintf(buffer, "%u\n", mk->mod->core_size);
1246 }
1247
1248 static struct module_attribute modinfo_coresize =
1249 __ATTR(coresize, 0444, show_coresize, NULL);
1250
1251 static ssize_t show_initsize(struct module_attribute *mattr,
1252 struct module_kobject *mk, char *buffer)
1253 {
1254 return sprintf(buffer, "%u\n", mk->mod->init_size);
1255 }
1256
1257 static struct module_attribute modinfo_initsize =
1258 __ATTR(initsize, 0444, show_initsize, NULL);
1259
1260 static ssize_t show_taint(struct module_attribute *mattr,
1261 struct module_kobject *mk, char *buffer)
1262 {
1263 size_t l;
1264
1265 l = module_flags_taint(mk->mod, buffer);
1266 buffer[l++] = '\n';
1267 return l;
1268 }
1269
1270 static struct module_attribute modinfo_taint =
1271 __ATTR(taint, 0444, show_taint, NULL);
1272
1273 static struct module_attribute *modinfo_attrs[] = {
1274 &module_uevent,
1275 &modinfo_version,
1276 &modinfo_srcversion,
1277 &modinfo_initstate,
1278 &modinfo_coresize,
1279 &modinfo_initsize,
1280 &modinfo_taint,
1281 #ifdef CONFIG_MODULE_UNLOAD
1282 &modinfo_refcnt,
1283 #endif
1284 NULL,
1285 };
1286
1287 static const char vermagic[] = VERMAGIC_STRING;
1288
1289 static int try_to_force_load(struct module *mod, const char *reason)
1290 {
1291 #ifdef CONFIG_MODULE_FORCE_LOAD
1292 if (!test_taint(TAINT_FORCED_MODULE))
1293 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1294 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1295 return 0;
1296 #else
1297 return -ENOEXEC;
1298 #endif
1299 }
1300
1301 #ifdef CONFIG_MODVERSIONS
1302 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1303 static unsigned long maybe_relocated(unsigned long crc,
1304 const struct module *crc_owner)
1305 {
1306 #ifdef ARCH_RELOCATES_KCRCTAB
1307 if (crc_owner == NULL)
1308 return crc - (unsigned long)reloc_start;
1309 #endif
1310 return crc;
1311 }
1312
1313 static int check_version(Elf_Shdr *sechdrs,
1314 unsigned int versindex,
1315 const char *symname,
1316 struct module *mod,
1317 const unsigned long *crc,
1318 const struct module *crc_owner)
1319 {
1320 unsigned int i, num_versions;
1321 struct modversion_info *versions;
1322
1323 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1324 if (!crc)
1325 return 1;
1326
1327 /* No versions at all? modprobe --force does this. */
1328 if (versindex == 0)
1329 return try_to_force_load(mod, symname) == 0;
1330
1331 versions = (void *) sechdrs[versindex].sh_addr;
1332 num_versions = sechdrs[versindex].sh_size
1333 / sizeof(struct modversion_info);
1334
1335 for (i = 0; i < num_versions; i++) {
1336 if (strcmp(versions[i].name, symname) != 0)
1337 continue;
1338
1339 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1340 return 1;
1341 pr_debug("Found checksum %lX vs module %lX\n",
1342 maybe_relocated(*crc, crc_owner), versions[i].crc);
1343 goto bad_version;
1344 }
1345
1346 pr_warn("%s: no symbol version for %s\n", mod->name, symname);
1347 return 0;
1348
1349 bad_version:
1350 pr_warn("%s: disagrees about version of symbol %s\n",
1351 mod->name, symname);
1352 return 0;
1353 }
1354
1355 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1356 unsigned int versindex,
1357 struct module *mod)
1358 {
1359 const unsigned long *crc;
1360
1361 /*
1362 * Since this should be found in kernel (which can't be removed), no
1363 * locking is necessary -- use preempt_disable() to placate lockdep.
1364 */
1365 preempt_disable();
1366 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1367 &crc, true, false)) {
1368 preempt_enable();
1369 BUG();
1370 }
1371 preempt_enable();
1372 return check_version(sechdrs, versindex,
1373 VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1374 NULL);
1375 }
1376
1377 /* First part is kernel version, which we ignore if module has crcs. */
1378 static inline int same_magic(const char *amagic, const char *bmagic,
1379 bool has_crcs)
1380 {
1381 if (has_crcs) {
1382 amagic += strcspn(amagic, " ");
1383 bmagic += strcspn(bmagic, " ");
1384 }
1385 return strcmp(amagic, bmagic) == 0;
1386 }
1387 #else
1388 static inline int check_version(Elf_Shdr *sechdrs,
1389 unsigned int versindex,
1390 const char *symname,
1391 struct module *mod,
1392 const unsigned long *crc,
1393 const struct module *crc_owner)
1394 {
1395 return 1;
1396 }
1397
1398 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1399 unsigned int versindex,
1400 struct module *mod)
1401 {
1402 return 1;
1403 }
1404
1405 static inline int same_magic(const char *amagic, const char *bmagic,
1406 bool has_crcs)
1407 {
1408 return strcmp(amagic, bmagic) == 0;
1409 }
1410 #endif /* CONFIG_MODVERSIONS */
1411
1412 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1413 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1414 const struct load_info *info,
1415 const char *name,
1416 char ownername[])
1417 {
1418 struct module *owner;
1419 const struct kernel_symbol *sym;
1420 const unsigned long *crc;
1421 int err;
1422
1423 /*
1424 * The module_mutex should not be a heavily contended lock;
1425 * if we get the occasional sleep here, we'll go an extra iteration
1426 * in the wait_event_interruptible(), which is harmless.
1427 */
1428 sched_annotate_sleep();
1429 mutex_lock(&module_mutex);
1430 sym = find_symbol(name, &owner, &crc,
1431 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1432 if (!sym)
1433 goto unlock;
1434
1435 if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1436 owner)) {
1437 sym = ERR_PTR(-EINVAL);
1438 goto getname;
1439 }
1440
1441 err = ref_module(mod, owner);
1442 if (err) {
1443 sym = ERR_PTR(err);
1444 goto getname;
1445 }
1446
1447 getname:
1448 /* We must make copy under the lock if we failed to get ref. */
1449 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1450 unlock:
1451 mutex_unlock(&module_mutex);
1452 return sym;
1453 }
1454
1455 static const struct kernel_symbol *
1456 resolve_symbol_wait(struct module *mod,
1457 const struct load_info *info,
1458 const char *name)
1459 {
1460 const struct kernel_symbol *ksym;
1461 char owner[MODULE_NAME_LEN];
1462
1463 if (wait_event_interruptible_timeout(module_wq,
1464 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1465 || PTR_ERR(ksym) != -EBUSY,
1466 30 * HZ) <= 0) {
1467 pr_warn("%s: gave up waiting for init of module %s.\n",
1468 mod->name, owner);
1469 }
1470 return ksym;
1471 }
1472
1473 /*
1474 * /sys/module/foo/sections stuff
1475 * J. Corbet <corbet@lwn.net>
1476 */
1477 #ifdef CONFIG_SYSFS
1478
1479 #ifdef CONFIG_KALLSYMS
1480 static inline bool sect_empty(const Elf_Shdr *sect)
1481 {
1482 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1483 }
1484
1485 struct module_sect_attr {
1486 struct module_attribute mattr;
1487 char *name;
1488 unsigned long address;
1489 };
1490
1491 struct module_sect_attrs {
1492 struct attribute_group grp;
1493 unsigned int nsections;
1494 struct module_sect_attr attrs[0];
1495 };
1496
1497 static ssize_t module_sect_show(struct module_attribute *mattr,
1498 struct module_kobject *mk, char *buf)
1499 {
1500 struct module_sect_attr *sattr =
1501 container_of(mattr, struct module_sect_attr, mattr);
1502 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1503 }
1504
1505 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1506 {
1507 unsigned int section;
1508
1509 for (section = 0; section < sect_attrs->nsections; section++)
1510 kfree(sect_attrs->attrs[section].name);
1511 kfree(sect_attrs);
1512 }
1513
1514 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1515 {
1516 unsigned int nloaded = 0, i, size[2];
1517 struct module_sect_attrs *sect_attrs;
1518 struct module_sect_attr *sattr;
1519 struct attribute **gattr;
1520
1521 /* Count loaded sections and allocate structures */
1522 for (i = 0; i < info->hdr->e_shnum; i++)
1523 if (!sect_empty(&info->sechdrs[i]))
1524 nloaded++;
1525 size[0] = ALIGN(sizeof(*sect_attrs)
1526 + nloaded * sizeof(sect_attrs->attrs[0]),
1527 sizeof(sect_attrs->grp.attrs[0]));
1528 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1529 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1530 if (sect_attrs == NULL)
1531 return;
1532
1533 /* Setup section attributes. */
1534 sect_attrs->grp.name = "sections";
1535 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1536
1537 sect_attrs->nsections = 0;
1538 sattr = &sect_attrs->attrs[0];
1539 gattr = &sect_attrs->grp.attrs[0];
1540 for (i = 0; i < info->hdr->e_shnum; i++) {
1541 Elf_Shdr *sec = &info->sechdrs[i];
1542 if (sect_empty(sec))
1543 continue;
1544 sattr->address = sec->sh_addr;
1545 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1546 GFP_KERNEL);
1547 if (sattr->name == NULL)
1548 goto out;
1549 sect_attrs->nsections++;
1550 sysfs_attr_init(&sattr->mattr.attr);
1551 sattr->mattr.show = module_sect_show;
1552 sattr->mattr.store = NULL;
1553 sattr->mattr.attr.name = sattr->name;
1554 sattr->mattr.attr.mode = S_IRUGO;
1555 *(gattr++) = &(sattr++)->mattr.attr;
1556 }
1557 *gattr = NULL;
1558
1559 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1560 goto out;
1561
1562 mod->sect_attrs = sect_attrs;
1563 return;
1564 out:
1565 free_sect_attrs(sect_attrs);
1566 }
1567
1568 static void remove_sect_attrs(struct module *mod)
1569 {
1570 if (mod->sect_attrs) {
1571 sysfs_remove_group(&mod->mkobj.kobj,
1572 &mod->sect_attrs->grp);
1573 /* We are positive that no one is using any sect attrs
1574 * at this point. Deallocate immediately. */
1575 free_sect_attrs(mod->sect_attrs);
1576 mod->sect_attrs = NULL;
1577 }
1578 }
1579
1580 /*
1581 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1582 */
1583
1584 struct module_notes_attrs {
1585 struct kobject *dir;
1586 unsigned int notes;
1587 struct bin_attribute attrs[0];
1588 };
1589
1590 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1591 struct bin_attribute *bin_attr,
1592 char *buf, loff_t pos, size_t count)
1593 {
1594 /*
1595 * The caller checked the pos and count against our size.
