7ff48c55a98bb69c8fa82eeb1c1d6481499d5cd4
[deliverable/linux.git] / kernel / mutex.c
1 /*
2 * kernel/mutex.c
3 *
4 * Mutexes: blocking mutual exclusion locks
5 *
6 * Started by Ingo Molnar:
7 *
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 *
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
12 *
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 * and Sven Dietrich.
17 *
18 * Also see Documentation/mutex-design.txt.
19 */
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched.h>
23 #include <linux/sched/rt.h>
24 #include <linux/export.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/debug_locks.h>
28
29 /*
30 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
31 * which forces all calls into the slowpath:
32 */
33 #ifdef CONFIG_DEBUG_MUTEXES
34 # include "mutex-debug.h"
35 # include <asm-generic/mutex-null.h>
36 #else
37 # include "mutex.h"
38 # include <asm/mutex.h>
39 #endif
40
41 /*
42 * A negative mutex count indicates that waiters are sleeping waiting for the
43 * mutex.
44 */
45 #define MUTEX_SHOW_NO_WAITER(mutex) (atomic_read(&(mutex)->count) >= 0)
46
47 void
48 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
49 {
50 atomic_set(&lock->count, 1);
51 spin_lock_init(&lock->wait_lock);
52 INIT_LIST_HEAD(&lock->wait_list);
53 mutex_clear_owner(lock);
54 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
55 lock->spin_mlock = NULL;
56 #endif
57
58 debug_mutex_init(lock, name, key);
59 }
60
61 EXPORT_SYMBOL(__mutex_init);
62
63 #ifndef CONFIG_DEBUG_LOCK_ALLOC
64 /*
65 * We split the mutex lock/unlock logic into separate fastpath and
66 * slowpath functions, to reduce the register pressure on the fastpath.
67 * We also put the fastpath first in the kernel image, to make sure the
68 * branch is predicted by the CPU as default-untaken.
69 */
70 static __used noinline void __sched
71 __mutex_lock_slowpath(atomic_t *lock_count);
72
73 /**
74 * mutex_lock - acquire the mutex
75 * @lock: the mutex to be acquired
76 *
77 * Lock the mutex exclusively for this task. If the mutex is not
78 * available right now, it will sleep until it can get it.
79 *
80 * The mutex must later on be released by the same task that
81 * acquired it. Recursive locking is not allowed. The task
82 * may not exit without first unlocking the mutex. Also, kernel
83 * memory where the mutex resides mutex must not be freed with
84 * the mutex still locked. The mutex must first be initialized
85 * (or statically defined) before it can be locked. memset()-ing
86 * the mutex to 0 is not allowed.
87 *
88 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
89 * checks that will enforce the restrictions and will also do
90 * deadlock debugging. )
91 *
92 * This function is similar to (but not equivalent to) down().
93 */
94 void __sched mutex_lock(struct mutex *lock)
95 {
96 might_sleep();
97 /*
98 * The locking fastpath is the 1->0 transition from
99 * 'unlocked' into 'locked' state.
100 */
101 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
102 mutex_set_owner(lock);
103 }
104
105 EXPORT_SYMBOL(mutex_lock);
106 #endif
107
108 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
109 /*
110 * In order to avoid a stampede of mutex spinners from acquiring the mutex
111 * more or less simultaneously, the spinners need to acquire a MCS lock
112 * first before spinning on the owner field.
113 *
114 * We don't inline mspin_lock() so that perf can correctly account for the
115 * time spent in this lock function.
