Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
45
46 /*
47 * perf counter paranoia level:
48 * 0 - not paranoid
49 * 1 - disallow cpu counters to unpriv
50 * 2 - disallow kernel profiling to unpriv
51 */
52 int sysctl_perf_counter_paranoid __read_mostly;
53
54 static inline bool perf_paranoid_cpu(void)
55 {
56 return sysctl_perf_counter_paranoid > 0;
57 }
58
59 static inline bool perf_paranoid_kernel(void)
60 {
61 return sysctl_perf_counter_paranoid > 1;
62 }
63
64 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
65
66 /*
67 * max perf counter sample rate
68 */
69 int sysctl_perf_counter_sample_rate __read_mostly = 100000;
70
71 static atomic64_t perf_counter_id;
72
73 /*
74 * Lock for (sysadmin-configurable) counter reservations:
75 */
76 static DEFINE_SPINLOCK(perf_resource_lock);
77
78 /*
79 * Architecture provided APIs - weak aliases:
80 */
81 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
82 {
83 return NULL;
84 }
85
86 void __weak hw_perf_disable(void) { barrier(); }
87 void __weak hw_perf_enable(void) { barrier(); }
88
89 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
90
91 int __weak
92 hw_perf_group_sched_in(struct perf_counter *group_leader,
93 struct perf_cpu_context *cpuctx,
94 struct perf_counter_context *ctx, int cpu)
95 {
96 return 0;
97 }
98
99 void __weak perf_counter_print_debug(void) { }
100
101 static DEFINE_PER_CPU(int, disable_count);
102
103 void __perf_disable(void)
104 {
105 __get_cpu_var(disable_count)++;
106 }
107
108 bool __perf_enable(void)
109 {
110 return !--__get_cpu_var(disable_count);
111 }
112
113 void perf_disable(void)
114 {
115 __perf_disable();
116 hw_perf_disable();
117 }
118
119 void perf_enable(void)
120 {
121 if (__perf_enable())
122 hw_perf_enable();
123 }
124
125 static void get_ctx(struct perf_counter_context *ctx)
126 {
127 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
128 }
129
130 static void free_ctx(struct rcu_head *head)
131 {
132 struct perf_counter_context *ctx;
133
134 ctx = container_of(head, struct perf_counter_context, rcu_head);
135 kfree(ctx);
136 }
137
138 static void put_ctx(struct perf_counter_context *ctx)
139 {
140 if (atomic_dec_and_test(&ctx->refcount)) {
141 if (ctx->parent_ctx)
142 put_ctx(ctx->parent_ctx);
143 if (ctx->task)
144 put_task_struct(ctx->task);
145 call_rcu(&ctx->rcu_head, free_ctx);
146 }
147 }
148
149 /*
150 * Get the perf_counter_context for a task and lock it.
151 * This has to cope with with the fact that until it is locked,
152 * the context could get moved to another task.
153 */
154 static struct perf_counter_context *
155 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
156 {
157 struct perf_counter_context *ctx;
158
159 rcu_read_lock();
160 retry:
161 ctx = rcu_dereference(task->perf_counter_ctxp);
162 if (ctx) {
163 /*
164 * If this context is a clone of another, it might
165 * get swapped for another underneath us by
166 * perf_counter_task_sched_out, though the
167 * rcu_read_lock() protects us from any context
168 * getting freed. Lock the context and check if it
169 * got swapped before we could get the lock, and retry
170 * if so. If we locked the right context, then it
171 * can't get swapped on us any more.
172 */
173 spin_lock_irqsave(&ctx->lock, *flags);
174 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
175 spin_unlock_irqrestore(&ctx->lock, *flags);
176 goto retry;
177 }
178
179 if (!atomic_inc_not_zero(&ctx->refcount)) {
180 spin_unlock_irqrestore(&ctx->lock, *flags);
181 ctx = NULL;
182 }
183 }
184 rcu_read_unlock();
185 return ctx;
186 }
187
188 /*
189 * Get the context for a task and increment its pin_count so it
190 * can't get swapped to another task. This also increments its
191 * reference count so that the context can't get freed.
192 */
193 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
194 {
195 struct perf_counter_context *ctx;
196 unsigned long flags;
197
198 ctx = perf_lock_task_context(task, &flags);
199 if (ctx) {
200 ++ctx->pin_count;
201 spin_unlock_irqrestore(&ctx->lock, flags);
202 }
203 return ctx;
204 }
205
206 static void perf_unpin_context(struct perf_counter_context *ctx)
207 {
208 unsigned long flags;
209
210 spin_lock_irqsave(&ctx->lock, flags);
211 --ctx->pin_count;
212 spin_unlock_irqrestore(&ctx->lock, flags);
213 put_ctx(ctx);
214 }
215
216 /*
217 * Add a counter from the lists for its context.
218 * Must be called with ctx->mutex and ctx->lock held.
219 */
220 static void
221 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
222 {
223 struct perf_counter *group_leader = counter->group_leader;
224
225 /*
226 * Depending on whether it is a standalone or sibling counter,
227 * add it straight to the context's counter list, or to the group
228 * leader's sibling list:
229 */
230 if (group_leader == counter)
231 list_add_tail(&counter->list_entry, &ctx->counter_list);
232 else {
233 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
234 group_leader->nr_siblings++;
235 }
236
237 list_add_rcu(&counter->event_entry, &ctx->event_list);
238 ctx->nr_counters++;
239 }
240
241 /*
242 * Remove a counter from the lists for its context.
243 * Must be called with ctx->mutex and ctx->lock held.
244 */
245 static void
246 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
247 {
248 struct perf_counter *sibling, *tmp;
249
250 if (list_empty(&counter->list_entry))
251 return;
252 ctx->nr_counters--;
253
254 list_del_init(&counter->list_entry);
255 list_del_rcu(&counter->event_entry);
256
257 if (counter->group_leader != counter)
258 counter->group_leader->nr_siblings--;
259
260 /*
261 * If this was a group counter with sibling counters then
262 * upgrade the siblings to singleton counters by adding them
263 * to the context list directly:
264 */
265 list_for_each_entry_safe(sibling, tmp,
266 &counter->sibling_list, list_entry) {
267
268 list_move_tail(&sibling->list_entry, &ctx->counter_list);
269 sibling->group_leader = sibling;
270 }
271 }
272
273 static void
274 counter_sched_out(struct perf_counter *counter,
275 struct perf_cpu_context *cpuctx,
276 struct perf_counter_context *ctx)
277 {
278 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
279 return;
280
281 counter->state = PERF_COUNTER_STATE_INACTIVE;
282 counter->tstamp_stopped = ctx->time;
283 counter->pmu->disable(counter);
284 counter->oncpu = -1;
285
286 if (!is_software_counter(counter))
287 cpuctx->active_oncpu--;
288 ctx->nr_active--;
289 if (counter->attr.exclusive || !cpuctx->active_oncpu)
290 cpuctx->exclusive = 0;
291 }
292
293 static void
294 group_sched_out(struct perf_counter *group_counter,
295 struct perf_cpu_context *cpuctx,
296 struct perf_counter_context *ctx)
297 {
298 struct perf_counter *counter;
299
300 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
301 return;
302
303 counter_sched_out(group_counter, cpuctx, ctx);
304
305 /*
306 * Schedule out siblings (if any):
307 */
308 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
309 counter_sched_out(counter, cpuctx, ctx);
310
311 if (group_counter->attr.exclusive)
312 cpuctx->exclusive = 0;
313 }
314
315 /*
316 * Cross CPU call to remove a performance counter
317 *
318 * We disable the counter on the hardware level first. After that we
319 * remove it from the context list.
320 */
321 static void __perf_counter_remove_from_context(void *info)
322 {
323 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
324 struct perf_counter *counter = info;
325 struct perf_counter_context *ctx = counter->ctx;
326
327 /*
328 * If this is a task context, we need to check whether it is
329 * the current task context of this cpu. If not it has been
330 * scheduled out before the smp call arrived.
331 */
332 if (ctx->task && cpuctx->task_ctx != ctx)
333 return;
334
335 spin_lock(&ctx->lock);
336 /*
337 * Protect the list operation against NMI by disabling the
338 * counters on a global level.
339 */
340 perf_disable();
341
342 counter_sched_out(counter, cpuctx, ctx);
343
344 list_del_counter(counter, ctx);
345
346 if (!ctx->task) {
347 /*
348 * Allow more per task counters with respect to the
349 * reservation:
350 */
351 cpuctx->max_pertask =
352 min(perf_max_counters - ctx->nr_counters,
353 perf_max_counters - perf_reserved_percpu);
354 }
355
356 perf_enable();
357 spin_unlock(&ctx->lock);
358 }
359
360
361 /*
362 * Remove the counter from a task's (or a CPU's) list of counters.
363 *
364 * Must be called with ctx->mutex held.
365 *
366 * CPU counters are removed with a smp call. For task counters we only
367 * call when the task is on a CPU.
368 *
369 * If counter->ctx is a cloned context, callers must make sure that
370 * every task struct that counter->ctx->task could possibly point to
371 * remains valid. This is OK when called from perf_release since
372 * that only calls us on the top-level context, which can't be a clone.
373 * When called from perf_counter_exit_task, it's OK because the
374 * context has been detached from its task.
375 */
376 static void perf_counter_remove_from_context(struct perf_counter *counter)
377 {
378 struct perf_counter_context *ctx = counter->ctx;
379 struct task_struct *task = ctx->task;
380
381 if (!task) {
382 /*
383 * Per cpu counters are removed via an smp call and
384 * the removal is always sucessful.
385 */
386 smp_call_function_single(counter->cpu,
387 __perf_counter_remove_from_context,
388 counter, 1);
389 return;
390 }
391
392 retry:
393 task_oncpu_function_call(task, __perf_counter_remove_from_context,
394 counter);
395
396 spin_lock_irq(&ctx->lock);
397 /*
398 * If the context is active we need to retry the smp call.
399 */
400 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
401 spin_unlock_irq(&ctx->lock);
402 goto retry;
403 }
404
405 /*
406 * The lock prevents that this context is scheduled in so we
407 * can remove the counter safely, if the call above did not
408 * succeed.
409 */
410 if (!list_empty(&counter->list_entry)) {
411 list_del_counter(counter, ctx);
412 }
413 spin_unlock_irq(&ctx->lock);
414 }
415
416 static inline u64 perf_clock(void)
417 {
418 return cpu_clock(smp_processor_id());
419 }
420
421 /*
422 * Update the record of the current time in a context.
423 */
424 static void update_context_time(struct perf_counter_context *ctx)
425 {
426 u64 now = perf_clock();
427
428 ctx->time += now - ctx->timestamp;
429 ctx->timestamp = now;
430 }
431
432 /*
433 * Update the total_time_enabled and total_time_running fields for a counter.
434 */
435 static void update_counter_times(struct perf_counter *counter)
436 {
437 struct perf_counter_context *ctx = counter->ctx;
438 u64 run_end;
439
440 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
441 return;
442
443 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
444
445 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
446 run_end = counter->tstamp_stopped;
447 else
448 run_end = ctx->time;
449
450 counter->total_time_running = run_end - counter->tstamp_running;
451 }
452
453 /*
454 * Update total_time_enabled and total_time_running for all counters in a group.
455 */
456 static void update_group_times(struct perf_counter *leader)
457 {
458 struct perf_counter *counter;
459
460 update_counter_times(leader);
461 list_for_each_entry(counter, &leader->sibling_list, list_entry)
462 update_counter_times(counter);
463 }
464
465 /*
466 * Cross CPU call to disable a performance counter
467 */
468 static void __perf_counter_disable(void *info)
469 {
470 struct perf_counter *counter = info;
471 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
472 struct perf_counter_context *ctx = counter->ctx;
473
474 /*
475 * If this is a per-task counter, need to check whether this
476 * counter's task is the current task on this cpu.
477 */
478 if (ctx->task && cpuctx->task_ctx != ctx)
479 return;
480
481 spin_lock(&ctx->lock);
482
483 /*
484 * If the counter is on, turn it off.
485 * If it is in error state, leave it in error state.
486 */
487 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
488 update_context_time(ctx);
489 update_counter_times(counter);
490 if (counter == counter->group_leader)
491 group_sched_out(counter, cpuctx, ctx);
492 else
493 counter_sched_out(counter, cpuctx, ctx);
494 counter->state = PERF_COUNTER_STATE_OFF;
495 }
496
497 spin_unlock(&ctx->lock);
498 }
499
500 /*
501 * Disable a counter.
502 *
503 * If counter->ctx is a cloned context, callers must make sure that
504 * every task struct that counter->ctx->task could possibly point to
505 * remains valid. This condition is satisifed when called through
506 * perf_counter_for_each_child or perf_counter_for_each because they
507 * hold the top-level counter's child_mutex, so any descendant that
508 * goes to exit will block in sync_child_counter.
509 * When called from perf_pending_counter it's OK because counter->ctx
510 * is the current context on this CPU and preemption is disabled,
511 * hence we can't get into perf_counter_task_sched_out for this context.
512 */
513 static void perf_counter_disable(struct perf_counter *counter)
514 {
515 struct perf_counter_context *ctx = counter->ctx;
516 struct task_struct *task = ctx->task;
517
518 if (!task) {
519 /*
520 * Disable the counter on the cpu that it's on
521 */
522 smp_call_function_single(counter->cpu, __perf_counter_disable,
523 counter, 1);
524 return;
525 }
526
527 retry:
528 task_oncpu_function_call(task, __perf_counter_disable, counter);
529
530 spin_lock_irq(&ctx->lock);
531 /*
532 * If the counter is still active, we need to retry the cross-call.
533 */
534 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
535 spin_unlock_irq(&ctx->lock);
536 goto retry;
537 }
538
539 /*
540 * Since we have the lock this context can't be scheduled
541 * in, so we can change the state safely.
542 */
543 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
544 update_counter_times(counter);
545 counter->state = PERF_COUNTER_STATE_OFF;
546 }
547
548 spin_unlock_irq(&ctx->lock);
549 }
550
551 static int
552 counter_sched_in(struct perf_counter *counter,
553 struct perf_cpu_context *cpuctx,
554 struct perf_counter_context *ctx,
555 int cpu)
556 {
557 if (counter->state <= PERF_COUNTER_STATE_OFF)
558 return 0;
559
560 counter->state = PERF_COUNTER_STATE_ACTIVE;
561 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
562 /*
563 * The new state must be visible before we turn it on in the hardware:
564 */
565 smp_wmb();
566
567 if (counter->pmu->enable(counter)) {
568 counter->state = PERF_COUNTER_STATE_INACTIVE;
569 counter->oncpu = -1;
570 return -EAGAIN;
571 }
572
573 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
574
575 if (!is_software_counter(counter))
576 cpuctx->active_oncpu++;
577 ctx->nr_active++;
578
579 if (counter->attr.exclusive)
580 cpuctx->exclusive = 1;
581
582 return 0;
583 }
584
585 static int
586 group_sched_in(struct perf_counter *group_counter,
587 struct perf_cpu_context *cpuctx,
588 struct perf_counter_context *ctx,
589 int cpu)
590 {
591 struct perf_counter *counter, *partial_group;
592 int ret;
593
594 if (group_counter->state == PERF_COUNTER_STATE_OFF)
595 return 0;
596
597 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
598 if (ret)
599 return ret < 0 ? ret : 0;
600
601 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
602 return -EAGAIN;
603
604 /*
605 * Schedule in siblings as one group (if any):
606 */
607 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
608 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
609 partial_group = counter;
610 goto group_error;
611 }
612 }
613
614 return 0;
615
616 group_error:
617 /*
618 * Groups can be scheduled in as one unit only, so undo any
619 * partial group before returning:
620 */
621 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
622 if (counter == partial_group)
623 break;
624 counter_sched_out(counter, cpuctx, ctx);
625 }
626 counter_sched_out(group_counter, cpuctx, ctx);
627
628 return -EAGAIN;
629 }
630
631 /*
632 * Return 1 for a group consisting entirely of software counters,
633 * 0 if the group contains any hardware counters.