1596 */
1597 memcpy(buf, bin_attr->private + pos, count);
1598 return count;
1599 }
1600
1601 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1602 unsigned int i)
1603 {
1604 if (notes_attrs->dir) {
1605 while (i-- > 0)
1606 sysfs_remove_bin_file(notes_attrs->dir,
1607 &notes_attrs->attrs[i]);
1608 kobject_put(notes_attrs->dir);
1609 }
1610 kfree(notes_attrs);
1611 }
1612
1613 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1614 {
1615 unsigned int notes, loaded, i;
1616 struct module_notes_attrs *notes_attrs;
1617 struct bin_attribute *nattr;
1618
1619 /* failed to create section attributes, so can't create notes */
1620 if (!mod->sect_attrs)
1621 return;
1622
1623 /* Count notes sections and allocate structures. */
1624 notes = 0;
1625 for (i = 0; i < info->hdr->e_shnum; i++)
1626 if (!sect_empty(&info->sechdrs[i]) &&
1627 (info->sechdrs[i].sh_type == SHT_NOTE))
1628 ++notes;
1629
1630 if (notes == 0)
1631 return;
1632
1633 notes_attrs = kzalloc(sizeof(*notes_attrs)
1634 + notes * sizeof(notes_attrs->attrs[0]),
1635 GFP_KERNEL);
1636 if (notes_attrs == NULL)
1637 return;
1638
1639 notes_attrs->notes = notes;
1640 nattr = &notes_attrs->attrs[0];
1641 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1642 if (sect_empty(&info->sechdrs[i]))
1643 continue;
1644 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1645 sysfs_bin_attr_init(nattr);
1646 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1647 nattr->attr.mode = S_IRUGO;
1648 nattr->size = info->sechdrs[i].sh_size;
1649 nattr->private = (void *) info->sechdrs[i].sh_addr;
1650 nattr->read = module_notes_read;
1651 ++nattr;
1652 }
1653 ++loaded;
1654 }
1655
1656 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1657 if (!notes_attrs->dir)
1658 goto out;
1659
1660 for (i = 0; i < notes; ++i)
1661 if (sysfs_create_bin_file(notes_attrs->dir,
1662 &notes_attrs->attrs[i]))
1663 goto out;
1664
1665 mod->notes_attrs = notes_attrs;
1666 return;
1667
1668 out:
1669 free_notes_attrs(notes_attrs, i);
1670 }
1671
1672 static void remove_notes_attrs(struct module *mod)
1673 {
1674 if (mod->notes_attrs)
1675 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1676 }
1677
1678 #else
1679
1680 static inline void add_sect_attrs(struct module *mod,
1681 const struct load_info *info)
1682 {
1683 }
1684
1685 static inline void remove_sect_attrs(struct module *mod)
1686 {
1687 }
1688
1689 static inline void add_notes_attrs(struct module *mod,
1690 const struct load_info *info)
1691 {
1692 }
1693
1694 static inline void remove_notes_attrs(struct module *mod)
1695 {
1696 }
1697 #endif /* CONFIG_KALLSYMS */
1698
1699 static void add_usage_links(struct module *mod)
1700 {
1701 #ifdef CONFIG_MODULE_UNLOAD
1702 struct module_use *use;
1703 int nowarn;
1704
1705 mutex_lock(&module_mutex);
1706 list_for_each_entry(use, &mod->target_list, target_list) {
1707 nowarn = sysfs_create_link(use->target->holders_dir,
1708 &mod->mkobj.kobj, mod->name);
1709 }
1710 mutex_unlock(&module_mutex);
1711 #endif
1712 }
1713
1714 static void del_usage_links(struct module *mod)
1715 {
1716 #ifdef CONFIG_MODULE_UNLOAD
1717 struct module_use *use;
1718
1719 mutex_lock(&module_mutex);
1720 list_for_each_entry(use, &mod->target_list, target_list)
1721 sysfs_remove_link(use->target->holders_dir, mod->name);
1722 mutex_unlock(&module_mutex);
1723 #endif
1724 }
1725
1726 static int module_add_modinfo_attrs(struct module *mod)
1727 {
1728 struct module_attribute *attr;
1729 struct module_attribute *temp_attr;
1730 int error = 0;
1731 int i;
1732
1733 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1734 (ARRAY_SIZE(modinfo_attrs) + 1)),
1735 GFP_KERNEL);
1736 if (!mod->modinfo_attrs)
1737 return -ENOMEM;
1738
1739 temp_attr = mod->modinfo_attrs;
1740 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1741 if (!attr->test ||
1742 (attr->test && attr->test(mod))) {
1743 memcpy(temp_attr, attr, sizeof(*temp_attr));
1744 sysfs_attr_init(&temp_attr->attr);
1745 error = sysfs_create_file(&mod->mkobj.kobj,
1746 &temp_attr->attr);
1747 ++temp_attr;
1748 }
1749 }
1750 return error;
1751 }
1752
1753 static void module_remove_modinfo_attrs(struct module *mod)
1754 {
1755 struct module_attribute *attr;
1756 int i;
1757
1758 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1759 /* pick a field to test for end of list */
1760 if (!attr->attr.name)
1761 break;
1762 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1763 if (attr->free)
1764 attr->free(mod);
1765 }
1766 kfree(mod->modinfo_attrs);
1767 }
1768
1769 static void mod_kobject_put(struct module *mod)
1770 {
1771 DECLARE_COMPLETION_ONSTACK(c);
1772 mod->mkobj.kobj_completion = &c;
1773 kobject_put(&mod->mkobj.kobj);
1774 wait_for_completion(&c);
1775 }
1776
1777 static int mod_sysfs_init(struct module *mod)
1778 {
1779 int err;
1780 struct kobject *kobj;
1781
1782 if (!module_sysfs_initialized) {
1783 pr_err("%s: module sysfs not initialized\n", mod->name);
1784 err = -EINVAL;
1785 goto out;
1786 }
1787
1788 kobj = kset_find_obj(module_kset, mod->name);
1789 if (kobj) {
1790 pr_err("%s: module is already loaded\n", mod->name);
1791 kobject_put(kobj);
1792 err = -EINVAL;
1793 goto out;
1794 }
1795
1796 mod->mkobj.mod = mod;
1797
1798 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1799 mod->mkobj.kobj.kset = module_kset;
1800 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1801 "%s", mod->name);
1802 if (err)
1803 mod_kobject_put(mod);
1804
1805 /* delay uevent until full sysfs population */
1806 out:
1807 return err;
1808 }
1809
1810 static int mod_sysfs_setup(struct module *mod,
1811 const struct load_info *info,
1812 struct kernel_param *kparam,
1813 unsigned int num_params)
1814 {
1815 int err;
1816
1817 err = mod_sysfs_init(mod);
1818 if (err)
1819 goto out;
1820
1821 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1822 if (!mod->holders_dir) {
1823 err = -ENOMEM;
1824 goto out_unreg;
1825 }
1826
1827 err = module_param_sysfs_setup(mod, kparam, num_params);
1828 if (err)
1829 goto out_unreg_holders;
1830
1831 err = module_add_modinfo_attrs(mod);
1832 if (err)
1833 goto out_unreg_param;
1834
1835 add_usage_links(mod);
1836 add_sect_attrs(mod, info);
1837 add_notes_attrs(mod, info);
1838
1839 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1840 return 0;
1841
1842 out_unreg_param:
1843 module_param_sysfs_remove(mod);
1844 out_unreg_holders:
1845 kobject_put(mod->holders_dir);
1846 out_unreg:
1847 mod_kobject_put(mod);
1848 out:
1849 return err;
1850 }
1851
1852 static void mod_sysfs_fini(struct module *mod)
1853 {
1854 remove_notes_attrs(mod);
1855 remove_sect_attrs(mod);
1856 mod_kobject_put(mod);
1857 }
1858
1859 #else /* !CONFIG_SYSFS */
1860
1861 static int mod_sysfs_setup(struct module *mod,
1862 const struct load_info *info,
1863 struct kernel_param *kparam,
1864 unsigned int num_params)
1865 {
1866 return 0;
1867 }
1868
1869 static void mod_sysfs_fini(struct module *mod)
1870 {
1871 }
1872
1873 static void module_remove_modinfo_attrs(struct module *mod)
1874 {
1875 }
1876
1877 static void del_usage_links(struct module *mod)
1878 {
1879 }
1880
1881 #endif /* CONFIG_SYSFS */
1882
1883 static void mod_sysfs_teardown(struct module *mod)
1884 {
1885 del_usage_links(mod);
1886 module_remove_modinfo_attrs(mod);
1887 module_param_sysfs_remove(mod);
1888 kobject_put(mod->mkobj.drivers_dir);
1889 kobject_put(mod->holders_dir);
1890 mod_sysfs_fini(mod);
1891 }
1892
1893 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1894 /*
1895 * LKM RO/NX protection: protect module's text/ro-data
1896 * from modification and any data from execution.
1897 */
1898 void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1899 {
1900 unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1901 unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1902
1903 if (end_pfn > begin_pfn)
1904 set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1905 }
1906
1907 static void set_section_ro_nx(void *base,
1908 unsigned long text_size,
1909 unsigned long ro_size,
1910 unsigned long total_size)
1911 {
1912 /* begin and end PFNs of the current subsection */
1913 unsigned long begin_pfn;
1914 unsigned long end_pfn;
1915
1916 /*
1917 * Set RO for module text and RO-data:
1918 * - Always protect first page.
1919 * - Do not protect last partial page.
1920 */
1921 if (ro_size > 0)
1922 set_page_attributes(base, base + ro_size, set_memory_ro);
1923
1924 /*
1925 * Set NX permissions for module data:
1926 * - Do not protect first partial page.
1927 * - Always protect last page.