116 */
117 struct mspin_node {
118 struct mspin_node *next ;
119 int locked; /* 1 if lock acquired */
120 };
121 #define MLOCK(mutex) ((struct mspin_node **)&((mutex)->spin_mlock))
122
123 static noinline
124 void mspin_lock(struct mspin_node **lock, struct mspin_node *node)
125 {
126 struct mspin_node *prev;
127
128 /* Init node */
129 node->locked = 0;
130 node->next = NULL;
131
132 prev = xchg(lock, node);
133 if (likely(prev == NULL)) {
134 /* Lock acquired */
135 node->locked = 1;
136 return;
137 }
138 ACCESS_ONCE(prev->next) = node;
139 smp_wmb();
140 /* Wait until the lock holder passes the lock down */
141 while (!ACCESS_ONCE(node->locked))
142 arch_mutex_cpu_relax();
143 }
144
145 static void mspin_unlock(struct mspin_node **lock, struct mspin_node *node)
146 {
147 struct mspin_node *next = ACCESS_ONCE(node->next);
148
149 if (likely(!next)) {
150 /*
151 * Release the lock by setting it to NULL
152 */
153 if (cmpxchg(lock, node, NULL) == node)
154 return;
155 /* Wait until the next pointer is set */
156 while (!(next = ACCESS_ONCE(node->next)))
157 arch_mutex_cpu_relax();
158 }
159 ACCESS_ONCE(next->locked) = 1;
160 smp_wmb();
161 }
162
163 /*
164 * Mutex spinning code migrated from kernel/sched/core.c
165 */
166
167 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
168 {
169 if (lock->owner != owner)
170 return false;
171
172 /*
173 * Ensure we emit the owner->on_cpu, dereference _after_ checking
174 * lock->owner still matches owner, if that fails, owner might
175 * point to free()d memory, if it still matches, the rcu_read_lock()
176 * ensures the memory stays valid.
177 */
178 barrier();
179
180 return owner->on_cpu;
181 }
182
183 /*
184 * Look out! "owner" is an entirely speculative pointer
185 * access and not reliable.
186 */
187 static noinline
188 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
189 {
190 rcu_read_lock();
191 while (owner_running(lock, owner)) {
192 if (need_resched())
193 break;
194
195 arch_mutex_cpu_relax();
196 }
197 rcu_read_unlock();
198
199 /*
200 * We break out the loop above on need_resched() and when the
201 * owner changed, which is a sign for heavy contention. Return
202 * success only when lock->owner is NULL.
203 */
204 return lock->owner == NULL;
205 }
206
207 /*
208 * Initial check for entering the mutex spinning loop
209 */
210 static inline int mutex_can_spin_on_owner(struct mutex *lock)
211 {
212 struct task_struct *owner;
213 int retval = 1;
214
215 rcu_read_lock();
216 owner = ACCESS_ONCE(lock->owner);
217 if (owner)
218 retval = owner->on_cpu;
219 rcu_read_unlock();
220 /*
221 * if lock->owner is not set, the mutex owner may have just acquired
222 * it and not set the owner yet or the mutex has been released.
223 */
224 return retval;
225 }
226 #endif
227
228 static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
229
230 /**
231 * mutex_unlock - release the mutex
232 * @lock: the mutex to be released
233 *
234 * Unlock a mutex that has been locked by this task previously.
235 *
236 * This function must not be used in interrupt context. Unlocking
237 * of a not locked mutex is not allowed.
238 *
239 * This function is similar to (but not equivalent to) up().
240 */
241 void __sched mutex_unlock(struct mutex *lock)
242 {
243 /*
244 * The unlocking fastpath is the 0->1 transition from 'locked'
245 * into 'unlocked' state:
246 */
247 #ifndef CONFIG_DEBUG_MUTEXES
248 /*
249 * When debugging is enabled we must not clear the owner before time,
250 * the slow path will always be taken, and that clears the owner field
251 * after verifying that it was indeed current.
252 */
253 mutex_clear_owner(lock);
254 #endif
255 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
256 }
257
258 EXPORT_SYMBOL(mutex_unlock);
259
260 /**
261 * ww_mutex_unlock - release the w/w mutex
262 * @lock: the mutex to be released
263 *
264 * Unlock a mutex that has been locked by this task previously with any of the
265 * ww_mutex_lock* functions (with or without an acquire context). It is
266 * forbidden to release the locks after releasing the acquire context.
267 *
268 * This function must not be used in interrupt context. Unlocking
269 * of a unlocked mutex is not allowed.
