module: Do a WARN_ON_ONCE() for assert module mutex not held
[deliverable/linux.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/trace_events.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/sysfs.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/elf.h>
31 #include <linux/proc_fs.h>
32 #include <linux/security.h>
33 #include <linux/seq_file.h>
34 #include <linux/syscalls.h>
35 #include <linux/fcntl.h>
36 #include <linux/rcupdate.h>
37 #include <linux/capability.h>
38 #include <linux/cpu.h>
39 #include <linux/moduleparam.h>
40 #include <linux/errno.h>
41 #include <linux/err.h>
42 #include <linux/vermagic.h>
43 #include <linux/notifier.h>
44 #include <linux/sched.h>
45 #include <linux/device.h>
46 #include <linux/string.h>
47 #include <linux/mutex.h>
48 #include <linux/rculist.h>
49 #include <asm/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/mmu_context.h>
52 #include <linux/license.h>
53 #include <asm/sections.h>
54 #include <linux/tracepoint.h>
55 #include <linux/ftrace.h>
56 #include <linux/livepatch.h>
57 #include <linux/async.h>
58 #include <linux/percpu.h>
59 #include <linux/kmemleak.h>
60 #include <linux/jump_label.h>
61 #include <linux/pfn.h>
62 #include <linux/bsearch.h>
63 #include <uapi/linux/module.h>
64 #include "module-internal.h"
65
66 #define CREATE_TRACE_POINTS
67 #include <trace/events/module.h>
68
69 #ifndef ARCH_SHF_SMALL
70 #define ARCH_SHF_SMALL 0
71 #endif
72
73 /*
74 * Modules' sections will be aligned on page boundaries
75 * to ensure complete separation of code and data, but
76 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
77 */
78 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
79 # define debug_align(X) ALIGN(X, PAGE_SIZE)
80 #else
81 # define debug_align(X) (X)
82 #endif
83
84 /* If this is set, the section belongs in the init part of the module */
85 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
86
87 /*
88 * Mutex protects:
89 * 1) List of modules (also safely readable with preempt_disable),
90 * 2) module_use links,
91 * 3) module_addr_min/module_addr_max.
92 * (delete and add uses RCU list operations). */
93 DEFINE_MUTEX(module_mutex);
94 EXPORT_SYMBOL_GPL(module_mutex);
95 static LIST_HEAD(modules);
96
97 #ifdef CONFIG_MODULES_TREE_LOOKUP
98
99 /*
100 * Use a latched RB-tree for __module_address(); this allows us to use
101 * RCU-sched lookups of the address from any context.
102 *
103 * This is conditional on PERF_EVENTS || TRACING because those can really hit
104 * __module_address() hard by doing a lot of stack unwinding; potentially from
105 * NMI context.
106 */
107
108 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
109 {
110 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
111
112 return (unsigned long)layout->base;
113 }
114
115 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
116 {
117 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
118
119 return (unsigned long)layout->size;
120 }
121
122 static __always_inline bool
123 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
124 {
125 return __mod_tree_val(a) < __mod_tree_val(b);
126 }
127
128 static __always_inline int
129 mod_tree_comp(void *key, struct latch_tree_node *n)
130 {
131 unsigned long val = (unsigned long)key;
132 unsigned long start, end;
133
134 start = __mod_tree_val(n);
135 if (val < start)
136 return -1;
137
138 end = start + __mod_tree_size(n);
139 if (val >= end)
140 return 1;
141
142 return 0;
143 }
144
145 static const struct latch_tree_ops mod_tree_ops = {
146 .less = mod_tree_less,
147 .comp = mod_tree_comp,
148 };
149
150 static struct mod_tree_root {
151 struct latch_tree_root root;
152 unsigned long addr_min;
153 unsigned long addr_max;
154 } mod_tree __cacheline_aligned = {
155 .addr_min = -1UL,
156 };
157
158 #define module_addr_min mod_tree.addr_min
159 #define module_addr_max mod_tree.addr_max
160
161 static noinline void __mod_tree_insert(struct mod_tree_node *node)
162 {
163 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
164 }
165
166 static void __mod_tree_remove(struct mod_tree_node *node)
167 {
168 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
169 }
170
171 /*
172 * These modifications: insert, remove_init and remove; are serialized by the
173 * module_mutex.
174 */
175 static void mod_tree_insert(struct module *mod)
176 {
177 mod->core_layout.mtn.mod = mod;
178 mod->init_layout.mtn.mod = mod;
179
180 __mod_tree_insert(&mod->core_layout.mtn);
181 if (mod->init_layout.size)
182 __mod_tree_insert(&mod->init_layout.mtn);
183 }
184
185 static void mod_tree_remove_init(struct module *mod)
186 {
187 if (mod->init_layout.size)
188 __mod_tree_remove(&mod->init_layout.mtn);
189 }
190
191 static void mod_tree_remove(struct module *mod)
192 {
193 __mod_tree_remove(&mod->core_layout.mtn);
194 mod_tree_remove_init(mod);
195 }
196
197 static struct module *mod_find(unsigned long addr)
198 {
199 struct latch_tree_node *ltn;
200
201 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
202 if (!ltn)
203 return NULL;
204
205 return container_of(ltn, struct mod_tree_node, node)->mod;
206 }
207
208 #else /* MODULES_TREE_LOOKUP */
209
210 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
211
212 static void mod_tree_insert(struct module *mod) { }
213 static void mod_tree_remove_init(struct module *mod) { }
214 static void mod_tree_remove(struct module *mod) { }
215
216 static struct module *mod_find(unsigned long addr)
217 {
218 struct module *mod;
219
220 list_for_each_entry_rcu(mod, &modules, list) {
221 if (within_module(addr, mod))
222 return mod;
223 }
224
225 return NULL;
226 }
227
228 #endif /* MODULES_TREE_LOOKUP */
229
230 /*
231 * Bounds of module text, for speeding up __module_address.
232 * Protected by module_mutex.
233 */
234 static void __mod_update_bounds(void *base, unsigned int size)
235 {
236 unsigned long min = (unsigned long)base;
237 unsigned long max = min + size;
238
239 if (min < module_addr_min)
240 module_addr_min = min;
241 if (max > module_addr_max)
242 module_addr_max = max;
243 }
244
245 static void mod_update_bounds(struct module *mod)
246 {
247 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
248 if (mod->init_layout.size)
249 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
250 }
251
252 #ifdef CONFIG_KGDB_KDB
253 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
254 #endif /* CONFIG_KGDB_KDB */
255
256 static void module_assert_mutex(void)
257 {
258 lockdep_assert_held(&module_mutex);
259 }
260
261 static void module_assert_mutex_or_preempt(void)
262 {
263 #ifdef CONFIG_LOCKDEP
264 if (unlikely(!debug_locks))
265 return;
266
267 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
268 !lockdep_is_held(&module_mutex));
269 #endif
270 }
271
272 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
273 #ifndef CONFIG_MODULE_SIG_FORCE
274 module_param(sig_enforce, bool_enable_only, 0644);
275 #endif /* !CONFIG_MODULE_SIG_FORCE */
276
277 /* Block module loading/unloading? */
278 int modules_disabled = 0;
279 core_param(nomodule, modules_disabled, bint, 0);
280
281 /* Waiting for a module to finish initializing? */
282 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
283
284 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
285
286 int register_module_notifier(struct notifier_block *nb)
287 {
288 return blocking_notifier_chain_register(&module_notify_list, nb);
289 }
290 EXPORT_SYMBOL(register_module_notifier);
291
292 int unregister_module_notifier(struct notifier_block *nb)
293 {
294 return blocking_notifier_chain_unregister(&module_notify_list, nb);
295 }
296 EXPORT_SYMBOL(unregister_module_notifier);
297
298 struct load_info {
299 Elf_Ehdr *hdr;
300 unsigned long len;
301 Elf_Shdr *sechdrs;
302 char *secstrings, *strtab;
303 unsigned long symoffs, stroffs;
304 struct _ddebug *debug;
305 unsigned int num_debug;
306 bool sig_ok;
307 #ifdef CONFIG_KALLSYMS
308 unsigned long mod_kallsyms_init_off;
309 #endif
310 struct {
311 unsigned int sym, str, mod, vers, info, pcpu;
312 } index;
313 };
314
315 /* We require a truly strong try_module_get(): 0 means failure due to
316 ongoing or failed initialization etc. */
317 static inline int strong_try_module_get(struct module *mod)
318 {
319 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
320 if (mod && mod->state == MODULE_STATE_COMING)
321 return -EBUSY;
322 if (try_module_get(mod))
323 return 0;
324 else
325 return -ENOENT;
326 }
327
328 static inline void add_taint_module(struct module *mod, unsigned flag,
329 enum lockdep_ok lockdep_ok)
330 {
331 add_taint(flag, lockdep_ok);
332 mod->taints |= (1U << flag);
333 }
334
335 /*
336 * A thread that wants to hold a reference to a module only while it
337 * is running can call this to safely exit. nfsd and lockd use this.
338 */
339 void __noreturn __module_put_and_exit(struct module *mod, long code)
340 {
341 module_put(mod);
342 do_exit(code);
343 }
344 EXPORT_SYMBOL(__module_put_and_exit);
345
346 /* Find a module section: 0 means not found. */
347 static unsigned int find_sec(const struct load_info *info, const char *name)
348 {
349 unsigned int i;
350
351 for (i = 1; i < info->hdr->e_shnum; i++) {
352 Elf_Shdr *shdr = &info->sechdrs[i];
353 /* Alloc bit cleared means "ignore it." */
354 if ((shdr->sh_flags & SHF_ALLOC)
355 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
356 return i;
357 }
358 return 0;
359 }
360
361 /* Find a module section, or NULL. */
362 static void *section_addr(const struct load_info *info, const char *name)
363 {
364 /* Section 0 has sh_addr 0. */
365 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
366 }
367
368 /* Find a module section, or NULL. Fill in number of "objects" in section. */
369 static void *section_objs(const struct load_info *info,
370 const char *name,
371 size_t object_size,
372 unsigned int *num)
373 {
374 unsigned int sec = find_sec(info, name);
375
376 /* Section 0 has sh_addr 0 and sh_size 0. */
377 *num = info->sechdrs[sec].sh_size / object_size;
378 return (void *)info->sechdrs[sec].sh_addr;
379 }
380
381 /* Provided by the linker */
382 extern const struct kernel_symbol __start___ksymtab[];
383 extern const struct kernel_symbol __stop___ksymtab[];
384 extern const struct kernel_symbol __start___ksymtab_gpl[];
385 extern const struct kernel_symbol __stop___ksymtab_gpl[];
386 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
387 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
388 extern const unsigned long __start___kcrctab[];
389 extern const unsigned long __start___kcrctab_gpl[];
390 extern const unsigned long __start___kcrctab_gpl_future[];
391 #ifdef CONFIG_UNUSED_SYMBOLS
392 extern const struct kernel_symbol __start___ksymtab_unused[];
393 extern const struct kernel_symbol __stop___ksymtab_unused[];
394 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
395 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
396 extern const unsigned long __start___kcrctab_unused[];
397 extern const unsigned long __start___kcrctab_unused_gpl[];
398 #endif
399
400 #ifndef CONFIG_MODVERSIONS
401 #define symversion(base, idx) NULL
402 #else
403 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
404 #endif
405
406 static bool each_symbol_in_section(const struct symsearch *arr,
407 unsigned int arrsize,
408 struct module *owner,
409 bool (*fn)(const struct symsearch *syms,
410 struct module *owner,
411 void *data),
412 void *data)
413 {
414 unsigned int j;
415
416 for (j = 0; j < arrsize; j++) {
417 if (fn(&arr[j], owner, data))
418 return true;
419 }
420
421 return false;
422 }
423
424 /* Returns true as soon as fn returns true, otherwise false. */
425 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
426 struct module *owner,
427 void *data),
428 void *data)
429 {
430 struct module *mod;
431 static const struct symsearch arr[] = {
432 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
433 NOT_GPL_ONLY, false },
434 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
435 __start___kcrctab_gpl,
436 GPL_ONLY, false },
437 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
438 __start___kcrctab_gpl_future,
439 WILL_BE_GPL_ONLY, false },
440 #ifdef CONFIG_UNUSED_SYMBOLS
441 { __start___ksymtab_unused, __stop___ksymtab_unused,
442 __start___kcrctab_unused,
443 NOT_GPL_ONLY, true },
444 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
445 __start___kcrctab_unused_gpl,
446 GPL_ONLY, true },
447 #endif
448 };
449
450 module_assert_mutex_or_preempt();
451
452 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
453 return true;
454
455 list_for_each_entry_rcu(mod, &modules, list) {
456 struct symsearch arr[] = {
457 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
458 NOT_GPL_ONLY, false },
459 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
460 mod->gpl_crcs,
461 GPL_ONLY, false },
462 { mod->gpl_future_syms,
463 mod->gpl_future_syms + mod->num_gpl_future_syms,
464 mod->gpl_future_crcs,
465 WILL_BE_GPL_ONLY, false },
466 #ifdef CONFIG_UNUSED_SYMBOLS
467 { mod->unused_syms,
468 mod->unused_syms + mod->num_unused_syms,
469 mod->unused_crcs,
470 NOT_GPL_ONLY, true },
471 { mod->unused_gpl_syms,
472 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
473 mod->unused_gpl_crcs,
474 GPL_ONLY, true },
475 #endif
476 };
477
478 if (mod->state == MODULE_STATE_UNFORMED)
479 continue;
480
481 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
482 return true;
483 }
484 return false;
485 }
486 EXPORT_SYMBOL_GPL(each_symbol_section);
487
488 struct find_symbol_arg {
489 /* Input */
490 const char *name;
491 bool gplok;
492 bool warn;
493
494 /* Output */
495 struct module *owner;
496 const unsigned long *crc;
497 const struct kernel_symbol *sym;
498 };
499
500 static bool check_symbol(const struct symsearch *syms,
501 struct module *owner,
502 unsigned int symnum, void *data)
503 {
504 struct find_symbol_arg *fsa = data;
505
506 if (!fsa->gplok) {
507 if (syms->licence == GPL_ONLY)
508 return false;
509 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
510 pr_warn("Symbol %s is being used by a non-GPL module, "
511 "which will not be allowed in the future\n",
512 fsa->name);
513 }
514 }
515
516 #ifdef CONFIG_UNUSED_SYMBOLS
517 if (syms->unused && fsa->warn) {
518 pr_warn("Symbol %s is marked as UNUSED, however this module is "
519 "using it.\n", fsa->name);
520 pr_warn("This symbol will go away in the future.\n");
521 pr_warn("Please evaluate if this is the right api to use and "
522 "if it really is, submit a report to the linux kernel "
523 "mailing list together with submitting your code for "
524 "inclusion.\n");
525 }
526 #endif
527
528 fsa->owner = owner;
529 fsa->crc = symversion(syms->crcs, symnum);
530 fsa->sym = &syms->start[symnum];
531 return true;
532 }
533
534 static int cmp_name(const void *va, const void *vb)
535 {
536 const char *a;
537 const struct kernel_symbol *b;
538 a = va; b = vb;
539 return strcmp(a, b->name);
540 }
541
542 static bool find_symbol_in_section(const struct symsearch *syms,
543 struct module *owner,
544 void *data)
545 {
546 struct find_symbol_arg *fsa = data;
547 struct kernel_symbol *sym;
548
549 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
550 sizeof(struct kernel_symbol), cmp_name);
551
552 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
553 return true;
554
555 return false;
556 }
557
558 /* Find a symbol and return it, along with, (optional) crc and
559 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
560 const struct kernel_symbol *find_symbol(const char *name,
561 struct module **owner,
562 const unsigned long **crc,
563 bool gplok,
564 bool warn)
565 {
566 struct find_symbol_arg fsa;
567
568 fsa.name = name;
569 fsa.gplok = gplok;
570 fsa.warn = warn;
571
572 if (each_symbol_section(find_symbol_in_section, &fsa)) {
573 if (owner)
574 *owner = fsa.owner;
575 if (crc)
576 *crc = fsa.crc;
577 return fsa.sym;
578 }
579
580 pr_debug("Failed to find symbol %s\n", name);
581 return NULL;
582 }
583 EXPORT_SYMBOL_GPL(find_symbol);
584
585 /*
586 * Search for module by name: must hold module_mutex (or preempt disabled
587 * for read-only access).