1928 */
1929 if (total_size > text_size) {
1930 begin_pfn = PFN_UP((unsigned long)base + text_size);
1931 end_pfn = PFN_UP((unsigned long)base + total_size);
1932 if (end_pfn > begin_pfn)
1933 set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1934 }
1935 }
1936
1937 static void unset_module_core_ro_nx(struct module *mod)
1938 {
1939 set_page_attributes(mod->module_core + mod->core_text_size,
1940 mod->module_core + mod->core_size,
1941 set_memory_x);
1942 set_page_attributes(mod->module_core,
1943 mod->module_core + mod->core_ro_size,
1944 set_memory_rw);
1945 }
1946
1947 static void unset_module_init_ro_nx(struct module *mod)
1948 {
1949 set_page_attributes(mod->module_init + mod->init_text_size,
1950 mod->module_init + mod->init_size,
1951 set_memory_x);
1952 set_page_attributes(mod->module_init,
1953 mod->module_init + mod->init_ro_size,
1954 set_memory_rw);
1955 }
1956
1957 /* Iterate through all modules and set each module's text as RW */
1958 void set_all_modules_text_rw(void)
1959 {
1960 struct module *mod;
1961
1962 mutex_lock(&module_mutex);
1963 list_for_each_entry_rcu(mod, &modules, list) {
1964 if (mod->state == MODULE_STATE_UNFORMED)
1965 continue;
1966 if ((mod->module_core) && (mod->core_text_size)) {
1967 set_page_attributes(mod->module_core,
1968 mod->module_core + mod->core_text_size,
1969 set_memory_rw);
1970 }
1971 if ((mod->module_init) && (mod->init_text_size)) {
1972 set_page_attributes(mod->module_init,
1973 mod->module_init + mod->init_text_size,
1974 set_memory_rw);
1975 }
1976 }
1977 mutex_unlock(&module_mutex);
1978 }
1979
1980 /* Iterate through all modules and set each module's text as RO */
1981 void set_all_modules_text_ro(void)
1982 {
1983 struct module *mod;
1984
1985 mutex_lock(&module_mutex);
1986 list_for_each_entry_rcu(mod, &modules, list) {
1987 if (mod->state == MODULE_STATE_UNFORMED)
1988 continue;
1989 if ((mod->module_core) && (mod->core_text_size)) {
1990 set_page_attributes(mod->module_core,
1991 mod->module_core + mod->core_text_size,
1992 set_memory_ro);
1993 }
1994 if ((mod->module_init) && (mod->init_text_size)) {
1995 set_page_attributes(mod->module_init,
1996 mod->module_init + mod->init_text_size,
1997 set_memory_ro);
1998 }
1999 }
2000 mutex_unlock(&module_mutex);
2001 }
2002 #else
2003 static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
2004 static void unset_module_core_ro_nx(struct module *mod) { }
2005 static void unset_module_init_ro_nx(struct module *mod) { }
2006 #endif
2007
2008 void __weak module_memfree(void *module_region)
2009 {
2010 vfree(module_region);
2011 }
2012
2013 void __weak module_arch_cleanup(struct module *mod)
2014 {
2015 }
2016
2017 void __weak module_arch_freeing_init(struct module *mod)
2018 {
2019 }
2020
2021 /* Free a module, remove from lists, etc. */
2022 static void free_module(struct module *mod)
2023 {
2024 trace_module_free(mod);
2025
2026 mod_sysfs_teardown(mod);
2027
2028 /* We leave it in list to prevent duplicate loads, but make sure
2029 * that noone uses it while it's being deconstructed. */
2030 mutex_lock(&module_mutex);
2031 mod->state = MODULE_STATE_UNFORMED;
2032 mutex_unlock(&module_mutex);
2033
2034 /* Remove dynamic debug info */
2035 ddebug_remove_module(mod->name);
2036
2037 /* Arch-specific cleanup. */
2038 module_arch_cleanup(mod);
2039
2040 /* Module unload stuff */
2041 module_unload_free(mod);
2042
2043 /* Free any allocated parameters. */
2044 destroy_params(mod->kp, mod->num_kp);
2045
2046 /* Now we can delete it from the lists */
2047 mutex_lock(&module_mutex);
2048 /* Unlink carefully: kallsyms could be walking list. */
2049 list_del_rcu(&mod->list);
2050 mod_tree_remove(mod);
2051 /* Remove this module from bug list, this uses list_del_rcu */
2052 module_bug_cleanup(mod);
2053 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2054 synchronize_sched();
2055 mutex_unlock(&module_mutex);
2056
2057 /* This may be NULL, but that's OK */
2058 unset_module_init_ro_nx(mod);
2059 module_arch_freeing_init(mod);
2060 module_memfree(mod->module_init);
2061 kfree(mod->args);
2062 percpu_modfree(mod);
2063
2064 /* Free lock-classes; relies on the preceding sync_rcu(). */
2065 lockdep_free_key_range(mod->module_core, mod->core_size);
2066
2067 /* Finally, free the core (containing the module structure) */
2068 unset_module_core_ro_nx(mod);
2069 module_memfree(mod->module_core);
2070
2071 #ifdef CONFIG_MPU
2072 update_protections(current->mm);
2073 #endif
2074 }
2075
2076 void *__symbol_get(const char *symbol)
2077 {
2078 struct module *owner;
2079 const struct kernel_symbol *sym;
2080
2081 preempt_disable();
2082 sym = find_symbol(symbol, &owner, NULL, true, true);
2083 if (sym && strong_try_module_get(owner))
2084 sym = NULL;
2085 preempt_enable();
2086
2087 return sym ? (void *)sym->value : NULL;
2088 }
2089 EXPORT_SYMBOL_GPL(__symbol_get);
2090
2091 /*
2092 * Ensure that an exported symbol [global namespace] does not already exist
2093 * in the kernel or in some other module's exported symbol table.
2094 *
2095 * You must hold the module_mutex.
2096 */
2097 static int verify_export_symbols(struct module *mod)
2098 {
2099 unsigned int i;
2100 struct module *owner;
2101 const struct kernel_symbol *s;
2102 struct {
2103 const struct kernel_symbol *sym;
2104 unsigned int num;
2105 } arr[] = {
2106 { mod->syms, mod->num_syms },
2107 { mod->gpl_syms, mod->num_gpl_syms },
2108 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2109 #ifdef CONFIG_UNUSED_SYMBOLS
2110 { mod->unused_syms, mod->num_unused_syms },
2111 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2112 #endif
2113 };
2114
2115 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2116 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2117 if (find_symbol(s->name, &owner, NULL, true, false)) {
2118 pr_err("%s: exports duplicate symbol %s"
2119 " (owned by %s)\n",
2120 mod->name, s->name, module_name(owner));
2121 return -ENOEXEC;
2122 }
2123 }
2124 }
2125 return 0;
2126 }
2127
2128 /* Change all symbols so that st_value encodes the pointer directly. */
2129 static int simplify_symbols(struct module *mod, const struct load_info *info)
2130 {
2131 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2132 Elf_Sym *sym = (void *)symsec->sh_addr;
2133 unsigned long secbase;
2134 unsigned int i;
2135 int ret = 0;
2136 const struct kernel_symbol *ksym;
2137
2138 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2139 const char *name = info->strtab + sym[i].st_name;
2140
2141 switch (sym[i].st_shndx) {
2142 case SHN_COMMON:
2143 /* Ignore common symbols */
2144 if (!strncmp(name, "__gnu_lto", 9))
2145 break;
2146
2147 /* We compiled with -fno-common. These are not
2148 supposed to happen. */
2149 pr_debug("Common symbol: %s\n", name);
2150 pr_warn("%s: please compile with -fno-common\n",
2151 mod->name);
2152 ret = -ENOEXEC;
2153 break;
2154
2155 case SHN_ABS:
2156 /* Don't need to do anything */
2157 pr_debug("Absolute symbol: 0x%08lx\n",
2158 (long)sym[i].st_value);
2159 break;
2160
2161 case SHN_UNDEF:
2162 ksym = resolve_symbol_wait(mod, info, name);
2163 /* Ok if resolved. */
2164 if (ksym && !IS_ERR(ksym)) {
2165 sym[i].st_value = ksym->value;
2166 break;
2167 }
2168
2169 /* Ok if weak. */
2170 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2171 break;
2172
2173 pr_warn("%s: Unknown symbol %s (err %li)\n",
2174 mod->name, name, PTR_ERR(ksym));
2175 ret = PTR_ERR(ksym) ?: -ENOENT;
2176 break;
2177
2178 default:
2179 /* Divert to percpu allocation if a percpu var. */
2180 if (sym[i].st_shndx == info->index.pcpu)
2181 secbase = (unsigned long)mod_percpu(mod);
2182 else
2183 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2184 sym[i].st_value += secbase;
2185 break;
2186 }
2187 }
2188
2189 return ret;
2190 }
2191
2192 static int apply_relocations(struct module *mod, const struct load_info *info)
2193 {
2194 unsigned int i;
2195 int err = 0;
2196
2197 /* Now do relocations. */
2198 for (i = 1; i < info->hdr->e_shnum; i++) {
2199 unsigned int infosec = info->sechdrs[i].sh_info;
2200
2201 /* Not a valid relocation section? */
2202 if (infosec >= info->hdr->e_shnum)
2203 continue;
2204
2205 /* Don't bother with non-allocated sections */
2206 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2207 continue;
2208
2209 if (info->sechdrs[i].sh_type == SHT_REL)
2210 err = apply_relocate(info->sechdrs, info->strtab,
2211 info->index.sym, i, mod);
2212 else if (info->sechdrs[i].sh_type == SHT_RELA)
2213 err = apply_relocate_add(info->sechdrs, info->strtab,
2214 info->index.sym, i, mod);
2215 if (err < 0)
2216 break;
2217 }
2218 return err;
2219 }
2220
2221 /* Additional bytes needed by arch in front of individual sections */
2222 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2223 unsigned int section)
2224 {
2225 /* default implementation just returns zero */
2226 return 0;
2227 }
2228
2229 /* Update size with this section: return offset. */
2230 static long get_offset(struct module *mod, unsigned int *size,
2231 Elf_Shdr *sechdr, unsigned int section)
2232 {
2233 long ret;
2234
2235 *size += arch_mod_section_prepend(mod, section);
2236 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2237 *size = ret + sechdr->sh_size;
2238 return ret;
2239 }
2240
2241 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2242 might -- code, read-only data, read-write data, small data. Tally
2243 sizes, and place the offsets into sh_entsize fields: high bit means it
2244 belongs in init. */
2245 static void layout_sections(struct module *mod, struct load_info *info)
2246 {
2247 static unsigned long const masks[][2] = {
2248 /* NOTE: all executable code must be the first section
2249 * in this array; otherwise modify the text_size
2250 * finder in the two loops below */
2251 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2252 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2253 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2254 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2255 };
2256 unsigned int m, i;
2257
2258 for (i = 0; i < info->hdr->e_shnum; i++)
2259 info->sechdrs[i].sh_entsize = ~0UL;
2260
2261 pr_debug("Core section allocation order:\n");
2262 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2263 for (i = 0; i < info->hdr->e_shnum; ++i) {
2264 Elf_Shdr *s = &info->sechdrs[i];
2265 const char *sname = info->secstrings + s->sh_name;
2266
2267 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2268 || (s->sh_flags & masks[m][1])
2269 || s->sh_entsize != ~0UL
2270 || strstarts(sname, ".init"))
2271 continue;
2272 s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
2273 pr_debug("\t%s\n", sname);
2274 }
2275 switch (m) {
2276 case 0: /* executable */
2277 mod->core_size = debug_align(mod->core_size);
2278 mod->core_text_size = mod->core_size;
2279 break;
2280 case 1: /* RO: text and ro-data */
2281 mod->core_size = debug_align(mod->core_size);
2282 mod->core_ro_size = mod->core_size;
2283 break;
2284 case 3: /* whole core */
2285 mod->core_size = debug_align(mod->core_size);
2286 break;
2287 }
2288 }
2289
2290 pr_debug("Init section allocation order:\n");
2291 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2292 for (i = 0; i < info->hdr->e_shnum; ++i) {
2293 Elf_Shdr *s = &info->sechdrs[i];
2294 const char *sname = info->secstrings + s->sh_name;
2295
2296 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2297 || (s->sh_flags & masks[m][1])
2298 || s->sh_entsize != ~0UL
2299 || !strstarts(sname, ".init"))
2300 continue;
2301 s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2302 | INIT_OFFSET_MASK);
2303 pr_debug("\t%s\n", sname);
2304 }
2305 switch (m) {
2306 case 0: /* executable */
2307 mod->init_size = debug_align(mod->init_size);
2308 mod->init_text_size = mod->init_size;
2309 break;
2310 case 1: /* RO: text and ro-data */
2311 mod->init_size = debug_align(mod->init_size);
2312 mod->init_ro_size = mod->init_size;
2313 break;
2314 case 3: /* whole init */
2315 mod->init_size = debug_align(mod->init_size);
2316 break;
2317 }
2318 }
2319 }
2320
2321 static void set_license(struct module *mod, const char *license)
2322 {
2323 if (!license)
2324 license = "unspecified";
2325
2326 if (!license_is_gpl_compatible(license)) {
2327 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2328 pr_warn("%s: module license '%s' taints kernel.\n",
2329 mod->name, license);
2330 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2331 LOCKDEP_NOW_UNRELIABLE);
2332 }
2333 }
2334
2335 /* Parse tag=value strings from .modinfo section */
2336 static char *next_string(char *string, unsigned long *secsize)
2337 {
2338 /* Skip non-zero chars */
2339 while (string[0]) {
2340 string++;
2341 if ((*secsize)-- <= 1)
2342 return NULL;
2343 }
2344
2345 /* Skip any zero padding. */
2346 while (!string[0]) {
2347 string++;
2348 if ((*secsize)-- <= 1)
2349 return NULL;
2350 }
2351 return string;
2352 }
2353
2354 static char *get_modinfo(struct load_info *info, const char *tag)
2355 {
2356 char *p;