270 */
271 void __sched ww_mutex_unlock(struct ww_mutex *lock)
272 {
273 /*
274 * The unlocking fastpath is the 0->1 transition from 'locked'
275 * into 'unlocked' state:
276 */
277 if (lock->ctx) {
278 #ifdef CONFIG_DEBUG_MUTEXES
279 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
280 #endif
281 if (lock->ctx->acquired > 0)
282 lock->ctx->acquired--;
283 lock->ctx = NULL;
284 }
285
286 #ifndef CONFIG_DEBUG_MUTEXES
287 /*
288 * When debugging is enabled we must not clear the owner before time,
289 * the slow path will always be taken, and that clears the owner field
290 * after verifying that it was indeed current.
291 */
292 mutex_clear_owner(&lock->base);
293 #endif
294 __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
295 }
296 EXPORT_SYMBOL(ww_mutex_unlock);
297
298 static inline int __sched
299 __mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
300 {
301 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
302 struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);
303
304 if (!hold_ctx)
305 return 0;
306
307 if (unlikely(ctx == hold_ctx))
308 return -EALREADY;
309
310 if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
311 (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
312 #ifdef CONFIG_DEBUG_MUTEXES
313 DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
314 ctx->contending_lock = ww;
315 #endif
316 return -EDEADLK;
317 }
318
319 return 0;
320 }
321
322 static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
323 struct ww_acquire_ctx *ww_ctx)
324 {
325 #ifdef CONFIG_DEBUG_MUTEXES
326 /*
327 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
328 * but released with a normal mutex_unlock in this call.
329 *
330 * This should never happen, always use ww_mutex_unlock.
331 */
332 DEBUG_LOCKS_WARN_ON(ww->ctx);
333
334 /*
335 * Not quite done after calling ww_acquire_done() ?
336 */
337 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
338
339 if (ww_ctx->contending_lock) {
340 /*
341 * After -EDEADLK you tried to
342 * acquire a different ww_mutex? Bad!
343 */
344 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
345
346 /*
347 * You called ww_mutex_lock after receiving -EDEADLK,
348 * but 'forgot' to unlock everything else first?
349 */
350 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
351 ww_ctx->contending_lock = NULL;
352 }
353
354 /*
355 * Naughty, using a different class will lead to undefined behavior!
356 */
357 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
358 #endif
359 ww_ctx->acquired++;
360 }
361
362 /*
363 * after acquiring lock with fastpath or when we lost out in contested
364 * slowpath, set ctx and wake up any waiters so they can recheck.
365 *
366 * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
367 * as the fastpath and opportunistic spinning are disabled in that case.
368 */
369 static __always_inline void
370 ww_mutex_set_context_fastpath(struct ww_mutex *lock,
371 struct ww_acquire_ctx *ctx)
372 {
373 unsigned long flags;
374 struct mutex_waiter *cur;
375
376 ww_mutex_lock_acquired(lock, ctx);
377
378 lock->ctx = ctx;
379
380 /*
381 * The lock->ctx update should be visible on all cores before
382 * the atomic read is done, otherwise contended waiters might be
383 * missed. The contended waiters will either see ww_ctx == NULL
384 * and keep spinning, or it will acquire wait_lock, add itself
385 * to waiter list and sleep.
386 */
387 smp_mb(); /* ^^^ */
388
389 /*
390 * Check if lock is contended, if not there is nobody to wake up
391 */
392 if (likely(atomic_read(&lock->base.count) == 0))
393 return;
394
395 /*
396 * Uh oh, we raced in fastpath, wake up everyone in this case,
397 * so they can see the new lock->ctx.
398 */
399 spin_lock_mutex(&lock->base.wait_lock, flags);
400 list_for_each_entry(cur, &lock->base.wait_list, list) {
401 debug_mutex_wake_waiter(&lock->base, cur);
402 wake_up_process(cur->task);
403 }
404 spin_unlock_mutex(&lock->base.wait_lock, flags);
405 }
406
407 /*
408 * Lock a mutex (possibly interruptible), slowpath:
409 */
410 static __always_inline int __sched
411 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
412 struct lockdep_map *nest_lock, unsigned long ip,
413 struct ww_acquire_ctx *ww_ctx)
414 {
415 struct task_struct *task = current;
416 struct mutex_waiter waiter;
417 unsigned long flags;
418 int ret;
419
420 preempt_disable();
421 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
422
423 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
424 /*
425 * Optimistic spinning.