588 */
589 static struct module *find_module_all(const char *name, size_t len,
590 bool even_unformed)
591 {
592 struct module *mod;
593
594 module_assert_mutex_or_preempt();
595
596 list_for_each_entry(mod, &modules, list) {
597 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
598 continue;
599 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
600 return mod;
601 }
602 return NULL;
603 }
604
605 struct module *find_module(const char *name)
606 {
607 module_assert_mutex();
608 return find_module_all(name, strlen(name), false);
609 }
610 EXPORT_SYMBOL_GPL(find_module);
611
612 #ifdef CONFIG_SMP
613
614 static inline void __percpu *mod_percpu(struct module *mod)
615 {
616 return mod->percpu;
617 }
618
619 static int percpu_modalloc(struct module *mod, struct load_info *info)
620 {
621 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
622 unsigned long align = pcpusec->sh_addralign;
623
624 if (!pcpusec->sh_size)
625 return 0;
626
627 if (align > PAGE_SIZE) {
628 pr_warn("%s: per-cpu alignment %li > %li\n",
629 mod->name, align, PAGE_SIZE);
630 align = PAGE_SIZE;
631 }
632
633 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
634 if (!mod->percpu) {
635 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
636 mod->name, (unsigned long)pcpusec->sh_size);
637 return -ENOMEM;
638 }
639 mod->percpu_size = pcpusec->sh_size;
640 return 0;
641 }
642
643 static void percpu_modfree(struct module *mod)
644 {
645 free_percpu(mod->percpu);
646 }
647
648 static unsigned int find_pcpusec(struct load_info *info)
649 {
650 return find_sec(info, ".data..percpu");
651 }
652
653 static void percpu_modcopy(struct module *mod,
654 const void *from, unsigned long size)
655 {
656 int cpu;
657
658 for_each_possible_cpu(cpu)
659 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
660 }
661
662 /**
663 * is_module_percpu_address - test whether address is from module static percpu
664 * @addr: address to test
665 *
666 * Test whether @addr belongs to module static percpu area.
667 *
668 * RETURNS:
669 * %true if @addr is from module static percpu area
670 */
671 bool is_module_percpu_address(unsigned long addr)
672 {
673 struct module *mod;
674 unsigned int cpu;
675
676 preempt_disable();
677
678 list_for_each_entry_rcu(mod, &modules, list) {
679 if (mod->state == MODULE_STATE_UNFORMED)
680 continue;
681 if (!mod->percpu_size)
682 continue;
683 for_each_possible_cpu(cpu) {
684 void *start = per_cpu_ptr(mod->percpu, cpu);
685
686 if ((void *)addr >= start &&
687 (void *)addr < start + mod->percpu_size) {
688 preempt_enable();
689 return true;
690 }
691 }
692 }
693
694 preempt_enable();
695 return false;
696 }
697
698 #else /* ... !CONFIG_SMP */
699
700 static inline void __percpu *mod_percpu(struct module *mod)
701 {
702 return NULL;
703 }
704 static int percpu_modalloc(struct module *mod, struct load_info *info)
705 {
706 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
707 if (info->sechdrs[info->index.pcpu].sh_size != 0)
708 return -ENOMEM;
709 return 0;
710 }
711 static inline void percpu_modfree(struct module *mod)
712 {
713 }
714 static unsigned int find_pcpusec(struct load_info *info)
715 {
716 return 0;
717 }
718 static inline void percpu_modcopy(struct module *mod,
719 const void *from, unsigned long size)
720 {
721 /* pcpusec should be 0, and size of that section should be 0. */
722 BUG_ON(size != 0);
723 }
724 bool is_module_percpu_address(unsigned long addr)
725 {
726 return false;
727 }
728
729 #endif /* CONFIG_SMP */
730
731 #define MODINFO_ATTR(field) \
732 static void setup_modinfo_##field(struct module *mod, const char *s) \
733 { \
734 mod->field = kstrdup(s, GFP_KERNEL); \
735 } \
736 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
737 struct module_kobject *mk, char *buffer) \
738 { \
739 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
740 } \
741 static int modinfo_##field##_exists(struct module *mod) \
742 { \
743 return mod->field != NULL; \
744 } \
745 static void free_modinfo_##field(struct module *mod) \
746 { \
747 kfree(mod->field); \
748 mod->field = NULL; \
749 } \
750 static struct module_attribute modinfo_##field = { \
751 .attr = { .name = __stringify(field), .mode = 0444 }, \
752 .show = show_modinfo_##field, \
753 .setup = setup_modinfo_##field, \
754 .test = modinfo_##field##_exists, \
755 .free = free_modinfo_##field, \
756 };
757
758 MODINFO_ATTR(version);
759 MODINFO_ATTR(srcversion);
760
761 static char last_unloaded_module[MODULE_NAME_LEN+1];
762
763 #ifdef CONFIG_MODULE_UNLOAD
764
765 EXPORT_TRACEPOINT_SYMBOL(module_get);
766
767 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
768 #define MODULE_REF_BASE 1
769
770 /* Init the unload section of the module. */
771 static int module_unload_init(struct module *mod)
772 {
773 /*
774 * Initialize reference counter to MODULE_REF_BASE.
775 * refcnt == 0 means module is going.
776 */
777 atomic_set(&mod->refcnt, MODULE_REF_BASE);
778
779 INIT_LIST_HEAD(&mod->source_list);
780 INIT_LIST_HEAD(&mod->target_list);
781
782 /* Hold reference count during initialization. */
783 atomic_inc(&mod->refcnt);
784
785 return 0;
786 }
787
788 /* Does a already use b? */
789 static int already_uses(struct module *a, struct module *b)
790 {
791 struct module_use *use;
792
793 list_for_each_entry(use, &b->source_list, source_list) {
794 if (use->source == a) {
795 pr_debug("%s uses %s!\n", a->name, b->name);
796 return 1;
797 }
798 }
799 pr_debug("%s does not use %s!\n", a->name, b->name);
800 return 0;
801 }
802
803 /*
804 * Module a uses b
805 * - we add 'a' as a "source", 'b' as a "target" of module use
806 * - the module_use is added to the list of 'b' sources (so
807 * 'b' can walk the list to see who sourced them), and of 'a'
808 * targets (so 'a' can see what modules it targets).
809 */
810 static int add_module_usage(struct module *a, struct module *b)
811 {
812 struct module_use *use;
813
814 pr_debug("Allocating new usage for %s.\n", a->name);
815 use = kmalloc(sizeof(*use), GFP_ATOMIC);
816 if (!use) {
817 pr_warn("%s: out of memory loading\n", a->name);
818 return -ENOMEM;
819 }
820
821 use->source = a;
822 use->target = b;
823 list_add(&use->source_list, &b->source_list);
824 list_add(&use->target_list, &a->target_list);
825 return 0;
826 }
827
828 /* Module a uses b: caller needs module_mutex() */
829 int ref_module(struct module *a, struct module *b)
830 {
831 int err;
832
833 if (b == NULL || already_uses(a, b))
834 return 0;
835
836 /* If module isn't available, we fail. */
837 err = strong_try_module_get(b);
838 if (err)
839 return err;
840
841 err = add_module_usage(a, b);
842 if (err) {
843 module_put(b);
844 return err;
845 }
846 return 0;
847 }
848 EXPORT_SYMBOL_GPL(ref_module);
849
850 /* Clear the unload stuff of the module. */
851 static void module_unload_free(struct module *mod)
852 {
853 struct module_use *use, *tmp;
854
855 mutex_lock(&module_mutex);
856 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
857 struct module *i = use->target;
858 pr_debug("%s unusing %s\n", mod->name, i->name);
859 module_put(i);
860 list_del(&use->source_list);
861 list_del(&use->target_list);
862 kfree(use);
863 }
864 mutex_unlock(&module_mutex);
865 }
866
867 #ifdef CONFIG_MODULE_FORCE_UNLOAD
868 static inline int try_force_unload(unsigned int flags)
869 {
870 int ret = (flags & O_TRUNC);
871 if (ret)
872 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
873 return ret;
874 }
875 #else
876 static inline int try_force_unload(unsigned int flags)
877 {
878 return 0;
879 }
880 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
881
882 /* Try to release refcount of module, 0 means success. */
883 static int try_release_module_ref(struct module *mod)
884 {
885 int ret;
886
887 /* Try to decrement refcnt which we set at loading */
888 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
889 BUG_ON(ret < 0);
890 if (ret)
891 /* Someone can put this right now, recover with checking */
892 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
893
894 return ret;
895 }
896
897 static int try_stop_module(struct module *mod, int flags, int *forced)
898 {
899 /* If it's not unused, quit unless we're forcing. */
900 if (try_release_module_ref(mod) != 0) {
901 *forced = try_force_unload(flags);
902 if (!(*forced))
903 return -EWOULDBLOCK;
904 }
905
906 /* Mark it as dying. */
907 mod->state = MODULE_STATE_GOING;
908
909 return 0;
910 }
911
912 /**
913 * module_refcount - return the refcount or -1 if unloading
914 *
915 * @mod: the module we're checking
916 *
917 * Returns:
918 * -1 if the module is in the process of unloading
919 * otherwise the number of references in the kernel to the module
920 */
921 int module_refcount(struct module *mod)
922 {
923 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
924 }
925 EXPORT_SYMBOL(module_refcount);
926
927 /* This exists whether we can unload or not */
928 static void free_module(struct module *mod);
929
930 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
931 unsigned int, flags)
932 {
933 struct module *mod;
934 char name[MODULE_NAME_LEN];
935 int ret, forced = 0;
936
937 if (!capable(CAP_SYS_MODULE) || modules_disabled)
938 return -EPERM;
939
940 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
941 return -EFAULT;
942 name[MODULE_NAME_LEN-1] = '\0';
943
944 if (mutex_lock_interruptible(&module_mutex) != 0)
945 return -EINTR;
946
947 mod = find_module(name);
948 if (!mod) {
949 ret = -ENOENT;
950 goto out;
951 }
952
953 if (!list_empty(&mod->source_list)) {
954 /* Other modules depend on us: get rid of them first. */
955 ret = -EWOULDBLOCK;
956 goto out;
957 }
958
959 /* Doing init or already dying? */
960 if (mod->state != MODULE_STATE_LIVE) {
961 /* FIXME: if (force), slam module count damn the torpedoes */
962 pr_debug("%s already dying\n", mod->name);
963 ret = -EBUSY;
964 goto out;
965 }
966
967 /* If it has an init func, it must have an exit func to unload */
968 if (mod->init && !mod->exit) {
969 forced = try_force_unload(flags);
970 if (!forced) {
971 /* This module can't be removed */
972 ret = -EBUSY;
973 goto out;
974 }
975 }
976
977 /* Stop the machine so refcounts can't move and disable module. */
978 ret = try_stop_module(mod, flags, &forced);
979 if (ret != 0)
980 goto out;
981
982 mutex_unlock(&module_mutex);
983 /* Final destruction now no one is using it. */
984 if (mod->exit != NULL)
985 mod->exit();
986 blocking_notifier_call_chain(&module_notify_list,
987 MODULE_STATE_GOING, mod);
988 klp_module_going(mod);
989 ftrace_release_mod(mod);
990
991 async_synchronize_full();
992
993 /* Store the name of the last unloaded module for diagnostic purposes */
994 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
995
996 free_module(mod);
997 return 0;
998 out:
999 mutex_unlock(&module_mutex);
1000 return ret;
1001 }
1002
1003 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1004 {
1005 struct module_use *use;
1006 int printed_something = 0;
1007
1008 seq_printf(m, " %i ", module_refcount(mod));
1009
1010 /*
1011 * Always include a trailing , so userspace can differentiate
1012 * between this and the old multi-field proc format.
1013 */
1014 list_for_each_entry(use, &mod->source_list, source_list) {
1015 printed_something = 1;
1016 seq_printf(m, "%s,", use->source->name);
1017 }
1018
1019 if (mod->init != NULL && mod->exit == NULL) {
1020 printed_something = 1;
1021 seq_puts(m, "[permanent],");
1022 }
1023
1024 if (!printed_something)
1025 seq_puts(m, "-");
1026 }
1027
1028 void __symbol_put(const char *symbol)
1029 {
1030 struct module *owner;
1031
1032 preempt_disable();
1033 if (!find_symbol(symbol, &owner, NULL, true, false))
1034 BUG();
1035 module_put(owner);
1036 preempt_enable();
1037 }
1038 EXPORT_SYMBOL(__symbol_put);
1039
1040 /* Note this assumes addr is a function, which it currently always is. */
1041 void symbol_put_addr(void *addr)
1042 {
1043 struct module *modaddr;
1044 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1045
1046 if (core_kernel_text(a))
1047 return;
1048
1049 /*
1050 * Even though we hold a reference on the module; we still need to
1051 * disable preemption in order to safely traverse the data structure.
1052 */
1053 preempt_disable();
1054 modaddr = __module_text_address(a);
1055 BUG_ON(!modaddr);
1056 module_put(modaddr);
1057 preempt_enable();
1058 }
1059 EXPORT_SYMBOL_GPL(symbol_put_addr);
1060
1061 static ssize_t show_refcnt(struct module_attribute *mattr,
1062 struct module_kobject *mk, char *buffer)
1063 {
1064 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1065 }
1066
1067 static struct module_attribute modinfo_refcnt =
1068 __ATTR(refcnt, 0444, show_refcnt, NULL);
1069
1070 void __module_get(struct module *module)
1071 {
1072 if (module) {
1073 preempt_disable();
1074 atomic_inc(&module->refcnt);
1075 trace_module_get(module, _RET_IP_);
1076 preempt_enable();
1077 }
1078 }
1079 EXPORT_SYMBOL(__module_get);
1080
1081 bool try_module_get(struct module *module)
1082 {
1083 bool ret = true;
1084
1085 if (module) {
1086 preempt_disable();
1087 /* Note: here, we can fail to get a reference */
1088 if (likely(module_is_live(module) &&
1089 atomic_inc_not_zero(&module->refcnt) != 0))
1090 trace_module_get(module, _RET_IP_);
1091 else
1092 ret = false;
1093
1094 preempt_enable();
1095 }
1096 return ret;
1097 }
1098 EXPORT_SYMBOL(try_module_get);
1099
1100 void module_put(struct module *module)
1101 {
1102 int ret;
1103
1104 if (module) {
1105 preempt_disable();
1106 ret = atomic_dec_if_positive(&module->refcnt);
1107 WARN_ON(ret < 0); /* Failed to put refcount */
1108 trace_module_put(module, _RET_IP_);
1109 preempt_enable();
1110 }
1111 }
1112 EXPORT_SYMBOL(module_put);
1113
1114 #else /* !CONFIG_MODULE_UNLOAD */
1115 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1116 {
1117 /* We don't know the usage count, or what modules are using. */
1118 seq_puts(m, " - -");
1119 }
1120
1121 static inline void module_unload_free(struct module *mod)
1122 {
1123 }
1124
1125 int ref_module(struct module *a, struct module *b)
1126 {
1127 return strong_try_module_get(b);
1128 }
1129 EXPORT_SYMBOL_GPL(ref_module);
1130
1131 static inline int module_unload_init(struct module *mod)
1132 {
1133 return 0;
1134 }
1135 #endif /* CONFIG_MODULE_UNLOAD */
1136
1137 static size_t module_flags_taint(struct module *mod, char *buf)
1138 {
1139 size_t l = 0;
1140
1141 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1142 buf[l++] = 'P';
1143 if (mod->taints & (1 << TAINT_OOT_MODULE))
1144 buf[l++] = 'O';
1145 if (mod->taints & (1 << TAINT_FORCED_MODULE))
1146 buf[l++] = 'F';
1147 if (mod->taints & (1 << TAINT_CRAP))
1148 buf[l++] = 'C';
1149 if (mod->taints & (1 << TAINT_UNSIGNED_MODULE))
1150 buf[l++] = 'E';
1151 /*
1152 * TAINT_FORCED_RMMOD: could be added.
