mutex: implement adaptive spinning
[deliverable/linux.git] / kernel / mutex.c
1 /*
2 * kernel/mutex.c
3 *
4 * Mutexes: blocking mutual exclusion locks
5 *
6 * Started by Ingo Molnar:
7 *
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 *
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
12 *
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 * and Sven Dietrich.
17 *
18 * Also see Documentation/mutex-design.txt.
19 */
20 #include <linux/mutex.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/debug_locks.h>
26
27 /*
28 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
29 * which forces all calls into the slowpath:
30 */
31 #ifdef CONFIG_DEBUG_MUTEXES
32 # include "mutex-debug.h"
33 # include <asm-generic/mutex-null.h>
34 #else
35 # include "mutex.h"
36 # include <asm/mutex.h>
37 #endif
38
39 /***
40 * mutex_init - initialize the mutex
41 * @lock: the mutex to be initialized
42 * @key: the lock_class_key for the class; used by mutex lock debugging
43 *
44 * Initialize the mutex to unlocked state.
45 *
46 * It is not allowed to initialize an already locked mutex.
47 */
48 void
49 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
50 {
51 atomic_set(&lock->count, 1);
52 spin_lock_init(&lock->wait_lock);
53 INIT_LIST_HEAD(&lock->wait_list);
54 mutex_clear_owner(lock);
55
56 debug_mutex_init(lock, name, key);
57 }
58
59 EXPORT_SYMBOL(__mutex_init);
60
61 #ifndef CONFIG_DEBUG_LOCK_ALLOC
62 /*
63 * We split the mutex lock/unlock logic into separate fastpath and
64 * slowpath functions, to reduce the register pressure on the fastpath.
65 * We also put the fastpath first in the kernel image, to make sure the
66 * branch is predicted by the CPU as default-untaken.
67 */
68 static __used noinline void __sched
69 __mutex_lock_slowpath(atomic_t *lock_count);
70
71 /***
72 * mutex_lock - acquire the mutex
73 * @lock: the mutex to be acquired
74 *
75 * Lock the mutex exclusively for this task. If the mutex is not
76 * available right now, it will sleep until it can get it.
77 *
78 * The mutex must later on be released by the same task that
79 * acquired it. Recursive locking is not allowed. The task
80 * may not exit without first unlocking the mutex. Also, kernel
81 * memory where the mutex resides mutex must not be freed with
82 * the mutex still locked. The mutex must first be initialized
83 * (or statically defined) before it can be locked. memset()-ing
84 * the mutex to 0 is not allowed.
85 *
86 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
87 * checks that will enforce the restrictions and will also do
88 * deadlock debugging. )
89 *
90 * This function is similar to (but not equivalent to) down().
91 */
92 void inline __sched mutex_lock(struct mutex *lock)
93 {
94 might_sleep();
95 /*
96 * The locking fastpath is the 1->0 transition from
97 * 'unlocked' into 'locked' state.
98 */
99 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
100 mutex_set_owner(lock);
101 }
102
103 EXPORT_SYMBOL(mutex_lock);
104 #endif
105
106 static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
107
108 /***
109 * mutex_unlock - release the mutex
110 * @lock: the mutex to be released
111 *
112 * Unlock a mutex that has been locked by this task previously.
113 *
114 * This function must not be used in interrupt context. Unlocking
115 * of a not locked mutex is not allowed.
116 *
117 * This function is similar to (but not equivalent to) up().
118 */
119 void __sched mutex_unlock(struct mutex *lock)
120 {
121 /*
122 * The unlocking fastpath is the 0->1 transition from 'locked'
123 * into 'unlocked' state:
124 */
125 #ifndef CONFIG_DEBUG_MUTEXES
126 /*
127 * When debugging is enabled we must not clear the owner before time,
128 * the slow path will always be taken, and that clears the owner field
129 * after verifying that it was indeed current.
130 */
131 mutex_clear_owner(lock);
132 #endif
133 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
134 }
135
136 EXPORT_SYMBOL(mutex_unlock);
137
138 /*
139 * Lock a mutex (possibly interruptible), slowpath:
140 */
141 static inline int __sched
142 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
143 unsigned long ip)
144 {
145 struct task_struct *task = current;
146 struct mutex_waiter waiter;
147 unsigned long flags;
148
149 preempt_disable();
150 mutex_acquire(&lock->dep_map, subclass, 0, ip);
151 #if defined(CONFIG_SMP) && !defined(CONFIG_DEBUG_MUTEXES)
152 /*
153 * Optimistic spinning.
154 *
155 * We try to spin for acquisition when we find that there are no
156 * pending waiters and the lock owner is currently running on a
157 * (different) CPU.
158 *
159 * The rationale is that if the lock owner is running, it is likely to
160 * release the lock soon.
161 *
162 * Since this needs the lock owner, and this mutex implementation
163 * doesn't track the owner atomically in the lock field, we need to
164 * track it non-atomically.