426 *
427 * We try to spin for acquisition when we find that there are no
428 * pending waiters and the lock owner is currently running on a
429 * (different) CPU.
430 *
431 * The rationale is that if the lock owner is running, it is likely to
432 * release the lock soon.
433 *
434 * Since this needs the lock owner, and this mutex implementation
435 * doesn't track the owner atomically in the lock field, we need to
436 * track it non-atomically.
437 *
438 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
439 * to serialize everything.
440 *
441 * The mutex spinners are queued up using MCS lock so that only one
442 * spinner can compete for the mutex. However, if mutex spinning isn't
443 * going to happen, there is no point in going through the lock/unlock
444 * overhead.
445 */
446 if (!mutex_can_spin_on_owner(lock))
447 goto slowpath;
448
449 for (;;) {
450 struct task_struct *owner;
451 struct mspin_node node;
452
453 if (!__builtin_constant_p(ww_ctx == NULL) && ww_ctx->acquired > 0) {
454 struct ww_mutex *ww;
455
456 ww = container_of(lock, struct ww_mutex, base);
457 /*
458 * If ww->ctx is set the contents are undefined, only
459 * by acquiring wait_lock there is a guarantee that
460 * they are not invalid when reading.
461 *
462 * As such, when deadlock detection needs to be
463 * performed the optimistic spinning cannot be done.
464 */
465 if (ACCESS_ONCE(ww->ctx))
466 break;
467 }
468
469 /*
470 * If there's an owner, wait for it to either
471 * release the lock or go to sleep.
472 */
473 mspin_lock(MLOCK(lock), &node);
474 owner = ACCESS_ONCE(lock->owner);
475 if (owner && !mutex_spin_on_owner(lock, owner)) {
476 mspin_unlock(MLOCK(lock), &node);
477 break;
478 }
479
480 if ((atomic_read(&lock->count) == 1) &&
481 (atomic_cmpxchg(&lock->count, 1, 0) == 1)) {
482 lock_acquired(&lock->dep_map, ip);
483 if (!__builtin_constant_p(ww_ctx == NULL)) {
484 struct ww_mutex *ww;
485 ww = container_of(lock, struct ww_mutex, base);
486
487 ww_mutex_set_context_fastpath(ww, ww_ctx);
488 }
489
490 mutex_set_owner(lock);
491 mspin_unlock(MLOCK(lock), &node);
492 preempt_enable();
493 return 0;
494 }
495 mspin_unlock(MLOCK(lock), &node);
496
497 /*
498 * When there's no owner, we might have preempted between the
499 * owner acquiring the lock and setting the owner field. If
500 * we're an RT task that will live-lock because we won't let
501 * the owner complete.
502 */
503 if (!owner && (need_resched() || rt_task(task)))
504 break;
505
506 /*
507 * The cpu_relax() call is a compiler barrier which forces
508 * everything in this loop to be re-loaded. We don't need
509 * memory barriers as we'll eventually observe the right
510 * values at the cost of a few extra spins.
511 */
512 arch_mutex_cpu_relax();
513 }
514 slowpath:
515 #endif
516 spin_lock_mutex(&lock->wait_lock, flags);
517
518 debug_mutex_lock_common(lock, &waiter);
519 debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
520
521 /* add waiting tasks to the end of the waitqueue (FIFO): */
522 list_add_tail(&waiter.list, &lock->wait_list);
523 waiter.task = task;
524
525 if (MUTEX_SHOW_NO_WAITER(lock) && (atomic_xchg(&lock->count, -1) == 1))
526 goto done;
527
528 lock_contended(&lock->dep_map, ip);
529
530 for (;;) {
531 /*
532 * Lets try to take the lock again - this is needed even if
533 * we get here for the first time (shortly after failing to
534 * acquire the lock), to make sure that we get a wakeup once
535 * it's unlocked. Later on, if we sleep, this is the
536 * operation that gives us the lock. We xchg it to -1, so
537 * that when we release the lock, we properly wake up the
538 * other waiters:
539 */
540 if (MUTEX_SHOW_NO_WAITER(lock) &&
541 (atomic_xchg(&lock->count, -1) == 1))
542 break;
543
544 /*
545 * got a signal? (This code gets eliminated in the
546 * TASK_UNINTERRUPTIBLE case.)