1153 * TAINT_CPU_OUT_OF_SPEC, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1154 * apply to modules.
1155 */
1156 return l;
1157 }
1158
1159 static ssize_t show_initstate(struct module_attribute *mattr,
1160 struct module_kobject *mk, char *buffer)
1161 {
1162 const char *state = "unknown";
1163
1164 switch (mk->mod->state) {
1165 case MODULE_STATE_LIVE:
1166 state = "live";
1167 break;
1168 case MODULE_STATE_COMING:
1169 state = "coming";
1170 break;
1171 case MODULE_STATE_GOING:
1172 state = "going";
1173 break;
1174 default:
1175 BUG();
1176 }
1177 return sprintf(buffer, "%s\n", state);
1178 }
1179
1180 static struct module_attribute modinfo_initstate =
1181 __ATTR(initstate, 0444, show_initstate, NULL);
1182
1183 static ssize_t store_uevent(struct module_attribute *mattr,
1184 struct module_kobject *mk,
1185 const char *buffer, size_t count)
1186 {
1187 enum kobject_action action;
1188
1189 if (kobject_action_type(buffer, count, &action) == 0)
1190 kobject_uevent(&mk->kobj, action);
1191 return count;
1192 }
1193
1194 struct module_attribute module_uevent =
1195 __ATTR(uevent, 0200, NULL, store_uevent);
1196
1197 static ssize_t show_coresize(struct module_attribute *mattr,
1198 struct module_kobject *mk, char *buffer)
1199 {
1200 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1201 }
1202
1203 static struct module_attribute modinfo_coresize =
1204 __ATTR(coresize, 0444, show_coresize, NULL);
1205
1206 static ssize_t show_initsize(struct module_attribute *mattr,
1207 struct module_kobject *mk, char *buffer)
1208 {
1209 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1210 }
1211
1212 static struct module_attribute modinfo_initsize =
1213 __ATTR(initsize, 0444, show_initsize, NULL);
1214
1215 static ssize_t show_taint(struct module_attribute *mattr,
1216 struct module_kobject *mk, char *buffer)
1217 {
1218 size_t l;
1219
1220 l = module_flags_taint(mk->mod, buffer);
1221 buffer[l++] = '\n';
1222 return l;
1223 }
1224
1225 static struct module_attribute modinfo_taint =
1226 __ATTR(taint, 0444, show_taint, NULL);
1227
1228 static struct module_attribute *modinfo_attrs[] = {
1229 &module_uevent,
1230 &modinfo_version,
1231 &modinfo_srcversion,
1232 &modinfo_initstate,
1233 &modinfo_coresize,
1234 &modinfo_initsize,
1235 &modinfo_taint,
1236 #ifdef CONFIG_MODULE_UNLOAD
1237 &modinfo_refcnt,
1238 #endif
1239 NULL,
1240 };
1241
1242 static const char vermagic[] = VERMAGIC_STRING;
1243
1244 static int try_to_force_load(struct module *mod, const char *reason)
1245 {
1246 #ifdef CONFIG_MODULE_FORCE_LOAD
1247 if (!test_taint(TAINT_FORCED_MODULE))
1248 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1249 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1250 return 0;
1251 #else
1252 return -ENOEXEC;
1253 #endif
1254 }
1255
1256 #ifdef CONFIG_MODVERSIONS
1257 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1258 static unsigned long maybe_relocated(unsigned long crc,
1259 const struct module *crc_owner)
1260 {
1261 #ifdef ARCH_RELOCATES_KCRCTAB
1262 if (crc_owner == NULL)
1263 return crc - (unsigned long)reloc_start;
1264 #endif
1265 return crc;
1266 }
1267
1268 static int check_version(Elf_Shdr *sechdrs,
1269 unsigned int versindex,
1270 const char *symname,
1271 struct module *mod,
1272 const unsigned long *crc,
1273 const struct module *crc_owner)
1274 {
1275 unsigned int i, num_versions;
1276 struct modversion_info *versions;
1277
1278 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1279 if (!crc)
1280 return 1;
1281
1282 /* No versions at all? modprobe --force does this. */
1283 if (versindex == 0)
1284 return try_to_force_load(mod, symname) == 0;
1285
1286 versions = (void *) sechdrs[versindex].sh_addr;
1287 num_versions = sechdrs[versindex].sh_size
1288 / sizeof(struct modversion_info);
1289
1290 for (i = 0; i < num_versions; i++) {
1291 if (strcmp(versions[i].name, symname) != 0)
1292 continue;
1293
1294 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1295 return 1;
1296 pr_debug("Found checksum %lX vs module %lX\n",
1297 maybe_relocated(*crc, crc_owner), versions[i].crc);
1298 goto bad_version;
1299 }
1300
1301 pr_warn("%s: no symbol version for %s\n", mod->name, symname);
1302 return 0;
1303
1304 bad_version:
1305 pr_warn("%s: disagrees about version of symbol %s\n",
1306 mod->name, symname);
1307 return 0;
1308 }
1309
1310 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1311 unsigned int versindex,
1312 struct module *mod)
1313 {
1314 const unsigned long *crc;
1315
1316 /*
1317 * Since this should be found in kernel (which can't be removed), no
1318 * locking is necessary -- use preempt_disable() to placate lockdep.
1319 */
1320 preempt_disable();
1321 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1322 &crc, true, false)) {
1323 preempt_enable();
1324 BUG();
1325 }
1326 preempt_enable();
1327 return check_version(sechdrs, versindex,
1328 VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1329 NULL);
1330 }
1331
1332 /* First part is kernel version, which we ignore if module has crcs. */
1333 static inline int same_magic(const char *amagic, const char *bmagic,
1334 bool has_crcs)
1335 {
1336 if (has_crcs) {
1337 amagic += strcspn(amagic, " ");
1338 bmagic += strcspn(bmagic, " ");
1339 }
1340 return strcmp(amagic, bmagic) == 0;
1341 }
1342 #else
1343 static inline int check_version(Elf_Shdr *sechdrs,
1344 unsigned int versindex,
1345 const char *symname,
1346 struct module *mod,
1347 const unsigned long *crc,
1348 const struct module *crc_owner)
1349 {
1350 return 1;
1351 }
1352
1353 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1354 unsigned int versindex,
1355 struct module *mod)
1356 {
1357 return 1;
1358 }
1359
1360 static inline int same_magic(const char *amagic, const char *bmagic,
1361 bool has_crcs)
1362 {
1363 return strcmp(amagic, bmagic) == 0;
1364 }
1365 #endif /* CONFIG_MODVERSIONS */
1366
1367 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1368 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1369 const struct load_info *info,
1370 const char *name,
1371 char ownername[])
1372 {
1373 struct module *owner;
1374 const struct kernel_symbol *sym;
1375 const unsigned long *crc;
1376 int err;
1377
1378 /*
1379 * The module_mutex should not be a heavily contended lock;
1380 * if we get the occasional sleep here, we'll go an extra iteration
1381 * in the wait_event_interruptible(), which is harmless.
1382 */
1383 sched_annotate_sleep();
1384 mutex_lock(&module_mutex);
1385 sym = find_symbol(name, &owner, &crc,
1386 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1387 if (!sym)
1388 goto unlock;
1389
1390 if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1391 owner)) {
1392 sym = ERR_PTR(-EINVAL);
1393 goto getname;
1394 }
1395
1396 err = ref_module(mod, owner);
1397 if (err) {
1398 sym = ERR_PTR(err);
1399 goto getname;
1400 }
1401
1402 getname:
1403 /* We must make copy under the lock if we failed to get ref. */
1404 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1405 unlock:
1406 mutex_unlock(&module_mutex);
1407 return sym;
1408 }
1409
1410 static const struct kernel_symbol *
1411 resolve_symbol_wait(struct module *mod,
1412 const struct load_info *info,
1413 const char *name)
1414 {
1415 const struct kernel_symbol *ksym;
1416 char owner[MODULE_NAME_LEN];
1417
1418 if (wait_event_interruptible_timeout(module_wq,
1419 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1420 || PTR_ERR(ksym) != -EBUSY,
1421 30 * HZ) <= 0) {
1422 pr_warn("%s: gave up waiting for init of module %s.\n",
1423 mod->name, owner);
1424 }
1425 return ksym;
1426 }
1427
1428 /*
1429 * /sys/module/foo/sections stuff
1430 * J. Corbet <corbet@lwn.net>
1431 */
1432 #ifdef CONFIG_SYSFS
1433
1434 #ifdef CONFIG_KALLSYMS
1435 static inline bool sect_empty(const Elf_Shdr *sect)
1436 {
1437 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1438 }
1439
1440 struct module_sect_attr {
1441 struct module_attribute mattr;
1442 char *name;
1443 unsigned long address;
1444 };
1445
1446 struct module_sect_attrs {
1447 struct attribute_group grp;
1448 unsigned int nsections;
1449 struct module_sect_attr attrs[0];
1450 };
1451
1452 static ssize_t module_sect_show(struct module_attribute *mattr,
1453 struct module_kobject *mk, char *buf)
1454 {
1455 struct module_sect_attr *sattr =
1456 container_of(mattr, struct module_sect_attr, mattr);
1457 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1458 }
1459
1460 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1461 {
1462 unsigned int section;
1463
1464 for (section = 0; section < sect_attrs->nsections; section++)
1465 kfree(sect_attrs->attrs[section].name);
1466 kfree(sect_attrs);
1467 }
1468
1469 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1470 {
1471 unsigned int nloaded = 0, i, size[2];
1472 struct module_sect_attrs *sect_attrs;
1473 struct module_sect_attr *sattr;
1474 struct attribute **gattr;
1475
1476 /* Count loaded sections and allocate structures */
1477 for (i = 0; i < info->hdr->e_shnum; i++)
1478 if (!sect_empty(&info->sechdrs[i]))
1479 nloaded++;
1480 size[0] = ALIGN(sizeof(*sect_attrs)
1481 + nloaded * sizeof(sect_attrs->attrs[0]),
1482 sizeof(sect_attrs->grp.attrs[0]));
1483 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1484 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1485 if (sect_attrs == NULL)
1486 return;
1487
1488 /* Setup section attributes. */
1489 sect_attrs->grp.name = "sections";
1490 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1491
1492 sect_attrs->nsections = 0;
1493 sattr = &sect_attrs->attrs[0];
1494 gattr = &sect_attrs->grp.attrs[0];
1495 for (i = 0; i < info->hdr->e_shnum; i++) {
1496 Elf_Shdr *sec = &info->sechdrs[i];
1497 if (sect_empty(sec))
1498 continue;
1499 sattr->address = sec->sh_addr;
1500 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1501 GFP_KERNEL);
1502 if (sattr->name == NULL)
1503 goto out;
1504 sect_attrs->nsections++;
1505 sysfs_attr_init(&sattr->mattr.attr);
1506 sattr->mattr.show = module_sect_show;
1507 sattr->mattr.store = NULL;
1508 sattr->mattr.attr.name = sattr->name;
1509 sattr->mattr.attr.mode = S_IRUGO;
1510 *(gattr++) = &(sattr++)->mattr.attr;
1511 }
1512 *gattr = NULL;
1513
1514 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1515 goto out;
1516
1517 mod->sect_attrs = sect_attrs;
1518 return;
1519 out:
1520 free_sect_attrs(sect_attrs);
1521 }
1522
1523 static void remove_sect_attrs(struct module *mod)
1524 {
1525 if (mod->sect_attrs) {
1526 sysfs_remove_group(&mod->mkobj.kobj,
1527 &mod->sect_attrs->grp);
1528 /* We are positive that no one is using any sect attrs
1529 * at this point. Deallocate immediately. */
1530 free_sect_attrs(mod->sect_attrs);
1531 mod->sect_attrs = NULL;
1532 }
1533 }
1534
1535 /*
1536 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1537 */
1538
1539 struct module_notes_attrs {
1540 struct kobject *dir;
1541 unsigned int notes;
1542 struct bin_attribute attrs[0];
1543 };
1544
1545 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1546 struct bin_attribute *bin_attr,
1547 char *buf, loff_t pos, size_t count)
1548 {
1549 /*
1550 * The caller checked the pos and count against our size.