2357 unsigned int taglen = strlen(tag);
2358 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2359 unsigned long size = infosec->sh_size;
2360
2361 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2362 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2363 return p + taglen + 1;
2364 }
2365 return NULL;
2366 }
2367
2368 static void setup_modinfo(struct module *mod, struct load_info *info)
2369 {
2370 struct module_attribute *attr;
2371 int i;
2372
2373 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2374 if (attr->setup)
2375 attr->setup(mod, get_modinfo(info, attr->attr.name));
2376 }
2377 }
2378
2379 static void free_modinfo(struct module *mod)
2380 {
2381 struct module_attribute *attr;
2382 int i;
2383
2384 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2385 if (attr->free)
2386 attr->free(mod);
2387 }
2388 }
2389
2390 #ifdef CONFIG_KALLSYMS
2391
2392 /* lookup symbol in given range of kernel_symbols */
2393 static const struct kernel_symbol *lookup_symbol(const char *name,
2394 const struct kernel_symbol *start,
2395 const struct kernel_symbol *stop)
2396 {
2397 return bsearch(name, start, stop - start,
2398 sizeof(struct kernel_symbol), cmp_name);
2399 }
2400
2401 static int is_exported(const char *name, unsigned long value,
2402 const struct module *mod)
2403 {
2404 const struct kernel_symbol *ks;
2405 if (!mod)
2406 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2407 else
2408 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2409 return ks != NULL && ks->value == value;
2410 }
2411
2412 /* As per nm */
2413 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2414 {
2415 const Elf_Shdr *sechdrs = info->sechdrs;
2416
2417 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2418 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2419 return 'v';
2420 else
2421 return 'w';
2422 }
2423 if (sym->st_shndx == SHN_UNDEF)
2424 return 'U';
2425 if (sym->st_shndx == SHN_ABS)
2426 return 'a';
2427 if (sym->st_shndx >= SHN_LORESERVE)
2428 return '?';
2429 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2430 return 't';
2431 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2432 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2433 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2434 return 'r';
2435 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2436 return 'g';
2437 else
2438 return 'd';
2439 }
2440 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2441 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2442 return 's';
2443 else
2444 return 'b';
2445 }
2446 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2447 ".debug")) {
2448 return 'n';
2449 }
2450 return '?';
2451 }
2452
2453 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2454 unsigned int shnum)
2455 {
2456 const Elf_Shdr *sec;
2457
2458 if (src->st_shndx == SHN_UNDEF
2459 || src->st_shndx >= shnum
2460 || !src->st_name)
2461 return false;
2462
2463 sec = sechdrs + src->st_shndx;
2464 if (!(sec->sh_flags & SHF_ALLOC)
2465 #ifndef CONFIG_KALLSYMS_ALL
2466 || !(sec->sh_flags & SHF_EXECINSTR)
2467 #endif
2468 || (sec->sh_entsize & INIT_OFFSET_MASK))
2469 return false;
2470
2471 return true;
2472 }
2473
2474 /*
2475 * We only allocate and copy the strings needed by the parts of symtab
2476 * we keep. This is simple, but has the effect of making multiple
2477 * copies of duplicates. We could be more sophisticated, see
2478 * linux-kernel thread starting with
2479 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2480 */
2481 static void layout_symtab(struct module *mod, struct load_info *info)
2482 {
2483 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2484 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2485 const Elf_Sym *src;
2486 unsigned int i, nsrc, ndst, strtab_size = 0;
2487
2488 /* Put symbol section at end of init part of module. */
2489 symsect->sh_flags |= SHF_ALLOC;
2490 symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2491 info->index.sym) | INIT_OFFSET_MASK;
2492 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2493
2494 src = (void *)info->hdr + symsect->sh_offset;
2495 nsrc = symsect->sh_size / sizeof(*src);
2496
2497 /* Compute total space required for the core symbols' strtab. */
2498 for (ndst = i = 0; i < nsrc; i++) {
2499 if (i == 0 ||
2500 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2501 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2502 ndst++;
2503 }
2504 }
2505
2506 /* Append room for core symbols at end of core part. */
2507 info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2508 info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2509 mod->core_size += strtab_size;
2510 mod->core_size = debug_align(mod->core_size);
2511
2512 /* Put string table section at end of init part of module. */
2513 strsect->sh_flags |= SHF_ALLOC;
2514 strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2515 info->index.str) | INIT_OFFSET_MASK;
2516 mod->init_size = debug_align(mod->init_size);
2517 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2518 }
2519
2520 static void add_kallsyms(struct module *mod, const struct load_info *info)
2521 {
2522 unsigned int i, ndst;
2523 const Elf_Sym *src;
2524 Elf_Sym *dst;
2525 char *s;
2526 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2527
2528 mod->symtab = (void *)symsec->sh_addr;
2529 mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2530 /* Make sure we get permanent strtab: don't use info->strtab. */
2531 mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2532
2533 /* Set types up while we still have access to sections. */
2534 for (i = 0; i < mod->num_symtab; i++)
2535 mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
2536
2537 mod->core_symtab = dst = mod->module_core + info->symoffs;
2538 mod->core_strtab = s = mod->module_core + info->stroffs;
2539 src = mod->symtab;
2540 for (ndst = i = 0; i < mod->num_symtab; i++) {
2541 if (i == 0 ||
2542 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2543 dst[ndst] = src[i];
2544 dst[ndst++].st_name = s - mod->core_strtab;
2545 s += strlcpy(s, &mod->strtab[src[i].st_name],
2546 KSYM_NAME_LEN) + 1;
2547 }
2548 }
2549 mod->core_num_syms = ndst;
2550 }
2551 #else
2552 static inline void layout_symtab(struct module *mod, struct load_info *info)
2553 {
2554 }
2555
2556 static void add_kallsyms(struct module *mod, const struct load_info *info)
2557 {
2558 }
2559 #endif /* CONFIG_KALLSYMS */
2560
2561 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2562 {
2563 if (!debug)
2564 return;
2565 #ifdef CONFIG_DYNAMIC_DEBUG
2566 if (ddebug_add_module(debug, num, debug->modname))
2567 pr_err("dynamic debug error adding module: %s\n",
2568 debug->modname);
2569 #endif
2570 }
2571
2572 static void dynamic_debug_remove(struct _ddebug *debug)
2573 {
2574 if (debug)
2575 ddebug_remove_module(debug->modname);
2576 }
2577
2578 void * __weak module_alloc(unsigned long size)
2579 {
2580 return vmalloc_exec(size);
2581 }
2582
2583 #ifdef CONFIG_DEBUG_KMEMLEAK
2584 static void kmemleak_load_module(const struct module *mod,
2585 const struct load_info *info)
2586 {
2587 unsigned int i;
2588
2589 /* only scan the sections containing data */
2590 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2591
2592 for (i = 1; i < info->hdr->e_shnum; i++) {
2593 /* Scan all writable sections that's not executable */
2594 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2595 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2596 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2597 continue;
2598
2599 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2600 info->sechdrs[i].sh_size, GFP_KERNEL);
2601 }
2602 }
2603 #else
2604 static inline void kmemleak_load_module(const struct module *mod,
2605 const struct load_info *info)
2606 {
2607 }
2608 #endif
2609
2610 #ifdef CONFIG_MODULE_SIG
2611 static int module_sig_check(struct load_info *info)
2612 {
2613 int err = -ENOKEY;
2614 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2615 const void *mod = info->hdr;
2616
2617 if (info->len > markerlen &&
2618 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2619 /* We truncate the module to discard the signature */
2620 info->len -= markerlen;
2621 err = mod_verify_sig(mod, &info->len);
2622 }
2623
2624 if (!err) {
2625 info->sig_ok = true;
2626 return 0;
2627 }
2628
2629 /* Not having a signature is only an error if we're strict. */
2630 if (err == -ENOKEY && !sig_enforce)
2631 err = 0;
2632
2633 return err;
2634 }
2635 #else /* !CONFIG_MODULE_SIG */
2636 static int module_sig_check(struct load_info *info)
2637 {
2638 return 0;
2639 }
2640 #endif /* !CONFIG_MODULE_SIG */
2641
2642 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2643 static int elf_header_check(struct load_info *info)
2644 {
2645 if (info->len < sizeof(*(info->hdr)))
2646 return -ENOEXEC;
2647
2648 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2649 || info->hdr->e_type != ET_REL
2650 || !elf_check_arch(info->hdr)
2651 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2652 return -ENOEXEC;
2653
2654 if (info->hdr->e_shoff >= info->len
2655 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2656 info->len - info->hdr->e_shoff))
2657 return -ENOEXEC;
2658
2659 return 0;
2660 }
2661
2662 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2663
2664 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2665 {
2666 do {
2667 unsigned long n = min(len, COPY_CHUNK_SIZE);
2668
2669 if (copy_from_user(dst, usrc, n) != 0)
2670 return -EFAULT;
2671 cond_resched();
2672 dst += n;
2673 usrc += n;
2674 len -= n;
2675 } while (len);
2676 return 0;
2677 }
2678
2679 /* Sets info->hdr and info->len. */
2680 static int copy_module_from_user(const void __user *umod, unsigned long len,
2681 struct load_info *info)
2682 {
2683 int err;
2684
2685 info->len = len;
2686 if (info->len < sizeof(*(info->hdr)))
2687 return -ENOEXEC;
2688
2689 err = security_kernel_module_from_file(NULL);
2690 if (err)
2691 return err;
2692
2693 /* Suck in entire file: we'll want most of it. */
2694 info->hdr = __vmalloc(info->len,
2695 GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN, PAGE_KERNEL);
2696 if (!info->hdr)
2697 return -ENOMEM;
2698
2699 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2700 vfree(info->hdr);
2701 return -EFAULT;
2702 }
2703
2704 return 0;
2705 }
2706
2707 /* Sets info->hdr and info->len. */
2708 static int copy_module_from_fd(int fd, struct load_info *info)
2709 {
2710 struct fd f = fdget(fd);
2711 int err;
2712 struct kstat stat;
2713 loff_t pos;
2714 ssize_t bytes = 0;
2715
2716 if (!f.file)
2717 return -ENOEXEC;
2718
2719 err = security_kernel_module_from_file(f.file);
2720 if (err)
2721 goto out;
2722
2723 err = vfs_getattr(&f.file->f_path, &stat);
2724 if (err)
2725 goto out;
2726
2727 if (stat.size > INT_MAX) {
2728 err = -EFBIG;
2729 goto out;
2730 }
2731
2732 /* Don't hand 0 to vmalloc, it whines. */
2733 if (stat.size == 0) {
2734 err = -EINVAL;
2735 goto out;
2736 }
2737
2738 info->hdr = vmalloc(stat.size);
2739 if (!info->hdr) {
2740 err = -ENOMEM;
2741 goto out;
2742 }
2743
2744 pos = 0;
2745 while (pos < stat.size) {
2746 bytes = kernel_read(f.file, pos, (char *)(info->hdr) + pos,
2747 stat.size - pos);
2748 if (bytes < 0) {
2749 vfree(info->hdr);
2750 err = bytes;
2751 goto out;
2752 }
2753 if (bytes == 0)
2754 break;
2755 pos += bytes;
2756 }
2757 info->len = pos;
2758
2759 out:
2760 fdput(f);
2761 return err;
2762 }
2763
2764 static void free_copy(struct load_info *info)
2765 {
2766 vfree(info->hdr);
2767 }
2768
2769 static int rewrite_section_headers(struct load_info *info, int flags)
2770 {
2771 unsigned int i;
2772
2773 /* This should always be true, but let's be sure. */
2774 info->sechdrs[0].sh_addr = 0;
2775
2776 for (i = 1; i < info->hdr->e_shnum; i++) {
2777 Elf_Shdr *shdr = &info->sechdrs[i];
2778 if (shdr->sh_type != SHT_NOBITS
2779 && info->len < shdr->sh_offset + shdr->sh_size) {
2780 pr_err("Module len %lu truncated\n", info->len);
2781 return -ENOEXEC;
2782 }
2783
2784 /* Mark all sections sh_addr with their address in the
2785 temporary image. */
2786 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2787
2788 #ifndef CONFIG_MODULE_UNLOAD
2789 /* Don't load .exit sections */
2790 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2791 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2792 #endif
2793 }
2794
2795 /* Track but don't keep modinfo and version sections. */
2796 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2797 info->index.vers = 0; /* Pretend no __versions section! */
2798 else
2799 info->index.vers = find_sec(info, "__versions");
2800 info->index.info = find_sec(info, ".modinfo");
2801 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2802 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2803 return 0;
2804 }
2805
2806 /*
2807 * Set up our basic convenience variables (pointers to section headers,
2808 * search for module section index etc), and do some basic section
2809 * verification.
