perfcounters: fix task clock counter
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7 * For licencing details see kernel-base/COPYING
8 */
9
10 #include <linux/fs.h>
11 #include <linux/cpu.h>
12 #include <linux/smp.h>
13 #include <linux/file.h>
14 #include <linux/poll.h>
15 #include <linux/sysfs.h>
16 #include <linux/ptrace.h>
17 #include <linux/percpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/syscalls.h>
20 #include <linux/anon_inodes.h>
21 #include <linux/perf_counter.h>
22
23 /*
24 * Each CPU has a list of per CPU counters:
25 */
26 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
27
28 int perf_max_counters __read_mostly;
29 static int perf_reserved_percpu __read_mostly;
30 static int perf_overcommit __read_mostly = 1;
31
32 /*
33 * Mutex for (sysadmin-configurable) counter reservations:
34 */
35 static DEFINE_MUTEX(perf_resource_mutex);
36
37 /*
38 * Architecture provided APIs - weak aliases:
39 */
40 extern __weak const struct hw_perf_counter_ops *
41 hw_perf_counter_init(struct perf_counter *counter)
42 {
43 return ERR_PTR(-EINVAL);
44 }
45
46 u64 __weak hw_perf_save_disable(void) { return 0; }
47 void __weak hw_perf_restore(u64 ctrl) { }
48 void __weak hw_perf_counter_setup(void) { }
49
50 static void
51 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
52 {
53 struct perf_counter *group_leader = counter->group_leader;
54
55 /*
56 * Depending on whether it is a standalone or sibling counter,
57 * add it straight to the context's counter list, or to the group
58 * leader's sibling list:
59 */
60 if (counter->group_leader == counter)
61 list_add_tail(&counter->list_entry, &ctx->counter_list);
62 else
63 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
64 }
65
66 static void
67 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
68 {
69 struct perf_counter *sibling, *tmp;
70
71 list_del_init(&counter->list_entry);
72
73 /*
74 * If this was a group counter with sibling counters then
75 * upgrade the siblings to singleton counters by adding them
76 * to the context list directly:
77 */
78 list_for_each_entry_safe(sibling, tmp,
79 &counter->sibling_list, list_entry) {
80
81 list_del_init(&sibling->list_entry);
82 list_add_tail(&sibling->list_entry, &ctx->counter_list);
83 sibling->group_leader = sibling;
84 }
85 }
86
87 /*
88 * Cross CPU call to remove a performance counter
89 *
90 * We disable the counter on the hardware level first. After that we
91 * remove it from the context list.
92 */
93 static void __perf_counter_remove_from_context(void *info)
94 {
95 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
96 struct perf_counter *counter = info;
97 struct perf_counter_context *ctx = counter->ctx;
98 unsigned long flags;
99 u64 perf_flags;
100
101 /*
102 * If this is a task context, we need to check whether it is
103 * the current task context of this cpu. If not it has been
104 * scheduled out before the smp call arrived.
105 */
106 if (ctx->task && cpuctx->task_ctx != ctx)
107 return;
108
109 spin_lock_irqsave(&ctx->lock, flags);
110
111 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
112 counter->hw_ops->hw_perf_counter_disable(counter);
113 counter->state = PERF_COUNTER_STATE_INACTIVE;
114 ctx->nr_active--;
115 cpuctx->active_oncpu--;
116 counter->task = NULL;
117 }
118 ctx->nr_counters--;
119
120 /*
121 * Protect the list operation against NMI by disabling the
122 * counters on a global level. NOP for non NMI based counters.
123 */
124 perf_flags = hw_perf_save_disable();
125 list_del_counter(counter, ctx);
126 hw_perf_restore(perf_flags);
127
128 if (!ctx->task) {
129 /*
130 * Allow more per task counters with respect to the
131 * reservation:
132 */
133 cpuctx->max_pertask =
134 min(perf_max_counters - ctx->nr_counters,
135 perf_max_counters - perf_reserved_percpu);
136 }
137
138 spin_unlock_irqrestore(&ctx->lock, flags);
139 }
140
141
142 /*
143 * Remove the counter from a task's (or a CPU's) list of counters.
144 *
145 * Must be called with counter->mutex held.
146 *
147 * CPU counters are removed with a smp call. For task counters we only
148 * call when the task is on a CPU.
149 */
150 static void perf_counter_remove_from_context(struct perf_counter *counter)
151 {
152 struct perf_counter_context *ctx = counter->ctx;
153 struct task_struct *task = ctx->task;
154
155 if (!task) {
156 /*
157 * Per cpu counters are removed via an smp call and
158 * the removal is always sucessful.
159 */
160 smp_call_function_single(counter->cpu,
161 __perf_counter_remove_from_context,
162 counter, 1);
163 return;
164 }
165
166 retry:
167 task_oncpu_function_call(task, __perf_counter_remove_from_context,
168 counter);
169
170 spin_lock_irq(&ctx->lock);
171 /*
172 * If the context is active we need to retry the smp call.
173 */
174 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
175 spin_unlock_irq(&ctx->lock);
176 goto retry;
177 }
178
179 /*
180 * The lock prevents that this context is scheduled in so we
181 * can remove the counter safely, if the call above did not
182 * succeed.
183 */
184 if (!list_empty(&counter->list_entry)) {
185 ctx->nr_counters--;
186 list_del_counter(counter, ctx);
187 counter->task = NULL;
188 }
189 spin_unlock_irq(&ctx->lock);
190 }
191
192 /*
193 * Cross CPU call to install and enable a preformance counter
194 */
195 static void __perf_install_in_context(void *info)
196 {
197 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
198 struct perf_counter *counter = info;
199 struct perf_counter_context *ctx = counter->ctx;
200 int cpu = smp_processor_id();
201 unsigned long flags;
202 u64 perf_flags;
203
204 /*
205 * If this is a task context, we need to check whether it is
206 * the current task context of this cpu. If not it has been
207 * scheduled out before the smp call arrived.