1551 */
1552 memcpy(buf, bin_attr->private + pos, count);
1553 return count;
1554 }
1555
1556 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1557 unsigned int i)
1558 {
1559 if (notes_attrs->dir) {
1560 while (i-- > 0)
1561 sysfs_remove_bin_file(notes_attrs->dir,
1562 &notes_attrs->attrs[i]);
1563 kobject_put(notes_attrs->dir);
1564 }
1565 kfree(notes_attrs);
1566 }
1567
1568 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1569 {
1570 unsigned int notes, loaded, i;
1571 struct module_notes_attrs *notes_attrs;
1572 struct bin_attribute *nattr;
1573
1574 /* failed to create section attributes, so can't create notes */
1575 if (!mod->sect_attrs)
1576 return;
1577
1578 /* Count notes sections and allocate structures. */
1579 notes = 0;
1580 for (i = 0; i < info->hdr->e_shnum; i++)
1581 if (!sect_empty(&info->sechdrs[i]) &&
1582 (info->sechdrs[i].sh_type == SHT_NOTE))
1583 ++notes;
1584
1585 if (notes == 0)
1586 return;
1587
1588 notes_attrs = kzalloc(sizeof(*notes_attrs)
1589 + notes * sizeof(notes_attrs->attrs[0]),
1590 GFP_KERNEL);
1591 if (notes_attrs == NULL)
1592 return;
1593
1594 notes_attrs->notes = notes;
1595 nattr = &notes_attrs->attrs[0];
1596 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1597 if (sect_empty(&info->sechdrs[i]))
1598 continue;
1599 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1600 sysfs_bin_attr_init(nattr);
1601 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1602 nattr->attr.mode = S_IRUGO;
1603 nattr->size = info->sechdrs[i].sh_size;
1604 nattr->private = (void *) info->sechdrs[i].sh_addr;
1605 nattr->read = module_notes_read;
1606 ++nattr;
1607 }
1608 ++loaded;
1609 }
1610
1611 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1612 if (!notes_attrs->dir)
1613 goto out;
1614
1615 for (i = 0; i < notes; ++i)
1616 if (sysfs_create_bin_file(notes_attrs->dir,
1617 &notes_attrs->attrs[i]))
1618 goto out;
1619
1620 mod->notes_attrs = notes_attrs;
1621 return;
1622
1623 out:
1624 free_notes_attrs(notes_attrs, i);
1625 }
1626
1627 static void remove_notes_attrs(struct module *mod)
1628 {
1629 if (mod->notes_attrs)
1630 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1631 }
1632
1633 #else
1634
1635 static inline void add_sect_attrs(struct module *mod,
1636 const struct load_info *info)
1637 {
1638 }
1639
1640 static inline void remove_sect_attrs(struct module *mod)
1641 {
1642 }
1643
1644 static inline void add_notes_attrs(struct module *mod,
1645 const struct load_info *info)
1646 {
1647 }
1648
1649 static inline void remove_notes_attrs(struct module *mod)
1650 {
1651 }
1652 #endif /* CONFIG_KALLSYMS */
1653
1654 static void add_usage_links(struct module *mod)
1655 {
1656 #ifdef CONFIG_MODULE_UNLOAD
1657 struct module_use *use;
1658 int nowarn;
1659
1660 mutex_lock(&module_mutex);
1661 list_for_each_entry(use, &mod->target_list, target_list) {
1662 nowarn = sysfs_create_link(use->target->holders_dir,
1663 &mod->mkobj.kobj, mod->name);
1664 }
1665 mutex_unlock(&module_mutex);
1666 #endif
1667 }
1668
1669 static void del_usage_links(struct module *mod)
1670 {
1671 #ifdef CONFIG_MODULE_UNLOAD
1672 struct module_use *use;
1673
1674 mutex_lock(&module_mutex);
1675 list_for_each_entry(use, &mod->target_list, target_list)
1676 sysfs_remove_link(use->target->holders_dir, mod->name);
1677 mutex_unlock(&module_mutex);
1678 #endif
1679 }
1680
1681 static int module_add_modinfo_attrs(struct module *mod)
1682 {
1683 struct module_attribute *attr;
1684 struct module_attribute *temp_attr;
1685 int error = 0;
1686 int i;
1687
1688 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1689 (ARRAY_SIZE(modinfo_attrs) + 1)),
1690 GFP_KERNEL);
1691 if (!mod->modinfo_attrs)
1692 return -ENOMEM;
1693
1694 temp_attr = mod->modinfo_attrs;
1695 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1696 if (!attr->test || attr->test(mod)) {
1697 memcpy(temp_attr, attr, sizeof(*temp_attr));
1698 sysfs_attr_init(&temp_attr->attr);
1699 error = sysfs_create_file(&mod->mkobj.kobj,
1700 &temp_attr->attr);
1701 ++temp_attr;
1702 }
1703 }
1704 return error;
1705 }
1706
1707 static void module_remove_modinfo_attrs(struct module *mod)
1708 {
1709 struct module_attribute *attr;
1710 int i;
1711
1712 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1713 /* pick a field to test for end of list */
1714 if (!attr->attr.name)
1715 break;
1716 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1717 if (attr->free)
1718 attr->free(mod);
1719 }
1720 kfree(mod->modinfo_attrs);
1721 }
1722
1723 static void mod_kobject_put(struct module *mod)
1724 {
1725 DECLARE_COMPLETION_ONSTACK(c);
1726 mod->mkobj.kobj_completion = &c;
1727 kobject_put(&mod->mkobj.kobj);
1728 wait_for_completion(&c);
1729 }
1730
1731 static int mod_sysfs_init(struct module *mod)
1732 {
1733 int err;
1734 struct kobject *kobj;
1735
1736 if (!module_sysfs_initialized) {
1737 pr_err("%s: module sysfs not initialized\n", mod->name);
1738 err = -EINVAL;
1739 goto out;
1740 }
1741
1742 kobj = kset_find_obj(module_kset, mod->name);
1743 if (kobj) {
1744 pr_err("%s: module is already loaded\n", mod->name);
1745 kobject_put(kobj);
1746 err = -EINVAL;
1747 goto out;
1748 }
1749
1750 mod->mkobj.mod = mod;
1751
1752 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1753 mod->mkobj.kobj.kset = module_kset;
1754 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1755 "%s", mod->name);
1756 if (err)
1757 mod_kobject_put(mod);
1758
1759 /* delay uevent until full sysfs population */
1760 out:
1761 return err;
1762 }
1763
1764 static int mod_sysfs_setup(struct module *mod,
1765 const struct load_info *info,
1766 struct kernel_param *kparam,
1767 unsigned int num_params)
1768 {
1769 int err;
1770
1771 err = mod_sysfs_init(mod);
1772 if (err)
1773 goto out;
1774
1775 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1776 if (!mod->holders_dir) {
1777 err = -ENOMEM;
1778 goto out_unreg;
1779 }
1780
1781 err = module_param_sysfs_setup(mod, kparam, num_params);
1782 if (err)
1783 goto out_unreg_holders;
1784
1785 err = module_add_modinfo_attrs(mod);
1786 if (err)
1787 goto out_unreg_param;
1788
1789 add_usage_links(mod);
1790 add_sect_attrs(mod, info);
1791 add_notes_attrs(mod, info);
1792
1793 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1794 return 0;
1795
1796 out_unreg_param:
1797 module_param_sysfs_remove(mod);
1798 out_unreg_holders:
1799 kobject_put(mod->holders_dir);
1800 out_unreg:
1801 mod_kobject_put(mod);
1802 out:
1803 return err;
1804 }
1805
1806 static void mod_sysfs_fini(struct module *mod)
1807 {
1808 remove_notes_attrs(mod);
1809 remove_sect_attrs(mod);
1810 mod_kobject_put(mod);
1811 }
1812
1813 static void init_param_lock(struct module *mod)
1814 {
1815 mutex_init(&mod->param_lock);
1816 }
1817 #else /* !CONFIG_SYSFS */
1818
1819 static int mod_sysfs_setup(struct module *mod,
1820 const struct load_info *info,
1821 struct kernel_param *kparam,
1822 unsigned int num_params)
1823 {
1824 return 0;
1825 }
1826
1827 static void mod_sysfs_fini(struct module *mod)
1828 {
1829 }
1830
1831 static void module_remove_modinfo_attrs(struct module *mod)
1832 {
1833 }
1834
1835 static void del_usage_links(struct module *mod)
1836 {
1837 }
1838
1839 static void init_param_lock(struct module *mod)
1840 {
1841 }
1842 #endif /* CONFIG_SYSFS */
1843
1844 static void mod_sysfs_teardown(struct module *mod)
1845 {
1846 del_usage_links(mod);
1847 module_remove_modinfo_attrs(mod);
1848 module_param_sysfs_remove(mod);
1849 kobject_put(mod->mkobj.drivers_dir);
1850 kobject_put(mod->holders_dir);
1851 mod_sysfs_fini(mod);
1852 }
1853
1854 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1855 /*
1856 * LKM RO/NX protection: protect module's text/ro-data
1857 * from modification and any data from execution.
1858 *
1859 * General layout of module is:
1860 * [text] [read-only-data] [writable data]
1861 * text_size -----^ ^ ^
1862 * ro_size ------------------------| |
1863 * size -------------------------------------------|
1864 *
1865 * These values are always page-aligned (as is base)
1866 */
1867 static void frob_text(const struct module_layout *layout,
1868 int (*set_memory)(unsigned long start, int num_pages))
1869 {
1870 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1871 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1872 set_memory((unsigned long)layout->base,
1873 layout->text_size >> PAGE_SHIFT);
1874 }
1875
1876 static void frob_rodata(const struct module_layout *layout,
1877 int (*set_memory)(unsigned long start, int num_pages))
1878 {
1879 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1880 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1881 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1882 set_memory((unsigned long)layout->base + layout->text_size,
1883 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1884 }
1885
1886 static void frob_writable_data(const struct module_layout *layout,
1887 int (*set_memory)(unsigned long start, int num_pages))
1888 {
1889 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1890 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1891 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1892 set_memory((unsigned long)layout->base + layout->ro_size,
1893 (layout->size - layout->ro_size) >> PAGE_SHIFT);
1894 }
1895
1896 /* livepatching wants to disable read-only so it can frob module. */
1897 void module_disable_ro(const struct module *mod)
1898 {
1899 frob_text(&mod->core_layout, set_memory_rw);
1900 frob_rodata(&mod->core_layout, set_memory_rw);
1901 frob_text(&mod->init_layout, set_memory_rw);
1902 frob_rodata(&mod->init_layout, set_memory_rw);
1903 }
1904
1905 void module_enable_ro(const struct module *mod)
1906 {
1907 frob_text(&mod->core_layout, set_memory_ro);
1908 frob_rodata(&mod->core_layout, set_memory_ro);
1909 frob_text(&mod->init_layout, set_memory_ro);
1910 frob_rodata(&mod->init_layout, set_memory_ro);
1911 }
1912
1913 static void module_enable_nx(const struct module *mod)
1914 {
1915 frob_rodata(&mod->core_layout, set_memory_nx);
1916 frob_writable_data(&mod->core_layout, set_memory_nx);
1917 frob_rodata(&mod->init_layout, set_memory_nx);
1918 frob_writable_data(&mod->init_layout, set_memory_nx);
1919 }
1920
1921 static void module_disable_nx(const struct module *mod)
1922 {
1923 frob_rodata(&mod->core_layout, set_memory_x);
1924 frob_writable_data(&mod->core_layout, set_memory_x);
1925 frob_rodata(&mod->init_layout, set_memory_x);
1926 frob_writable_data(&mod->init_layout, set_memory_x);
1927 }
1928
1929 /* Iterate through all modules and set each module's text as RW */
1930 void set_all_modules_text_rw(void)
1931 {
1932 struct module *mod;
1933
1934 mutex_lock(&module_mutex);
1935 list_for_each_entry_rcu(mod, &modules, list) {
1936 if (mod->state == MODULE_STATE_UNFORMED)
1937 continue;
1938
1939 frob_text(&mod->core_layout, set_memory_rw);
1940 frob_text(&mod->init_layout, set_memory_rw);
1941 }
1942 mutex_unlock(&module_mutex);
1943 }
1944
1945 /* Iterate through all modules and set each module's text as RO */
1946 void set_all_modules_text_ro(void)
1947 {
1948 struct module *mod;
1949
1950 mutex_lock(&module_mutex);
1951 list_for_each_entry_rcu(mod, &modules, list) {
1952 if (mod->state == MODULE_STATE_UNFORMED)
1953 continue;
1954
1955 frob_text(&mod->core_layout, set_memory_ro);
1956 frob_text(&mod->init_layout, set_memory_ro);
1957 }
1958 mutex_unlock(&module_mutex);
1959 }
1960
1961 static void disable_ro_nx(const struct module_layout *layout)
1962 {
1963 frob_text(layout, set_memory_rw);
1964 frob_rodata(layout, set_memory_rw);
1965 frob_rodata(layout, set_memory_x);
1966 frob_writable_data(layout, set_memory_x);
1967 }
1968
1969 #else
1970 static void disable_ro_nx(const struct module_layout *layout) { }
1971 static void module_enable_nx(const struct module *mod) { }
1972 static void module_disable_nx(const struct module *mod) { }
1973 #endif
1974
1975 #ifdef CONFIG_LIVEPATCH
1976 /*
1977 * Persist Elf information about a module. Copy the Elf header,
1978 * section header table, section string table, and symtab section
1979 * index from info to mod->klp_info.
1980 */
1981 static int copy_module_elf(struct module *mod, struct load_info *info)
1982 {
1983 unsigned int size, symndx;
1984 int ret;
1985
1986 size = sizeof(*mod->klp_info);
1987 mod->klp_info = kmalloc(size, GFP_KERNEL);
1988 if (mod->klp_info == NULL)
1989 return -ENOMEM;
1990
1991 /* Elf header */
1992 size = sizeof(mod->klp_info->hdr);
1993 memcpy(&mod->klp_info->hdr, info->hdr, size);
1994
1995 /* Elf section header table */
1996 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
1997 mod->klp_info->sechdrs = kmalloc(size, GFP_KERNEL);
1998 if (mod->klp_info->sechdrs == NULL) {
1999 ret = -ENOMEM;
2000 goto free_info;
2001 }
2002 memcpy(mod->klp_info->sechdrs, info->sechdrs, size);
2003
2004 /* Elf section name string table */
2005 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2006 mod->klp_info->secstrings = kmalloc(size, GFP_KERNEL);
2007 if (mod->klp_info->secstrings == NULL) {
2008 ret = -ENOMEM;
2009 goto free_sechdrs;
2010 }
2011 memcpy(mod->klp_info->secstrings, info->secstrings, size);
2012
2013 /* Elf symbol section index */
2014 symndx = info->index.sym;
2015 mod->klp_info->symndx = symndx;
2016
2017 /*
2018 * For livepatch modules, core_kallsyms.symtab is a complete
2019 * copy of the original symbol table. Adjust sh_addr to point
2020 * to core_kallsyms.symtab since the copy of the symtab in module
2021 * init memory is freed at the end of do_init_module().
2022 */
2023 mod->klp_info->sechdrs[symndx].sh_addr = \
2024 (unsigned long) mod->core_kallsyms.symtab;
2025
2026 return 0;
2027
2028 free_sechdrs:
2029 kfree(mod->klp_info->sechdrs);
2030 free_info:
2031 kfree(mod->klp_info);
2032 return ret;
2033 }
2034
2035 static void free_module_elf(struct module *mod)
2036 {
2037 kfree(mod->klp_info->sechdrs);
2038 kfree(mod->klp_info->secstrings);
2039 kfree(mod->klp_info);
2040 }
2041 #else /* !CONFIG_LIVEPATCH */
2042 static int copy_module_elf(struct module *mod, struct load_info *info)
2043 {
2044 return 0;
2045 }
2046
2047 static void free_module_elf(struct module *mod)
2048 {
2049 }
2050 #endif /* CONFIG_LIVEPATCH */
2051
2052 void __weak module_memfree(void *module_region)
2053 {
2054 vfree(module_region);
2055 }
2056
2057 void __weak module_arch_cleanup(struct module *mod)
2058 {
2059 }
2060
2061 void __weak module_arch_freeing_init(struct module *mod)
2062 {
2063 }
2064
2065 /* Free a module, remove from lists, etc. */
2066 static void free_module(struct module *mod)
2067 {
2068 trace_module_free(mod);
2069
2070 mod_sysfs_teardown(mod);
2071
2072 /* We leave it in list to prevent duplicate loads, but make sure
2073 * that noone uses it while it's being deconstructed. */
2074 mutex_lock(&module_mutex);
2075 mod->state = MODULE_STATE_UNFORMED;
2076 mutex_unlock(&module_mutex);
2077
2078 /* Remove dynamic debug info */
2079 ddebug_remove_module(mod->name);
2080
2081 /* Arch-specific cleanup. */
2082 module_arch_cleanup(mod);
2083
2084 /* Module unload stuff */
2085 module_unload_free(mod);
2086
2087 /* Free any allocated parameters. */
2088 destroy_params(mod->kp, mod->num_kp);
2089
2090 if (is_livepatch_module(mod))
2091 free_module_elf(mod);
2092
2093 /* Now we can delete it from the lists */
2094 mutex_lock(&module_mutex);
2095 /* Unlink carefully: kallsyms could be walking list. */
2096 list_del_rcu(&mod->list);
2097 mod_tree_remove(mod);
2098 /* Remove this module from bug list, this uses list_del_rcu */
2099 module_bug_cleanup(mod);
2100 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2101 synchronize_sched();
2102 mutex_unlock(&module_mutex);
2103
2104 /* This may be empty, but that's OK */
2105 disable_ro_nx(&mod->init_layout);
2106 module_arch_freeing_init(mod);
2107 module_memfree(mod->init_layout.base);
2108 kfree(mod->args);
2109 percpu_modfree(mod);
2110
2111 /* Free lock-classes; relies on the preceding sync_rcu(). */
2112 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2113
2114 /* Finally, free the core (containing the module structure) */
2115 disable_ro_nx(&mod->core_layout);
2116 module_memfree(mod->core_layout.base);
2117
2118 #ifdef CONFIG_MPU
2119 update_protections(current->mm);
2120 #endif
2121 }
2122
2123 void *__symbol_get(const char *symbol)
2124 {
2125 struct module *owner;
2126 const struct kernel_symbol *sym;
2127
2128 preempt_disable();
2129 sym = find_symbol(symbol, &owner, NULL, true, true);
2130 if (sym && strong_try_module_get(owner))
2131 sym = NULL;
2132 preempt_enable();
2133
2134 return sym ? (void *)sym->value : NULL;
2135 }
2136 EXPORT_SYMBOL_GPL(__symbol_get);
2137
2138 /*
2139 * Ensure that an exported symbol [global namespace] does not already exist
2140 * in the kernel or in some other module's exported symbol table.
2141 *
2142 * You must hold the module_mutex.