547 */
548 if (unlikely(signal_pending_state(state, task))) {
549 ret = -EINTR;
550 goto err;
551 }
552
553 if (!__builtin_constant_p(ww_ctx == NULL) && ww_ctx->acquired > 0) {
554 ret = __mutex_lock_check_stamp(lock, ww_ctx);
555 if (ret)
556 goto err;
557 }
558
559 __set_task_state(task, state);
560
561 /* didn't get the lock, go to sleep: */
562 spin_unlock_mutex(&lock->wait_lock, flags);
563 schedule_preempt_disabled();
564 spin_lock_mutex(&lock->wait_lock, flags);
565 }
566
567 done:
568 lock_acquired(&lock->dep_map, ip);
569 /* got the lock - rejoice! */
570 mutex_remove_waiter(lock, &waiter, current_thread_info());
571 mutex_set_owner(lock);
572
573 if (!__builtin_constant_p(ww_ctx == NULL)) {
574 struct ww_mutex *ww = container_of(lock,
575 struct ww_mutex,
576 base);
577 struct mutex_waiter *cur;
578
579 /*
580 * This branch gets optimized out for the common case,
581 * and is only important for ww_mutex_lock.
582 */
583
584 ww_mutex_lock_acquired(ww, ww_ctx);
585 ww->ctx = ww_ctx;
586
587 /*
588 * Give any possible sleeping processes the chance to wake up,
589 * so they can recheck if they have to back off.
590 */
591 list_for_each_entry(cur, &lock->wait_list, list) {
592 debug_mutex_wake_waiter(lock, cur);
593 wake_up_process(cur->task);
594 }
595 }
596
597 /* set it to 0 if there are no waiters left: */
598 if (likely(list_empty(&lock->wait_list)))
599 atomic_set(&lock->count, 0);
600
601 spin_unlock_mutex(&lock->wait_lock, flags);
602
603 debug_mutex_free_waiter(&waiter);
604 preempt_enable();
605
606 return 0;
607
608 err:
609 mutex_remove_waiter(lock, &waiter, task_thread_info(task));
610 spin_unlock_mutex(&lock->wait_lock, flags);
611 debug_mutex_free_waiter(&waiter);
612 mutex_release(&lock->dep_map, 1, ip);
613 preempt_enable();
614 return ret;
615 }
616
617 #ifdef CONFIG_DEBUG_LOCK_ALLOC
618 void __sched
619 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
620 {
621 might_sleep();
622 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
623 subclass, NULL, _RET_IP_, NULL);
624 }
625
626 EXPORT_SYMBOL_GPL(mutex_lock_nested);
627
628 void __sched
629 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
630 {
631 might_sleep();
632 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
633 0, nest, _RET_IP_, NULL);
634 }
635
636 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
637
638 int __sched
639 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
640 {
641 might_sleep();
642 return __mutex_lock_common(lock, TASK_KILLABLE,
643 subclass, NULL, _RET_IP_, NULL);
644 }
645 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
646
647 int __sched
648 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
649 {
650 might_sleep();
651 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
652 subclass, NULL, _RET_IP_, NULL);
653 }
654
655 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
656
657 static inline int
658 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
659 {
660 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
661 unsigned tmp;
662
663 if (ctx->deadlock_inject_countdown-- == 0) {