634 */
635 static int is_software_only_group(struct perf_counter *leader)
636 {
637 struct perf_counter *counter;
638
639 if (!is_software_counter(leader))
640 return 0;
641
642 list_for_each_entry(counter, &leader->sibling_list, list_entry)
643 if (!is_software_counter(counter))
644 return 0;
645
646 return 1;
647 }
648
649 /*
650 * Work out whether we can put this counter group on the CPU now.
651 */
652 static int group_can_go_on(struct perf_counter *counter,
653 struct perf_cpu_context *cpuctx,
654 int can_add_hw)
655 {
656 /*
657 * Groups consisting entirely of software counters can always go on.
658 */
659 if (is_software_only_group(counter))
660 return 1;
661 /*
662 * If an exclusive group is already on, no other hardware
663 * counters can go on.
664 */
665 if (cpuctx->exclusive)
666 return 0;
667 /*
668 * If this group is exclusive and there are already
669 * counters on the CPU, it can't go on.
670 */
671 if (counter->attr.exclusive && cpuctx->active_oncpu)
672 return 0;
673 /*
674 * Otherwise, try to add it if all previous groups were able
675 * to go on.
676 */
677 return can_add_hw;
678 }
679
680 static void add_counter_to_ctx(struct perf_counter *counter,
681 struct perf_counter_context *ctx)
682 {
683 list_add_counter(counter, ctx);
684 counter->tstamp_enabled = ctx->time;
685 counter->tstamp_running = ctx->time;
686 counter->tstamp_stopped = ctx->time;
687 }
688
689 /*
690 * Cross CPU call to install and enable a performance counter
691 *
692 * Must be called with ctx->mutex held
693 */
694 static void __perf_install_in_context(void *info)
695 {
696 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
697 struct perf_counter *counter = info;
698 struct perf_counter_context *ctx = counter->ctx;
699 struct perf_counter *leader = counter->group_leader;
700 int cpu = smp_processor_id();
701 int err;
702
703 /*
704 * If this is a task context, we need to check whether it is
705 * the current task context of this cpu. If not it has been
706 * scheduled out before the smp call arrived.
707 * Or possibly this is the right context but it isn't
708 * on this cpu because it had no counters.
709 */
710 if (ctx->task && cpuctx->task_ctx != ctx) {
711 if (cpuctx->task_ctx || ctx->task != current)
712 return;
713 cpuctx->task_ctx = ctx;
714 }
715
716 spin_lock(&ctx->lock);
717 ctx->is_active = 1;
718 update_context_time(ctx);
719
720 /*
721 * Protect the list operation against NMI by disabling the
722 * counters on a global level. NOP for non NMI based counters.
723 */
724 perf_disable();
725
726 add_counter_to_ctx(counter, ctx);
727
728 /*
729 * Don't put the counter on if it is disabled or if
730 * it is in a group and the group isn't on.
731 */
732 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
733 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
734 goto unlock;
735
736 /*
737 * An exclusive counter can't go on if there are already active
738 * hardware counters, and no hardware counter can go on if there
739 * is already an exclusive counter on.
740 */
741 if (!group_can_go_on(counter, cpuctx, 1))
742 err = -EEXIST;
743 else
744 err = counter_sched_in(counter, cpuctx, ctx, cpu);
745
746 if (err) {
747 /*
748 * This counter couldn't go on. If it is in a group
749 * then we have to pull the whole group off.
750 * If the counter group is pinned then put it in error state.
751 */
752 if (leader != counter)
753 group_sched_out(leader, cpuctx, ctx);
754 if (leader->attr.pinned) {
755 update_group_times(leader);
756 leader->state = PERF_COUNTER_STATE_ERROR;
757 }
758 }
759
760 if (!err && !ctx->task && cpuctx->max_pertask)
761 cpuctx->max_pertask--;
762
763 unlock:
764 perf_enable();
765
766 spin_unlock(&ctx->lock);
767 }
768
769 /*
770 * Attach a performance counter to a context
771 *
772 * First we add the counter to the list with the hardware enable bit
773 * in counter->hw_config cleared.
774 *
775 * If the counter is attached to a task which is on a CPU we use a smp
776 * call to enable it in the task context. The task might have been
777 * scheduled away, but we check this in the smp call again.
778 *
779 * Must be called with ctx->mutex held.
780 */
781 static void
782 perf_install_in_context(struct perf_counter_context *ctx,
783 struct perf_counter *counter,
784 int cpu)
785 {
786 struct task_struct *task = ctx->task;
787
788 if (!task) {
789 /*
790 * Per cpu counters are installed via an smp call and
791 * the install is always sucessful.
792 */
793 smp_call_function_single(cpu, __perf_install_in_context,
794 counter, 1);
795 return;
796 }
797
798 retry:
799 task_oncpu_function_call(task, __perf_install_in_context,
800 counter);
801
802 spin_lock_irq(&ctx->lock);
803 /*
804 * we need to retry the smp call.
805 */
806 if (ctx->is_active && list_empty(&counter->list_entry)) {
807 spin_unlock_irq(&ctx->lock);
808 goto retry;
809 }
810
811 /*
812 * The lock prevents that this context is scheduled in so we
813 * can add the counter safely, if it the call above did not
814 * succeed.
815 */
816 if (list_empty(&counter->list_entry))
817 add_counter_to_ctx(counter, ctx);
818 spin_unlock_irq(&ctx->lock);
819 }
820
821 /*
822 * Cross CPU call to enable a performance counter
823 */
824 static void __perf_counter_enable(void *info)
825 {
826 struct perf_counter *counter = info;
827 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
828 struct perf_counter_context *ctx = counter->ctx;
829 struct perf_counter *leader = counter->group_leader;
830 int err;
831
832 /*
833 * If this is a per-task counter, need to check whether this
834 * counter's task is the current task on this cpu.
835 */
836 if (ctx->task && cpuctx->task_ctx != ctx) {
837 if (cpuctx->task_ctx || ctx->task != current)
838 return;
839 cpuctx->task_ctx = ctx;
840 }
841
842 spin_lock(&ctx->lock);
843 ctx->is_active = 1;
844 update_context_time(ctx);
845
846 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
847 goto unlock;
848 counter->state = PERF_COUNTER_STATE_INACTIVE;
849 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
850
851 /*
852 * If the counter is in a group and isn't the group leader,
853 * then don't put it on unless the group is on.
854 */
855 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
856 goto unlock;
857
858 if (!group_can_go_on(counter, cpuctx, 1)) {
859 err = -EEXIST;
860 } else {
861 perf_disable();
862 if (counter == leader)
863 err = group_sched_in(counter, cpuctx, ctx,
864 smp_processor_id());
865 else
866 err = counter_sched_in(counter, cpuctx, ctx,
867 smp_processor_id());
868 perf_enable();
869 }
870
871 if (err) {
872 /*
873 * If this counter can't go on and it's part of a
874 * group, then the whole group has to come off.
875 */
876 if (leader != counter)
877 group_sched_out(leader, cpuctx, ctx);
878 if (leader->attr.pinned) {
879 update_group_times(leader);
880 leader->state = PERF_COUNTER_STATE_ERROR;
881 }
882 }
883
884 unlock:
885 spin_unlock(&ctx->lock);
886 }
887
888 /*
889 * Enable a counter.
890 *
891 * If counter->ctx is a cloned context, callers must make sure that
892 * every task struct that counter->ctx->task could possibly point to
893 * remains valid. This condition is satisfied when called through
894 * perf_counter_for_each_child or perf_counter_for_each as described
895 * for perf_counter_disable.
896 */
897 static void perf_counter_enable(struct perf_counter *counter)
898 {
899 struct perf_counter_context *ctx = counter->ctx;
900 struct task_struct *task = ctx->task;
901
902 if (!task) {
903 /*
904 * Enable the counter on the cpu that it's on
905 */
906 smp_call_function_single(counter->cpu, __perf_counter_enable,
907 counter, 1);
908 return;
909 }
910
911 spin_lock_irq(&ctx->lock);
912 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
913 goto out;
914
915 /*
916 * If the counter is in error state, clear that first.
917 * That way, if we see the counter in error state below, we
918 * know that it has gone back into error state, as distinct
919 * from the task having been scheduled away before the
920 * cross-call arrived.
921 */
922 if (counter->state == PERF_COUNTER_STATE_ERROR)
923 counter->state = PERF_COUNTER_STATE_OFF;
924
925 retry:
926 spin_unlock_irq(&ctx->lock);
927 task_oncpu_function_call(task, __perf_counter_enable, counter);
928
929 spin_lock_irq(&ctx->lock);
930
931 /*
932 * If the context is active and the counter is still off,
933 * we need to retry the cross-call.
934 */
935 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
936 goto retry;
937
938 /*
939 * Since we have the lock this context can't be scheduled
940 * in, so we can change the state safely.
941 */
942 if (counter->state == PERF_COUNTER_STATE_OFF) {
943 counter->state = PERF_COUNTER_STATE_INACTIVE;
944 counter->tstamp_enabled =
945 ctx->time - counter->total_time_enabled;
946 }
947 out:
948 spin_unlock_irq(&ctx->lock);
949 }
950
951 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
952 {
953 /*
954 * not supported on inherited counters
955 */
956 if (counter->attr.inherit)
957 return -EINVAL;
958
959 atomic_add(refresh, &counter->event_limit);
960 perf_counter_enable(counter);
961
962 return 0;
963 }
964
965 void __perf_counter_sched_out(struct perf_counter_context *ctx,
966 struct perf_cpu_context *cpuctx)
967 {
968 struct perf_counter *counter;
969
970 spin_lock(&ctx->lock);
971 ctx->is_active = 0;
972 if (likely(!ctx->nr_counters))
973 goto out;
974 update_context_time(ctx);
975
976 perf_disable();
977 if (ctx->nr_active) {
978 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
979 if (counter != counter->group_leader)
980 counter_sched_out(counter, cpuctx, ctx);
981 else
982 group_sched_out(counter, cpuctx, ctx);
983 }
984 }
985 perf_enable();
986 out:
987 spin_unlock(&ctx->lock);
988 }
989
990 /*
991 * Test whether two contexts are equivalent, i.e. whether they
992 * have both been cloned from the same version of the same context
993 * and they both have the same number of enabled counters.
994 * If the number of enabled counters is the same, then the set
995 * of enabled counters should be the same, because these are both
996 * inherited contexts, therefore we can't access individual counters
997 * in them directly with an fd; we can only enable/disable all
998 * counters via prctl, or enable/disable all counters in a family
999 * via ioctl, which will have the same effect on both contexts.
1000 */
1001 static int context_equiv(struct perf_counter_context *ctx1,
1002 struct perf_counter_context *ctx2)
1003 {
1004 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1005 && ctx1->parent_gen == ctx2->parent_gen
1006 && !ctx1->pin_count && !ctx2->pin_count;
1007 }
1008
1009 /*
1010 * Called from scheduler to remove the counters of the current task,
1011 * with interrupts disabled.
1012 *
1013 * We stop each counter and update the counter value in counter->count.
1014 *
1015 * This does not protect us against NMI, but disable()
1016 * sets the disabled bit in the control field of counter _before_
1017 * accessing the counter control register. If a NMI hits, then it will
1018 * not restart the counter.
1019 */
1020 void perf_counter_task_sched_out(struct task_struct *task,
1021 struct task_struct *next, int cpu)
1022 {
1023 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1024 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1025 struct perf_counter_context *next_ctx;
1026 struct perf_counter_context *parent;
1027 struct pt_regs *regs;
1028 int do_switch = 1;
1029
1030 regs = task_pt_regs(task);
1031 perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1032
1033 if (likely(!ctx || !cpuctx->task_ctx))
1034 return;
1035
1036 update_context_time(ctx);
1037
1038 rcu_read_lock();
1039 parent = rcu_dereference(ctx->parent_ctx);
1040 next_ctx = next->perf_counter_ctxp;
1041 if (parent && next_ctx &&
1042 rcu_dereference(next_ctx->parent_ctx) == parent) {
1043 /*
1044 * Looks like the two contexts are clones, so we might be
1045 * able to optimize the context switch. We lock both
1046 * contexts and check that they are clones under the
1047 * lock (including re-checking that neither has been
1048 * uncloned in the meantime). It doesn't matter which
1049 * order we take the locks because no other cpu could
1050 * be trying to lock both of these tasks.
1051 */
1052 spin_lock(&ctx->lock);
1053 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1054 if (context_equiv(ctx, next_ctx)) {
1055 /*
1056 * XXX do we need a memory barrier of sorts
1057 * wrt to rcu_dereference() of perf_counter_ctxp
1058 */
1059 task->perf_counter_ctxp = next_ctx;
1060 next->perf_counter_ctxp = ctx;
1061 ctx->task = next;
1062 next_ctx->task = task;
1063 do_switch = 0;
1064 }
1065 spin_unlock(&next_ctx->lock);
1066 spin_unlock(&ctx->lock);
1067 }
1068 rcu_read_unlock();
1069
1070 if (do_switch) {
1071 __perf_counter_sched_out(ctx, cpuctx);
1072 cpuctx->task_ctx = NULL;
1073 }
1074 }
1075
1076 /*
1077 * Called with IRQs disabled
1078 */
1079 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1080 {
1081 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1082
1083 if (!cpuctx->task_ctx)
1084 return;
1085
1086 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1087 return;
1088
1089 __perf_counter_sched_out(ctx, cpuctx);
1090 cpuctx->task_ctx = NULL;
1091 }
1092
1093 /*
1094 * Called with IRQs disabled
1095 */
1096 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1097 {
1098 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1099 }
1100
1101 static void
1102 __perf_counter_sched_in(struct perf_counter_context *ctx,
1103 struct perf_cpu_context *cpuctx, int cpu)
1104 {
1105 struct perf_counter *counter;
1106 int can_add_hw = 1;
1107
1108 spin_lock(&ctx->lock);
1109 ctx->is_active = 1;
1110 if (likely(!ctx->nr_counters))
1111 goto out;
1112
1113 ctx->timestamp = perf_clock();
1114
1115 perf_disable();
1116
1117 /*
1118 * First go through the list and put on any pinned groups
1119 * in order to give them the best chance of going on.
1120 */
1121 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1122 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1123 !counter->attr.pinned)
1124 continue;
1125 if (counter->cpu != -1 && counter->cpu != cpu)
1126 continue;
1127
1128 if (counter != counter->group_leader)
1129 counter_sched_in(counter, cpuctx, ctx, cpu);
1130 else {
1131 if (group_can_go_on(counter, cpuctx, 1))
1132 group_sched_in(counter, cpuctx, ctx, cpu);
1133 }
1134
1135 /*
1136 * If this pinned group hasn't been scheduled,
1137 * put it in error state.
1138 */
1139 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1140 update_group_times(counter);
1141 counter->state = PERF_COUNTER_STATE_ERROR;
1142 }
1143 }
1144
1145 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1146 /*
1147 * Ignore counters in OFF or ERROR state, and
1148 * ignore pinned counters since we did them already.
1149 */
1150 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1151 counter->attr.pinned)
1152 continue;
1153
1154 /*
1155 * Listen to the 'cpu' scheduling filter constraint
1156 * of counters:
1157 */
1158 if (counter->cpu != -1 && counter->cpu != cpu)
1159 continue;
1160
1161 if (counter != counter->group_leader) {
1162 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1163 can_add_hw = 0;
1164 } else {
1165 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1166 if (group_sched_in(counter, cpuctx, ctx, cpu))
1167 can_add_hw = 0;
1168 }
1169 }
1170 }
1171 perf_enable();
1172 out:
1173 spin_unlock(&ctx->lock);
1174 }
1175
1176 /*
1177 * Called from scheduler to add the counters of the current task
1178 * with interrupts disabled.