2143 */
2144 static int verify_export_symbols(struct module *mod)
2145 {
2146 unsigned int i;
2147 struct module *owner;
2148 const struct kernel_symbol *s;
2149 struct {
2150 const struct kernel_symbol *sym;
2151 unsigned int num;
2152 } arr[] = {
2153 { mod->syms, mod->num_syms },
2154 { mod->gpl_syms, mod->num_gpl_syms },
2155 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2156 #ifdef CONFIG_UNUSED_SYMBOLS
2157 { mod->unused_syms, mod->num_unused_syms },
2158 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2159 #endif
2160 };
2161
2162 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2163 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2164 if (find_symbol(s->name, &owner, NULL, true, false)) {
2165 pr_err("%s: exports duplicate symbol %s"
2166 " (owned by %s)\n",
2167 mod->name, s->name, module_name(owner));
2168 return -ENOEXEC;
2169 }
2170 }
2171 }
2172 return 0;
2173 }
2174
2175 /* Change all symbols so that st_value encodes the pointer directly. */
2176 static int simplify_symbols(struct module *mod, const struct load_info *info)
2177 {
2178 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2179 Elf_Sym *sym = (void *)symsec->sh_addr;
2180 unsigned long secbase;
2181 unsigned int i;
2182 int ret = 0;
2183 const struct kernel_symbol *ksym;
2184
2185 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2186 const char *name = info->strtab + sym[i].st_name;
2187
2188 switch (sym[i].st_shndx) {
2189 case SHN_COMMON:
2190 /* Ignore common symbols */
2191 if (!strncmp(name, "__gnu_lto", 9))
2192 break;
2193
2194 /* We compiled with -fno-common. These are not
2195 supposed to happen. */
2196 pr_debug("Common symbol: %s\n", name);
2197 pr_warn("%s: please compile with -fno-common\n",
2198 mod->name);
2199 ret = -ENOEXEC;
2200 break;
2201
2202 case SHN_ABS:
2203 /* Don't need to do anything */
2204 pr_debug("Absolute symbol: 0x%08lx\n",
2205 (long)sym[i].st_value);
2206 break;
2207
2208 case SHN_LIVEPATCH:
2209 /* Livepatch symbols are resolved by livepatch */
2210 break;
2211
2212 case SHN_UNDEF:
2213 ksym = resolve_symbol_wait(mod, info, name);
2214 /* Ok if resolved. */
2215 if (ksym && !IS_ERR(ksym)) {
2216 sym[i].st_value = ksym->value;
2217 break;
2218 }
2219
2220 /* Ok if weak. */
2221 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2222 break;
2223
2224 pr_warn("%s: Unknown symbol %s (err %li)\n",
2225 mod->name, name, PTR_ERR(ksym));
2226 ret = PTR_ERR(ksym) ?: -ENOENT;
2227 break;
2228
2229 default:
2230 /* Divert to percpu allocation if a percpu var. */
2231 if (sym[i].st_shndx == info->index.pcpu)
2232 secbase = (unsigned long)mod_percpu(mod);
2233 else
2234 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2235 sym[i].st_value += secbase;
2236 break;
2237 }
2238 }
2239
2240 return ret;
2241 }
2242
2243 static int apply_relocations(struct module *mod, const struct load_info *info)
2244 {
2245 unsigned int i;
2246 int err = 0;
2247
2248 /* Now do relocations. */
2249 for (i = 1; i < info->hdr->e_shnum; i++) {
2250 unsigned int infosec = info->sechdrs[i].sh_info;
2251
2252 /* Not a valid relocation section? */
2253 if (infosec >= info->hdr->e_shnum)
2254 continue;
2255
2256 /* Don't bother with non-allocated sections */
2257 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2258 continue;
2259
2260 /* Livepatch relocation sections are applied by livepatch */
2261 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2262 continue;
2263
2264 if (info->sechdrs[i].sh_type == SHT_REL)
2265 err = apply_relocate(info->sechdrs, info->strtab,
2266 info->index.sym, i, mod);
2267 else if (info->sechdrs[i].sh_type == SHT_RELA)
2268 err = apply_relocate_add(info->sechdrs, info->strtab,
2269 info->index.sym, i, mod);
2270 if (err < 0)
2271 break;
2272 }
2273 return err;
2274 }
2275
2276 /* Additional bytes needed by arch in front of individual sections */
2277 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2278 unsigned int section)
2279 {
2280 /* default implementation just returns zero */
2281 return 0;
2282 }
2283
2284 /* Update size with this section: return offset. */
2285 static long get_offset(struct module *mod, unsigned int *size,
2286 Elf_Shdr *sechdr, unsigned int section)
2287 {
2288 long ret;
2289
2290 *size += arch_mod_section_prepend(mod, section);
2291 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2292 *size = ret + sechdr->sh_size;
2293 return ret;
2294 }
2295
2296 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2297 might -- code, read-only data, read-write data, small data. Tally
2298 sizes, and place the offsets into sh_entsize fields: high bit means it
2299 belongs in init. */
2300 static void layout_sections(struct module *mod, struct load_info *info)
2301 {
2302 static unsigned long const masks[][2] = {
2303 /* NOTE: all executable code must be the first section
2304 * in this array; otherwise modify the text_size
2305 * finder in the two loops below */
2306 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2307 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2308 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2309 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2310 };
2311 unsigned int m, i;
2312
2313 for (i = 0; i < info->hdr->e_shnum; i++)
2314 info->sechdrs[i].sh_entsize = ~0UL;
2315
2316 pr_debug("Core section allocation order:\n");
2317 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2318 for (i = 0; i < info->hdr->e_shnum; ++i) {
2319 Elf_Shdr *s = &info->sechdrs[i];
2320 const char *sname = info->secstrings + s->sh_name;
2321
2322 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2323 || (s->sh_flags & masks[m][1])
2324 || s->sh_entsize != ~0UL
2325 || strstarts(sname, ".init"))
2326 continue;
2327 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2328 pr_debug("\t%s\n", sname);
2329 }
2330 switch (m) {
2331 case 0: /* executable */
2332 mod->core_layout.size = debug_align(mod->core_layout.size);
2333 mod->core_layout.text_size = mod->core_layout.size;
2334 break;
2335 case 1: /* RO: text and ro-data */
2336 mod->core_layout.size = debug_align(mod->core_layout.size);
2337 mod->core_layout.ro_size = mod->core_layout.size;
2338 break;
2339 case 3: /* whole core */
2340 mod->core_layout.size = debug_align(mod->core_layout.size);
2341 break;
2342 }
2343 }
2344
2345 pr_debug("Init section allocation order:\n");
2346 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2347 for (i = 0; i < info->hdr->e_shnum; ++i) {
2348 Elf_Shdr *s = &info->sechdrs[i];
2349 const char *sname = info->secstrings + s->sh_name;
2350
2351 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2352 || (s->sh_flags & masks[m][1])
2353 || s->sh_entsize != ~0UL
2354 || !strstarts(sname, ".init"))
2355 continue;
2356 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2357 | INIT_OFFSET_MASK);
2358 pr_debug("\t%s\n", sname);
2359 }
2360 switch (m) {
2361 case 0: /* executable */
2362 mod->init_layout.size = debug_align(mod->init_layout.size);
2363 mod->init_layout.text_size = mod->init_layout.size;
2364 break;
2365 case 1: /* RO: text and ro-data */
2366 mod->init_layout.size = debug_align(mod->init_layout.size);
2367 mod->init_layout.ro_size = mod->init_layout.size;
2368 break;
2369 case 3: /* whole init */
2370 mod->init_layout.size = debug_align(mod->init_layout.size);
2371 break;
2372 }
2373 }
2374 }
2375
2376 static void set_license(struct module *mod, const char *license)
2377 {
2378 if (!license)
2379 license = "unspecified";
2380
2381 if (!license_is_gpl_compatible(license)) {
2382 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2383 pr_warn("%s: module license '%s' taints kernel.\n",
2384 mod->name, license);
2385 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2386 LOCKDEP_NOW_UNRELIABLE);
2387 }
2388 }
2389
2390 /* Parse tag=value strings from .modinfo section */
2391 static char *next_string(char *string, unsigned long *secsize)
2392 {
2393 /* Skip non-zero chars */
2394 while (string[0]) {
2395 string++;
2396 if ((*secsize)-- <= 1)
2397 return NULL;
2398 }
2399
2400 /* Skip any zero padding. */
2401 while (!string[0]) {
2402 string++;
2403 if ((*secsize)-- <= 1)
2404 return NULL;
2405 }
2406 return string;
2407 }
2408
2409 static char *get_modinfo(struct load_info *info, const char *tag)
2410 {
2411 char *p;
2412 unsigned int taglen = strlen(tag);
2413 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2414 unsigned long size = infosec->sh_size;
2415
2416 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2417 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2418 return p + taglen + 1;
2419 }
2420 return NULL;
2421 }
2422
2423 static void setup_modinfo(struct module *mod, struct load_info *info)
2424 {
2425 struct module_attribute *attr;
2426 int i;
2427
2428 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2429 if (attr->setup)
2430 attr->setup(mod, get_modinfo(info, attr->attr.name));
2431 }
2432 }
2433
2434 static void free_modinfo(struct module *mod)
2435 {
2436 struct module_attribute *attr;
2437 int i;
2438
2439 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2440 if (attr->free)
2441 attr->free(mod);
2442 }
2443 }
2444
2445 #ifdef CONFIG_KALLSYMS
2446
2447 /* lookup symbol in given range of kernel_symbols */
2448 static const struct kernel_symbol *lookup_symbol(const char *name,
2449 const struct kernel_symbol *start,
2450 const struct kernel_symbol *stop)
2451 {
2452 return bsearch(name, start, stop - start,
2453 sizeof(struct kernel_symbol), cmp_name);
2454 }
2455
2456 static int is_exported(const char *name, unsigned long value,
2457 const struct module *mod)
2458 {
2459 const struct kernel_symbol *ks;
2460 if (!mod)
2461 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2462 else
2463 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2464 return ks != NULL && ks->value == value;
2465 }
2466
2467 /* As per nm */
2468 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2469 {
2470 const Elf_Shdr *sechdrs = info->sechdrs;
2471
2472 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2473 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2474 return 'v';
2475 else
2476 return 'w';
2477 }
2478 if (sym->st_shndx == SHN_UNDEF)
2479 return 'U';
2480 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2481 return 'a';
2482 if (sym->st_shndx >= SHN_LORESERVE)
2483 return '?';
2484 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2485 return 't';
2486 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2487 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2488 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2489 return 'r';
2490 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2491 return 'g';
2492 else
2493 return 'd';
2494 }
2495 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2496 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2497 return 's';
2498 else
2499 return 'b';
2500 }
2501 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2502 ".debug")) {
2503 return 'n';
2504 }
2505 return '?';
2506 }
2507
2508 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2509 unsigned int shnum, unsigned int pcpundx)
2510 {
2511 const Elf_Shdr *sec;
2512
2513 if (src->st_shndx == SHN_UNDEF
2514 || src->st_shndx >= shnum
2515 || !src->st_name)
2516 return false;
2517
2518 #ifdef CONFIG_KALLSYMS_ALL
2519 if (src->st_shndx == pcpundx)
2520 return true;
2521 #endif
2522
2523 sec = sechdrs + src->st_shndx;
2524 if (!(sec->sh_flags & SHF_ALLOC)
2525 #ifndef CONFIG_KALLSYMS_ALL
2526 || !(sec->sh_flags & SHF_EXECINSTR)
2527 #endif
2528 || (sec->sh_entsize & INIT_OFFSET_MASK))
2529 return false;
2530
2531 return true;
2532 }
2533
2534 /*
2535 * We only allocate and copy the strings needed by the parts of symtab
2536 * we keep. This is simple, but has the effect of making multiple
2537 * copies of duplicates. We could be more sophisticated, see
2538 * linux-kernel thread starting with
2539 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2540 */
2541 static void layout_symtab(struct module *mod, struct load_info *info)
2542 {
2543 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2544 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2545 const Elf_Sym *src;
2546 unsigned int i, nsrc, ndst, strtab_size = 0;
2547
2548 /* Put symbol section at end of init part of module. */
2549 symsect->sh_flags |= SHF_ALLOC;
2550 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2551 info->index.sym) | INIT_OFFSET_MASK;
2552 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2553
2554 src = (void *)info->hdr + symsect->sh_offset;
2555 nsrc = symsect->sh_size / sizeof(*src);
2556
2557 /* Compute total space required for the core symbols' strtab. */
2558 for (ndst = i = 0; i < nsrc; i++) {
2559 if (i == 0 || is_livepatch_module(mod) ||
2560 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2561 info->index.pcpu)) {
2562 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2563 ndst++;
2564 }
2565 }
2566
2567 /* Append room for core symbols at end of core part. */
2568 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2569 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2570 mod->core_layout.size += strtab_size;
2571 mod->core_layout.size = debug_align(mod->core_layout.size);
2572
2573 /* Put string table section at end of init part of module. */
2574 strsect->sh_flags |= SHF_ALLOC;
2575 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2576 info->index.str) | INIT_OFFSET_MASK;
2577 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2578
2579 /* We'll tack temporary mod_kallsyms on the end. */
2580 mod->init_layout.size = ALIGN(mod->init_layout.size,
2581 __alignof__(struct mod_kallsyms));
2582 info->mod_kallsyms_init_off = mod->init_layout.size;
2583 mod->init_layout.size += sizeof(struct mod_kallsyms);
2584 mod->init_layout.size = debug_align(mod->init_layout.size);
2585 }
2586
2587 /*
2588 * We use the full symtab and strtab which layout_symtab arranged to
2589 * be appended to the init section. Later we switch to the cut-down
2590 * core-only ones.