664 tmp = ctx->deadlock_inject_interval;
665 if (tmp > UINT_MAX/4)
666 tmp = UINT_MAX;
667 else
668 tmp = tmp*2 + tmp + tmp/2;
669
670 ctx->deadlock_inject_interval = tmp;
671 ctx->deadlock_inject_countdown = tmp;
672 ctx->contending_lock = lock;
673
674 ww_mutex_unlock(lock);
675
676 return -EDEADLK;
677 }
678 #endif
679
680 return 0;
681 }
682
683 int __sched
684 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
685 {
686 int ret;
687
688 might_sleep();
689 ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
690 0, &ctx->dep_map, _RET_IP_, ctx);
691 if (!ret && ctx->acquired > 0)
692 return ww_mutex_deadlock_injection(lock, ctx);
693
694 return ret;
695 }
696 EXPORT_SYMBOL_GPL(__ww_mutex_lock);
697
698 int __sched
699 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
700 {
701 int ret;
702
703 might_sleep();
704 ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
705 0, &ctx->dep_map, _RET_IP_, ctx);
706
707 if (!ret && ctx->acquired > 0)
708 return ww_mutex_deadlock_injection(lock, ctx);
709
710 return ret;
711 }
712 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
713
714 #endif
715
716 /*
717 * Release the lock, slowpath:
718 */
719 static inline void
720 __mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
721 {
722 struct mutex *lock = container_of(lock_count, struct mutex, count);
723 unsigned long flags;
724
725 spin_lock_mutex(&lock->wait_lock, flags);
726 mutex_release(&lock->dep_map, nested, _RET_IP_);
727 debug_mutex_unlock(lock);
728
729 /*
730 * some architectures leave the lock unlocked in the fastpath failure
731 * case, others need to leave it locked. In the later case we have to
732 * unlock it here
733 */
734 if (__mutex_slowpath_needs_to_unlock())
735 atomic_set(&lock->count, 1);
736
737 if (!list_empty(&lock->wait_list)) {
738 /* get the first entry from the wait-list: */
739 struct mutex_waiter *waiter =
740 list_entry(lock->wait_list.next,
741 struct mutex_waiter, list);
742
743 debug_mutex_wake_waiter(lock, waiter);
744
745 wake_up_process(waiter->task);
746 }
747
748 spin_unlock_mutex(&lock->wait_lock, flags);
749 }
750
751 /*
752 * Release the lock, slowpath:
753 */
754 static __used noinline void
755 __mutex_unlock_slowpath(atomic_t *lock_count)
756 {
757 __mutex_unlock_common_slowpath(lock_count, 1);
758 }
759
760 #ifndef CONFIG_DEBUG_LOCK_ALLOC
761 /*
762 * Here come the less common (and hence less performance-critical) APIs:
763 * mutex_lock_interruptible() and mutex_trylock().
764 */
765 static noinline int __sched
766 __mutex_lock_killable_slowpath(struct mutex *lock);
767
768 static noinline int __sched
769 __mutex_lock_interruptible_slowpath(struct mutex *lock);
770
771 /**
772 * mutex_lock_interruptible - acquire the mutex, interruptible
773 * @lock: the mutex to be acquired
774 *
775 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
776 * been acquired or sleep until the mutex becomes available. If a
777 * signal arrives while waiting for the lock then this function
778 * returns -EINTR.
779 *
780 * This function is similar to (but not equivalent to) down_interruptible().