1179 *
1180 * We restore the counter value and then enable it.
1181 *
1182 * This does not protect us against NMI, but enable()
1183 * sets the enabled bit in the control field of counter _before_
1184 * accessing the counter control register. If a NMI hits, then it will
1185 * keep the counter running.
1186 */
1187 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1188 {
1189 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1190 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1191
1192 if (likely(!ctx))
1193 return;
1194 if (cpuctx->task_ctx == ctx)
1195 return;
1196 __perf_counter_sched_in(ctx, cpuctx, cpu);
1197 cpuctx->task_ctx = ctx;
1198 }
1199
1200 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1201 {
1202 struct perf_counter_context *ctx = &cpuctx->ctx;
1203
1204 __perf_counter_sched_in(ctx, cpuctx, cpu);
1205 }
1206
1207 #define MAX_INTERRUPTS (~0ULL)
1208
1209 static void perf_log_throttle(struct perf_counter *counter, int enable);
1210 static void perf_log_period(struct perf_counter *counter, u64 period);
1211
1212 static void perf_adjust_period(struct perf_counter *counter, u64 events)
1213 {
1214 struct hw_perf_counter *hwc = &counter->hw;
1215 u64 period, sample_period;
1216 s64 delta;
1217
1218 events *= hwc->sample_period;
1219 period = div64_u64(events, counter->attr.sample_freq);
1220
1221 delta = (s64)(period - hwc->sample_period);
1222 delta = (delta + 7) / 8; /* low pass filter */
1223
1224 sample_period = hwc->sample_period + delta;
1225
1226 if (!sample_period)
1227 sample_period = 1;
1228
1229 perf_log_period(counter, sample_period);
1230
1231 hwc->sample_period = sample_period;
1232 }
1233
1234 static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1235 {
1236 struct perf_counter *counter;
1237 struct hw_perf_counter *hwc;
1238 u64 interrupts, freq;
1239
1240 spin_lock(&ctx->lock);
1241 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1242 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1243 continue;
1244
1245 hwc = &counter->hw;
1246
1247 interrupts = hwc->interrupts;
1248 hwc->interrupts = 0;
1249
1250 /*
1251 * unthrottle counters on the tick
1252 */
1253 if (interrupts == MAX_INTERRUPTS) {
1254 perf_log_throttle(counter, 1);
1255 counter->pmu->unthrottle(counter);
1256 interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1257 }
1258
1259 if (!counter->attr.freq || !counter->attr.sample_freq)
1260 continue;
1261
1262 /*
1263 * if the specified freq < HZ then we need to skip ticks
1264 */
1265 if (counter->attr.sample_freq < HZ) {
1266 freq = counter->attr.sample_freq;
1267
1268 hwc->freq_count += freq;
1269 hwc->freq_interrupts += interrupts;
1270
1271 if (hwc->freq_count < HZ)
1272 continue;
1273
1274 interrupts = hwc->freq_interrupts;
1275 hwc->freq_interrupts = 0;
1276 hwc->freq_count -= HZ;
1277 } else
1278 freq = HZ;
1279
1280 perf_adjust_period(counter, freq * interrupts);
1281
1282 /*
1283 * In order to avoid being stalled by an (accidental) huge
1284 * sample period, force reset the sample period if we didn't
1285 * get any events in this freq period.
1286 */
1287 if (!interrupts) {
1288 perf_disable();
1289 counter->pmu->disable(counter);
1290 atomic64_set(&hwc->period_left, 0);
1291 counter->pmu->enable(counter);
1292 perf_enable();
1293 }
1294 }
1295 spin_unlock(&ctx->lock);
1296 }
1297
1298 /*
1299 * Round-robin a context's counters:
1300 */
1301 static void rotate_ctx(struct perf_counter_context *ctx)
1302 {
1303 struct perf_counter *counter;
1304
1305 if (!ctx->nr_counters)
1306 return;
1307
1308 spin_lock(&ctx->lock);
1309 /*
1310 * Rotate the first entry last (works just fine for group counters too):
1311 */
1312 perf_disable();
1313 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1314 list_move_tail(&counter->list_entry, &ctx->counter_list);
1315 break;
1316 }
1317 perf_enable();
1318
1319 spin_unlock(&ctx->lock);
1320 }
1321
1322 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1323 {
1324 struct perf_cpu_context *cpuctx;
1325 struct perf_counter_context *ctx;
1326
1327 if (!atomic_read(&nr_counters))
1328 return;
1329
1330 cpuctx = &per_cpu(perf_cpu_context, cpu);
1331 ctx = curr->perf_counter_ctxp;
1332
1333 perf_ctx_adjust_freq(&cpuctx->ctx);
1334 if (ctx)
1335 perf_ctx_adjust_freq(ctx);
1336
1337 perf_counter_cpu_sched_out(cpuctx);
1338 if (ctx)
1339 __perf_counter_task_sched_out(ctx);
1340
1341 rotate_ctx(&cpuctx->ctx);
1342 if (ctx)
1343 rotate_ctx(ctx);
1344
1345 perf_counter_cpu_sched_in(cpuctx, cpu);
1346 if (ctx)
1347 perf_counter_task_sched_in(curr, cpu);
1348 }
1349
1350 /*
1351 * Cross CPU call to read the hardware counter
1352 */
1353 static void __read(void *info)
1354 {
1355 struct perf_counter *counter = info;
1356 struct perf_counter_context *ctx = counter->ctx;
1357 unsigned long flags;
1358
1359 local_irq_save(flags);
1360 if (ctx->is_active)
1361 update_context_time(ctx);
1362 counter->pmu->read(counter);
1363 update_counter_times(counter);
1364 local_irq_restore(flags);
1365 }
1366
1367 static u64 perf_counter_read(struct perf_counter *counter)
1368 {
1369 /*
1370 * If counter is enabled and currently active on a CPU, update the
1371 * value in the counter structure:
1372 */
1373 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1374 smp_call_function_single(counter->oncpu,
1375 __read, counter, 1);
1376 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1377 update_counter_times(counter);
1378 }
1379
1380 return atomic64_read(&counter->count);
1381 }
1382
1383 /*
1384 * Initialize the perf_counter context in a task_struct:
1385 */
1386 static void
1387 __perf_counter_init_context(struct perf_counter_context *ctx,
1388 struct task_struct *task)
1389 {
1390 memset(ctx, 0, sizeof(*ctx));
1391 spin_lock_init(&ctx->lock);
1392 mutex_init(&ctx->mutex);
1393 INIT_LIST_HEAD(&ctx->counter_list);
1394 INIT_LIST_HEAD(&ctx->event_list);
1395 atomic_set(&ctx->refcount, 1);
1396 ctx->task = task;
1397 }
1398
1399 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1400 {
1401 struct perf_counter_context *parent_ctx;
1402 struct perf_counter_context *ctx;
1403 struct perf_cpu_context *cpuctx;
1404 struct task_struct *task;
1405 unsigned long flags;
1406 int err;
1407
1408 /*
1409 * If cpu is not a wildcard then this is a percpu counter:
1410 */
1411 if (cpu != -1) {
1412 /* Must be root to operate on a CPU counter: */
1413 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1414 return ERR_PTR(-EACCES);
1415
1416 if (cpu < 0 || cpu > num_possible_cpus())
1417 return ERR_PTR(-EINVAL);
1418
1419 /*
1420 * We could be clever and allow to attach a counter to an
1421 * offline CPU and activate it when the CPU comes up, but
1422 * that's for later.
1423 */
1424 if (!cpu_isset(cpu, cpu_online_map))
1425 return ERR_PTR(-ENODEV);
1426
1427 cpuctx = &per_cpu(perf_cpu_context, cpu);
1428 ctx = &cpuctx->ctx;
1429 get_ctx(ctx);
1430
1431 return ctx;
1432 }
1433
1434 rcu_read_lock();
1435 if (!pid)
1436 task = current;
1437 else
1438 task = find_task_by_vpid(pid);
1439 if (task)
1440 get_task_struct(task);
1441 rcu_read_unlock();
1442
1443 if (!task)
1444 return ERR_PTR(-ESRCH);
1445
1446 /*
1447 * Can't attach counters to a dying task.
1448 */
1449 err = -ESRCH;
1450 if (task->flags & PF_EXITING)
1451 goto errout;
1452
1453 /* Reuse ptrace permission checks for now. */
1454 err = -EACCES;
1455 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1456 goto errout;
1457
1458 retry:
1459 ctx = perf_lock_task_context(task, &flags);
1460 if (ctx) {
1461 parent_ctx = ctx->parent_ctx;
1462 if (parent_ctx) {
1463 put_ctx(parent_ctx);
1464 ctx->parent_ctx = NULL; /* no longer a clone */
1465 }
1466 spin_unlock_irqrestore(&ctx->lock, flags);
1467 }
1468
1469 if (!ctx) {
1470 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1471 err = -ENOMEM;
1472 if (!ctx)
1473 goto errout;
1474 __perf_counter_init_context(ctx, task);
1475 get_ctx(ctx);
1476 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1477 /*
1478 * We raced with some other task; use
1479 * the context they set.
1480 */
1481 kfree(ctx);
1482 goto retry;
1483 }
1484 get_task_struct(task);
1485 }
1486
1487 put_task_struct(task);
1488 return ctx;
1489
1490 errout:
1491 put_task_struct(task);
1492 return ERR_PTR(err);
1493 }
1494
1495 static void free_counter_rcu(struct rcu_head *head)
1496 {
1497 struct perf_counter *counter;
1498
1499 counter = container_of(head, struct perf_counter, rcu_head);
1500 if (counter->ns)
1501 put_pid_ns(counter->ns);
1502 kfree(counter);
1503 }
1504
1505 static void perf_pending_sync(struct perf_counter *counter);
1506
1507 static void free_counter(struct perf_counter *counter)
1508 {
1509 perf_pending_sync(counter);
1510
1511 atomic_dec(&nr_counters);
1512 if (counter->attr.mmap)
1513 atomic_dec(&nr_mmap_counters);
1514 if (counter->attr.comm)
1515 atomic_dec(&nr_comm_counters);
1516
1517 if (counter->destroy)
1518 counter->destroy(counter);
1519
1520 put_ctx(counter->ctx);
1521 call_rcu(&counter->rcu_head, free_counter_rcu);
1522 }
1523
1524 /*
1525 * Called when the last reference to the file is gone.
1526 */
1527 static int perf_release(struct inode *inode, struct file *file)
1528 {
1529 struct perf_counter *counter = file->private_data;
1530 struct perf_counter_context *ctx = counter->ctx;
1531
1532 file->private_data = NULL;
1533
1534 WARN_ON_ONCE(ctx->parent_ctx);
1535 mutex_lock(&ctx->mutex);
1536 perf_counter_remove_from_context(counter);
1537 mutex_unlock(&ctx->mutex);
1538
1539 mutex_lock(&counter->owner->perf_counter_mutex);
1540 list_del_init(&counter->owner_entry);
1541 mutex_unlock(&counter->owner->perf_counter_mutex);
1542 put_task_struct(counter->owner);
1543
1544 free_counter(counter);
1545
1546 return 0;
1547 }
1548
1549 /*
1550 * Read the performance counter - simple non blocking version for now
1551 */
1552 static ssize_t
1553 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1554 {
1555 u64 values[4];
1556 int n;
1557
1558 /*
1559 * Return end-of-file for a read on a counter that is in
1560 * error state (i.e. because it was pinned but it couldn't be
1561 * scheduled on to the CPU at some point).
1562 */
1563 if (counter->state == PERF_COUNTER_STATE_ERROR)
1564 return 0;
1565
1566 WARN_ON_ONCE(counter->ctx->parent_ctx);
1567 mutex_lock(&counter->child_mutex);
1568 values[0] = perf_counter_read(counter);
1569 n = 1;
1570 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1571 values[n++] = counter->total_time_enabled +
1572 atomic64_read(&counter->child_total_time_enabled);
1573 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1574 values[n++] = counter->total_time_running +
1575 atomic64_read(&counter->child_total_time_running);
1576 if (counter->attr.read_format & PERF_FORMAT_ID)
1577 values[n++] = counter->id;
1578 mutex_unlock(&counter->child_mutex);
1579
1580 if (count < n * sizeof(u64))
1581 return -EINVAL;
1582 count = n * sizeof(u64);
1583
1584 if (copy_to_user(buf, values, count))
1585 return -EFAULT;
1586
1587 return count;
1588 }
1589
1590 static ssize_t
1591 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1592 {
1593 struct perf_counter *counter = file->private_data;
1594
1595 return perf_read_hw(counter, buf, count);
1596 }
1597
1598 static unsigned int perf_poll(struct file *file, poll_table *wait)
1599 {
1600 struct perf_counter *counter = file->private_data;
1601 struct perf_mmap_data *data;
1602 unsigned int events = POLL_HUP;
1603
1604 rcu_read_lock();
1605 data = rcu_dereference(counter->data);
1606 if (data)
1607 events = atomic_xchg(&data->poll, 0);
1608 rcu_read_unlock();
1609
1610 poll_wait(file, &counter->waitq, wait);
1611
1612 return events;
1613 }
1614
1615 static void perf_counter_reset(struct perf_counter *counter)
1616 {
1617 (void)perf_counter_read(counter);
1618 atomic64_set(&counter->count, 0);
1619 perf_counter_update_userpage(counter);
1620 }
1621
1622 /*
1623 * Holding the top-level counter's child_mutex means that any
1624 * descendant process that has inherited this counter will block
1625 * in sync_child_counter if it goes to exit, thus satisfying the
1626 * task existence requirements of perf_counter_enable/disable.