165 *
166 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
167 * to serialize everything.
168 */
169
170 for (;;) {
171 struct thread_info *owner;
172
173 /*
174 * If there are pending waiters, join them.
175 */
176 if (!list_empty(&lock->wait_list))
177 break;
178
179 /*
180 * If there's an owner, wait for it to either
181 * release the lock or go to sleep.
182 */
183 owner = ACCESS_ONCE(lock->owner);
184 if (owner && !mutex_spin_on_owner(lock, owner))
185 break;
186
187 /*
188 * When there's no owner, we might have preempted between the
189 * owner acquiring the lock and setting the owner field. If
190 * we're an RT task that will live-lock because we won't let
191 * the owner complete.
192 */
193 if (!owner && (need_resched() || rt_task(task)))
194 break;
195
196 if (atomic_cmpxchg(&lock->count, 1, 0) == 1) {
197 lock_acquired(&lock->dep_map, ip);
198 mutex_set_owner(lock);
199 preempt_enable();
200 return 0;
201 }
202
203 /*
204 * The cpu_relax() call is a compiler barrier which forces
205 * everything in this loop to be re-loaded. We don't need
206 * memory barriers as we'll eventually observe the right
207 * values at the cost of a few extra spins.
208 */
209 cpu_relax();
210 }
211 #endif
212 spin_lock_mutex(&lock->wait_lock, flags);
213
214 debug_mutex_lock_common(lock, &waiter);
215 debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
216
217 /* add waiting tasks to the end of the waitqueue (FIFO): */
218 list_add_tail(&waiter.list, &lock->wait_list);
219 waiter.task = task;
220
221 if (atomic_xchg(&lock->count, -1) == 1)
222 goto done;
223
224 lock_contended(&lock->dep_map, ip);
225
226 for (;;) {
227 /*
228 * Lets try to take the lock again - this is needed even if
229 * we get here for the first time (shortly after failing to
230 * acquire the lock), to make sure that we get a wakeup once
231 * it's unlocked. Later on, if we sleep, this is the
232 * operation that gives us the lock. We xchg it to -1, so
233 * that when we release the lock, we properly wake up the
234 * other waiters:
235 */
236 if (atomic_xchg(&lock->count, -1) == 1)
237 break;
238
239 /*
240 * got a signal? (This code gets eliminated in the
241 * TASK_UNINTERRUPTIBLE case.)
242 */
243 if (unlikely(signal_pending_state(state, task))) {
244 mutex_remove_waiter(lock, &waiter,
245 task_thread_info(task));
246 mutex_release(&lock->dep_map, 1, ip);
247 spin_unlock_mutex(&lock->wait_lock, flags);
248
249 debug_mutex_free_waiter(&waiter);
250 preempt_enable();
251 return -EINTR;
252 }
253 __set_task_state(task, state);
254
255 /* didnt get the lock, go to sleep: */
256 spin_unlock_mutex(&lock->wait_lock, flags);
257 __schedule();
258 spin_lock_mutex(&lock->wait_lock, flags);
259 }
260
261 done:
262 lock_acquired(&lock->dep_map, ip);
263 /* got the lock - rejoice! */
264 mutex_remove_waiter(lock, &waiter, current_thread_info());
265 mutex_set_owner(lock);
266
267 /* set it to 0 if there are no waiters left: */
268 if (likely(list_empty(&lock->wait_list)))
269 atomic_set(&lock->count, 0);
270
271 spin_unlock_mutex(&lock->wait_lock, flags);
272
273 debug_mutex_free_waiter(&waiter);
274 preempt_enable();
275
276 return 0;
277 }
278
279 #ifdef CONFIG_DEBUG_LOCK_ALLOC
280 void __sched
281 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
282 {
283 might_sleep();
284 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, _RET_IP_);
285 }
286
287 EXPORT_SYMBOL_GPL(mutex_lock_nested);
288
289 int __sched
290 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
291 {
292 might_sleep();
293 return __mutex_lock_common(lock, TASK_KILLABLE, subclass, _RET_IP_);
294 }
295 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
296
297 int __sched
298 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
299 {
300 might_sleep();
301 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
302 subclass, _RET_IP_);
303 }
304
305 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
306 #endif
307
308 /*
309 * Release the lock, slowpath:
310 */
311 static inline void
312 __mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
313 {
314 struct mutex *lock = container_of(lock_count, struct mutex, count);
315 unsigned long flags;
316
317 spin_lock_mutex(&lock->wait_lock, flags);
318 mutex_release(&lock->dep_map, nested, _RET_IP_);
319 debug_mutex_unlock(lock);
320
321 /*
322 * some architectures leave the lock unlocked in the fastpath failure
323 * case, others need to leave it locked. In the later case we have to
324 * unlock it here
325 */
326 if (__mutex_slowpath_needs_to_unlock())
327 atomic_set(&lock->count, 1);
328
329 if (!list_empty(&lock->wait_list)) {
330 /* get the first entry from the wait-list: */
331 struct mutex_waiter *waiter =
332 list_entry(lock->wait_list.next,
333 struct mutex_waiter, list);
334
335 debug_mutex_wake_waiter(lock, waiter);
336
337 wake_up_process(waiter->task);
338 }
339
340 spin_unlock_mutex(&lock->wait_lock, flags);
341 }
342
343 /*
344 * Release the lock, slowpath:
345 */
346 static __used noinline void
347 __mutex_unlock_slowpath(atomic_t *lock_count)
348 {
349 __mutex_unlock_common_slowpath(lock_count, 1);
350 }
351
352 #ifndef CONFIG_DEBUG_LOCK_ALLOC
353 /*
354 * Here come the less common (and hence less performance-critical) APIs:
355 * mutex_lock_interruptible() and mutex_trylock().