781 */
782 int __sched mutex_lock_interruptible(struct mutex *lock)
783 {
784 int ret;
785
786 might_sleep();
787 ret = __mutex_fastpath_lock_retval(&lock->count);
788 if (likely(!ret)) {
789 mutex_set_owner(lock);
790 return 0;
791 } else
792 return __mutex_lock_interruptible_slowpath(lock);
793 }
794
795 EXPORT_SYMBOL(mutex_lock_interruptible);
796
797 int __sched mutex_lock_killable(struct mutex *lock)
798 {
799 int ret;
800
801 might_sleep();
802 ret = __mutex_fastpath_lock_retval(&lock->count);
803 if (likely(!ret)) {
804 mutex_set_owner(lock);
805 return 0;
806 } else
807 return __mutex_lock_killable_slowpath(lock);
808 }
809 EXPORT_SYMBOL(mutex_lock_killable);
810
811 static __used noinline void __sched
812 __mutex_lock_slowpath(atomic_t *lock_count)
813 {
814 struct mutex *lock = container_of(lock_count, struct mutex, count);
815
816 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
817 NULL, _RET_IP_, NULL);
818 }
819
820 static noinline int __sched
821 __mutex_lock_killable_slowpath(struct mutex *lock)
822 {
823 return __mutex_lock_common(lock, TASK_KILLABLE, 0,
824 NULL, _RET_IP_, NULL);
825 }
826
827 static noinline int __sched
828 __mutex_lock_interruptible_slowpath(struct mutex *lock)
829 {
830 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
831 NULL, _RET_IP_, NULL);
832 }
833
834 static noinline int __sched
835 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
836 {
837 return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
838 NULL, _RET_IP_, ctx);
839 }
840
841 static noinline int __sched
842 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
843 struct ww_acquire_ctx *ctx)
844 {
845 return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
846 NULL, _RET_IP_, ctx);
847 }
848
849 #endif
850
851 /*
852 * Spinlock based trylock, we take the spinlock and check whether we
853 * can get the lock:
854 */
855 static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
856 {
857 struct mutex *lock = container_of(lock_count, struct mutex, count);
858 unsigned long flags;
859 int prev;
860
861 spin_lock_mutex(&lock->wait_lock, flags);
862
863 prev = atomic_xchg(&lock->count, -1);
864 if (likely(prev == 1)) {
865 mutex_set_owner(lock);
866 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
867 }
868
869 /* Set it back to 0 if there are no waiters: */
870 if (likely(list_empty(&lock->wait_list)))
871 atomic_set(&lock->count, 0);
872
873 spin_unlock_mutex(&lock->wait_lock, flags);
874
875 return prev == 1;
876 }
877
878 /**
879 * mutex_trylock - try to acquire the mutex, without waiting
880 * @lock: the mutex to be acquired
881 *
882 * Try to acquire the mutex atomically. Returns 1 if the mutex
883 * has been acquired successfully, and 0 on contention.
884 *
885 * NOTE: this function follows the spin_trylock() convention, so
886 * it is negated from the down_trylock() return values! Be careful
887 * about this when converting semaphore users to mutexes.
888 *
889 * This function must not be used in interrupt context. The
890 * mutex must be released by the same task that acquired it.
891 */
892 int __sched mutex_trylock(struct mutex *lock)
893 {
894 int ret;
895
896 ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
897 if (ret)
898 mutex_set_owner(lock);
899
900 return ret;
901 }
902 EXPORT_SYMBOL(mutex_trylock);
903
904 #ifndef CONFIG_DEBUG_LOCK_ALLOC
905 int __sched
906 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
907 {
908 int ret;
909
910 might_sleep();
911
912 ret = __mutex_fastpath_lock_retval(&lock->base.count);
913
914 if (likely(!ret)) {
915 ww_mutex_set_context_fastpath(lock, ctx);
916 mutex_set_owner(&lock->base);
917 } else
918 ret = __ww_mutex_lock_slowpath(lock, ctx);
919 return ret;
920 }
921 EXPORT_SYMBOL(__ww_mutex_lock);
922
923 int __sched
924 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
925 {
926 int ret;
927
928 might_sleep();
929
930 ret = __mutex_fastpath_lock_retval(&lock->base.count);
931
932 if (likely(!ret)) {
933 ww_mutex_set_context_fastpath(lock, ctx);
934 mutex_set_owner(&lock->base);
935 } else
936 ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
937 return ret;
938 }
939 EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
940
941 #endif
942
943 /**
944 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
945 * @cnt: the atomic which we are to dec
946 * @lock: the mutex to return holding if we dec to 0
947 *
948 * return true and hold lock if we dec to 0, return false otherwise
949 */
950 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
951 {
952 /* dec if we can't possibly hit 0 */
953 if (atomic_add_unless(cnt, -1, 1))
954 return 0;
955 /* we might hit 0, so take the lock */
956 mutex_lock(lock);
957 if (!atomic_dec_and_test(cnt)) {
958 /* when we actually did the dec, we didn't hit 0 */
959 mutex_unlock(lock);
960 return 0;
961 }
962 /* we hit 0, and we hold the lock */
963 return 1;
964 }
965 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
This page took 0.054292 seconds and 4 git commands to generate.