2810 *
2811 * Return the temporary module pointer (we'll replace it with the final
2812 * one when we move the module sections around).
2813 */
2814 static struct module *setup_load_info(struct load_info *info, int flags)
2815 {
2816 unsigned int i;
2817 int err;
2818 struct module *mod;
2819
2820 /* Set up the convenience variables */
2821 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2822 info->secstrings = (void *)info->hdr
2823 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2824
2825 err = rewrite_section_headers(info, flags);
2826 if (err)
2827 return ERR_PTR(err);
2828
2829 /* Find internal symbols and strings. */
2830 for (i = 1; i < info->hdr->e_shnum; i++) {
2831 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2832 info->index.sym = i;
2833 info->index.str = info->sechdrs[i].sh_link;
2834 info->strtab = (char *)info->hdr
2835 + info->sechdrs[info->index.str].sh_offset;
2836 break;
2837 }
2838 }
2839
2840 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2841 if (!info->index.mod) {
2842 pr_warn("No module found in object\n");
2843 return ERR_PTR(-ENOEXEC);
2844 }
2845 /* This is temporary: point mod into copy of data. */
2846 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2847
2848 if (info->index.sym == 0) {
2849 pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
2850 return ERR_PTR(-ENOEXEC);
2851 }
2852
2853 info->index.pcpu = find_pcpusec(info);
2854
2855 /* Check module struct version now, before we try to use module. */
2856 if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2857 return ERR_PTR(-ENOEXEC);
2858
2859 return mod;
2860 }
2861
2862 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2863 {
2864 const char *modmagic = get_modinfo(info, "vermagic");
2865 int err;
2866
2867 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2868 modmagic = NULL;
2869
2870 /* This is allowed: modprobe --force will invalidate it. */
2871 if (!modmagic) {
2872 err = try_to_force_load(mod, "bad vermagic");
2873 if (err)
2874 return err;
2875 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2876 pr_err("%s: version magic '%s' should be '%s'\n",
2877 mod->name, modmagic, vermagic);
2878 return -ENOEXEC;
2879 }
2880
2881 if (!get_modinfo(info, "intree"))
2882 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2883
2884 if (get_modinfo(info, "staging")) {
2885 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2886 pr_warn("%s: module is from the staging directory, the quality "
2887 "is unknown, you have been warned.\n", mod->name);
2888 }
2889
2890 /* Set up license info based on the info section */
2891 set_license(mod, get_modinfo(info, "license"));
2892
2893 return 0;
2894 }
2895
2896 static int find_module_sections(struct module *mod, struct load_info *info)
2897 {
2898 mod->kp = section_objs(info, "__param",
2899 sizeof(*mod->kp), &mod->num_kp);
2900 mod->syms = section_objs(info, "__ksymtab",
2901 sizeof(*mod->syms), &mod->num_syms);
2902 mod->crcs = section_addr(info, "__kcrctab");
2903 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2904 sizeof(*mod->gpl_syms),
2905 &mod->num_gpl_syms);
2906 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2907 mod->gpl_future_syms = section_objs(info,
2908 "__ksymtab_gpl_future",
2909 sizeof(*mod->gpl_future_syms),
2910 &mod->num_gpl_future_syms);
2911 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2912
2913 #ifdef CONFIG_UNUSED_SYMBOLS
2914 mod->unused_syms = section_objs(info, "__ksymtab_unused",
2915 sizeof(*mod->unused_syms),
2916 &mod->num_unused_syms);
2917 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2918 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2919 sizeof(*mod->unused_gpl_syms),
2920 &mod->num_unused_gpl_syms);
2921 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2922 #endif
2923 #ifdef CONFIG_CONSTRUCTORS
2924 mod->ctors = section_objs(info, ".ctors",
2925 sizeof(*mod->ctors), &mod->num_ctors);
2926 if (!mod->ctors)
2927 mod->ctors = section_objs(info, ".init_array",
2928 sizeof(*mod->ctors), &mod->num_ctors);
2929 else if (find_sec(info, ".init_array")) {
2930 /*
2931 * This shouldn't happen with same compiler and binutils
2932 * building all parts of the module.
2933 */
2934 pr_warn("%s: has both .ctors and .init_array.\n",
2935 mod->name);
2936 return -EINVAL;
2937 }
2938 #endif
2939
2940 #ifdef CONFIG_TRACEPOINTS
2941 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2942 sizeof(*mod->tracepoints_ptrs),
2943 &mod->num_tracepoints);
2944 #endif
2945 #ifdef HAVE_JUMP_LABEL
2946 mod->jump_entries = section_objs(info, "__jump_table",
2947 sizeof(*mod->jump_entries),
2948 &mod->num_jump_entries);
2949 #endif
2950 #ifdef CONFIG_EVENT_TRACING
2951 mod->trace_events = section_objs(info, "_ftrace_events",
2952 sizeof(*mod->trace_events),
2953 &mod->num_trace_events);
2954 mod->trace_enums = section_objs(info, "_ftrace_enum_map",
2955 sizeof(*mod->trace_enums),
2956 &mod->num_trace_enums);
2957 #endif
2958 #ifdef CONFIG_TRACING
2959 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2960 sizeof(*mod->trace_bprintk_fmt_start),
2961 &mod->num_trace_bprintk_fmt);
2962 #endif
2963 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2964 /* sechdrs[0].sh_size is always zero */
2965 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2966 sizeof(*mod->ftrace_callsites),
2967 &mod->num_ftrace_callsites);
2968 #endif
2969
2970 mod->extable = section_objs(info, "__ex_table",
2971 sizeof(*mod->extable), &mod->num_exentries);
2972
2973 if (section_addr(info, "__obsparm"))
2974 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2975
2976 info->debug = section_objs(info, "__verbose",
2977 sizeof(*info->debug), &info->num_debug);
2978
2979 return 0;
2980 }
2981
2982 static int move_module(struct module *mod, struct load_info *info)
2983 {
2984 int i;
2985 void *ptr;
2986
2987 /* Do the allocs. */
2988 ptr = module_alloc(mod->core_size);
2989 /*
2990 * The pointer to this block is stored in the module structure
2991 * which is inside the block. Just mark it as not being a
2992 * leak.
2993 */
2994 kmemleak_not_leak(ptr);
2995 if (!ptr)
2996 return -ENOMEM;
2997
2998 memset(ptr, 0, mod->core_size);
2999 mod->module_core = ptr;
3000
3001 if (mod->init_size) {
3002 ptr = module_alloc(mod->init_size);
3003 /*
3004 * The pointer to this block is stored in the module structure
3005 * which is inside the block. This block doesn't need to be
3006 * scanned as it contains data and code that will be freed
3007 * after the module is initialized.
3008 */
3009 kmemleak_ignore(ptr);
3010 if (!ptr) {
3011 module_memfree(mod->module_core);
3012 return -ENOMEM;
3013 }
3014 memset(ptr, 0, mod->init_size);
3015 mod->module_init = ptr;
3016 } else
3017 mod->module_init = NULL;
3018
3019 /* Transfer each section which specifies SHF_ALLOC */
3020 pr_debug("final section addresses:\n");
3021 for (i = 0; i < info->hdr->e_shnum; i++) {
3022 void *dest;
3023 Elf_Shdr *shdr = &info->sechdrs[i];
3024
3025 if (!(shdr->sh_flags & SHF_ALLOC))
3026 continue;
3027
3028 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3029 dest = mod->module_init
3030 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3031 else
3032 dest = mod->module_core + shdr->sh_entsize;
3033
3034 if (shdr->sh_type != SHT_NOBITS)
3035 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3036 /* Update sh_addr to point to copy in image. */
3037 shdr->sh_addr = (unsigned long)dest;
3038 pr_debug("\t0x%lx %s\n",
3039 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3040 }
3041
3042 return 0;
3043 }
3044
3045 static int check_module_license_and_versions(struct module *mod)
3046 {
3047 /*
3048 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3049 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3050 * using GPL-only symbols it needs.