356 */
357 static noinline int __sched
358 __mutex_lock_killable_slowpath(atomic_t *lock_count);
359
360 static noinline int __sched
361 __mutex_lock_interruptible_slowpath(atomic_t *lock_count);
362
363 /***
364 * mutex_lock_interruptible - acquire the mutex, interruptable
365 * @lock: the mutex to be acquired
366 *
367 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
368 * been acquired or sleep until the mutex becomes available. If a
369 * signal arrives while waiting for the lock then this function
370 * returns -EINTR.
371 *
372 * This function is similar to (but not equivalent to) down_interruptible().
373 */
374 int __sched mutex_lock_interruptible(struct mutex *lock)
375 {
376 int ret;
377
378 might_sleep();
379 ret = __mutex_fastpath_lock_retval
380 (&lock->count, __mutex_lock_interruptible_slowpath);
381 if (!ret)
382 mutex_set_owner(lock);
383
384 return ret;
385 }
386
387 EXPORT_SYMBOL(mutex_lock_interruptible);
388
389 int __sched mutex_lock_killable(struct mutex *lock)
390 {
391 int ret;
392
393 might_sleep();
394 ret = __mutex_fastpath_lock_retval
395 (&lock->count, __mutex_lock_killable_slowpath);
396 if (!ret)
397 mutex_set_owner(lock);
398
399 return ret;
400 }
401 EXPORT_SYMBOL(mutex_lock_killable);
402
403 static __used noinline void __sched
404 __mutex_lock_slowpath(atomic_t *lock_count)
405 {
406 struct mutex *lock = container_of(lock_count, struct mutex, count);
407
408 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, _RET_IP_);
409 }
410
411 static noinline int __sched
412 __mutex_lock_killable_slowpath(atomic_t *lock_count)
413 {
414 struct mutex *lock = container_of(lock_count, struct mutex, count);
415
416 return __mutex_lock_common(lock, TASK_KILLABLE, 0, _RET_IP_);
417 }
418
419 static noinline int __sched
420 __mutex_lock_interruptible_slowpath(atomic_t *lock_count)
421 {
422 struct mutex *lock = container_of(lock_count, struct mutex, count);
423
424 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, _RET_IP_);
425 }
426 #endif
427
428 /*
429 * Spinlock based trylock, we take the spinlock and check whether we
430 * can get the lock:
431 */
432 static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
433 {
434 struct mutex *lock = container_of(lock_count, struct mutex, count);
435 unsigned long flags;
436 int prev;
437
438 spin_lock_mutex(&lock->wait_lock, flags);
439
440 prev = atomic_xchg(&lock->count, -1);
441 if (likely(prev == 1)) {
442 mutex_set_owner(lock);
443 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
444 }
445
446 /* Set it back to 0 if there are no waiters: */
447 if (likely(list_empty(&lock->wait_list)))
448 atomic_set(&lock->count, 0);
449
450 spin_unlock_mutex(&lock->wait_lock, flags);
451
452 return prev == 1;
453 }
454
455 /***
456 * mutex_trylock - try acquire the mutex, without waiting
457 * @lock: the mutex to be acquired
458 *
459 * Try to acquire the mutex atomically. Returns 1 if the mutex
460 * has been acquired successfully, and 0 on contention.
461 *
462 * NOTE: this function follows the spin_trylock() convention, so
463 * it is negated to the down_trylock() return values! Be careful
464 * about this when converting semaphore users to mutexes.
465 *
466 * This function must not be used in interrupt context. The
467 * mutex must be released by the same task that acquired it.
468 */
469 int __sched mutex_trylock(struct mutex *lock)
470 {
471 int ret;
472
473 ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
474 if (ret)
475 mutex_set_owner(lock);
476
477 return ret;
478 }
479
480 EXPORT_SYMBOL(mutex_trylock);
This page took 0.041826 seconds and 5 git commands to generate.