1627 */
1628 static void perf_counter_for_each_child(struct perf_counter *counter,
1629 void (*func)(struct perf_counter *))
1630 {
1631 struct perf_counter *child;
1632
1633 WARN_ON_ONCE(counter->ctx->parent_ctx);
1634 mutex_lock(&counter->child_mutex);
1635 func(counter);
1636 list_for_each_entry(child, &counter->child_list, child_list)
1637 func(child);
1638 mutex_unlock(&counter->child_mutex);
1639 }
1640
1641 static void perf_counter_for_each(struct perf_counter *counter,
1642 void (*func)(struct perf_counter *))
1643 {
1644 struct perf_counter_context *ctx = counter->ctx;
1645 struct perf_counter *sibling;
1646
1647 WARN_ON_ONCE(ctx->parent_ctx);
1648 mutex_lock(&ctx->mutex);
1649 counter = counter->group_leader;
1650
1651 perf_counter_for_each_child(counter, func);
1652 func(counter);
1653 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1654 perf_counter_for_each_child(counter, func);
1655 mutex_unlock(&ctx->mutex);
1656 }
1657
1658 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1659 {
1660 struct perf_counter_context *ctx = counter->ctx;
1661 unsigned long size;
1662 int ret = 0;
1663 u64 value;
1664
1665 if (!counter->attr.sample_period)
1666 return -EINVAL;
1667
1668 size = copy_from_user(&value, arg, sizeof(value));
1669 if (size != sizeof(value))
1670 return -EFAULT;
1671
1672 if (!value)
1673 return -EINVAL;
1674
1675 spin_lock_irq(&ctx->lock);
1676 if (counter->attr.freq) {
1677 if (value > sysctl_perf_counter_sample_rate) {
1678 ret = -EINVAL;
1679 goto unlock;
1680 }
1681
1682 counter->attr.sample_freq = value;
1683 } else {
1684 perf_log_period(counter, value);
1685
1686 counter->attr.sample_period = value;
1687 counter->hw.sample_period = value;
1688 }
1689 unlock:
1690 spin_unlock_irq(&ctx->lock);
1691
1692 return ret;
1693 }
1694
1695 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1696 {
1697 struct perf_counter *counter = file->private_data;
1698 void (*func)(struct perf_counter *);
1699 u32 flags = arg;
1700
1701 switch (cmd) {
1702 case PERF_COUNTER_IOC_ENABLE:
1703 func = perf_counter_enable;
1704 break;
1705 case PERF_COUNTER_IOC_DISABLE:
1706 func = perf_counter_disable;
1707 break;
1708 case PERF_COUNTER_IOC_RESET:
1709 func = perf_counter_reset;
1710 break;
1711
1712 case PERF_COUNTER_IOC_REFRESH:
1713 return perf_counter_refresh(counter, arg);
1714
1715 case PERF_COUNTER_IOC_PERIOD:
1716 return perf_counter_period(counter, (u64 __user *)arg);
1717
1718 default:
1719 return -ENOTTY;
1720 }
1721
1722 if (flags & PERF_IOC_FLAG_GROUP)
1723 perf_counter_for_each(counter, func);
1724 else
1725 perf_counter_for_each_child(counter, func);
1726
1727 return 0;
1728 }
1729
1730 int perf_counter_task_enable(void)
1731 {
1732 struct perf_counter *counter;
1733
1734 mutex_lock(&current->perf_counter_mutex);
1735 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1736 perf_counter_for_each_child(counter, perf_counter_enable);
1737 mutex_unlock(&current->perf_counter_mutex);
1738
1739 return 0;
1740 }
1741
1742 int perf_counter_task_disable(void)
1743 {
1744 struct perf_counter *counter;
1745
1746 mutex_lock(&current->perf_counter_mutex);
1747 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1748 perf_counter_for_each_child(counter, perf_counter_disable);
1749 mutex_unlock(&current->perf_counter_mutex);
1750
1751 return 0;
1752 }
1753
1754 /*
1755 * Callers need to ensure there can be no nesting of this function, otherwise
1756 * the seqlock logic goes bad. We can not serialize this because the arch
1757 * code calls this from NMI context.
1758 */
1759 void perf_counter_update_userpage(struct perf_counter *counter)
1760 {
1761 struct perf_counter_mmap_page *userpg;
1762 struct perf_mmap_data *data;
1763
1764 rcu_read_lock();
1765 data = rcu_dereference(counter->data);
1766 if (!data)
1767 goto unlock;
1768
1769 userpg = data->user_page;
1770
1771 /*
1772 * Disable preemption so as to not let the corresponding user-space
1773 * spin too long if we get preempted.
1774 */
1775 preempt_disable();
1776 ++userpg->lock;
1777 barrier();
1778 userpg->index = counter->hw.idx;
1779 userpg->offset = atomic64_read(&counter->count);
1780 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1781 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1782
1783 barrier();
1784 ++userpg->lock;
1785 preempt_enable();
1786 unlock:
1787 rcu_read_unlock();
1788 }
1789
1790 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1791 {
1792 struct perf_counter *counter = vma->vm_file->private_data;
1793 struct perf_mmap_data *data;
1794 int ret = VM_FAULT_SIGBUS;
1795
1796 if (vmf->flags & FAULT_FLAG_MKWRITE) {
1797 if (vmf->pgoff == 0)
1798 ret = 0;
1799 return ret;
1800 }
1801
1802 rcu_read_lock();
1803 data = rcu_dereference(counter->data);
1804 if (!data)
1805 goto unlock;
1806
1807 if (vmf->pgoff == 0) {
1808 vmf->page = virt_to_page(data->user_page);
1809 } else {
1810 int nr = vmf->pgoff - 1;
1811
1812 if ((unsigned)nr > data->nr_pages)
1813 goto unlock;
1814
1815 if (vmf->flags & FAULT_FLAG_WRITE)
1816 goto unlock;
1817
1818 vmf->page = virt_to_page(data->data_pages[nr]);
1819 }
1820
1821 get_page(vmf->page);
1822 vmf->page->mapping = vma->vm_file->f_mapping;
1823 vmf->page->index = vmf->pgoff;
1824
1825 ret = 0;
1826 unlock:
1827 rcu_read_unlock();
1828
1829 return ret;
1830 }
1831
1832 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1833 {
1834 struct perf_mmap_data *data;
1835 unsigned long size;
1836 int i;
1837
1838 WARN_ON(atomic_read(&counter->mmap_count));
1839
1840 size = sizeof(struct perf_mmap_data);
1841 size += nr_pages * sizeof(void *);
1842
1843 data = kzalloc(size, GFP_KERNEL);
1844 if (!data)
1845 goto fail;
1846
1847 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1848 if (!data->user_page)
1849 goto fail_user_page;
1850
1851 for (i = 0; i < nr_pages; i++) {
1852 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1853 if (!data->data_pages[i])
1854 goto fail_data_pages;
1855 }
1856
1857 data->nr_pages = nr_pages;
1858 atomic_set(&data->lock, -1);
1859
1860 rcu_assign_pointer(counter->data, data);
1861
1862 return 0;
1863
1864 fail_data_pages:
1865 for (i--; i >= 0; i--)
1866 free_page((unsigned long)data->data_pages[i]);
1867
1868 free_page((unsigned long)data->user_page);
1869
1870 fail_user_page:
1871 kfree(data);
1872
1873 fail:
1874 return -ENOMEM;
1875 }
1876
1877 static void perf_mmap_free_page(unsigned long addr)
1878 {
1879 struct page *page = virt_to_page(addr);
1880
1881 page->mapping = NULL;
1882 __free_page(page);
1883 }
1884
1885 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1886 {
1887 struct perf_mmap_data *data;
1888 int i;
1889
1890 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
1891
1892 perf_mmap_free_page((unsigned long)data->user_page);
1893 for (i = 0; i < data->nr_pages; i++)
1894 perf_mmap_free_page((unsigned long)data->data_pages[i]);
1895
1896 kfree(data);
1897 }
1898
1899 static void perf_mmap_data_free(struct perf_counter *counter)
1900 {
1901 struct perf_mmap_data *data = counter->data;
1902
1903 WARN_ON(atomic_read(&counter->mmap_count));
1904
1905 rcu_assign_pointer(counter->data, NULL);
1906 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1907 }
1908
1909 static void perf_mmap_open(struct vm_area_struct *vma)
1910 {
1911 struct perf_counter *counter = vma->vm_file->private_data;
1912
1913 atomic_inc(&counter->mmap_count);
1914 }
1915
1916 static void perf_mmap_close(struct vm_area_struct *vma)
1917 {
1918 struct perf_counter *counter = vma->vm_file->private_data;
1919
1920 WARN_ON_ONCE(counter->ctx->parent_ctx);
1921 if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
1922 struct user_struct *user = current_user();
1923
1924 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1925 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1926 perf_mmap_data_free(counter);
1927 mutex_unlock(&counter->mmap_mutex);
1928 }
1929 }
1930
1931 static struct vm_operations_struct perf_mmap_vmops = {
1932 .open = perf_mmap_open,
1933 .close = perf_mmap_close,
1934 .fault = perf_mmap_fault,
1935 .page_mkwrite = perf_mmap_fault,
1936 };
1937
1938 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1939 {
1940 struct perf_counter *counter = file->private_data;
1941 unsigned long user_locked, user_lock_limit;
1942 struct user_struct *user = current_user();
1943 unsigned long locked, lock_limit;
1944 unsigned long vma_size;
1945 unsigned long nr_pages;
1946 long user_extra, extra;
1947 int ret = 0;
1948
1949 if (!(vma->vm_flags & VM_SHARED))
1950 return -EINVAL;
1951
1952 vma_size = vma->vm_end - vma->vm_start;
1953 nr_pages = (vma_size / PAGE_SIZE) - 1;
1954
1955 /*
1956 * If we have data pages ensure they're a power-of-two number, so we
1957 * can do bitmasks instead of modulo.
1958 */
1959 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1960 return -EINVAL;
1961
1962 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1963 return -EINVAL;
1964
1965 if (vma->vm_pgoff != 0)
1966 return -EINVAL;
1967
1968 WARN_ON_ONCE(counter->ctx->parent_ctx);
1969 mutex_lock(&counter->mmap_mutex);
1970 if (atomic_inc_not_zero(&counter->mmap_count)) {
1971 if (nr_pages != counter->data->nr_pages)
1972 ret = -EINVAL;
1973 goto unlock;
1974 }
1975
1976 user_extra = nr_pages + 1;
1977 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1978
1979 /*
1980 * Increase the limit linearly with more CPUs:
1981 */
1982 user_lock_limit *= num_online_cpus();
1983
1984 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1985
1986 extra = 0;
1987 if (user_locked > user_lock_limit)
1988 extra = user_locked - user_lock_limit;
1989
1990 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1991 lock_limit >>= PAGE_SHIFT;
1992 locked = vma->vm_mm->locked_vm + extra;
1993
1994 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1995 ret = -EPERM;
1996 goto unlock;
1997 }
1998
1999 WARN_ON(counter->data);
2000 ret = perf_mmap_data_alloc(counter, nr_pages);
2001 if (ret)
2002 goto unlock;
2003
2004 atomic_set(&counter->mmap_count, 1);
2005 atomic_long_add(user_extra, &user->locked_vm);
2006 vma->vm_mm->locked_vm += extra;
2007 counter->data->nr_locked = extra;
2008 if (vma->vm_flags & VM_WRITE)
2009 counter->data->writable = 1;
2010
2011 unlock:
2012 mutex_unlock(&counter->mmap_mutex);
2013
2014 vma->vm_flags |= VM_RESERVED;
2015 vma->vm_ops = &perf_mmap_vmops;
2016
2017 return ret;
2018 }
2019
2020 static int perf_fasync(int fd, struct file *filp, int on)
2021 {
2022 struct inode *inode = filp->f_path.dentry->d_inode;
2023 struct perf_counter *counter = filp->private_data;
2024 int retval;
2025
2026 mutex_lock(&inode->i_mutex);
2027 retval = fasync_helper(fd, filp, on, &counter->fasync);
2028 mutex_unlock(&inode->i_mutex);
2029
2030 if (retval < 0)
2031 return retval;
2032
2033 return 0;
2034 }
2035
2036 static const struct file_operations perf_fops = {
2037 .release = perf_release,
2038 .read = perf_read,
2039 .poll = perf_poll,
2040 .unlocked_ioctl = perf_ioctl,
2041 .compat_ioctl = perf_ioctl,
2042 .mmap = perf_mmap,
2043 .fasync = perf_fasync,
2044 };
2045
2046 /*
2047 * Perf counter wakeup
2048 *
2049 * If there's data, ensure we set the poll() state and publish everything
2050 * to user-space before waking everybody up.
2051 */
2052
2053 void perf_counter_wakeup(struct perf_counter *counter)
2054 {
2055 wake_up_all(&counter->waitq);
2056
2057 if (counter->pending_kill) {
2058 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
2059 counter->pending_kill = 0;
2060 }
2061 }
2062
2063 /*
2064 * Pending wakeups
2065 *
2066 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2067 *
2068 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2069 * single linked list and use cmpxchg() to add entries lockless.
2070 */
2071
2072 static void perf_pending_counter(struct perf_pending_entry *entry)
2073 {
2074 struct perf_counter *counter = container_of(entry,
2075 struct perf_counter, pending);
2076
2077 if (counter->pending_disable) {
2078 counter->pending_disable = 0;
2079 perf_counter_disable(counter);
2080 }
2081
2082 if (counter->pending_wakeup) {
2083 counter->pending_wakeup = 0;
2084 perf_counter_wakeup(counter);
2085 }
2086 }
2087
2088 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2089
2090 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2091 PENDING_TAIL,
2092 };
2093
2094 static void perf_pending_queue(struct perf_pending_entry *entry,
2095 void (*func)(struct perf_pending_entry *))
2096 {
2097 struct perf_pending_entry **head;
2098
2099 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2100 return;
2101
2102 entry->func = func;
2103
2104 head = &get_cpu_var(perf_pending_head);
2105
2106 do {
2107 entry->next = *head;
2108 } while (cmpxchg(head, entry->next, entry) != entry->next);
2109
2110 set_perf_counter_pending();
2111
2112 put_cpu_var(perf_pending_head);
2113 }
2114
2115 static int __perf_pending_run(void)
2116 {
2117 struct perf_pending_entry *list;
2118 int nr = 0;
2119
2120 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2121 while (list != PENDING_TAIL) {
2122 void (*func)(struct perf_pending_entry *);
2123 struct perf_pending_entry *entry = list;
2124
2125 list = list->next;
2126
2127 func = entry->func;
2128 entry->next = NULL;
2129 /*
2130 * Ensure we observe the unqueue before we issue the wakeup,
2131 * so that we won't be waiting forever.
2132 * -- see perf_not_pending().
2133 */
2134 smp_wmb();
2135
2136 func(entry);
2137 nr++;
2138 }
2139
2140 return nr;
2141 }
2142
2143 static inline int perf_not_pending(struct perf_counter *counter)
2144 {
2145 /*
2146 * If we flush on whatever cpu we run, there is a chance we don't
2147 * need to wait.
2148 */
2149 get_cpu();
2150 __perf_pending_run();
2151 put_cpu();
2152
2153 /*
2154 * Ensure we see the proper queue state before going to sleep
2155 * so that we do not miss the wakeup. -- see perf_pending_handle()
2156 */
2157 smp_rmb();
2158 return counter->pending.next == NULL;
2159 }
2160
2161 static void perf_pending_sync(struct perf_counter *counter)
2162 {
2163 wait_event(counter->waitq, perf_not_pending(counter));
2164 }
2165
2166 void perf_counter_do_pending(void)
2167 {
2168 __perf_pending_run();
2169 }
2170
2171 /*
2172 * Callchain support -- arch specific
2173 */
2174
2175 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2176 {
2177 return NULL;
2178 }
2179
2180 /*
2181 * Output
2182 */
2183
2184 struct perf_output_handle {
2185 struct perf_counter *counter;
2186 struct perf_mmap_data *data;
2187 unsigned long head;
2188 unsigned long offset;
2189 int nmi;
2190 int sample;
2191 int locked;
2192 unsigned long flags;
2193 };
2194
2195 static bool perf_output_space(struct perf_mmap_data *data,
2196 unsigned int offset, unsigned int head)
2197 {
2198 unsigned long tail;
2199 unsigned long mask;
2200
2201 if (!data->writable)
2202 return true;
2203
2204 mask = (data->nr_pages << PAGE_SHIFT) - 1;
2205 /*
2206 * Userspace could choose to issue a mb() before updating the tail
2207 * pointer. So that all reads will be completed before the write is
2208 * issued.
2209 */
2210 tail = ACCESS_ONCE(data->user_page->data_tail);
2211 smp_rmb();
2212
2213 offset = (offset - tail) & mask;
2214 head = (head - tail) & mask;
2215
2216 if ((int)(head - offset) < 0)
2217 return false;
2218
2219 return true;
2220 }
2221
2222 static void perf_output_wakeup(struct perf_output_handle *handle)
2223 {
2224 atomic_set(&handle->data->poll, POLL_IN);
2225
2226 if (handle->nmi) {
2227 handle->counter->pending_wakeup = 1;
2228 perf_pending_queue(&handle->counter->pending,
2229 perf_pending_counter);
2230 } else
2231 perf_counter_wakeup(handle->counter);
2232 }
2233
2234 /*
2235 * Curious locking construct.
2236 *
2237 * We need to ensure a later event doesn't publish a head when a former
2238 * event isn't done writing. However since we need to deal with NMIs we
2239 * cannot fully serialize things.
2240 *
2241 * What we do is serialize between CPUs so we only have to deal with NMI
2242 * nesting on a single CPU.