2591 */
2592 static void add_kallsyms(struct module *mod, const struct load_info *info)
2593 {
2594 unsigned int i, ndst;
2595 const Elf_Sym *src;
2596 Elf_Sym *dst;
2597 char *s;
2598 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2599
2600 /* Set up to point into init section. */
2601 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2602
2603 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2604 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2605 /* Make sure we get permanent strtab: don't use info->strtab. */
2606 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2607
2608 /* Set types up while we still have access to sections. */
2609 for (i = 0; i < mod->kallsyms->num_symtab; i++)
2610 mod->kallsyms->symtab[i].st_info
2611 = elf_type(&mod->kallsyms->symtab[i], info);
2612
2613 /* Now populate the cut down core kallsyms for after init. */
2614 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2615 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2616 src = mod->kallsyms->symtab;
2617 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2618 if (i == 0 || is_livepatch_module(mod) ||
2619 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2620 info->index.pcpu)) {
2621 dst[ndst] = src[i];
2622 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2623 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2624 KSYM_NAME_LEN) + 1;
2625 }
2626 }
2627 mod->core_kallsyms.num_symtab = ndst;
2628 }
2629 #else
2630 static inline void layout_symtab(struct module *mod, struct load_info *info)
2631 {
2632 }
2633
2634 static void add_kallsyms(struct module *mod, const struct load_info *info)
2635 {
2636 }
2637 #endif /* CONFIG_KALLSYMS */
2638
2639 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2640 {
2641 if (!debug)
2642 return;
2643 #ifdef CONFIG_DYNAMIC_DEBUG
2644 if (ddebug_add_module(debug, num, debug->modname))
2645 pr_err("dynamic debug error adding module: %s\n",
2646 debug->modname);
2647 #endif
2648 }
2649
2650 static void dynamic_debug_remove(struct _ddebug *debug)
2651 {
2652 if (debug)
2653 ddebug_remove_module(debug->modname);
2654 }
2655
2656 void * __weak module_alloc(unsigned long size)
2657 {
2658 return vmalloc_exec(size);
2659 }
2660
2661 #ifdef CONFIG_DEBUG_KMEMLEAK
2662 static void kmemleak_load_module(const struct module *mod,
2663 const struct load_info *info)
2664 {
2665 unsigned int i;
2666
2667 /* only scan the sections containing data */
2668 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2669
2670 for (i = 1; i < info->hdr->e_shnum; i++) {
2671 /* Scan all writable sections that's not executable */
2672 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2673 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2674 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2675 continue;
2676
2677 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2678 info->sechdrs[i].sh_size, GFP_KERNEL);
2679 }
2680 }
2681 #else
2682 static inline void kmemleak_load_module(const struct module *mod,
2683 const struct load_info *info)
2684 {
2685 }
2686 #endif
2687
2688 #ifdef CONFIG_MODULE_SIG
2689 static int module_sig_check(struct load_info *info, int flags)
2690 {
2691 int err = -ENOKEY;
2692 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2693 const void *mod = info->hdr;
2694
2695 /*
2696 * Require flags == 0, as a module with version information
2697 * removed is no longer the module that was signed
2698 */
2699 if (flags == 0 &&
2700 info->len > markerlen &&
2701 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2702 /* We truncate the module to discard the signature */
2703 info->len -= markerlen;
2704 err = mod_verify_sig(mod, &info->len);
2705 }
2706
2707 if (!err) {
2708 info->sig_ok = true;
2709 return 0;
2710 }
2711
2712 /* Not having a signature is only an error if we're strict. */
2713 if (err == -ENOKEY && !sig_enforce)
2714 err = 0;
2715
2716 return err;
2717 }
2718 #else /* !CONFIG_MODULE_SIG */
2719 static int module_sig_check(struct load_info *info, int flags)
2720 {
2721 return 0;
2722 }
2723 #endif /* !CONFIG_MODULE_SIG */
2724
2725 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2726 static int elf_header_check(struct load_info *info)
2727 {
2728 if (info->len < sizeof(*(info->hdr)))
2729 return -ENOEXEC;
2730
2731 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2732 || info->hdr->e_type != ET_REL
2733 || !elf_check_arch(info->hdr)
2734 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2735 return -ENOEXEC;
2736
2737 if (info->hdr->e_shoff >= info->len
2738 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2739 info->len - info->hdr->e_shoff))
2740 return -ENOEXEC;
2741
2742 return 0;
2743 }
2744
2745 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2746
2747 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2748 {
2749 do {
2750 unsigned long n = min(len, COPY_CHUNK_SIZE);
2751
2752 if (copy_from_user(dst, usrc, n) != 0)
2753 return -EFAULT;
2754 cond_resched();
2755 dst += n;
2756 usrc += n;
2757 len -= n;
2758 } while (len);
2759 return 0;
2760 }
2761
2762 #ifdef CONFIG_LIVEPATCH
2763 static int find_livepatch_modinfo(struct module *mod, struct load_info *info)
2764 {
2765 mod->klp = get_modinfo(info, "livepatch") ? true : false;
2766
2767 return 0;
2768 }
2769 #else /* !CONFIG_LIVEPATCH */
2770 static int find_livepatch_modinfo(struct module *mod, struct load_info *info)
2771 {
2772 if (get_modinfo(info, "livepatch")) {
2773 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2774 mod->name);
2775 return -ENOEXEC;
2776 }
2777
2778 return 0;
2779 }
2780 #endif /* CONFIG_LIVEPATCH */
2781
2782 /* Sets info->hdr and info->len. */
2783 static int copy_module_from_user(const void __user *umod, unsigned long len,
2784 struct load_info *info)
2785 {
2786 int err;
2787
2788 info->len = len;
2789 if (info->len < sizeof(*(info->hdr)))
2790 return -ENOEXEC;
2791
2792 err = security_kernel_read_file(NULL, READING_MODULE);
2793 if (err)
2794 return err;
2795
2796 /* Suck in entire file: we'll want most of it. */
2797 info->hdr = __vmalloc(info->len,
2798 GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN, PAGE_KERNEL);
2799 if (!info->hdr)
2800 return -ENOMEM;
2801
2802 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2803 vfree(info->hdr);
2804 return -EFAULT;
2805 }
2806
2807 return 0;
2808 }
2809
2810 static void free_copy(struct load_info *info)
2811 {
2812 vfree(info->hdr);
2813 }
2814
2815 static int rewrite_section_headers(struct load_info *info, int flags)
2816 {
2817 unsigned int i;
2818
2819 /* This should always be true, but let's be sure. */
2820 info->sechdrs[0].sh_addr = 0;
2821
2822 for (i = 1; i < info->hdr->e_shnum; i++) {
2823 Elf_Shdr *shdr = &info->sechdrs[i];
2824 if (shdr->sh_type != SHT_NOBITS
2825 && info->len < shdr->sh_offset + shdr->sh_size) {
2826 pr_err("Module len %lu truncated\n", info->len);
2827 return -ENOEXEC;
2828 }
2829
2830 /* Mark all sections sh_addr with their address in the
2831 temporary image. */
2832 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2833
2834 #ifndef CONFIG_MODULE_UNLOAD
2835 /* Don't load .exit sections */
2836 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2837 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2838 #endif
2839 }
2840
2841 /* Track but don't keep modinfo and version sections. */
2842 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2843 info->index.vers = 0; /* Pretend no __versions section! */
2844 else
2845 info->index.vers = find_sec(info, "__versions");
2846 info->index.info = find_sec(info, ".modinfo");
2847 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2848 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2849 return 0;
2850 }
2851
2852 /*
2853 * Set up our basic convenience variables (pointers to section headers,
2854 * search for module section index etc), and do some basic section
2855 * verification.
2856 *
2857 * Return the temporary module pointer (we'll replace it with the final
2858 * one when we move the module sections around).
2859 */
2860 static struct module *setup_load_info(struct load_info *info, int flags)
2861 {
2862 unsigned int i;
2863 int err;
2864 struct module *mod;
2865
2866 /* Set up the convenience variables */
2867 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2868 info->secstrings = (void *)info->hdr
2869 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2870
2871 err = rewrite_section_headers(info, flags);
2872 if (err)
2873 return ERR_PTR(err);
2874
2875 /* Find internal symbols and strings. */
2876 for (i = 1; i < info->hdr->e_shnum; i++) {
2877 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2878 info->index.sym = i;
2879 info->index.str = info->sechdrs[i].sh_link;
2880 info->strtab = (char *)info->hdr
2881 + info->sechdrs[info->index.str].sh_offset;
2882 break;
2883 }
2884 }
2885
2886 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2887 if (!info->index.mod) {
2888 pr_warn("No module found in object\n");
2889 return ERR_PTR(-ENOEXEC);
2890 }
2891 /* This is temporary: point mod into copy of data. */
2892 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2893
2894 if (info->index.sym == 0) {
2895 pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
2896 return ERR_PTR(-ENOEXEC);
2897 }
2898
2899 info->index.pcpu = find_pcpusec(info);
2900
2901 /* Check module struct version now, before we try to use module. */
2902 if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2903 return ERR_PTR(-ENOEXEC);
2904
2905 return mod;
2906 }
2907
2908 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2909 {
2910 const char *modmagic = get_modinfo(info, "vermagic");
2911 int err;
2912
2913 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2914 modmagic = NULL;
2915
2916 /* This is allowed: modprobe --force will invalidate it. */
2917 if (!modmagic) {
2918 err = try_to_force_load(mod, "bad vermagic");
2919 if (err)
2920 return err;
2921 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2922 pr_err("%s: version magic '%s' should be '%s'\n",
2923 mod->name, modmagic, vermagic);
2924 return -ENOEXEC;
2925 }
2926
2927 if (!get_modinfo(info, "intree")) {
2928 if (!test_taint(TAINT_OOT_MODULE))
2929 pr_warn("%s: loading out-of-tree module taints kernel.\n",
2930 mod->name);
2931 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2932 }
2933
2934 if (get_modinfo(info, "staging")) {
2935 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2936 pr_warn("%s: module is from the staging directory, the quality "
2937 "is unknown, you have been warned.\n", mod->name);
2938 }
2939
2940 err = find_livepatch_modinfo(mod, info);
2941 if (err)
2942 return err;
2943
2944 /* Set up license info based on the info section */
2945 set_license(mod, get_modinfo(info, "license"));
2946
2947 return 0;
2948 }
2949
2950 static int find_module_sections(struct module *mod, struct load_info *info)
2951 {
2952 mod->kp = section_objs(info, "__param",
2953 sizeof(*mod->kp), &mod->num_kp);
2954 mod->syms = section_objs(info, "__ksymtab",
2955 sizeof(*mod->syms), &mod->num_syms);
2956 mod->crcs = section_addr(info, "__kcrctab");
2957 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2958 sizeof(*mod->gpl_syms),
2959 &mod->num_gpl_syms);
2960 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2961 mod->gpl_future_syms = section_objs(info,
2962 "__ksymtab_gpl_future",
2963 sizeof(*mod->gpl_future_syms),
2964 &mod->num_gpl_future_syms);
2965 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2966
2967 #ifdef CONFIG_UNUSED_SYMBOLS
2968 mod->unused_syms = section_objs(info, "__ksymtab_unused",
2969 sizeof(*mod->unused_syms),
2970 &mod->num_unused_syms);
2971 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2972 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2973 sizeof(*mod->unused_gpl_syms),
2974 &mod->num_unused_gpl_syms);
2975 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2976 #endif
2977 #ifdef CONFIG_CONSTRUCTORS
2978 mod->ctors = section_objs(info, ".ctors",
2979 sizeof(*mod->ctors), &mod->num_ctors);
2980 if (!mod->ctors)
2981 mod->ctors = section_objs(info, ".init_array",
2982 sizeof(*mod->ctors), &mod->num_ctors);
2983 else if (find_sec(info, ".init_array")) {
2984 /*
2985 * This shouldn't happen with same compiler and binutils
2986 * building all parts of the module.
2987 */
2988 pr_warn("%s: has both .ctors and .init_array.\n",
2989 mod->name);
2990 return -EINVAL;
2991 }
2992 #endif
2993
2994 #ifdef CONFIG_TRACEPOINTS
2995 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2996 sizeof(*mod->tracepoints_ptrs),
2997 &mod->num_tracepoints);
2998 #endif
2999 #ifdef HAVE_JUMP_LABEL
3000 mod->jump_entries = section_objs(info, "__jump_table",
3001 sizeof(*mod->jump_entries),
3002 &mod->num_jump_entries);
3003 #endif
3004 #ifdef CONFIG_EVENT_TRACING
3005 mod->trace_events = section_objs(info, "_ftrace_events",
3006 sizeof(*mod->trace_events),
3007 &mod->num_trace_events);
3008 mod->trace_enums = section_objs(info, "_ftrace_enum_map",
3009 sizeof(*mod->trace_enums),
3010 &mod->num_trace_enums);
3011 #endif
3012 #ifdef CONFIG_TRACING
3013 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3014 sizeof(*mod->trace_bprintk_fmt_start),
3015 &mod->num_trace_bprintk_fmt);
3016 #endif
3017 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3018 /* sechdrs[0].sh_size is always zero */
3019 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3020 sizeof(*mod->ftrace_callsites),
3021 &mod->num_ftrace_callsites);
3022 #endif
3023
3024 mod->extable = section_objs(info, "__ex_table",
3025 sizeof(*mod->extable), &mod->num_exentries);
3026
3027 if (section_addr(info, "__obsparm"))
3028 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3029
3030 info->debug = section_objs(info, "__verbose",
3031 sizeof(*info->debug), &info->num_debug);
3032
3033 return 0;
3034 }
3035
3036 static int move_module(struct module *mod, struct load_info *info)
3037 {
3038 int i;
3039 void *ptr;
3040
3041 /* Do the allocs. */
3042 ptr = module_alloc(mod->core_layout.size);
3043 /*
3044 * The pointer to this block is stored in the module structure
3045 * which is inside the block. Just mark it as not being a
3046 * leak.
3047 */
3048 kmemleak_not_leak(ptr);
3049 if (!ptr)
3050 return -ENOMEM;
3051
3052 memset(ptr, 0, mod->core_layout.size);
3053 mod->core_layout.base = ptr;
3054
3055 if (mod->init_layout.size) {
3056 ptr = module_alloc(mod->init_layout.size);
3057 /*
3058 * The pointer to this block is stored in the module structure
3059 * which is inside the block. This block doesn't need to be
3060 * scanned as it contains data and code that will be freed
3061 * after the module is initialized.
3062 */
3063 kmemleak_ignore(ptr);
3064 if (!ptr) {
3065 module_memfree(mod->core_layout.base);
3066 return -ENOMEM;
3067 }
3068 memset(ptr, 0, mod->init_layout.size);
3069 mod->init_layout.base = ptr;
3070 } else
3071 mod->init_layout.base = NULL;
3072
3073 /* Transfer each section which specifies SHF_ALLOC */
3074 pr_debug("final section addresses:\n");
3075 for (i = 0; i < info->hdr->e_shnum; i++) {
3076 void *dest;
3077 Elf_Shdr *shdr = &info->sechdrs[i];
3078
3079 if (!(shdr->sh_flags & SHF_ALLOC))
3080 continue;
3081
3082 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3083 dest = mod->init_layout.base
3084 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3085 else
3086 dest = mod->core_layout.base + shdr->sh_entsize;
3087
3088 if (shdr->sh_type != SHT_NOBITS)
3089 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3090 /* Update sh_addr to point to copy in image. */
3091 shdr->sh_addr = (unsigned long)dest;
3092 pr_debug("\t0x%lx %s\n",
3093 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3094 }
3095
3096 return 0;
3097 }
3098
3099 static int check_module_license_and_versions(struct module *mod)
3100 {
3101 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3102
3103 /*
3104 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3105 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3106 * using GPL-only symbols it needs.
3107 */
3108 if (strcmp(mod->name, "ndiswrapper") == 0)
3109 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3110
3111 /* driverloader was caught wrongly pretending to be under GPL */
3112 if (strcmp(mod->name, "driverloader") == 0)
3113 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3114 LOCKDEP_NOW_UNRELIABLE);
3115
3116 /* lve claims to be GPL but upstream won't provide source */
3117 if (strcmp(mod->name, "lve") == 0)
3118 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3119 LOCKDEP_NOW_UNRELIABLE);
3120
3121 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3122 pr_warn("%s: module license taints kernel.\n", mod->name);
3123
3124 #ifdef CONFIG_MODVERSIONS
3125 if ((mod->num_syms && !mod->crcs)
3126 || (mod->num_gpl_syms && !mod->gpl_crcs)
3127 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3128 #ifdef CONFIG_UNUSED_SYMBOLS
3129 || (mod->num_unused_syms && !mod->unused_crcs)
3130 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3131 #endif
3132 ) {
3133 return try_to_force_load(mod,
3134 "no versions for exported symbols");
3135 }
3136 #endif
3137 return 0;
3138 }
3139
3140 static void flush_module_icache(const struct module *mod)
3141 {
3142 mm_segment_t old_fs;
3143
3144 /* flush the icache in correct context */
3145 old_fs = get_fs();
3146 set_fs(KERNEL_DS);
3147
3148 /*
3149 * Flush the instruction cache, since we've played with text.
3150 * Do it before processing of module parameters, so the module
3151 * can provide parameter accessor functions of its own.