3051 */
3052 if (strcmp(mod->name, "ndiswrapper") == 0)
3053 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3054
3055 /* driverloader was caught wrongly pretending to be under GPL */
3056 if (strcmp(mod->name, "driverloader") == 0)
3057 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3058 LOCKDEP_NOW_UNRELIABLE);
3059
3060 /* lve claims to be GPL but upstream won't provide source */
3061 if (strcmp(mod->name, "lve") == 0)
3062 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3063 LOCKDEP_NOW_UNRELIABLE);
3064
3065 #ifdef CONFIG_MODVERSIONS
3066 if ((mod->num_syms && !mod->crcs)
3067 || (mod->num_gpl_syms && !mod->gpl_crcs)
3068 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3069 #ifdef CONFIG_UNUSED_SYMBOLS
3070 || (mod->num_unused_syms && !mod->unused_crcs)
3071 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3072 #endif
3073 ) {
3074 return try_to_force_load(mod,
3075 "no versions for exported symbols");
3076 }
3077 #endif
3078 return 0;
3079 }
3080
3081 static void flush_module_icache(const struct module *mod)
3082 {
3083 mm_segment_t old_fs;
3084
3085 /* flush the icache in correct context */
3086 old_fs = get_fs();
3087 set_fs(KERNEL_DS);
3088
3089 /*
3090 * Flush the instruction cache, since we've played with text.
3091 * Do it before processing of module parameters, so the module
3092 * can provide parameter accessor functions of its own.
3093 */
3094 if (mod->module_init)
3095 flush_icache_range((unsigned long)mod->module_init,
3096 (unsigned long)mod->module_init
3097 + mod->init_size);
3098 flush_icache_range((unsigned long)mod->module_core,
3099 (unsigned long)mod->module_core + mod->core_size);
3100
3101 set_fs(old_fs);
3102 }
3103
3104 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3105 Elf_Shdr *sechdrs,
3106 char *secstrings,
3107 struct module *mod)
3108 {
3109 return 0;
3110 }
3111
3112 static struct module *layout_and_allocate(struct load_info *info, int flags)
3113 {
3114 /* Module within temporary copy. */
3115 struct module *mod;
3116 int err;
3117
3118 mod = setup_load_info(info, flags);
3119 if (IS_ERR(mod))
3120 return mod;
3121
3122 err = check_modinfo(mod, info, flags);
3123 if (err)
3124 return ERR_PTR(err);
3125
3126 /* Allow arches to frob section contents and sizes. */
3127 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3128 info->secstrings, mod);
3129 if (err < 0)
3130 return ERR_PTR(err);
3131
3132 /* We will do a special allocation for per-cpu sections later. */
3133 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3134
3135 /* Determine total sizes, and put offsets in sh_entsize. For now
3136 this is done generically; there doesn't appear to be any
3137 special cases for the architectures. */
3138 layout_sections(mod, info);
3139 layout_symtab(mod, info);
3140
3141 /* Allocate and move to the final place */
3142 err = move_module(mod, info);
3143 if (err)
3144 return ERR_PTR(err);
3145
3146 /* Module has been copied to its final place now: return it. */
3147 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3148 kmemleak_load_module(mod, info);
3149 return mod;
3150 }
3151
3152 /* mod is no longer valid after this! */
3153 static void module_deallocate(struct module *mod, struct load_info *info)
3154 {
3155 percpu_modfree(mod);
3156 module_arch_freeing_init(mod);
3157 module_memfree(mod->module_init);
3158 module_memfree(mod->module_core);
3159 }
3160
3161 int __weak module_finalize(const Elf_Ehdr *hdr,
3162 const Elf_Shdr *sechdrs,
3163 struct module *me)
3164 {
3165 return 0;
3166 }
3167
3168 static int post_relocation(struct module *mod, const struct load_info *info)
3169 {
3170 /* Sort exception table now relocations are done. */
3171 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3172
3173 /* Copy relocated percpu area over. */
3174 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3175 info->sechdrs[info->index.pcpu].sh_size);
3176
3177 /* Setup kallsyms-specific fields. */
3178 add_kallsyms(mod, info);
3179
3180 /* Arch-specific module finalizing. */
3181 return module_finalize(info->hdr, info->sechdrs, mod);
3182 }
3183
3184 /* Is this module of this name done loading? No locks held. */
3185 static bool finished_loading(const char *name)
3186 {
3187 struct module *mod;
3188 bool ret;
3189
3190 /*
3191 * The module_mutex should not be a heavily contended lock;
3192 * if we get the occasional sleep here, we'll go an extra iteration
3193 * in the wait_event_interruptible(), which is harmless.
3194 */
3195 sched_annotate_sleep();
3196 mutex_lock(&module_mutex);
3197 mod = find_module_all(name, strlen(name), true);
3198 ret = !mod || mod->state == MODULE_STATE_LIVE
3199 || mod->state == MODULE_STATE_GOING;
3200 mutex_unlock(&module_mutex);
3201
3202 return ret;
3203 }
3204
3205 /* Call module constructors. */
3206 static void do_mod_ctors(struct module *mod)
3207 {
3208 #ifdef CONFIG_CONSTRUCTORS
3209 unsigned long i;
3210
3211 for (i = 0; i < mod->num_ctors; i++)
3212 mod->ctors[i]();
3213 #endif
3214 }
3215
3216 /* For freeing module_init on success, in case kallsyms traversing */
3217 struct mod_initfree {
3218 struct rcu_head rcu;
3219 void *module_init;
3220 };
3221
3222 static void do_free_init(struct rcu_head *head)
3223 {
3224 struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3225 module_memfree(m->module_init);
3226 kfree(m);
3227 }
3228
3229 /*
3230 * This is where the real work happens.
3231 *
3232 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3233 * helper command 'lx-symbols'.
3234 */
3235 static noinline int do_init_module(struct module *mod)
3236 {
3237 int ret = 0;
3238 struct mod_initfree *freeinit;
3239
3240 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3241 if (!freeinit) {
3242 ret = -ENOMEM;
3243 goto fail;
3244 }
3245 freeinit->module_init = mod->module_init;
3246
3247 /*
3248 * We want to find out whether @mod uses async during init. Clear
3249 * PF_USED_ASYNC. async_schedule*() will set it.
3250 */
3251 current->flags &= ~PF_USED_ASYNC;
3252
3253 do_mod_ctors(mod);
3254 /* Start the module */
3255 if (mod->init != NULL)
3256 ret = do_one_initcall(mod->init);
3257 if (ret < 0) {
3258 goto fail_free_freeinit;
3259 }
3260 if (ret > 0) {
3261 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3262 "follow 0/-E convention\n"
3263 "%s: loading module anyway...\n",
3264 __func__, mod->name, ret, __func__);
3265 dump_stack();
3266 }
3267
3268 /* Now it's a first class citizen! */
3269 mod->state = MODULE_STATE_LIVE;
3270 blocking_notifier_call_chain(&module_notify_list,
3271 MODULE_STATE_LIVE, mod);
3272
3273 /*
3274 * We need to finish all async code before the module init sequence
3275 * is done. This has potential to deadlock. For example, a newly
3276 * detected block device can trigger request_module() of the
3277 * default iosched from async probing task. Once userland helper
3278 * reaches here, async_synchronize_full() will wait on the async
3279 * task waiting on request_module() and deadlock.
3280 *
3281 * This deadlock is avoided by perfomring async_synchronize_full()
3282 * iff module init queued any async jobs. This isn't a full
3283 * solution as it will deadlock the same if module loading from
3284 * async jobs nests more than once; however, due to the various
3285 * constraints, this hack seems to be the best option for now.
3286 * Please refer to the following thread for details.
3287 *
3288 * http://thread.gmane.org/gmane.linux.kernel/1420814
3289 */
3290 if (current->flags & PF_USED_ASYNC)
3291 async_synchronize_full();
3292
3293 mutex_lock(&module_mutex);
3294 /* Drop initial reference. */
3295 module_put(mod);
3296 trim_init_extable(mod);
3297 #ifdef CONFIG_KALLSYMS
3298 mod->num_symtab = mod->core_num_syms;
3299 mod->symtab = mod->core_symtab;
3300 mod->strtab = mod->core_strtab;
3301 #endif
3302 mod_tree_remove_init(mod);
3303 unset_module_init_ro_nx(mod);
3304 module_arch_freeing_init(mod);
3305 mod->module_init = NULL;
3306 mod->init_size = 0;
3307 mod->init_ro_size = 0;
3308 mod->init_text_size = 0;
3309 /*
3310 * We want to free module_init, but be aware that kallsyms may be
3311 * walking this with preempt disabled. In all the failure paths, we
3312 * call synchronize_sched(), but we don't want to slow down the success
3313 * path, so use actual RCU here.
3314 */
3315 call_rcu_sched(&freeinit->rcu, do_free_init);
3316 mutex_unlock(&module_mutex);
3317 wake_up_all(&module_wq);
3318
3319 return 0;
3320
3321 fail_free_freeinit:
3322 kfree(freeinit);
3323 fail:
3324 /* Try to protect us from buggy refcounters. */
3325 mod->state = MODULE_STATE_GOING;
3326 synchronize_sched();
3327 module_put(mod);
3328 blocking_notifier_call_chain(&module_notify_list,
3329 MODULE_STATE_GOING, mod);
3330 free_module(mod);
3331 wake_up_all(&module_wq);
3332 return ret;
3333 }
3334
3335 static int may_init_module(void)
3336 {
3337 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3338 return -EPERM;
3339
3340 return 0;
3341 }
3342
3343 /*
3344 * We try to place it in the list now to make sure it's unique before
3345 * we dedicate too many resources. In particular, temporary percpu
3346 * memory exhaustion.