2243 *
2244 * We only publish the head (and generate a wakeup) when the outer-most
2245 * event completes.
2246 */
2247 static void perf_output_lock(struct perf_output_handle *handle)
2248 {
2249 struct perf_mmap_data *data = handle->data;
2250 int cpu;
2251
2252 handle->locked = 0;
2253
2254 local_irq_save(handle->flags);
2255 cpu = smp_processor_id();
2256
2257 if (in_nmi() && atomic_read(&data->lock) == cpu)
2258 return;
2259
2260 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2261 cpu_relax();
2262
2263 handle->locked = 1;
2264 }
2265
2266 static void perf_output_unlock(struct perf_output_handle *handle)
2267 {
2268 struct perf_mmap_data *data = handle->data;
2269 unsigned long head;
2270 int cpu;
2271
2272 data->done_head = data->head;
2273
2274 if (!handle->locked)
2275 goto out;
2276
2277 again:
2278 /*
2279 * The xchg implies a full barrier that ensures all writes are done
2280 * before we publish the new head, matched by a rmb() in userspace when
2281 * reading this position.
2282 */
2283 while ((head = atomic_long_xchg(&data->done_head, 0)))
2284 data->user_page->data_head = head;
2285
2286 /*
2287 * NMI can happen here, which means we can miss a done_head update.
2288 */
2289
2290 cpu = atomic_xchg(&data->lock, -1);
2291 WARN_ON_ONCE(cpu != smp_processor_id());
2292
2293 /*
2294 * Therefore we have to validate we did not indeed do so.
2295 */
2296 if (unlikely(atomic_long_read(&data->done_head))) {
2297 /*
2298 * Since we had it locked, we can lock it again.
2299 */
2300 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2301 cpu_relax();
2302
2303 goto again;
2304 }
2305
2306 if (atomic_xchg(&data->wakeup, 0))
2307 perf_output_wakeup(handle);
2308 out:
2309 local_irq_restore(handle->flags);
2310 }
2311
2312 static void perf_output_copy(struct perf_output_handle *handle,
2313 const void *buf, unsigned int len)
2314 {
2315 unsigned int pages_mask;
2316 unsigned int offset;
2317 unsigned int size;
2318 void **pages;
2319
2320 offset = handle->offset;
2321 pages_mask = handle->data->nr_pages - 1;
2322 pages = handle->data->data_pages;
2323
2324 do {
2325 unsigned int page_offset;
2326 int nr;
2327
2328 nr = (offset >> PAGE_SHIFT) & pages_mask;
2329 page_offset = offset & (PAGE_SIZE - 1);
2330 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2331
2332 memcpy(pages[nr] + page_offset, buf, size);
2333
2334 len -= size;
2335 buf += size;
2336 offset += size;
2337 } while (len);
2338
2339 handle->offset = offset;
2340
2341 /*
2342 * Check we didn't copy past our reservation window, taking the
2343 * possible unsigned int wrap into account.
2344 */
2345 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2346 }
2347
2348 #define perf_output_put(handle, x) \
2349 perf_output_copy((handle), &(x), sizeof(x))
2350
2351 static int perf_output_begin(struct perf_output_handle *handle,
2352 struct perf_counter *counter, unsigned int size,
2353 int nmi, int sample)
2354 {
2355 struct perf_mmap_data *data;
2356 unsigned int offset, head;
2357 int have_lost;
2358 struct {
2359 struct perf_event_header header;
2360 u64 id;
2361 u64 lost;
2362 } lost_event;
2363
2364 /*
2365 * For inherited counters we send all the output towards the parent.
2366 */
2367 if (counter->parent)
2368 counter = counter->parent;
2369
2370 rcu_read_lock();
2371 data = rcu_dereference(counter->data);
2372 if (!data)
2373 goto out;
2374
2375 handle->data = data;
2376 handle->counter = counter;
2377 handle->nmi = nmi;
2378 handle->sample = sample;
2379
2380 if (!data->nr_pages)
2381 goto fail;
2382
2383 have_lost = atomic_read(&data->lost);
2384 if (have_lost)
2385 size += sizeof(lost_event);
2386
2387 perf_output_lock(handle);
2388
2389 do {
2390 offset = head = atomic_long_read(&data->head);
2391 head += size;
2392 if (unlikely(!perf_output_space(data, offset, head)))
2393 goto fail;
2394 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2395
2396 handle->offset = offset;
2397 handle->head = head;
2398
2399 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2400 atomic_set(&data->wakeup, 1);
2401
2402 if (have_lost) {
2403 lost_event.header.type = PERF_EVENT_LOST;
2404 lost_event.header.misc = 0;
2405 lost_event.header.size = sizeof(lost_event);
2406 lost_event.id = counter->id;
2407 lost_event.lost = atomic_xchg(&data->lost, 0);
2408
2409 perf_output_put(handle, lost_event);
2410 }
2411
2412 return 0;
2413
2414 fail:
2415 atomic_inc(&data->lost);
2416 perf_output_unlock(handle);
2417 out:
2418 rcu_read_unlock();
2419
2420 return -ENOSPC;
2421 }
2422
2423 static void perf_output_end(struct perf_output_handle *handle)
2424 {
2425 struct perf_counter *counter = handle->counter;
2426 struct perf_mmap_data *data = handle->data;
2427
2428 int wakeup_events = counter->attr.wakeup_events;
2429
2430 if (handle->sample && wakeup_events) {
2431 int events = atomic_inc_return(&data->events);
2432 if (events >= wakeup_events) {
2433 atomic_sub(wakeup_events, &data->events);
2434 atomic_set(&data->wakeup, 1);
2435 }
2436 }
2437
2438 perf_output_unlock(handle);
2439 rcu_read_unlock();
2440 }
2441
2442 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2443 {
2444 /*
2445 * only top level counters have the pid namespace they were created in
2446 */
2447 if (counter->parent)
2448 counter = counter->parent;
2449
2450 return task_tgid_nr_ns(p, counter->ns);
2451 }
2452
2453 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2454 {
2455 /*
2456 * only top level counters have the pid namespace they were created in
2457 */
2458 if (counter->parent)
2459 counter = counter->parent;
2460
2461 return task_pid_nr_ns(p, counter->ns);
2462 }
2463
2464 static void perf_counter_output(struct perf_counter *counter, int nmi,
2465 struct perf_sample_data *data)
2466 {
2467 int ret;
2468 u64 sample_type = counter->attr.sample_type;
2469 struct perf_output_handle handle;
2470 struct perf_event_header header;
2471 u64 ip;
2472 struct {
2473 u32 pid, tid;
2474 } tid_entry;
2475 struct {
2476 u64 id;
2477 u64 counter;
2478 } group_entry;
2479 struct perf_callchain_entry *callchain = NULL;
2480 int callchain_size = 0;
2481 u64 time;
2482 struct {
2483 u32 cpu, reserved;
2484 } cpu_entry;
2485
2486 header.type = 0;
2487 header.size = sizeof(header);
2488
2489 header.misc = PERF_EVENT_MISC_OVERFLOW;
2490 header.misc |= perf_misc_flags(data->regs);
2491
2492 if (sample_type & PERF_SAMPLE_IP) {
2493 ip = perf_instruction_pointer(data->regs);
2494 header.type |= PERF_SAMPLE_IP;
2495 header.size += sizeof(ip);
2496 }
2497
2498 if (sample_type & PERF_SAMPLE_TID) {
2499 /* namespace issues */
2500 tid_entry.pid = perf_counter_pid(counter, current);
2501 tid_entry.tid = perf_counter_tid(counter, current);
2502
2503 header.type |= PERF_SAMPLE_TID;
2504 header.size += sizeof(tid_entry);
2505 }
2506
2507 if (sample_type & PERF_SAMPLE_TIME) {
2508 /*
2509 * Maybe do better on x86 and provide cpu_clock_nmi()
2510 */
2511 time = sched_clock();
2512
2513 header.type |= PERF_SAMPLE_TIME;
2514 header.size += sizeof(u64);
2515 }
2516
2517 if (sample_type & PERF_SAMPLE_ADDR) {
2518 header.type |= PERF_SAMPLE_ADDR;
2519 header.size += sizeof(u64);
2520 }
2521
2522 if (sample_type & PERF_SAMPLE_ID) {
2523 header.type |= PERF_SAMPLE_ID;
2524 header.size += sizeof(u64);
2525 }
2526
2527 if (sample_type & PERF_SAMPLE_CPU) {
2528 header.type |= PERF_SAMPLE_CPU;
2529 header.size += sizeof(cpu_entry);
2530
2531 cpu_entry.cpu = raw_smp_processor_id();
2532 }
2533
2534 if (sample_type & PERF_SAMPLE_PERIOD) {
2535 header.type |= PERF_SAMPLE_PERIOD;
2536 header.size += sizeof(u64);
2537 }
2538
2539 if (sample_type & PERF_SAMPLE_GROUP) {
2540 header.type |= PERF_SAMPLE_GROUP;
2541 header.size += sizeof(u64) +
2542 counter->nr_siblings * sizeof(group_entry);
2543 }
2544
2545 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2546 callchain = perf_callchain(data->regs);
2547
2548 if (callchain) {
2549 callchain_size = (1 + callchain->nr) * sizeof(u64);
2550
2551 header.type |= PERF_SAMPLE_CALLCHAIN;
2552 header.size += callchain_size;
2553 }
2554 }
2555
2556 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2557 if (ret)
2558 return;
2559
2560 perf_output_put(&handle, header);
2561
2562 if (sample_type & PERF_SAMPLE_IP)
2563 perf_output_put(&handle, ip);
2564
2565 if (sample_type & PERF_SAMPLE_TID)
2566 perf_output_put(&handle, tid_entry);
2567
2568 if (sample_type & PERF_SAMPLE_TIME)
2569 perf_output_put(&handle, time);
2570
2571 if (sample_type & PERF_SAMPLE_ADDR)
2572 perf_output_put(&handle, data->addr);
2573
2574 if (sample_type & PERF_SAMPLE_ID)
2575 perf_output_put(&handle, counter->id);
2576
2577 if (sample_type & PERF_SAMPLE_CPU)
2578 perf_output_put(&handle, cpu_entry);
2579
2580 if (sample_type & PERF_SAMPLE_PERIOD)
2581 perf_output_put(&handle, data->period);
2582
2583 /*
2584 * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2585 */
2586 if (sample_type & PERF_SAMPLE_GROUP) {
2587 struct perf_counter *leader, *sub;
2588 u64 nr = counter->nr_siblings;
2589
2590 perf_output_put(&handle, nr);
2591
2592 leader = counter->group_leader;
2593 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2594 if (sub != counter)
2595 sub->pmu->read(sub);
2596
2597 group_entry.id = sub->id;
2598 group_entry.counter = atomic64_read(&sub->count);
2599
2600 perf_output_put(&handle, group_entry);
2601 }
2602 }
2603
2604 if (callchain)
2605 perf_output_copy(&handle, callchain, callchain_size);
2606
2607 perf_output_end(&handle);
2608 }
2609
2610 /*
2611 * fork tracking
2612 */
2613
2614 struct perf_fork_event {
2615 struct task_struct *task;
2616
2617 struct {
2618 struct perf_event_header header;
2619
2620 u32 pid;
2621 u32 ppid;
2622 } event;
2623 };
2624
2625 static void perf_counter_fork_output(struct perf_counter *counter,
2626 struct perf_fork_event *fork_event)
2627 {
2628 struct perf_output_handle handle;
2629 int size = fork_event->event.header.size;
2630 struct task_struct *task = fork_event->task;
2631 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2632
2633 if (ret)
2634 return;
2635
2636 fork_event->event.pid = perf_counter_pid(counter, task);
2637 fork_event->event.ppid = perf_counter_pid(counter, task->real_parent);
2638
2639 perf_output_put(&handle, fork_event->event);
2640 perf_output_end(&handle);
2641 }
2642
2643 static int perf_counter_fork_match(struct perf_counter *counter)
2644 {
2645 if (counter->attr.comm || counter->attr.mmap)
2646 return 1;
2647
2648 return 0;
2649 }
2650
2651 static void perf_counter_fork_ctx(struct perf_counter_context *ctx,
2652 struct perf_fork_event *fork_event)
2653 {
2654 struct perf_counter *counter;
2655
2656 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2657 return;
2658
2659 rcu_read_lock();
2660 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2661 if (perf_counter_fork_match(counter))
2662 perf_counter_fork_output(counter, fork_event);
2663 }
2664 rcu_read_unlock();
2665 }
2666
2667 static void perf_counter_fork_event(struct perf_fork_event *fork_event)
2668 {
2669 struct perf_cpu_context *cpuctx;
2670 struct perf_counter_context *ctx;
2671
2672 cpuctx = &get_cpu_var(perf_cpu_context);
2673 perf_counter_fork_ctx(&cpuctx->ctx, fork_event);
2674 put_cpu_var(perf_cpu_context);
2675
2676 rcu_read_lock();
2677 /*
2678 * doesn't really matter which of the child contexts the
2679 * events ends up in.
2680 */
2681 ctx = rcu_dereference(current->perf_counter_ctxp);
2682 if (ctx)
2683 perf_counter_fork_ctx(ctx, fork_event);
2684 rcu_read_unlock();
2685 }
2686
2687 void perf_counter_fork(struct task_struct *task)
2688 {
2689 struct perf_fork_event fork_event;
2690
2691 if (!atomic_read(&nr_comm_counters) &&
2692 !atomic_read(&nr_mmap_counters))
2693 return;
2694
2695 fork_event = (struct perf_fork_event){
2696 .task = task,
2697 .event = {
2698 .header = {
2699 .type = PERF_EVENT_FORK,
2700 .size = sizeof(fork_event.event),
2701 },
2702 },
2703 };
2704
2705 perf_counter_fork_event(&fork_event);
2706 }
2707
2708 /*
2709 * comm tracking
2710 */
2711
2712 struct perf_comm_event {
2713 struct task_struct *task;
2714 char *comm;
2715 int comm_size;
2716
2717 struct {
2718 struct perf_event_header header;
2719
2720 u32 pid;
2721 u32 tid;
2722 } event;
2723 };
2724
2725 static void perf_counter_comm_output(struct perf_counter *counter,
2726 struct perf_comm_event *comm_event)
2727 {
2728 struct perf_output_handle handle;
2729 int size = comm_event->event.header.size;
2730 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2731
2732 if (ret)
2733 return;
2734
2735 comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2736 comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2737
2738 perf_output_put(&handle, comm_event->event);
2739 perf_output_copy(&handle, comm_event->comm,
2740 comm_event->comm_size);
2741 perf_output_end(&handle);
2742 }
2743
2744 static int perf_counter_comm_match(struct perf_counter *counter)
2745 {
2746 if (counter->attr.comm)
2747 return 1;
2748
2749 return 0;
2750 }
2751
2752 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2753 struct perf_comm_event *comm_event)
2754 {
2755 struct perf_counter *counter;
2756
2757 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2758 return;
2759
2760 rcu_read_lock();
2761 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2762 if (perf_counter_comm_match(counter))
2763 perf_counter_comm_output(counter, comm_event);
2764 }
2765 rcu_read_unlock();
2766 }
2767
2768 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2769 {
2770 struct perf_cpu_context *cpuctx;
2771 struct perf_counter_context *ctx;
2772 unsigned int size;
2773 char *comm = comm_event->task->comm;
2774
2775 size = ALIGN(strlen(comm)+1, sizeof(u64));
2776
2777 comm_event->comm = comm;
2778 comm_event->comm_size = size;
2779
2780 comm_event->event.header.size = sizeof(comm_event->event) + size;
2781
2782 cpuctx = &get_cpu_var(perf_cpu_context);
2783 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2784 put_cpu_var(perf_cpu_context);
2785
2786 rcu_read_lock();
2787 /*
2788 * doesn't really matter which of the child contexts the
2789 * events ends up in.