3152 */
3153 if (mod->init_layout.base)
3154 flush_icache_range((unsigned long)mod->init_layout.base,
3155 (unsigned long)mod->init_layout.base
3156 + mod->init_layout.size);
3157 flush_icache_range((unsigned long)mod->core_layout.base,
3158 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3159
3160 set_fs(old_fs);
3161 }
3162
3163 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3164 Elf_Shdr *sechdrs,
3165 char *secstrings,
3166 struct module *mod)
3167 {
3168 return 0;
3169 }
3170
3171 static struct module *layout_and_allocate(struct load_info *info, int flags)
3172 {
3173 /* Module within temporary copy. */
3174 struct module *mod;
3175 int err;
3176
3177 mod = setup_load_info(info, flags);
3178 if (IS_ERR(mod))
3179 return mod;
3180
3181 err = check_modinfo(mod, info, flags);
3182 if (err)
3183 return ERR_PTR(err);
3184
3185 /* Allow arches to frob section contents and sizes. */
3186 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3187 info->secstrings, mod);
3188 if (err < 0)
3189 return ERR_PTR(err);
3190
3191 /* We will do a special allocation for per-cpu sections later. */
3192 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3193
3194 /* Determine total sizes, and put offsets in sh_entsize. For now
3195 this is done generically; there doesn't appear to be any
3196 special cases for the architectures. */
3197 layout_sections(mod, info);
3198 layout_symtab(mod, info);
3199
3200 /* Allocate and move to the final place */
3201 err = move_module(mod, info);
3202 if (err)
3203 return ERR_PTR(err);
3204
3205 /* Module has been copied to its final place now: return it. */
3206 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3207 kmemleak_load_module(mod, info);
3208 return mod;
3209 }
3210
3211 /* mod is no longer valid after this! */
3212 static void module_deallocate(struct module *mod, struct load_info *info)
3213 {
3214 percpu_modfree(mod);
3215 module_arch_freeing_init(mod);
3216 module_memfree(mod->init_layout.base);
3217 module_memfree(mod->core_layout.base);
3218 }
3219
3220 int __weak module_finalize(const Elf_Ehdr *hdr,
3221 const Elf_Shdr *sechdrs,
3222 struct module *me)
3223 {
3224 return 0;
3225 }
3226
3227 static int post_relocation(struct module *mod, const struct load_info *info)
3228 {
3229 /* Sort exception table now relocations are done. */
3230 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3231
3232 /* Copy relocated percpu area over. */
3233 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3234 info->sechdrs[info->index.pcpu].sh_size);
3235
3236 /* Setup kallsyms-specific fields. */
3237 add_kallsyms(mod, info);
3238
3239 /* Arch-specific module finalizing. */
3240 return module_finalize(info->hdr, info->sechdrs, mod);
3241 }
3242
3243 /* Is this module of this name done loading? No locks held. */
3244 static bool finished_loading(const char *name)
3245 {
3246 struct module *mod;
3247 bool ret;
3248
3249 /*
3250 * The module_mutex should not be a heavily contended lock;
3251 * if we get the occasional sleep here, we'll go an extra iteration
3252 * in the wait_event_interruptible(), which is harmless.
3253 */
3254 sched_annotate_sleep();
3255 mutex_lock(&module_mutex);
3256 mod = find_module_all(name, strlen(name), true);
3257 ret = !mod || mod->state == MODULE_STATE_LIVE
3258 || mod->state == MODULE_STATE_GOING;
3259 mutex_unlock(&module_mutex);
3260
3261 return ret;
3262 }
3263
3264 /* Call module constructors. */
3265 static void do_mod_ctors(struct module *mod)
3266 {
3267 #ifdef CONFIG_CONSTRUCTORS
3268 unsigned long i;
3269
3270 for (i = 0; i < mod->num_ctors; i++)
3271 mod->ctors[i]();
3272 #endif
3273 }
3274
3275 /* For freeing module_init on success, in case kallsyms traversing */
3276 struct mod_initfree {
3277 struct rcu_head rcu;
3278 void *module_init;
3279 };
3280
3281 static void do_free_init(struct rcu_head *head)
3282 {
3283 struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3284 module_memfree(m->module_init);
3285 kfree(m);
3286 }
3287
3288 /*
3289 * This is where the real work happens.
3290 *
3291 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3292 * helper command 'lx-symbols'.
3293 */
3294 static noinline int do_init_module(struct module *mod)
3295 {
3296 int ret = 0;
3297 struct mod_initfree *freeinit;
3298
3299 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3300 if (!freeinit) {
3301 ret = -ENOMEM;
3302 goto fail;
3303 }
3304 freeinit->module_init = mod->init_layout.base;
3305
3306 /*
3307 * We want to find out whether @mod uses async during init. Clear
3308 * PF_USED_ASYNC. async_schedule*() will set it.
3309 */
3310 current->flags &= ~PF_USED_ASYNC;
3311
3312 do_mod_ctors(mod);
3313 /* Start the module */
3314 if (mod->init != NULL)
3315 ret = do_one_initcall(mod->init);
3316 if (ret < 0) {
3317 goto fail_free_freeinit;
3318 }
3319 if (ret > 0) {
3320 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3321 "follow 0/-E convention\n"
3322 "%s: loading module anyway...\n",
3323 __func__, mod->name, ret, __func__);
3324 dump_stack();
3325 }
3326
3327 /* Now it's a first class citizen! */
3328 mod->state = MODULE_STATE_LIVE;
3329 blocking_notifier_call_chain(&module_notify_list,
3330 MODULE_STATE_LIVE, mod);
3331
3332 /*
3333 * We need to finish all async code before the module init sequence
3334 * is done. This has potential to deadlock. For example, a newly
3335 * detected block device can trigger request_module() of the
3336 * default iosched from async probing task. Once userland helper
3337 * reaches here, async_synchronize_full() will wait on the async
3338 * task waiting on request_module() and deadlock.
3339 *
3340 * This deadlock is avoided by perfomring async_synchronize_full()
3341 * iff module init queued any async jobs. This isn't a full
3342 * solution as it will deadlock the same if module loading from
3343 * async jobs nests more than once; however, due to the various
3344 * constraints, this hack seems to be the best option for now.
3345 * Please refer to the following thread for details.
3346 *
3347 * http://thread.gmane.org/gmane.linux.kernel/1420814
3348 */
3349 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3350 async_synchronize_full();
3351
3352 mutex_lock(&module_mutex);
3353 /* Drop initial reference. */
3354 module_put(mod);
3355 trim_init_extable(mod);
3356 #ifdef CONFIG_KALLSYMS
3357 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3358 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3359 #endif
3360 mod_tree_remove_init(mod);
3361 disable_ro_nx(&mod->init_layout);
3362 module_arch_freeing_init(mod);
3363 mod->init_layout.base = NULL;
3364 mod->init_layout.size = 0;
3365 mod->init_layout.ro_size = 0;
3366 mod->init_layout.text_size = 0;
3367 /*
3368 * We want to free module_init, but be aware that kallsyms may be
3369 * walking this with preempt disabled. In all the failure paths, we
3370 * call synchronize_sched(), but we don't want to slow down the success
3371 * path, so use actual RCU here.
3372 */
3373 call_rcu_sched(&freeinit->rcu, do_free_init);
3374 mutex_unlock(&module_mutex);
3375 wake_up_all(&module_wq);
3376
3377 return 0;
3378
3379 fail_free_freeinit:
3380 kfree(freeinit);
3381 fail:
3382 /* Try to protect us from buggy refcounters. */
3383 mod->state = MODULE_STATE_GOING;
3384 synchronize_sched();
3385 module_put(mod);
3386 blocking_notifier_call_chain(&module_notify_list,
3387 MODULE_STATE_GOING, mod);
3388 klp_module_going(mod);
3389 ftrace_release_mod(mod);
3390 free_module(mod);
3391 wake_up_all(&module_wq);
3392 return ret;
3393 }
3394
3395 static int may_init_module(void)
3396 {
3397 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3398 return -EPERM;
3399
3400 return 0;
3401 }
3402
3403 /*
3404 * We try to place it in the list now to make sure it's unique before
3405 * we dedicate too many resources. In particular, temporary percpu
3406 * memory exhaustion.
3407 */
3408 static int add_unformed_module(struct module *mod)
3409 {
3410 int err;
3411 struct module *old;
3412
3413 mod->state = MODULE_STATE_UNFORMED;
3414
3415 again:
3416 mutex_lock(&module_mutex);
3417 old = find_module_all(mod->name, strlen(mod->name), true);
3418 if (old != NULL) {
3419 if (old->state == MODULE_STATE_COMING
3420 || old->state == MODULE_STATE_UNFORMED) {
3421 /* Wait in case it fails to load. */
3422 mutex_unlock(&module_mutex);
3423 err = wait_event_interruptible(module_wq,
3424 finished_loading(mod->name));
3425 if (err)
3426 goto out_unlocked;
3427 goto again;
3428 }
3429 err = -EEXIST;
3430 goto out;
3431 }
3432 mod_update_bounds(mod);
3433 list_add_rcu(&mod->list, &modules);
3434 mod_tree_insert(mod);
3435 err = 0;
3436
3437 out:
3438 mutex_unlock(&module_mutex);
3439 out_unlocked:
3440 return err;
3441 }
3442
3443 static int complete_formation(struct module *mod, struct load_info *info)
3444 {
3445 int err;
3446
3447 mutex_lock(&module_mutex);
3448
3449 /* Find duplicate symbols (must be called under lock). */
3450 err = verify_export_symbols(mod);
3451 if (err < 0)
3452 goto out;
3453
3454 /* This relies on module_mutex for list integrity. */
3455 module_bug_finalize(info->hdr, info->sechdrs, mod);
3456
3457 /* Set RO and NX regions */
3458 module_enable_ro(mod);
3459 module_enable_nx(mod);
3460
3461 /* Mark state as coming so strong_try_module_get() ignores us,
3462 * but kallsyms etc. can see us. */
3463 mod->state = MODULE_STATE_COMING;
3464 mutex_unlock(&module_mutex);
3465
3466 return 0;
3467
3468 out:
3469 mutex_unlock(&module_mutex);
3470 return err;
3471 }
3472
3473 static int prepare_coming_module(struct module *mod)
3474 {
3475 int err;
3476
3477 ftrace_module_enable(mod);
3478 err = klp_module_coming(mod);
3479 if (err)
3480 return err;
3481
3482 blocking_notifier_call_chain(&module_notify_list,
3483 MODULE_STATE_COMING, mod);
3484 return 0;
3485 }
3486
3487 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3488 void *arg)
3489 {
3490 struct module *mod = arg;
3491 int ret;
3492
3493 if (strcmp(param, "async_probe") == 0) {
3494 mod->async_probe_requested = true;
3495 return 0;
3496 }
3497
3498 /* Check for magic 'dyndbg' arg */
3499 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3500 if (ret != 0)
3501 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3502 return 0;
3503 }
3504
3505 /* Allocate and load the module: note that size of section 0 is always
3506 zero, and we rely on this for optional sections. */
3507 static int load_module(struct load_info *info, const char __user *uargs,
3508 int flags)
3509 {
3510 struct module *mod;
3511 long err;
3512 char *after_dashes;
3513
3514 err = module_sig_check(info, flags);
3515 if (err)
3516 goto free_copy;
3517
3518 err = elf_header_check(info);
3519 if (err)
3520 goto free_copy;
3521
3522 /* Figure out module layout, and allocate all the memory. */
3523 mod = layout_and_allocate(info, flags);
3524 if (IS_ERR(mod)) {
3525 err = PTR_ERR(mod);
3526 goto free_copy;
3527 }
3528
3529 /* Reserve our place in the list. */
3530 err = add_unformed_module(mod);
3531 if (err)
3532 goto free_module;
3533
3534 #ifdef CONFIG_MODULE_SIG
3535 mod->sig_ok = info->sig_ok;
3536 if (!mod->sig_ok) {
3537 pr_notice_once("%s: module verification failed: signature "
3538 "and/or required key missing - tainting "
3539 "kernel\n", mod->name);
3540 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3541 }
3542 #endif
3543
3544 /* To avoid stressing percpu allocator, do this once we're unique. */
3545 err = percpu_modalloc(mod, info);
3546 if (err)
3547 goto unlink_mod;
3548
3549 /* Now module is in final location, initialize linked lists, etc. */
3550 err = module_unload_init(mod);
3551 if (err)
3552 goto unlink_mod;
3553
3554 init_param_lock(mod);
3555
3556 /* Now we've got everything in the final locations, we can
3557 * find optional sections. */
3558 err = find_module_sections(mod, info);
3559 if (err)
3560 goto free_unload;
3561
3562 err = check_module_license_and_versions(mod);
3563 if (err)
3564 goto free_unload;
3565
3566 /* Set up MODINFO_ATTR fields */
3567 setup_modinfo(mod, info);
3568
3569 /* Fix up syms, so that st_value is a pointer to location. */
3570 err = simplify_symbols(mod, info);
3571 if (err < 0)
3572 goto free_modinfo;
3573
3574 err = apply_relocations(mod, info);
3575 if (err < 0)
3576 goto free_modinfo;
3577
3578 err = post_relocation(mod, info);
3579 if (err < 0)
3580 goto free_modinfo;
3581
3582 flush_module_icache(mod);
3583
3584 /* Now copy in args */
3585 mod->args = strndup_user(uargs, ~0UL >> 1);
3586 if (IS_ERR(mod->args)) {
3587 err = PTR_ERR(mod->args);
3588 goto free_arch_cleanup;
3589 }
3590
3591 dynamic_debug_setup(info->debug, info->num_debug);
3592
3593 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3594 ftrace_module_init(mod);
3595
3596 /* Finally it's fully formed, ready to start executing. */
3597 err = complete_formation(mod, info);
3598 if (err)
3599 goto ddebug_cleanup;
3600
3601 err = prepare_coming_module(mod);
3602 if (err)
3603 goto bug_cleanup;
3604
3605 /* Module is ready to execute: parsing args may do that. */
3606 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3607 -32768, 32767, mod,
3608 unknown_module_param_cb);
3609 if (IS_ERR(after_dashes)) {
3610 err = PTR_ERR(after_dashes);
3611 goto coming_cleanup;
3612 } else if (after_dashes) {
3613 pr_warn("%s: parameters '%s' after `--' ignored\n",
3614 mod->name, after_dashes);
3615 }
3616
3617 /* Link in to syfs. */
3618 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3619 if (err < 0)
3620 goto coming_cleanup;
3621
3622 if (is_livepatch_module(mod)) {
3623 err = copy_module_elf(mod, info);
3624 if (err < 0)
3625 goto sysfs_cleanup;
3626 }
3627
3628 /* Get rid of temporary copy. */
3629 free_copy(info);
3630
3631 /* Done! */
3632 trace_module_load(mod);
3633
3634 return do_init_module(mod);
3635
3636 sysfs_cleanup:
3637 mod_sysfs_teardown(mod);
3638 coming_cleanup:
3639 blocking_notifier_call_chain(&module_notify_list,
3640 MODULE_STATE_GOING, mod);
3641 klp_module_going(mod);
3642 bug_cleanup:
3643 /* module_bug_cleanup needs module_mutex protection */
3644 mutex_lock(&module_mutex);
3645 module_bug_cleanup(mod);
3646 mutex_unlock(&module_mutex);
3647
3648 /* we can't deallocate the module until we clear memory protection */
3649 module_disable_ro(mod);
3650 module_disable_nx(mod);
3651
3652 ddebug_cleanup:
3653 dynamic_debug_remove(info->debug);
3654 synchronize_sched();
3655 kfree(mod->args);
3656 free_arch_cleanup:
3657 module_arch_cleanup(mod);
3658 free_modinfo:
3659 free_modinfo(mod);
3660 free_unload:
3661 module_unload_free(mod);
3662 unlink_mod:
3663 mutex_lock(&module_mutex);
3664 /* Unlink carefully: kallsyms could be walking list. */
3665 list_del_rcu(&mod->list);
3666 mod_tree_remove(mod);
3667 wake_up_all(&module_wq);
3668 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3669 synchronize_sched();
3670 mutex_unlock(&module_mutex);
3671 free_module:
3672 /*
3673 * Ftrace needs to clean up what it initialized.
3674 * This does nothing if ftrace_module_init() wasn't called,
3675 * but it must be called outside of module_mutex.