3347 */
3348 static int add_unformed_module(struct module *mod)
3349 {
3350 int err;
3351 struct module *old;
3352
3353 mod->state = MODULE_STATE_UNFORMED;
3354
3355 again:
3356 mutex_lock(&module_mutex);
3357 old = find_module_all(mod->name, strlen(mod->name), true);
3358 if (old != NULL) {
3359 if (old->state == MODULE_STATE_COMING
3360 || old->state == MODULE_STATE_UNFORMED) {
3361 /* Wait in case it fails to load. */
3362 mutex_unlock(&module_mutex);
3363 err = wait_event_interruptible(module_wq,
3364 finished_loading(mod->name));
3365 if (err)
3366 goto out_unlocked;
3367 goto again;
3368 }
3369 err = -EEXIST;
3370 goto out;
3371 }
3372 mod_update_bounds(mod);
3373 list_add_rcu(&mod->list, &modules);
3374 mod_tree_insert(mod);
3375 err = 0;
3376
3377 out:
3378 mutex_unlock(&module_mutex);
3379 out_unlocked:
3380 return err;
3381 }
3382
3383 static int complete_formation(struct module *mod, struct load_info *info)
3384 {
3385 int err;
3386
3387 mutex_lock(&module_mutex);
3388
3389 /* Find duplicate symbols (must be called under lock). */
3390 err = verify_export_symbols(mod);
3391 if (err < 0)
3392 goto out;
3393
3394 /* This relies on module_mutex for list integrity. */
3395 module_bug_finalize(info->hdr, info->sechdrs, mod);
3396
3397 /* Set RO and NX regions for core */
3398 set_section_ro_nx(mod->module_core,
3399 mod->core_text_size,
3400 mod->core_ro_size,
3401 mod->core_size);
3402
3403 /* Set RO and NX regions for init */
3404 set_section_ro_nx(mod->module_init,
3405 mod->init_text_size,
3406 mod->init_ro_size,
3407 mod->init_size);
3408
3409 /* Mark state as coming so strong_try_module_get() ignores us,
3410 * but kallsyms etc. can see us. */
3411 mod->state = MODULE_STATE_COMING;
3412 mutex_unlock(&module_mutex);
3413
3414 blocking_notifier_call_chain(&module_notify_list,
3415 MODULE_STATE_COMING, mod);
3416 return 0;
3417
3418 out:
3419 mutex_unlock(&module_mutex);
3420 return err;
3421 }
3422
3423 static int unknown_module_param_cb(char *param, char *val, const char *modname)
3424 {
3425 /* Check for magic 'dyndbg' arg */
3426 int ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3427 if (ret != 0)
3428 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3429 return 0;
3430 }
3431
3432 /* Allocate and load the module: note that size of section 0 is always
3433 zero, and we rely on this for optional sections. */
3434 static int load_module(struct load_info *info, const char __user *uargs,
3435 int flags)
3436 {
3437 struct module *mod;
3438 long err;
3439 char *after_dashes;
3440
3441 err = module_sig_check(info);
3442 if (err)
3443 goto free_copy;
3444
3445 err = elf_header_check(info);
3446 if (err)
3447 goto free_copy;
3448
3449 /* Figure out module layout, and allocate all the memory. */
3450 mod = layout_and_allocate(info, flags);
3451 if (IS_ERR(mod)) {
3452 err = PTR_ERR(mod);
3453 goto free_copy;
3454 }
3455
3456 /* Reserve our place in the list. */
3457 err = add_unformed_module(mod);
3458 if (err)
3459 goto free_module;
3460
3461 #ifdef CONFIG_MODULE_SIG
3462 mod->sig_ok = info->sig_ok;
3463 if (!mod->sig_ok) {
3464 pr_notice_once("%s: module verification failed: signature "
3465 "and/or required key missing - tainting "
3466 "kernel\n", mod->name);
3467 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3468 }
3469 #endif
3470
3471 /* To avoid stressing percpu allocator, do this once we're unique. */
3472 err = percpu_modalloc(mod, info);
3473 if (err)
3474 goto unlink_mod;
3475
3476 /* Now module is in final location, initialize linked lists, etc. */
3477 err = module_unload_init(mod);
3478 if (err)
3479 goto unlink_mod;
3480
3481 /* Now we've got everything in the final locations, we can
3482 * find optional sections. */
3483 err = find_module_sections(mod, info);
3484 if (err)
3485 goto free_unload;
3486
3487 err = check_module_license_and_versions(mod);
3488 if (err)
3489 goto free_unload;
3490
3491 /* Set up MODINFO_ATTR fields */
3492 setup_modinfo(mod, info);
3493
3494 /* Fix up syms, so that st_value is a pointer to location. */
3495 err = simplify_symbols(mod, info);
3496 if (err < 0)
3497 goto free_modinfo;
3498
3499 err = apply_relocations(mod, info);
3500 if (err < 0)
3501 goto free_modinfo;
3502
3503 err = post_relocation(mod, info);
3504 if (err < 0)
3505 goto free_modinfo;
3506
3507 flush_module_icache(mod);
3508
3509 /* Now copy in args */
3510 mod->args = strndup_user(uargs, ~0UL >> 1);
3511 if (IS_ERR(mod->args)) {
3512 err = PTR_ERR(mod->args);
3513 goto free_arch_cleanup;
3514 }
3515
3516 dynamic_debug_setup(info->debug, info->num_debug);
3517
3518 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3519 ftrace_module_init(mod);
3520
3521 /* Finally it's fully formed, ready to start executing. */
3522 err = complete_formation(mod, info);
3523 if (err)
3524 goto ddebug_cleanup;
3525
3526 /* Module is ready to execute: parsing args may do that. */
3527 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3528 -32768, 32767, unknown_module_param_cb);
3529 if (IS_ERR(after_dashes)) {
3530 err = PTR_ERR(after_dashes);
3531 goto bug_cleanup;
3532 } else if (after_dashes) {
3533 pr_warn("%s: parameters '%s' after `--' ignored\n",
3534 mod->name, after_dashes);
3535 }
3536
3537 /* Link in to syfs. */
3538 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3539 if (err < 0)
3540 goto bug_cleanup;
3541
3542 /* Get rid of temporary copy. */
3543 free_copy(info);
3544
3545 /* Done! */
3546 trace_module_load(mod);
3547
3548 return do_init_module(mod);
3549
3550 bug_cleanup:
3551 /* module_bug_cleanup needs module_mutex protection */
3552 mutex_lock(&module_mutex);
3553 module_bug_cleanup(mod);
3554 mutex_unlock(&module_mutex);
3555
3556 /* we can't deallocate the module until we clear memory protection */
3557 unset_module_init_ro_nx(mod);
3558 unset_module_core_ro_nx(mod);
3559
3560 ddebug_cleanup:
3561 dynamic_debug_remove(info->debug);
3562 synchronize_sched();
3563 kfree(mod->args);
3564 free_arch_cleanup:
3565 module_arch_cleanup(mod);
3566 free_modinfo:
3567 free_modinfo(mod);
3568 free_unload:
3569 module_unload_free(mod);
3570 unlink_mod:
3571 mutex_lock(&module_mutex);
3572 /* Unlink carefully: kallsyms could be walking list. */
3573 list_del_rcu(&mod->list);
3574 wake_up_all(&module_wq);
3575 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3576 synchronize_sched();
3577 mutex_unlock(&module_mutex);
3578 free_module:
3579 /* Free lock-classes; relies on the preceding sync_rcu() */
3580 lockdep_free_key_range(mod->module_core, mod->core_size);
3581
3582 module_deallocate(mod, info);
3583 free_copy:
3584 free_copy(info);
3585 return err;
3586 }
3587
3588 SYSCALL_DEFINE3(init_module, void __user *, umod,
3589 unsigned long, len, const char __user *, uargs)
3590 {
3591 int err;
3592 struct load_info info = { };
3593
3594 err = may_init_module();
3595 if (err)
3596 return err;
3597
3598 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3599 umod, len, uargs);
3600
3601 err = copy_module_from_user(umod, len, &info);
3602 if (err)
3603 return err;
3604
3605 return load_module(&info, uargs, 0);
3606 }
3607
3608 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3609 {
3610 int err;
3611 struct load_info info = { };
3612
3613 err = may_init_module();
3614 if (err)
3615 return err;
3616
3617 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3618
3619 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3620 |MODULE_INIT_IGNORE_VERMAGIC))
3621 return -EINVAL;
3622
3623 err = copy_module_from_fd(fd, &info);
3624 if (err)
3625 return err;
3626
3627 return load_module(&info, uargs, flags);
3628 }
3629
3630 static inline int within(unsigned long addr, void *start, unsigned long size)
3631 {
3632 return ((void *)addr >= start && (void *)addr < start + size);
3633 }
3634
3635 #ifdef CONFIG_KALLSYMS
3636 /*
3637 * This ignores the intensely annoying "mapping symbols" found
3638 * in ARM ELF files: $a, $t and $d.
3639 */
3640 static inline int is_arm_mapping_symbol(const char *str)
3641 {
3642 if (str[0] == '.' && str[1] == 'L')
3643 return true;
3644 return str[0] == '$' && strchr("axtd", str[1])
3645 && (str[2] == '\0' || str[2] == '.');
3646 }
3647
3648 static const char *get_ksymbol(struct module *mod,
3649 unsigned long addr,
3650 unsigned long *size,
3651 unsigned long *offset)
3652 {
3653 unsigned int i, best = 0;
3654 unsigned long nextval;
3655
3656 /* At worse, next value is at end of module */
3657 if (within_module_init(addr, mod))
3658 nextval = (unsigned long)mod->module_init+mod->init_text_size;
3659 else
3660 nextval = (unsigned long)mod->module_core+mod->core_text_size;
3661
3662 /* Scan for closest preceding symbol, and next symbol. (ELF
3663 starts real symbols at 1). */
3664 for (i = 1; i < mod->num_symtab; i++) {
3665 if (mod->symtab[i].st_shndx == SHN_UNDEF)
3666 continue;
3667
3668 /* We ignore unnamed symbols: they're uninformative
3669 * and inserted at a whim. */
3670 if (mod->symtab[i].st_value <= addr
3671 && mod->symtab[i].st_value > mod->symtab[best].st_value
3672 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3673 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3674 best = i;
3675 if (mod->symtab[i].st_value > addr
3676 && mod->symtab[i].st_value < nextval
3677 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3678 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3679 nextval = mod->symtab[i].st_value;
3680 }
3681
3682 if (!best)
3683 return NULL;
3684
3685 if (size)
3686 *size = nextval - mod->symtab[best].st_value;
3687 if (offset)
3688 *offset = addr - mod->symtab[best].st_value;
3689 return mod->strtab + mod->symtab[best].st_name;
3690 }
3691
3692 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3693 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3694 const char *module_address_lookup(unsigned long addr,
3695 unsigned long *size,
3696 unsigned long *offset,
3697 char **modname,
3698 char *namebuf)
3699 {
3700 const char *ret = NULL;
3701 struct module *mod;
3702
3703 preempt_disable();
3704 mod = __module_address(addr);
3705 if (mod) {
3706 if (modname)
3707 *modname = mod->name;
3708 ret = get_ksymbol(mod, addr, size, offset);
3709 }
3710 /* Make a copy in here where it's safe */
3711 if (ret) {
3712 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3713 ret = namebuf;
3714 }
3715 preempt_enable();
3716
3717 return ret;
3718 }
3719
3720 int lookup_module_symbol_name(unsigned long addr, char *symname)