2790 */
2791 ctx = rcu_dereference(current->perf_counter_ctxp);
2792 if (ctx)
2793 perf_counter_comm_ctx(ctx, comm_event);
2794 rcu_read_unlock();
2795 }
2796
2797 void perf_counter_comm(struct task_struct *task)
2798 {
2799 struct perf_comm_event comm_event;
2800
2801 if (!atomic_read(&nr_comm_counters))
2802 return;
2803
2804 comm_event = (struct perf_comm_event){
2805 .task = task,
2806 .event = {
2807 .header = { .type = PERF_EVENT_COMM, },
2808 },
2809 };
2810
2811 perf_counter_comm_event(&comm_event);
2812 }
2813
2814 /*
2815 * mmap tracking
2816 */
2817
2818 struct perf_mmap_event {
2819 struct vm_area_struct *vma;
2820
2821 const char *file_name;
2822 int file_size;
2823
2824 struct {
2825 struct perf_event_header header;
2826
2827 u32 pid;
2828 u32 tid;
2829 u64 start;
2830 u64 len;
2831 u64 pgoff;
2832 } event;
2833 };
2834
2835 static void perf_counter_mmap_output(struct perf_counter *counter,
2836 struct perf_mmap_event *mmap_event)
2837 {
2838 struct perf_output_handle handle;
2839 int size = mmap_event->event.header.size;
2840 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2841
2842 if (ret)
2843 return;
2844
2845 mmap_event->event.pid = perf_counter_pid(counter, current);
2846 mmap_event->event.tid = perf_counter_tid(counter, current);
2847
2848 perf_output_put(&handle, mmap_event->event);
2849 perf_output_copy(&handle, mmap_event->file_name,
2850 mmap_event->file_size);
2851 perf_output_end(&handle);
2852 }
2853
2854 static int perf_counter_mmap_match(struct perf_counter *counter,
2855 struct perf_mmap_event *mmap_event)
2856 {
2857 if (counter->attr.mmap)
2858 return 1;
2859
2860 return 0;
2861 }
2862
2863 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2864 struct perf_mmap_event *mmap_event)
2865 {
2866 struct perf_counter *counter;
2867
2868 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2869 return;
2870
2871 rcu_read_lock();
2872 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2873 if (perf_counter_mmap_match(counter, mmap_event))
2874 perf_counter_mmap_output(counter, mmap_event);
2875 }
2876 rcu_read_unlock();
2877 }
2878
2879 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2880 {
2881 struct perf_cpu_context *cpuctx;
2882 struct perf_counter_context *ctx;
2883 struct vm_area_struct *vma = mmap_event->vma;
2884 struct file *file = vma->vm_file;
2885 unsigned int size;
2886 char tmp[16];
2887 char *buf = NULL;
2888 const char *name;
2889
2890 if (file) {
2891 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2892 if (!buf) {
2893 name = strncpy(tmp, "//enomem", sizeof(tmp));
2894 goto got_name;
2895 }
2896 name = d_path(&file->f_path, buf, PATH_MAX);
2897 if (IS_ERR(name)) {
2898 name = strncpy(tmp, "//toolong", sizeof(tmp));
2899 goto got_name;
2900 }
2901 } else {
2902 name = arch_vma_name(mmap_event->vma);
2903 if (name)
2904 goto got_name;
2905
2906 if (!vma->vm_mm) {
2907 name = strncpy(tmp, "[vdso]", sizeof(tmp));
2908 goto got_name;
2909 }
2910
2911 name = strncpy(tmp, "//anon", sizeof(tmp));
2912 goto got_name;
2913 }
2914
2915 got_name:
2916 size = ALIGN(strlen(name)+1, sizeof(u64));
2917
2918 mmap_event->file_name = name;
2919 mmap_event->file_size = size;
2920
2921 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2922
2923 cpuctx = &get_cpu_var(perf_cpu_context);
2924 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2925 put_cpu_var(perf_cpu_context);
2926
2927 rcu_read_lock();
2928 /*
2929 * doesn't really matter which of the child contexts the
2930 * events ends up in.
2931 */
2932 ctx = rcu_dereference(current->perf_counter_ctxp);
2933 if (ctx)
2934 perf_counter_mmap_ctx(ctx, mmap_event);
2935 rcu_read_unlock();
2936
2937 kfree(buf);
2938 }
2939
2940 void __perf_counter_mmap(struct vm_area_struct *vma)
2941 {
2942 struct perf_mmap_event mmap_event;
2943
2944 if (!atomic_read(&nr_mmap_counters))
2945 return;
2946
2947 mmap_event = (struct perf_mmap_event){
2948 .vma = vma,
2949 .event = {
2950 .header = { .type = PERF_EVENT_MMAP, },
2951 .start = vma->vm_start,
2952 .len = vma->vm_end - vma->vm_start,
2953 .pgoff = vma->vm_pgoff,
2954 },
2955 };
2956
2957 perf_counter_mmap_event(&mmap_event);
2958 }
2959
2960 /*
2961 * Log sample_period changes so that analyzing tools can re-normalize the
2962 * event flow.
2963 */
2964
2965 struct freq_event {
2966 struct perf_event_header header;
2967 u64 time;
2968 u64 id;
2969 u64 period;
2970 };
2971
2972 static void perf_log_period(struct perf_counter *counter, u64 period)
2973 {
2974 struct perf_output_handle handle;
2975 struct freq_event event;
2976 int ret;
2977
2978 if (counter->hw.sample_period == period)
2979 return;
2980
2981 if (counter->attr.sample_type & PERF_SAMPLE_PERIOD)
2982 return;
2983
2984 event = (struct freq_event) {
2985 .header = {
2986 .type = PERF_EVENT_PERIOD,
2987 .misc = 0,
2988 .size = sizeof(event),
2989 },
2990 .time = sched_clock(),
2991 .id = counter->id,
2992 .period = period,
2993 };
2994
2995 ret = perf_output_begin(&handle, counter, sizeof(event), 1, 0);
2996 if (ret)
2997 return;
2998
2999 perf_output_put(&handle, event);
3000 perf_output_end(&handle);
3001 }
3002
3003 /*
3004 * IRQ throttle logging
3005 */
3006
3007 static void perf_log_throttle(struct perf_counter *counter, int enable)
3008 {
3009 struct perf_output_handle handle;
3010 int ret;
3011
3012 struct {
3013 struct perf_event_header header;
3014 u64 time;
3015 u64 id;
3016 } throttle_event = {
3017 .header = {
3018 .type = PERF_EVENT_THROTTLE + 1,
3019 .misc = 0,
3020 .size = sizeof(throttle_event),
3021 },
3022 .time = sched_clock(),
3023 .id = counter->id,
3024 };
3025
3026 ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3027 if (ret)
3028 return;
3029
3030 perf_output_put(&handle, throttle_event);
3031 perf_output_end(&handle);
3032 }
3033
3034 /*
3035 * Generic counter overflow handling, sampling.
3036 */
3037
3038 int perf_counter_overflow(struct perf_counter *counter, int nmi,
3039 struct perf_sample_data *data)
3040 {
3041 int events = atomic_read(&counter->event_limit);
3042 int throttle = counter->pmu->unthrottle != NULL;
3043 struct hw_perf_counter *hwc = &counter->hw;
3044 int ret = 0;
3045
3046 if (!throttle) {
3047 hwc->interrupts++;
3048 } else {
3049 if (hwc->interrupts != MAX_INTERRUPTS) {
3050 hwc->interrupts++;
3051 if (HZ * hwc->interrupts >
3052 (u64)sysctl_perf_counter_sample_rate) {
3053 hwc->interrupts = MAX_INTERRUPTS;
3054 perf_log_throttle(counter, 0);
3055 ret = 1;
3056 }
3057 } else {
3058 /*
3059 * Keep re-disabling counters even though on the previous
3060 * pass we disabled it - just in case we raced with a
3061 * sched-in and the counter got enabled again:
3062 */
3063 ret = 1;
3064 }
3065 }
3066
3067 if (counter->attr.freq) {
3068 u64 now = sched_clock();
3069 s64 delta = now - hwc->freq_stamp;
3070
3071 hwc->freq_stamp = now;
3072
3073 if (delta > 0 && delta < TICK_NSEC)
3074 perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
3075 }
3076
3077 /*
3078 * XXX event_limit might not quite work as expected on inherited
3079 * counters
3080 */
3081
3082 counter->pending_kill = POLL_IN;
3083 if (events && atomic_dec_and_test(&counter->event_limit)) {
3084 ret = 1;
3085 counter->pending_kill = POLL_HUP;
3086 if (nmi) {
3087 counter->pending_disable = 1;
3088 perf_pending_queue(&counter->pending,
3089 perf_pending_counter);
3090 } else
3091 perf_counter_disable(counter);
3092 }
3093
3094 perf_counter_output(counter, nmi, data);
3095 return ret;
3096 }
3097
3098 /*
3099 * Generic software counter infrastructure
3100 */
3101
3102 static void perf_swcounter_update(struct perf_counter *counter)
3103 {
3104 struct hw_perf_counter *hwc = &counter->hw;
3105 u64 prev, now;
3106 s64 delta;
3107
3108 again:
3109 prev = atomic64_read(&hwc->prev_count);
3110 now = atomic64_read(&hwc->count);
3111 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
3112 goto again;
3113
3114 delta = now - prev;
3115
3116 atomic64_add(delta, &counter->count);
3117 atomic64_sub(delta, &hwc->period_left);
3118 }
3119
3120 static void perf_swcounter_set_period(struct perf_counter *counter)
3121 {
3122 struct hw_perf_counter *hwc = &counter->hw;
3123 s64 left = atomic64_read(&hwc->period_left);
3124 s64 period = hwc->sample_period;
3125
3126 if (unlikely(left <= -period)) {
3127 left = period;
3128 atomic64_set(&hwc->period_left, left);
3129 hwc->last_period = period;
3130 }
3131
3132 if (unlikely(left <= 0)) {
3133 left += period;
3134 atomic64_add(period, &hwc->period_left);
3135 hwc->last_period = period;
3136 }
3137
3138 atomic64_set(&hwc->prev_count, -left);
3139 atomic64_set(&hwc->count, -left);
3140 }
3141
3142 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3143 {
3144 enum hrtimer_restart ret = HRTIMER_RESTART;
3145 struct perf_sample_data data;
3146 struct perf_counter *counter;
3147 u64 period;
3148
3149 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3150 counter->pmu->read(counter);
3151
3152 data.addr = 0;
3153 data.regs = get_irq_regs();
3154 /*
3155 * In case we exclude kernel IPs or are somehow not in interrupt
3156 * context, provide the next best thing, the user IP.
3157 */
3158 if ((counter->attr.exclude_kernel || !data.regs) &&
3159 !counter->attr.exclude_user)
3160 data.regs = task_pt_regs(current);
3161
3162 if (data.regs) {
3163 if (perf_counter_overflow(counter, 0, &data))
3164 ret = HRTIMER_NORESTART;
3165 }
3166
3167 period = max_t(u64, 10000, counter->hw.sample_period);
3168 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3169
3170 return ret;
3171 }
3172
3173 static void perf_swcounter_overflow(struct perf_counter *counter,
3174 int nmi, struct perf_sample_data *data)
3175 {
3176 data->period = counter->hw.last_period;
3177
3178 perf_swcounter_update(counter);
3179 perf_swcounter_set_period(counter);
3180 if (perf_counter_overflow(counter, nmi, data))
3181 /* soft-disable the counter */
3182 ;
3183 }
3184
3185 static int perf_swcounter_is_counting(struct perf_counter *counter)
3186 {
3187 struct perf_counter_context *ctx;
3188 unsigned long flags;
3189 int count;
3190
3191 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3192 return 1;
3193
3194 if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3195 return 0;
3196
3197 /*
3198 * If the counter is inactive, it could be just because
3199 * its task is scheduled out, or because it's in a group
3200 * which could not go on the PMU. We want to count in
3201 * the first case but not the second. If the context is
3202 * currently active then an inactive software counter must
3203 * be the second case. If it's not currently active then
3204 * we need to know whether the counter was active when the
3205 * context was last active, which we can determine by
3206 * comparing counter->tstamp_stopped with ctx->time.
3207 *
3208 * We are within an RCU read-side critical section,
3209 * which protects the existence of *ctx.
3210 */
3211 ctx = counter->ctx;
3212 spin_lock_irqsave(&ctx->lock, flags);
3213 count = 1;
3214 /* Re-check state now we have the lock */
3215 if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
3216 counter->ctx->is_active ||
3217 counter->tstamp_stopped < ctx->time)
3218 count = 0;
3219 spin_unlock_irqrestore(&ctx->lock, flags);
3220 return count;
3221 }
3222
3223 static int perf_swcounter_match(struct perf_counter *counter,
3224 enum perf_type_id type,
3225 u32 event, struct pt_regs *regs)
3226 {
3227 if (!perf_swcounter_is_counting(counter))
3228 return 0;
3229
3230 if (counter->attr.type != type)
3231 return 0;
3232 if (counter->attr.config != event)
3233 return 0;
3234
3235 if (regs) {
3236 if (counter->attr.exclude_user && user_mode(regs))
3237 return 0;
3238
3239 if (counter->attr.exclude_kernel && !user_mode(regs))
3240 return 0;
3241 }
3242
3243 return 1;
3244 }
3245
3246 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3247 int nmi, struct perf_sample_data *data)
3248 {
3249 int neg = atomic64_add_negative(nr, &counter->hw.count);
3250
3251 if (counter->hw.sample_period && !neg && data->regs)
3252 perf_swcounter_overflow(counter, nmi, data);
3253 }
3254
3255 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3256 enum perf_type_id type,
3257 u32 event, u64 nr, int nmi,
3258 struct perf_sample_data *data)
3259 {
3260 struct perf_counter *counter;
3261
3262 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3263 return;
3264
3265 rcu_read_lock();
3266 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3267 if (perf_swcounter_match(counter, type, event, data->regs))
3268 perf_swcounter_add(counter, nr, nmi, data);
3269 }
3270 rcu_read_unlock();
3271 }
3272
3273 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3274 {
3275 if (in_nmi())
3276 return &cpuctx->recursion[3];
3277
3278 if (in_irq())
3279 return &cpuctx->recursion[2];
3280
3281 if (in_softirq())
3282 return &cpuctx->recursion[1];
3283
3284 return &cpuctx->recursion[0];
3285 }
3286
3287 static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
3288 u64 nr, int nmi,
3289 struct perf_sample_data *data)
3290 {
3291 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3292 int *recursion = perf_swcounter_recursion_context(cpuctx);
3293 struct perf_counter_context *ctx;
3294
3295 if (*recursion)
3296 goto out;
3297
3298 (*recursion)++;
3299 barrier();
3300
3301 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3302 nr, nmi, data);
3303 rcu_read_lock();
3304 /*
3305 * doesn't really matter which of the child contexts the
3306 * events ends up in.