3676 */
3677 ftrace_release_mod(mod);
3678 /* Free lock-classes; relies on the preceding sync_rcu() */
3679 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3680
3681 module_deallocate(mod, info);
3682 free_copy:
3683 free_copy(info);
3684 return err;
3685 }
3686
3687 SYSCALL_DEFINE3(init_module, void __user *, umod,
3688 unsigned long, len, const char __user *, uargs)
3689 {
3690 int err;
3691 struct load_info info = { };
3692
3693 err = may_init_module();
3694 if (err)
3695 return err;
3696
3697 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3698 umod, len, uargs);
3699
3700 err = copy_module_from_user(umod, len, &info);
3701 if (err)
3702 return err;
3703
3704 return load_module(&info, uargs, 0);
3705 }
3706
3707 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3708 {
3709 struct load_info info = { };
3710 loff_t size;
3711 void *hdr;
3712 int err;
3713
3714 err = may_init_module();
3715 if (err)
3716 return err;
3717
3718 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3719
3720 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3721 |MODULE_INIT_IGNORE_VERMAGIC))
3722 return -EINVAL;
3723
3724 err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
3725 READING_MODULE);
3726 if (err)
3727 return err;
3728 info.hdr = hdr;
3729 info.len = size;
3730
3731 return load_module(&info, uargs, flags);
3732 }
3733
3734 static inline int within(unsigned long addr, void *start, unsigned long size)
3735 {
3736 return ((void *)addr >= start && (void *)addr < start + size);
3737 }
3738
3739 #ifdef CONFIG_KALLSYMS
3740 /*
3741 * This ignores the intensely annoying "mapping symbols" found
3742 * in ARM ELF files: $a, $t and $d.
3743 */
3744 static inline int is_arm_mapping_symbol(const char *str)
3745 {
3746 if (str[0] == '.' && str[1] == 'L')
3747 return true;
3748 return str[0] == '$' && strchr("axtd", str[1])
3749 && (str[2] == '\0' || str[2] == '.');
3750 }
3751
3752 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3753 {
3754 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3755 }
3756
3757 static const char *get_ksymbol(struct module *mod,
3758 unsigned long addr,
3759 unsigned long *size,
3760 unsigned long *offset)
3761 {
3762 unsigned int i, best = 0;
3763 unsigned long nextval;
3764 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3765
3766 /* At worse, next value is at end of module */
3767 if (within_module_init(addr, mod))
3768 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3769 else
3770 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3771
3772 /* Scan for closest preceding symbol, and next symbol. (ELF
3773 starts real symbols at 1). */
3774 for (i = 1; i < kallsyms->num_symtab; i++) {
3775 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3776 continue;
3777
3778 /* We ignore unnamed symbols: they're uninformative
3779 * and inserted at a whim. */
3780 if (*symname(kallsyms, i) == '\0'
3781 || is_arm_mapping_symbol(symname(kallsyms, i)))
3782 continue;
3783
3784 if (kallsyms->symtab[i].st_value <= addr
3785 && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3786 best = i;
3787 if (kallsyms->symtab[i].st_value > addr
3788 && kallsyms->symtab[i].st_value < nextval)
3789 nextval = kallsyms->symtab[i].st_value;
3790 }
3791
3792 if (!best)
3793 return NULL;
3794
3795 if (size)
3796 *size = nextval - kallsyms->symtab[best].st_value;
3797 if (offset)
3798 *offset = addr - kallsyms->symtab[best].st_value;
3799 return symname(kallsyms, best);
3800 }
3801
3802 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3803 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3804 const char *module_address_lookup(unsigned long addr,
3805 unsigned long *size,
3806 unsigned long *offset,
3807 char **modname,
3808 char *namebuf)
3809 {
3810 const char *ret = NULL;
3811 struct module *mod;
3812
3813 preempt_disable();
3814 mod = __module_address(addr);
3815 if (mod) {
3816 if (modname)
3817 *modname = mod->name;
3818 ret = get_ksymbol(mod, addr, size, offset);
3819 }
3820 /* Make a copy in here where it's safe */
3821 if (ret) {
3822 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3823 ret = namebuf;
3824 }
3825 preempt_enable();
3826
3827 return ret;
3828 }
3829
3830 int lookup_module_symbol_name(unsigned long addr, char *symname)
3831 {
3832 struct module *mod;
3833
3834 preempt_disable();
3835 list_for_each_entry_rcu(mod, &modules, list) {
3836 if (mod->state == MODULE_STATE_UNFORMED)
3837 continue;
3838 if (within_module(addr, mod)) {
3839 const char *sym;
3840
3841 sym = get_ksymbol(mod, addr, NULL, NULL);
3842 if (!sym)
3843 goto out;
3844 strlcpy(symname, sym, KSYM_NAME_LEN);
3845 preempt_enable();
3846 return 0;
3847 }
3848 }
3849 out:
3850 preempt_enable();
3851 return -ERANGE;
3852 }
3853
3854 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3855 unsigned long *offset, char *modname, char *name)
3856 {
3857 struct module *mod;
3858
3859 preempt_disable();
3860 list_for_each_entry_rcu(mod, &modules, list) {
3861 if (mod->state == MODULE_STATE_UNFORMED)
3862 continue;
3863 if (within_module(addr, mod)) {
3864 const char *sym;
3865
3866 sym = get_ksymbol(mod, addr, size, offset);
3867 if (!sym)
3868 goto out;
3869 if (modname)
3870 strlcpy(modname, mod->name, MODULE_NAME_LEN);
3871 if (name)
3872 strlcpy(name, sym, KSYM_NAME_LEN);
3873 preempt_enable();
3874 return 0;
3875 }
3876 }
3877 out:
3878 preempt_enable();
3879 return -ERANGE;
3880 }
3881
3882 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3883 char *name, char *module_name, int *exported)
3884 {
3885 struct module *mod;
3886
3887 preempt_disable();
3888 list_for_each_entry_rcu(mod, &modules, list) {
3889 struct mod_kallsyms *kallsyms;
3890
3891 if (mod->state == MODULE_STATE_UNFORMED)
3892 continue;
3893 kallsyms = rcu_dereference_sched(mod->kallsyms);
3894 if (symnum < kallsyms->num_symtab) {
3895 *value = kallsyms->symtab[symnum].st_value;
3896 *type = kallsyms->symtab[symnum].st_info;
3897 strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
3898 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3899 *exported = is_exported(name, *value, mod);
3900 preempt_enable();
3901 return 0;
3902 }
3903 symnum -= kallsyms->num_symtab;
3904 }
3905 preempt_enable();
3906 return -ERANGE;
3907 }
3908
3909 static unsigned long mod_find_symname(struct module *mod, const char *name)
3910 {
3911 unsigned int i;
3912 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3913
3914 for (i = 0; i < kallsyms->num_symtab; i++)
3915 if (strcmp(name, symname(kallsyms, i)) == 0 &&
3916 kallsyms->symtab[i].st_info != 'U')
3917 return kallsyms->symtab[i].st_value;
3918 return 0;
3919 }
3920
3921 /* Look for this name: can be of form module:name. */
3922 unsigned long module_kallsyms_lookup_name(const char *name)
3923 {
3924 struct module *mod;
3925 char *colon;
3926 unsigned long ret = 0;
3927
3928 /* Don't lock: we're in enough trouble already. */
3929 preempt_disable();
3930 if ((colon = strchr(name, ':')) != NULL) {
3931 if ((mod = find_module_all(name, colon - name, false)) != NULL)
3932 ret = mod_find_symname(mod, colon+1);
3933 } else {
3934 list_for_each_entry_rcu(mod, &modules, list) {
3935 if (mod->state == MODULE_STATE_UNFORMED)
3936 continue;
3937 if ((ret = mod_find_symname(mod, name)) != 0)
3938 break;
3939 }
3940 }
3941 preempt_enable();
3942 return ret;
3943 }
3944
3945 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3946 struct module *, unsigned long),
3947 void *data)
3948 {
3949 struct module *mod;
3950 unsigned int i;
3951 int ret;
3952
3953 module_assert_mutex();
3954
3955 list_for_each_entry(mod, &modules, list) {
3956 /* We hold module_mutex: no need for rcu_dereference_sched */
3957 struct mod_kallsyms *kallsyms = mod->kallsyms;
3958
3959 if (mod->state == MODULE_STATE_UNFORMED)
3960 continue;
3961 for (i = 0; i < kallsyms->num_symtab; i++) {
3962 ret = fn(data, symname(kallsyms, i),
3963 mod, kallsyms->symtab[i].st_value);
3964 if (ret != 0)
3965 return ret;
3966 }
3967 }
3968 return 0;
3969 }
3970 #endif /* CONFIG_KALLSYMS */
3971
3972 static char *module_flags(struct module *mod, char *buf)
3973 {
3974 int bx = 0;
3975
3976 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3977 if (mod->taints ||
3978 mod->state == MODULE_STATE_GOING ||
3979 mod->state == MODULE_STATE_COMING) {
3980 buf[bx++] = '(';
3981 bx += module_flags_taint(mod, buf + bx);
3982 /* Show a - for module-is-being-unloaded */
3983 if (mod->state == MODULE_STATE_GOING)
3984 buf[bx++] = '-';
3985 /* Show a + for module-is-being-loaded */
3986 if (mod->state == MODULE_STATE_COMING)
3987 buf[bx++] = '+';
3988 buf[bx++] = ')';
3989 }
3990 buf[bx] = '\0';
3991
3992 return buf;
3993 }
3994
3995 #ifdef CONFIG_PROC_FS
3996 /* Called by the /proc file system to return a list of modules. */
3997 static void *m_start(struct seq_file *m, loff_t *pos)
3998 {
3999 mutex_lock(&module_mutex);
4000 return seq_list_start(&modules, *pos);
4001 }
4002
4003 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4004 {
4005 return seq_list_next(p, &modules, pos);
4006 }
4007
4008 static void m_stop(struct seq_file *m, void *p)
4009 {
4010 mutex_unlock(&module_mutex);
4011 }
4012
4013 static int m_show(struct seq_file *m, void *p)
4014 {
4015 struct module *mod = list_entry(p, struct module, list);
4016 char buf[8];
4017
4018 /* We always ignore unformed modules. */
4019 if (mod->state == MODULE_STATE_UNFORMED)
4020 return 0;
4021
4022 seq_printf(m, "%s %u",
4023 mod->name, mod->init_layout.size + mod->core_layout.size);
4024 print_unload_info(m, mod);
4025
4026 /* Informative for users. */
4027 seq_printf(m, " %s",
4028 mod->state == MODULE_STATE_GOING ? "Unloading" :
4029 mod->state == MODULE_STATE_COMING ? "Loading" :
4030 "Live");
4031 /* Used by oprofile and other similar tools. */
4032 seq_printf(m, " 0x%pK", mod->core_layout.base);
4033
4034 /* Taints info */
4035 if (mod->taints)
4036 seq_printf(m, " %s", module_flags(mod, buf));
4037
4038 seq_puts(m, "\n");
4039 return 0;
4040 }
4041
4042 /* Format: modulename size refcount deps address
4043
4044 Where refcount is a number or -, and deps is a comma-separated list
4045 of depends or -.
4046 */
4047 static const struct seq_operations modules_op = {
4048 .start = m_start,
4049 .next = m_next,
4050 .stop = m_stop,
4051 .show = m_show
4052 };
4053
4054 static int modules_open(struct inode *inode, struct file *file)
4055 {
4056 return seq_open(file, &modules_op);
4057 }
4058
4059 static const struct file_operations proc_modules_operations = {
4060 .open = modules_open,
4061 .read = seq_read,
4062 .llseek = seq_lseek,
4063 .release = seq_release,
4064 };
4065
4066 static int __init proc_modules_init(void)
4067 {
4068 proc_create("modules", 0, NULL, &proc_modules_operations);
4069 return 0;
4070 }
4071 module_init(proc_modules_init);
4072 #endif
4073
4074 /* Given an address, look for it in the module exception tables. */
4075 const struct exception_table_entry *search_module_extables(unsigned long addr)
4076 {
4077 const struct exception_table_entry *e = NULL;
4078 struct module *mod;
4079
4080 preempt_disable();
4081 list_for_each_entry_rcu(mod, &modules, list) {
4082 if (mod->state == MODULE_STATE_UNFORMED)
4083 continue;
4084 if (mod->num_exentries == 0)
4085 continue;
4086
4087 e = search_extable(mod->extable,
4088 mod->extable + mod->num_exentries - 1,
4089 addr);
4090 if (e)
4091 break;
4092 }
4093 preempt_enable();
4094
4095 /* Now, if we found one, we are running inside it now, hence
4096 we cannot unload the module, hence no refcnt needed. */
4097 return e;
4098 }
4099
4100 /*
4101 * is_module_address - is this address inside a module?
4102 * @addr: the address to check.
4103 *
4104 * See is_module_text_address() if you simply want to see if the address
4105 * is code (not data).
4106 */
4107 bool is_module_address(unsigned long addr)
4108 {
4109 bool ret;
4110
4111 preempt_disable();
4112 ret = __module_address(addr) != NULL;
4113 preempt_enable();
4114
4115 return ret;
4116 }
4117
4118 /*
4119 * __module_address - get the module which contains an address.
4120 * @addr: the address.
4121 *
4122 * Must be called with preempt disabled or module mutex held so that
4123 * module doesn't get freed during this.
4124 */
4125 struct module *__module_address(unsigned long addr)
4126 {
4127 struct module *mod;
4128
4129 if (addr < module_addr_min || addr > module_addr_max)
4130 return NULL;
4131
4132 module_assert_mutex_or_preempt();
4133
4134 mod = mod_find(addr);
4135 if (mod) {
4136 BUG_ON(!within_module(addr, mod));
4137 if (mod->state == MODULE_STATE_UNFORMED)
4138 mod = NULL;
4139 }
4140 return mod;
4141 }
4142 EXPORT_SYMBOL_GPL(__module_address);
4143
4144 /*
4145 * is_module_text_address - is this address inside module code?
4146 * @addr: the address to check.
4147 *
4148 * See is_module_address() if you simply want to see if the address is
4149 * anywhere in a module. See kernel_text_address() for testing if an
4150 * address corresponds to kernel or module code.
4151 */
4152 bool is_module_text_address(unsigned long addr)
4153 {
4154 bool ret;
4155
4156 preempt_disable();
4157 ret = __module_text_address(addr) != NULL;
4158 preempt_enable();
4159
4160 return ret;
4161 }
4162
4163 /*
4164 * __module_text_address - get the module whose code contains an address.
4165 * @addr: the address.
4166 *
4167 * Must be called with preempt disabled or module mutex held so that
4168 * module doesn't get freed during this.
4169 */
4170 struct module *__module_text_address(unsigned long addr)
4171 {
4172 struct module *mod = __module_address(addr);
4173 if (mod) {
4174 /* Make sure it's within the text section. */
4175 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4176 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4177 mod = NULL;
4178 }
4179 return mod;
4180 }
4181 EXPORT_SYMBOL_GPL(__module_text_address);
4182
4183 /* Don't grab lock, we're oopsing. */
4184 void print_modules(void)
4185 {
4186 struct module *mod;
4187 char buf[8];
4188
4189 printk(KERN_DEFAULT "Modules linked in:");
4190 /* Most callers should already have preempt disabled, but make sure */
4191 preempt_disable();
4192 list_for_each_entry_rcu(mod, &modules, list) {
4193 if (mod->state == MODULE_STATE_UNFORMED)
4194 continue;
4195 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4196 }
4197 preempt_enable();
4198 if (last_unloaded_module[0])
4199 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4200 pr_cont("\n");
4201 }
4202
4203 #ifdef CONFIG_MODVERSIONS
4204 /* Generate the signature for all relevant module structures here.
4205 * If these change, we don't want to try to parse the module. */
4206 void module_layout(struct module *mod,
4207 struct modversion_info *ver,
4208 struct kernel_param *kp,
4209 struct kernel_symbol *ks,
4210 struct tracepoint * const *tp)
4211 {
4212 }
4213 EXPORT_SYMBOL(module_layout);
4214 #endif
This page took 0.205795 seconds and 6 git commands to generate.