3721 {
3722 struct module *mod;
3723
3724 preempt_disable();
3725 list_for_each_entry_rcu(mod, &modules, list) {
3726 if (mod->state == MODULE_STATE_UNFORMED)
3727 continue;
3728 if (within_module(addr, mod)) {
3729 const char *sym;
3730
3731 sym = get_ksymbol(mod, addr, NULL, NULL);
3732 if (!sym)
3733 goto out;
3734 strlcpy(symname, sym, KSYM_NAME_LEN);
3735 preempt_enable();
3736 return 0;
3737 }
3738 }
3739 out:
3740 preempt_enable();
3741 return -ERANGE;
3742 }
3743
3744 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3745 unsigned long *offset, char *modname, char *name)
3746 {
3747 struct module *mod;
3748
3749 preempt_disable();
3750 list_for_each_entry_rcu(mod, &modules, list) {
3751 if (mod->state == MODULE_STATE_UNFORMED)
3752 continue;
3753 if (within_module(addr, mod)) {
3754 const char *sym;
3755
3756 sym = get_ksymbol(mod, addr, size, offset);
3757 if (!sym)
3758 goto out;
3759 if (modname)
3760 strlcpy(modname, mod->name, MODULE_NAME_LEN);
3761 if (name)
3762 strlcpy(name, sym, KSYM_NAME_LEN);
3763 preempt_enable();
3764 return 0;
3765 }
3766 }
3767 out:
3768 preempt_enable();
3769 return -ERANGE;
3770 }
3771
3772 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3773 char *name, char *module_name, int *exported)
3774 {
3775 struct module *mod;
3776
3777 preempt_disable();
3778 list_for_each_entry_rcu(mod, &modules, list) {
3779 if (mod->state == MODULE_STATE_UNFORMED)
3780 continue;
3781 if (symnum < mod->num_symtab) {
3782 *value = mod->symtab[symnum].st_value;
3783 *type = mod->symtab[symnum].st_info;
3784 strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
3785 KSYM_NAME_LEN);
3786 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3787 *exported = is_exported(name, *value, mod);
3788 preempt_enable();
3789 return 0;
3790 }
3791 symnum -= mod->num_symtab;
3792 }
3793 preempt_enable();
3794 return -ERANGE;
3795 }
3796
3797 static unsigned long mod_find_symname(struct module *mod, const char *name)
3798 {
3799 unsigned int i;
3800
3801 for (i = 0; i < mod->num_symtab; i++)
3802 if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
3803 mod->symtab[i].st_info != 'U')
3804 return mod->symtab[i].st_value;
3805 return 0;
3806 }
3807
3808 /* Look for this name: can be of form module:name. */
3809 unsigned long module_kallsyms_lookup_name(const char *name)
3810 {
3811 struct module *mod;
3812 char *colon;
3813 unsigned long ret = 0;
3814
3815 /* Don't lock: we're in enough trouble already. */
3816 preempt_disable();
3817 if ((colon = strchr(name, ':')) != NULL) {
3818 if ((mod = find_module_all(name, colon - name, false)) != NULL)
3819 ret = mod_find_symname(mod, colon+1);
3820 } else {
3821 list_for_each_entry_rcu(mod, &modules, list) {
3822 if (mod->state == MODULE_STATE_UNFORMED)
3823 continue;
3824 if ((ret = mod_find_symname(mod, name)) != 0)
3825 break;
3826 }
3827 }
3828 preempt_enable();
3829 return ret;
3830 }
3831
3832 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3833 struct module *, unsigned long),
3834 void *data)
3835 {
3836 struct module *mod;
3837 unsigned int i;
3838 int ret;
3839
3840 module_assert_mutex();
3841
3842 list_for_each_entry(mod, &modules, list) {
3843 if (mod->state == MODULE_STATE_UNFORMED)
3844 continue;
3845 for (i = 0; i < mod->num_symtab; i++) {
3846 ret = fn(data, mod->strtab + mod->symtab[i].st_name,
3847 mod, mod->symtab[i].st_value);
3848 if (ret != 0)
3849 return ret;
3850 }
3851 }
3852 return 0;
3853 }
3854 #endif /* CONFIG_KALLSYMS */
3855
3856 static char *module_flags(struct module *mod, char *buf)
3857 {
3858 int bx = 0;
3859
3860 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3861 if (mod->taints ||
3862 mod->state == MODULE_STATE_GOING ||
3863 mod->state == MODULE_STATE_COMING) {
3864 buf[bx++] = '(';
3865 bx += module_flags_taint(mod, buf + bx);
3866 /* Show a - for module-is-being-unloaded */
3867 if (mod->state == MODULE_STATE_GOING)
3868 buf[bx++] = '-';
3869 /* Show a + for module-is-being-loaded */
3870 if (mod->state == MODULE_STATE_COMING)
3871 buf[bx++] = '+';
3872 buf[bx++] = ')';
3873 }
3874 buf[bx] = '\0';
3875
3876 return buf;
3877 }
3878
3879 #ifdef CONFIG_PROC_FS
3880 /* Called by the /proc file system to return a list of modules. */
3881 static void *m_start(struct seq_file *m, loff_t *pos)
3882 {
3883 mutex_lock(&module_mutex);
3884 return seq_list_start(&modules, *pos);
3885 }
3886
3887 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3888 {
3889 return seq_list_next(p, &modules, pos);
3890 }
3891
3892 static void m_stop(struct seq_file *m, void *p)
3893 {
3894 mutex_unlock(&module_mutex);
3895 }
3896
3897 static int m_show(struct seq_file *m, void *p)
3898 {
3899 struct module *mod = list_entry(p, struct module, list);
3900 char buf[8];
3901
3902 /* We always ignore unformed modules. */
3903 if (mod->state == MODULE_STATE_UNFORMED)
3904 return 0;
3905
3906 seq_printf(m, "%s %u",
3907 mod->name, mod->init_size + mod->core_size);
3908 print_unload_info(m, mod);
3909
3910 /* Informative for users. */
3911 seq_printf(m, " %s",
3912 mod->state == MODULE_STATE_GOING ? "Unloading" :
3913 mod->state == MODULE_STATE_COMING ? "Loading" :
3914 "Live");
3915 /* Used by oprofile and other similar tools. */
3916 seq_printf(m, " 0x%pK", mod->module_core);
3917
3918 /* Taints info */
3919 if (mod->taints)
3920 seq_printf(m, " %s", module_flags(mod, buf));
3921
3922 seq_puts(m, "\n");
3923 return 0;
3924 }
3925
3926 /* Format: modulename size refcount deps address
3927
3928 Where refcount is a number or -, and deps is a comma-separated list
3929 of depends or -.
3930 */
3931 static const struct seq_operations modules_op = {
3932 .start = m_start,
3933 .next = m_next,
3934 .stop = m_stop,
3935 .show = m_show
3936 };
3937
3938 static int modules_open(struct inode *inode, struct file *file)
3939 {
3940 return seq_open(file, &modules_op);
3941 }
3942
3943 static const struct file_operations proc_modules_operations = {
3944 .open = modules_open,
3945 .read = seq_read,
3946 .llseek = seq_lseek,
3947 .release = seq_release,
3948 };
3949
3950 static int __init proc_modules_init(void)
3951 {
3952 proc_create("modules", 0, NULL, &proc_modules_operations);
3953 return 0;
3954 }
3955 module_init(proc_modules_init);
3956 #endif
3957
3958 /* Given an address, look for it in the module exception tables. */
3959 const struct exception_table_entry *search_module_extables(unsigned long addr)
3960 {
3961 const struct exception_table_entry *e = NULL;
3962 struct module *mod;
3963
3964 preempt_disable();
3965 list_for_each_entry_rcu(mod, &modules, list) {
3966 if (mod->state == MODULE_STATE_UNFORMED)
3967 continue;
3968 if (mod->num_exentries == 0)
3969 continue;
3970
3971 e = search_extable(mod->extable,
3972 mod->extable + mod->num_exentries - 1,
3973 addr);
3974 if (e)
3975 break;
3976 }
3977 preempt_enable();
3978
3979 /* Now, if we found one, we are running inside it now, hence
3980 we cannot unload the module, hence no refcnt needed. */
3981 return e;
3982 }
3983
3984 /*
3985 * is_module_address - is this address inside a module?
3986 * @addr: the address to check.
3987 *
3988 * See is_module_text_address() if you simply want to see if the address
3989 * is code (not data).
3990 */
3991 bool is_module_address(unsigned long addr)
3992 {
3993 bool ret;
3994
3995 preempt_disable();
3996 ret = __module_address(addr) != NULL;
3997 preempt_enable();
3998
3999 return ret;
4000 }
4001
4002 /*
4003 * __module_address - get the module which contains an address.
4004 * @addr: the address.
4005 *
4006 * Must be called with preempt disabled or module mutex held so that
4007 * module doesn't get freed during this.
4008 */
4009 struct module *__module_address(unsigned long addr)
4010 {
4011 struct module *mod;
4012
4013 if (addr < module_addr_min || addr > module_addr_max)
4014 return NULL;
4015
4016 module_assert_mutex_or_preempt();
4017
4018 mod = mod_find(addr);
4019 if (mod) {
4020 BUG_ON(!within_module(addr, mod));
4021 if (mod->state == MODULE_STATE_UNFORMED)
4022 mod = NULL;
4023 }
4024 return mod;
4025 }
4026 EXPORT_SYMBOL_GPL(__module_address);
4027
4028 /*
4029 * is_module_text_address - is this address inside module code?
4030 * @addr: the address to check.
4031 *
4032 * See is_module_address() if you simply want to see if the address is
4033 * anywhere in a module. See kernel_text_address() for testing if an
4034 * address corresponds to kernel or module code.
4035 */
4036 bool is_module_text_address(unsigned long addr)
4037 {
4038 bool ret;
4039
4040 preempt_disable();
4041 ret = __module_text_address(addr) != NULL;
4042 preempt_enable();
4043
4044 return ret;
4045 }
4046
4047 /*
4048 * __module_text_address - get the module whose code contains an address.
4049 * @addr: the address.
4050 *
4051 * Must be called with preempt disabled or module mutex held so that
4052 * module doesn't get freed during this.
4053 */
4054 struct module *__module_text_address(unsigned long addr)
4055 {
4056 struct module *mod = __module_address(addr);
4057 if (mod) {
4058 /* Make sure it's within the text section. */
4059 if (!within(addr, mod->module_init, mod->init_text_size)
4060 && !within(addr, mod->module_core, mod->core_text_size))
4061 mod = NULL;
4062 }
4063 return mod;
4064 }
4065 EXPORT_SYMBOL_GPL(__module_text_address);
4066
4067 /* Don't grab lock, we're oopsing. */
4068 void print_modules(void)
4069 {
4070 struct module *mod;
4071 char buf[8];
4072
4073 printk(KERN_DEFAULT "Modules linked in:");
4074 /* Most callers should already have preempt disabled, but make sure */
4075 preempt_disable();
4076 list_for_each_entry_rcu(mod, &modules, list) {
4077 if (mod->state == MODULE_STATE_UNFORMED)
4078 continue;
4079 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4080 }
4081 preempt_enable();
4082 if (last_unloaded_module[0])
4083 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4084 pr_cont("\n");
4085 }
4086
4087 #ifdef CONFIG_MODVERSIONS
4088 /* Generate the signature for all relevant module structures here.
4089 * If these change, we don't want to try to parse the module. */
4090 void module_layout(struct module *mod,
4091 struct modversion_info *ver,
4092 struct kernel_param *kp,
4093 struct kernel_symbol *ks,
4094 struct tracepoint * const *tp)
4095 {
4096 }
4097 EXPORT_SYMBOL(module_layout);
4098 #endif
This page took 0.12394 seconds and 5 git commands to generate.