3307 */
3308 ctx = rcu_dereference(current->perf_counter_ctxp);
3309 if (ctx)
3310 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data);
3311 rcu_read_unlock();
3312
3313 barrier();
3314 (*recursion)--;
3315
3316 out:
3317 put_cpu_var(perf_cpu_context);
3318 }
3319
3320 void
3321 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
3322 {
3323 struct perf_sample_data data = {
3324 .regs = regs,
3325 .addr = addr,
3326 };
3327
3328 do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data);
3329 }
3330
3331 static void perf_swcounter_read(struct perf_counter *counter)
3332 {
3333 perf_swcounter_update(counter);
3334 }
3335
3336 static int perf_swcounter_enable(struct perf_counter *counter)
3337 {
3338 perf_swcounter_set_period(counter);
3339 return 0;
3340 }
3341
3342 static void perf_swcounter_disable(struct perf_counter *counter)
3343 {
3344 perf_swcounter_update(counter);
3345 }
3346
3347 static const struct pmu perf_ops_generic = {
3348 .enable = perf_swcounter_enable,
3349 .disable = perf_swcounter_disable,
3350 .read = perf_swcounter_read,
3351 };
3352
3353 /*
3354 * Software counter: cpu wall time clock
3355 */
3356
3357 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3358 {
3359 int cpu = raw_smp_processor_id();
3360 s64 prev;
3361 u64 now;
3362
3363 now = cpu_clock(cpu);
3364 prev = atomic64_read(&counter->hw.prev_count);
3365 atomic64_set(&counter->hw.prev_count, now);
3366 atomic64_add(now - prev, &counter->count);
3367 }
3368
3369 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3370 {
3371 struct hw_perf_counter *hwc = &counter->hw;
3372 int cpu = raw_smp_processor_id();
3373
3374 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3375 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3376 hwc->hrtimer.function = perf_swcounter_hrtimer;
3377 if (hwc->sample_period) {
3378 u64 period = max_t(u64, 10000, hwc->sample_period);
3379 __hrtimer_start_range_ns(&hwc->hrtimer,
3380 ns_to_ktime(period), 0,
3381 HRTIMER_MODE_REL, 0);
3382 }
3383
3384 return 0;
3385 }
3386
3387 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3388 {
3389 if (counter->hw.sample_period)
3390 hrtimer_cancel(&counter->hw.hrtimer);
3391 cpu_clock_perf_counter_update(counter);
3392 }
3393
3394 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3395 {
3396 cpu_clock_perf_counter_update(counter);
3397 }
3398
3399 static const struct pmu perf_ops_cpu_clock = {
3400 .enable = cpu_clock_perf_counter_enable,
3401 .disable = cpu_clock_perf_counter_disable,
3402 .read = cpu_clock_perf_counter_read,
3403 };
3404
3405 /*
3406 * Software counter: task time clock
3407 */
3408
3409 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3410 {
3411 u64 prev;
3412 s64 delta;
3413
3414 prev = atomic64_xchg(&counter->hw.prev_count, now);
3415 delta = now - prev;
3416 atomic64_add(delta, &counter->count);
3417 }
3418
3419 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3420 {
3421 struct hw_perf_counter *hwc = &counter->hw;
3422 u64 now;
3423
3424 now = counter->ctx->time;
3425
3426 atomic64_set(&hwc->prev_count, now);
3427 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3428 hwc->hrtimer.function = perf_swcounter_hrtimer;
3429 if (hwc->sample_period) {
3430 u64 period = max_t(u64, 10000, hwc->sample_period);
3431 __hrtimer_start_range_ns(&hwc->hrtimer,
3432 ns_to_ktime(period), 0,
3433 HRTIMER_MODE_REL, 0);
3434 }
3435
3436 return 0;
3437 }
3438
3439 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3440 {
3441 if (counter->hw.sample_period)
3442 hrtimer_cancel(&counter->hw.hrtimer);
3443 task_clock_perf_counter_update(counter, counter->ctx->time);
3444
3445 }
3446
3447 static void task_clock_perf_counter_read(struct perf_counter *counter)
3448 {
3449 u64 time;
3450
3451 if (!in_nmi()) {
3452 update_context_time(counter->ctx);
3453 time = counter->ctx->time;
3454 } else {
3455 u64 now = perf_clock();
3456 u64 delta = now - counter->ctx->timestamp;
3457 time = counter->ctx->time + delta;
3458 }
3459
3460 task_clock_perf_counter_update(counter, time);
3461 }
3462
3463 static const struct pmu perf_ops_task_clock = {
3464 .enable = task_clock_perf_counter_enable,
3465 .disable = task_clock_perf_counter_disable,
3466 .read = task_clock_perf_counter_read,
3467 };
3468
3469 #ifdef CONFIG_EVENT_PROFILE
3470 void perf_tpcounter_event(int event_id)
3471 {
3472 struct perf_sample_data data = {
3473 .regs = get_irq_regs();
3474 .addr = 0,
3475 };
3476
3477 if (!data.regs)
3478 data.regs = task_pt_regs(current);
3479
3480 do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, &data);
3481 }
3482 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3483
3484 extern int ftrace_profile_enable(int);
3485 extern void ftrace_profile_disable(int);
3486
3487 static void tp_perf_counter_destroy(struct perf_counter *counter)
3488 {
3489 ftrace_profile_disable(perf_event_id(&counter->attr));
3490 }
3491
3492 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3493 {
3494 int event_id = perf_event_id(&counter->attr);
3495 int ret;
3496
3497 ret = ftrace_profile_enable(event_id);
3498 if (ret)
3499 return NULL;
3500
3501 counter->destroy = tp_perf_counter_destroy;
3502
3503 return &perf_ops_generic;
3504 }
3505 #else
3506 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3507 {
3508 return NULL;
3509 }
3510 #endif
3511
3512 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3513 {
3514 const struct pmu *pmu = NULL;
3515
3516 /*
3517 * Software counters (currently) can't in general distinguish
3518 * between user, kernel and hypervisor events.
3519 * However, context switches and cpu migrations are considered
3520 * to be kernel events, and page faults are never hypervisor
3521 * events.
3522 */
3523 switch (counter->attr.config) {
3524 case PERF_COUNT_SW_CPU_CLOCK:
3525 pmu = &perf_ops_cpu_clock;
3526
3527 break;
3528 case PERF_COUNT_SW_TASK_CLOCK:
3529 /*
3530 * If the user instantiates this as a per-cpu counter,
3531 * use the cpu_clock counter instead.
3532 */
3533 if (counter->ctx->task)
3534 pmu = &perf_ops_task_clock;
3535 else
3536 pmu = &perf_ops_cpu_clock;
3537
3538 break;
3539 case PERF_COUNT_SW_PAGE_FAULTS:
3540 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
3541 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
3542 case PERF_COUNT_SW_CONTEXT_SWITCHES:
3543 case PERF_COUNT_SW_CPU_MIGRATIONS:
3544 pmu = &perf_ops_generic;
3545 break;
3546 }
3547
3548 return pmu;
3549 }
3550
3551 /*
3552 * Allocate and initialize a counter structure
3553 */
3554 static struct perf_counter *
3555 perf_counter_alloc(struct perf_counter_attr *attr,
3556 int cpu,
3557 struct perf_counter_context *ctx,
3558 struct perf_counter *group_leader,
3559 gfp_t gfpflags)
3560 {
3561 const struct pmu *pmu;
3562 struct perf_counter *counter;
3563 struct hw_perf_counter *hwc;
3564 long err;
3565
3566 counter = kzalloc(sizeof(*counter), gfpflags);
3567 if (!counter)
3568 return ERR_PTR(-ENOMEM);
3569
3570 /*
3571 * Single counters are their own group leaders, with an
3572 * empty sibling list:
3573 */
3574 if (!group_leader)
3575 group_leader = counter;
3576
3577 mutex_init(&counter->child_mutex);
3578 INIT_LIST_HEAD(&counter->child_list);
3579
3580 INIT_LIST_HEAD(&counter->list_entry);
3581 INIT_LIST_HEAD(&counter->event_entry);
3582 INIT_LIST_HEAD(&counter->sibling_list);
3583 init_waitqueue_head(&counter->waitq);
3584
3585 mutex_init(&counter->mmap_mutex);
3586
3587 counter->cpu = cpu;
3588 counter->attr = *attr;
3589 counter->group_leader = group_leader;
3590 counter->pmu = NULL;
3591 counter->ctx = ctx;
3592 counter->oncpu = -1;
3593
3594 counter->ns = get_pid_ns(current->nsproxy->pid_ns);
3595 counter->id = atomic64_inc_return(&perf_counter_id);
3596
3597 counter->state = PERF_COUNTER_STATE_INACTIVE;
3598
3599 if (attr->disabled)
3600 counter->state = PERF_COUNTER_STATE_OFF;
3601
3602 pmu = NULL;
3603
3604 hwc = &counter->hw;
3605 hwc->sample_period = attr->sample_period;
3606 if (attr->freq && attr->sample_freq)
3607 hwc->sample_period = 1;
3608
3609 atomic64_set(&hwc->period_left, hwc->sample_period);
3610
3611 /*
3612 * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3613 */
3614 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3615 goto done;
3616
3617 switch (attr->type) {
3618 case PERF_TYPE_RAW:
3619 case PERF_TYPE_HARDWARE:
3620 case PERF_TYPE_HW_CACHE:
3621 pmu = hw_perf_counter_init(counter);
3622 break;
3623
3624 case PERF_TYPE_SOFTWARE:
3625 pmu = sw_perf_counter_init(counter);
3626 break;
3627
3628 case PERF_TYPE_TRACEPOINT:
3629 pmu = tp_perf_counter_init(counter);
3630 break;
3631
3632 default:
3633 break;
3634 }
3635 done:
3636 err = 0;
3637 if (!pmu)
3638 err = -EINVAL;
3639 else if (IS_ERR(pmu))
3640 err = PTR_ERR(pmu);
3641
3642 if (err) {
3643 if (counter->ns)
3644 put_pid_ns(counter->ns);
3645 kfree(counter);
3646 return ERR_PTR(err);
3647 }
3648
3649 counter->pmu = pmu;
3650
3651 atomic_inc(&nr_counters);
3652 if (counter->attr.mmap)
3653 atomic_inc(&nr_mmap_counters);
3654 if (counter->attr.comm)
3655 atomic_inc(&nr_comm_counters);
3656
3657 return counter;
3658 }
3659
3660 static int perf_copy_attr(struct perf_counter_attr __user *uattr,
3661 struct perf_counter_attr *attr)
3662 {
3663 int ret;
3664 u32 size;
3665
3666 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
3667 return -EFAULT;
3668
3669 /*
3670 * zero the full structure, so that a short copy will be nice.
3671 */
3672 memset(attr, 0, sizeof(*attr));
3673
3674 ret = get_user(size, &uattr->size);
3675 if (ret)
3676 return ret;
3677
3678 if (size > PAGE_SIZE) /* silly large */
3679 goto err_size;
3680
3681 if (!size) /* abi compat */
3682 size = PERF_ATTR_SIZE_VER0;
3683
3684 if (size < PERF_ATTR_SIZE_VER0)
3685 goto err_size;
3686
3687 /*
3688 * If we're handed a bigger struct than we know of,
3689 * ensure all the unknown bits are 0.
3690 */
3691 if (size > sizeof(*attr)) {
3692 unsigned long val;
3693 unsigned long __user *addr;
3694 unsigned long __user *end;
3695
3696 addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
3697 sizeof(unsigned long));
3698 end = PTR_ALIGN((void __user *)uattr + size,
3699 sizeof(unsigned long));
3700
3701 for (; addr < end; addr += sizeof(unsigned long)) {
3702 ret = get_user(val, addr);
3703 if (ret)
3704 return ret;
3705 if (val)
3706 goto err_size;
3707 }
3708 }
3709
3710 ret = copy_from_user(attr, uattr, size);
3711 if (ret)
3712 return -EFAULT;
3713
3714 /*
3715 * If the type exists, the corresponding creation will verify
3716 * the attr->config.
3717 */
3718 if (attr->type >= PERF_TYPE_MAX)
3719 return -EINVAL;
3720
3721 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
3722 return -EINVAL;
3723
3724 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
3725 return -EINVAL;
3726
3727 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
3728 return -EINVAL;
3729
3730 out:
3731 return ret;
3732
3733 err_size:
3734 put_user(sizeof(*attr), &uattr->size);
3735 ret = -E2BIG;
3736 goto out;
3737 }
3738
3739 /**
3740 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3741 *
3742 * @attr_uptr: event type attributes for monitoring/sampling
3743 * @pid: target pid
3744 * @cpu: target cpu
3745 * @group_fd: group leader counter fd
3746 */
3747 SYSCALL_DEFINE5(perf_counter_open,
3748 struct perf_counter_attr __user *, attr_uptr,
3749 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3750 {
3751 struct perf_counter *counter, *group_leader;
3752 struct perf_counter_attr attr;
3753 struct perf_counter_context *ctx;
3754 struct file *counter_file = NULL;
3755 struct file *group_file = NULL;
3756 int fput_needed = 0;
3757 int fput_needed2 = 0;
3758 int ret;
3759
3760 /* for future expandability... */
3761 if (flags)
3762 return -EINVAL;
3763
3764 ret = perf_copy_attr(attr_uptr, &attr);
3765 if (ret)
3766 return ret;
3767
3768 if (!attr.exclude_kernel) {
3769 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
3770 return -EACCES;
3771 }
3772
3773 if (attr.freq) {
3774 if (attr.sample_freq > sysctl_perf_counter_sample_rate)
3775 return -EINVAL;
3776 }
3777
3778 /*
3779 * Get the target context (task or percpu):
3780 */
3781 ctx = find_get_context(pid, cpu);
3782 if (IS_ERR(ctx))
3783 return PTR_ERR(ctx);
3784
3785 /*
3786 * Look up the group leader (we will attach this counter to it):
3787 */
3788 group_leader = NULL;
3789 if (group_fd != -1) {
3790 ret = -EINVAL;
3791 group_file = fget_light(group_fd, &fput_needed);
3792 if (!group_file)
3793 goto err_put_context;
3794 if (group_file->f_op != &perf_fops)
3795 goto err_put_context;
3796
3797 group_leader = group_file->private_data;
3798 /*
3799 * Do not allow a recursive hierarchy (this new sibling
3800 * becoming part of another group-sibling):
3801 */
3802 if (group_leader->group_leader != group_leader)
3803 goto err_put_context;
3804 /*
3805 * Do not allow to attach to a group in a different
3806 * task or CPU context:
3807 */
3808 if (group_leader->ctx != ctx)
3809 goto err_put_context;
3810 /*
3811 * Only a group leader can be exclusive or pinned
3812 */
3813 if (attr.exclusive || attr.pinned)
3814 goto err_put_context;
3815 }
3816
3817 counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
3818 GFP_KERNEL);
3819 ret = PTR_ERR(counter);
3820 if (IS_ERR(counter))
3821 goto err_put_context;
3822
3823 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3824 if (ret < 0)
3825 goto err_free_put_context;
3826
3827 counter_file = fget_light(ret, &fput_needed2);
3828 if (!counter_file)
3829 goto err_free_put_context;
3830
3831 counter->filp = counter_file;
3832 WARN_ON_ONCE(ctx->parent_ctx);
3833 mutex_lock(&ctx->mutex);
3834 perf_install_in_context(ctx, counter, cpu);
3835 ++ctx->generation;
3836 mutex_unlock(&ctx->mutex);
3837
3838 counter->owner = current;
3839 get_task_struct(current);
3840 mutex_lock(&current->perf_counter_mutex);
3841 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3842 mutex_unlock(&current->perf_counter_mutex);
3843
3844 fput_light(counter_file, fput_needed2);
3845
3846 out_fput:
3847 fput_light(group_file, fput_needed);
3848
3849 return ret;
3850
3851 err_free_put_context:
3852 kfree(counter);
3853
3854 err_put_context:
3855 put_ctx(ctx);
3856
3857 goto out_fput;
3858 }
3859
3860 /*
3861 * inherit a counter from parent task to child task:
3862 */
3863 static struct perf_counter *
3864 inherit_counter(struct perf_counter *parent_counter,
3865 struct task_struct *parent,
3866 struct perf_counter_context *parent_ctx,
3867 struct task_struct *child,
3868 struct perf_counter *group_leader,
3869 struct perf_counter_context *child_ctx)
3870 {
3871 struct perf_counter *child_counter;
3872
3873 /*
3874 * Instead of creating recursive hierarchies of counters,
3875 * we link inherited counters back to the original parent,
3876 * which has a filp for sure, which we use as the reference
3877 * count:
3878 */
3879 if (parent_counter->parent)
3880 parent_counter = parent_counter->parent;
3881
3882 child_counter = perf_counter_alloc(&parent_counter->attr,
3883 parent_counter->cpu, child_ctx,
3884 group_leader, GFP_KERNEL);
3885 if (IS_ERR(child_counter))
3886 return child_counter;
3887 get_ctx(child_ctx);
3888
3889 /*
3890 * Make the child state follow the state of the parent counter,
3891 * not its attr.disabled bit. We hold the parent's mutex,
3892 * so we won't race with perf_counter_{en, dis}able_family.
3893 */
3894 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3895 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3896 else
3897 child_counter->state = PERF_COUNTER_STATE_OFF;
3898
3899 if (parent_counter->attr.freq)
3900 child_counter->hw.sample_period = parent_counter->hw.sample_period;
3901
3902 /*
3903 * Link it up in the child's context:
3904 */
3905 add_counter_to_ctx(child_counter, child_ctx);
3906
3907 child_counter->parent = parent_counter;
3908 /*
3909 * inherit into child's child as well:
3910 */
3911 child_counter->attr.inherit = 1;
3912
3913 /*
3914 * Get a reference to the parent filp - we will fput it
3915 * when the child counter exits. This is safe to do because
3916 * we are in the parent and we know that the filp still
3917 * exists and has a nonzero count:
3918 */
3919 atomic_long_inc(&parent_counter->filp->f_count);
3920
3921 /*
3922 * Link this into the parent counter's child list
3923 */
3924 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3925 mutex_lock(&parent_counter->child_mutex);
3926 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3927 mutex_unlock(&parent_counter->child_mutex);
3928
3929 return child_counter;
3930 }
3931
3932 static int inherit_group(struct perf_counter *parent_counter,
3933 struct task_struct *parent,
3934 struct perf_counter_context *parent_ctx,
3935 struct task_struct *child,
3936 struct perf_counter_context *child_ctx)
3937 {
3938 struct perf_counter *leader;
3939 struct perf_counter *sub;
3940 struct perf_counter *child_ctr;
3941
3942 leader = inherit_counter(parent_counter, parent, parent_ctx,
3943 child, NULL, child_ctx);
3944 if (IS_ERR(leader))
3945 return PTR_ERR(leader);
3946 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3947 child_ctr = inherit_counter(sub, parent, parent_ctx,
3948 child, leader, child_ctx);
3949 if (IS_ERR(child_ctr))
3950 return PTR_ERR(child_ctr);
3951 }
3952 return 0;
3953 }
3954
3955 static void sync_child_counter(struct perf_counter *child_counter,
3956 struct perf_counter *parent_counter)
3957 {
3958 u64 child_val;
3959
3960 child_val = atomic64_read(&child_counter->count);
3961
3962 /*
3963 * Add back the child's count to the parent's count:
3964 */
3965 atomic64_add(child_val, &parent_counter->count);
3966 atomic64_add(child_counter->total_time_enabled,
3967 &parent_counter->child_total_time_enabled);
3968 atomic64_add(child_counter->total_time_running,
3969 &parent_counter->child_total_time_running);
3970
3971 /*
3972 * Remove this counter from the parent's list
3973 */
3974 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3975 mutex_lock(&parent_counter->child_mutex);
3976 list_del_init(&child_counter->child_list);
3977 mutex_unlock(&parent_counter->child_mutex);
3978
3979 /*
3980 * Release the parent counter, if this was the last
3981 * reference to it.
3982 */
3983 fput(parent_counter->filp);
3984 }
3985
3986 static void
3987 __perf_counter_exit_task(struct perf_counter *child_counter,
3988 struct perf_counter_context *child_ctx)
3989 {
3990 struct perf_counter *parent_counter;
3991
3992 update_counter_times(child_counter);
3993 perf_counter_remove_from_context(child_counter);
3994
3995 parent_counter = child_counter->parent;
3996 /*
3997 * It can happen that parent exits first, and has counters
3998 * that are still around due to the child reference. These
3999 * counters need to be zapped - but otherwise linger.
4000 */
4001 if (parent_counter) {
4002 sync_child_counter(child_counter, parent_counter);
4003 free_counter(child_counter);
4004 }
4005 }
4006
4007 /*
4008 * When a child task exits, feed back counter values to parent counters.
4009 */
4010 void perf_counter_exit_task(struct task_struct *child)
4011 {
4012 struct perf_counter *child_counter, *tmp;
4013 struct perf_counter_context *child_ctx;
4014 unsigned long flags;
4015
4016 if (likely(!child->perf_counter_ctxp))
4017 return;
4018
4019 local_irq_save(flags);
4020 /*
4021 * We can't reschedule here because interrupts are disabled,
4022 * and either child is current or it is a task that can't be
4023 * scheduled, so we are now safe from rescheduling changing
4024 * our context.
4025 */
4026 child_ctx = child->perf_counter_ctxp;
4027 __perf_counter_task_sched_out(child_ctx);
4028
4029 /*
4030 * Take the context lock here so that if find_get_context is
4031 * reading child->perf_counter_ctxp, we wait until it has
4032 * incremented the context's refcount before we do put_ctx below.
4033 */
4034 spin_lock(&child_ctx->lock);
4035 child->perf_counter_ctxp = NULL;
4036 if (child_ctx->parent_ctx) {
4037 /*
4038 * This context is a clone; unclone it so it can't get
4039 * swapped to another process while we're removing all
4040 * the counters from it.
4041 */
4042 put_ctx(child_ctx->parent_ctx);
4043 child_ctx->parent_ctx = NULL;
4044 }
4045 spin_unlock(&child_ctx->lock);
4046 local_irq_restore(flags);
4047
4048 /*
4049 * We can recurse on the same lock type through:
4050 *
4051 * __perf_counter_exit_task()
4052 * sync_child_counter()
4053 * fput(parent_counter->filp)
4054 * perf_release()
4055 * mutex_lock(&ctx->mutex)
4056 *
4057 * But since its the parent context it won't be the same instance.
4058 */
4059 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4060
4061 again:
4062 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
4063 list_entry)
4064 __perf_counter_exit_task(child_counter, child_ctx);
4065
4066 /*
4067 * If the last counter was a group counter, it will have appended all
4068 * its siblings to the list, but we obtained 'tmp' before that which
4069 * will still point to the list head terminating the iteration.
4070 */
4071 if (!list_empty(&child_ctx->counter_list))
4072 goto again;
4073
4074 mutex_unlock(&child_ctx->mutex);
4075
4076 put_ctx(child_ctx);
4077 }
4078
4079 /*
4080 * free an unexposed, unused context as created by inheritance by
4081 * init_task below, used by fork() in case of fail.
4082 */
4083 void perf_counter_free_task(struct task_struct *task)
4084 {
4085 struct perf_counter_context *ctx = task->perf_counter_ctxp;
4086 struct perf_counter *counter, *tmp;
4087
4088 if (!ctx)
4089 return;
4090
4091 mutex_lock(&ctx->mutex);
4092 again:
4093 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
4094 struct perf_counter *parent = counter->parent;
4095
4096 if (WARN_ON_ONCE(!parent))
4097 continue;
4098
4099 mutex_lock(&parent->child_mutex);
4100 list_del_init(&counter->child_list);
4101 mutex_unlock(&parent->child_mutex);
4102
4103 fput(parent->filp);
4104
4105 list_del_counter(counter, ctx);
4106 free_counter(counter);
4107 }
4108
4109 if (!list_empty(&ctx->counter_list))
4110 goto again;
4111
4112 mutex_unlock(&ctx->mutex);
4113
4114 put_ctx(ctx);
4115 }
4116
4117 /*
4118 * Initialize the perf_counter context in task_struct
4119 */
4120 int perf_counter_init_task(struct task_struct *child)
4121 {
4122 struct perf_counter_context *child_ctx, *parent_ctx;
4123 struct perf_counter_context *cloned_ctx;
4124 struct perf_counter *counter;
4125 struct task_struct *parent = current;
4126 int inherited_all = 1;
4127 int ret = 0;
4128
4129 child->perf_counter_ctxp = NULL;
4130
4131 mutex_init(&child->perf_counter_mutex);
4132 INIT_LIST_HEAD(&child->perf_counter_list);
4133
4134 if (likely(!parent->perf_counter_ctxp))
4135 return 0;
4136
4137 /*
4138 * This is executed from the parent task context, so inherit
4139 * counters that have been marked for cloning.
4140 * First allocate and initialize a context for the child.
4141 */
4142
4143 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
4144 if (!child_ctx)
4145 return -ENOMEM;
4146
4147 __perf_counter_init_context(child_ctx, child);
4148 child->perf_counter_ctxp = child_ctx;
4149 get_task_struct(child);
4150
4151 /*
4152 * If the parent's context is a clone, pin it so it won't get
4153 * swapped under us.
4154 */
4155 parent_ctx = perf_pin_task_context(parent);
4156
4157 /*
4158 * No need to check if parent_ctx != NULL here; since we saw
4159 * it non-NULL earlier, the only reason for it to become NULL
4160 * is if we exit, and since we're currently in the middle of
4161 * a fork we can't be exiting at the same time.
4162 */
4163
4164 /*
4165 * Lock the parent list. No need to lock the child - not PID
4166 * hashed yet and not running, so nobody can access it.
4167 */
4168 mutex_lock(&parent_ctx->mutex);
4169
4170 /*
4171 * We dont have to disable NMIs - we are only looking at
4172 * the list, not manipulating it:
4173 */
4174 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
4175 if (counter != counter->group_leader)
4176 continue;
4177
4178 if (!counter->attr.inherit) {
4179 inherited_all = 0;
4180 continue;
4181 }
4182
4183 ret = inherit_group(counter, parent, parent_ctx,
4184 child, child_ctx);
4185 if (ret) {
4186 inherited_all = 0;
4187 break;
4188 }
4189 }
4190
4191 if (inherited_all) {
4192 /*
4193 * Mark the child context as a clone of the parent
4194 * context, or of whatever the parent is a clone of.
4195 * Note that if the parent is a clone, it could get
4196 * uncloned at any point, but that doesn't matter
4197 * because the list of counters and the generation
4198 * count can't have changed since we took the mutex.
4199 */
4200 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4201 if (cloned_ctx) {
4202 child_ctx->parent_ctx = cloned_ctx;
4203 child_ctx->parent_gen = parent_ctx->parent_gen;
4204 } else {
4205 child_ctx->parent_ctx = parent_ctx;
4206 child_ctx->parent_gen = parent_ctx->generation;
4207 }
4208 get_ctx(child_ctx->parent_ctx);
4209 }
4210
4211 mutex_unlock(&parent_ctx->mutex);
4212
4213 perf_unpin_context(parent_ctx);
4214
4215 return ret;
4216 }
4217
4218 static void __cpuinit perf_counter_init_cpu(int cpu)
4219 {
4220 struct perf_cpu_context *cpuctx;
4221
4222 cpuctx = &per_cpu(perf_cpu_context, cpu);
4223 __perf_counter_init_context(&cpuctx->ctx, NULL);
4224
4225 spin_lock(&perf_resource_lock);
4226 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4227 spin_unlock(&perf_resource_lock);
4228
4229 hw_perf_counter_setup(cpu);
4230 }
4231
4232 #ifdef CONFIG_HOTPLUG_CPU
4233 static void __perf_counter_exit_cpu(void *info)
4234 {
4235 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4236 struct perf_counter_context *ctx = &cpuctx->ctx;
4237 struct perf_counter *counter, *tmp;
4238
4239 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4240 __perf_counter_remove_from_context(counter);
4241 }
4242 static void perf_counter_exit_cpu(int cpu)
4243 {
4244 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4245 struct perf_counter_context *ctx = &cpuctx->ctx;
4246
4247 mutex_lock(&ctx->mutex);
4248 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4249 mutex_unlock(&ctx->mutex);
4250 }
4251 #else
4252 static inline void perf_counter_exit_cpu(int cpu) { }
4253 #endif
4254
4255 static int __cpuinit
4256 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4257 {
4258 unsigned int cpu = (long)hcpu;
4259
4260 switch (action) {
4261
4262 case CPU_UP_PREPARE:
4263 case CPU_UP_PREPARE_FROZEN:
4264 perf_counter_init_cpu(cpu);
4265 break;
4266
4267 case CPU_DOWN_PREPARE:
4268 case CPU_DOWN_PREPARE_FROZEN:
4269 perf_counter_exit_cpu(cpu);
4270 break;
4271
4272 default:
4273 break;
4274 }
4275
4276 return NOTIFY_OK;
4277 }
4278
4279 /*
4280 * This has to have a higher priority than migration_notifier in sched.c.
4281 */
4282 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4283 .notifier_call = perf_cpu_notify,
4284 .priority = 20,
4285 };
4286
4287 void __init perf_counter_init(void)
4288 {
4289 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4290 (void *)(long)smp_processor_id());
4291 register_cpu_notifier(&perf_cpu_nb);
4292 }
4293
4294 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4295 {
4296 return sprintf(buf, "%d\n", perf_reserved_percpu);
4297 }
4298
4299 static ssize_t
4300 perf_set_reserve_percpu(struct sysdev_class *class,
4301 const char *buf,
4302 size_t count)
4303 {
4304 struct perf_cpu_context *cpuctx;
4305 unsigned long val;
4306 int err, cpu, mpt;
4307
4308 err = strict_strtoul(buf, 10, &val);
4309 if (err)
4310 return err;
4311 if (val > perf_max_counters)
4312 return -EINVAL;
4313
4314 spin_lock(&perf_resource_lock);
4315 perf_reserved_percpu = val;
4316 for_each_online_cpu(cpu) {
4317 cpuctx = &per_cpu(perf_cpu_context, cpu);
4318 spin_lock_irq(&cpuctx->ctx.lock);
4319 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4320 perf_max_counters - perf_reserved_percpu);
4321 cpuctx->max_pertask = mpt;
4322 spin_unlock_irq(&cpuctx->ctx.lock);
4323 }
4324 spin_unlock(&perf_resource_lock);
4325
4326 return count;
4327 }
4328
4329 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4330 {
4331 return sprintf(buf, "%d\n", perf_overcommit);
4332 }
4333
4334 static ssize_t
4335 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4336 {
4337 unsigned long val;
4338 int err;
4339
4340 err = strict_strtoul(buf, 10, &val);
4341 if (err)
4342 return err;
4343 if (val > 1)
4344 return -EINVAL;
4345
4346 spin_lock(&perf_resource_lock);
4347 perf_overcommit = val;
4348 spin_unlock(&perf_resource_lock);
4349
4350 return count;
4351 }
4352
4353 static SYSDEV_CLASS_ATTR(
4354 reserve_percpu,
4355 0644,
4356 perf_show_reserve_percpu,
4357 perf_set_reserve_percpu
4358 );
4359
4360 static SYSDEV_CLASS_ATTR(
4361 overcommit,
4362 0644,
4363 perf_show_overcommit,
4364 perf_set_overcommit
4365 );
4366
4367 static struct attribute *perfclass_attrs[] = {
4368 &attr_reserve_percpu.attr,
4369 &attr_overcommit.attr,
4370 NULL
4371 };
4372
4373 static struct attribute_group perfclass_attr_group = {
4374 .attrs = perfclass_attrs,
4375 .name = "perf_counters",
4376 };
4377
4378 static int __init perf_counter_sysfs_init(void)
4379 {
4380 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4381 &perfclass_attr_group);
4382 }
4383 device_initcall(perf_counter_sysfs_init);
This page took 0.124313 seconds and 5 git commands to generate.