208 */
209 if (ctx->task && cpuctx->task_ctx != ctx)
210 return;
211
212 spin_lock_irqsave(&ctx->lock, flags);
213
214 /*
215 * Protect the list operation against NMI by disabling the
216 * counters on a global level. NOP for non NMI based counters.
217 */
218 perf_flags = hw_perf_save_disable();
219 list_add_counter(counter, ctx);
220 hw_perf_restore(perf_flags);
221
222 ctx->nr_counters++;
223
224 if (cpuctx->active_oncpu < perf_max_counters) {
225 counter->state = PERF_COUNTER_STATE_ACTIVE;
226 counter->oncpu = cpu;
227 ctx->nr_active++;
228 cpuctx->active_oncpu++;
229 counter->hw_ops->hw_perf_counter_enable(counter);
230 }
231
232 if (!ctx->task && cpuctx->max_pertask)
233 cpuctx->max_pertask--;
234
235 spin_unlock_irqrestore(&ctx->lock, flags);
236 }
237
238 /*
239 * Attach a performance counter to a context
240 *
241 * First we add the counter to the list with the hardware enable bit
242 * in counter->hw_config cleared.
243 *
244 * If the counter is attached to a task which is on a CPU we use a smp
245 * call to enable it in the task context. The task might have been
246 * scheduled away, but we check this in the smp call again.
247 */
248 static void
249 perf_install_in_context(struct perf_counter_context *ctx,
250 struct perf_counter *counter,
251 int cpu)
252 {
253 struct task_struct *task = ctx->task;
254
255 counter->ctx = ctx;
256 if (!task) {
257 /*
258 * Per cpu counters are installed via an smp call and
259 * the install is always sucessful.
260 */
261 smp_call_function_single(cpu, __perf_install_in_context,
262 counter, 1);
263 return;
264 }
265
266 counter->task = task;
267 retry:
268 task_oncpu_function_call(task, __perf_install_in_context,
269 counter);
270
271 spin_lock_irq(&ctx->lock);
272 /*
273 * we need to retry the smp call.
274 */
275 if (ctx->nr_active && list_empty(&counter->list_entry)) {
276 spin_unlock_irq(&ctx->lock);
277 goto retry;
278 }
279
280 /*
281 * The lock prevents that this context is scheduled in so we
282 * can add the counter safely, if it the call above did not
283 * succeed.
284 */
285 if (list_empty(&counter->list_entry)) {
286 list_add_counter(counter, ctx);
287 ctx->nr_counters++;
288 }
289 spin_unlock_irq(&ctx->lock);
290 }
291
292 static void
293 counter_sched_out(struct perf_counter *counter,
294 struct perf_cpu_context *cpuctx,
295 struct perf_counter_context *ctx)
296 {
297 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
298 return;
299
300 counter->hw_ops->hw_perf_counter_disable(counter);
301 counter->state = PERF_COUNTER_STATE_INACTIVE;
302 counter->oncpu = -1;
303
304 cpuctx->active_oncpu--;
305 ctx->nr_active--;
306 }
307
308 static void
309 group_sched_out(struct perf_counter *group_counter,
310 struct perf_cpu_context *cpuctx,
311 struct perf_counter_context *ctx)
312 {
313 struct perf_counter *counter;
314
315 counter_sched_out(group_counter, cpuctx, ctx);
316
317 /*
318 * Schedule out siblings (if any):
319 */
320 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
321 counter_sched_out(counter, cpuctx, ctx);
322 }
323
324 /*
325 * Called from scheduler to remove the counters of the current task,
326 * with interrupts disabled.
327 *
328 * We stop each counter and update the counter value in counter->count.
329 *
330 * This does not protect us against NMI, but hw_perf_counter_disable()
331 * sets the disabled bit in the control field of counter _before_
332 * accessing the counter control register. If a NMI hits, then it will
333 * not restart the counter.
334 */
335 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
336 {
337 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
338 struct perf_counter_context *ctx = &task->perf_counter_ctx;
339 struct perf_counter *counter;
340
341 if (likely(!cpuctx->task_ctx))
342 return;
343
344 spin_lock(&ctx->lock);
345 if (ctx->nr_active) {
346 list_for_each_entry(counter, &ctx->counter_list, list_entry)
347 group_sched_out(counter, cpuctx, ctx);
348 }
349 spin_unlock(&ctx->lock);
350 cpuctx->task_ctx = NULL;
351 }
352
353 static void
354 counter_sched_in(struct perf_counter *counter,
355 struct perf_cpu_context *cpuctx,
356 struct perf_counter_context *ctx,
357 int cpu)
358 {
359 if (counter->state == PERF_COUNTER_STATE_OFF)
360 return;
361
362 counter->hw_ops->hw_perf_counter_enable(counter);
363 counter->state = PERF_COUNTER_STATE_ACTIVE;
364 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
365
366 cpuctx->active_oncpu++;
367 ctx->nr_active++;
368 }
369
370 static void
371 group_sched_in(struct perf_counter *group_counter,
372 struct perf_cpu_context *cpuctx,
373 struct perf_counter_context *ctx,
374 int cpu)
375 {
376 struct perf_counter *counter;
377
378 counter_sched_in(group_counter, cpuctx, ctx, cpu);
379
380 /*
381 * Schedule in siblings as one group (if any):
382 */
383 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
384 counter_sched_in(counter, cpuctx, ctx, cpu);
385 }
386
387 /*
388 * Called from scheduler to add the counters of the current task
389 * with interrupts disabled.
390 *
391 * We restore the counter value and then enable it.
392 *
393 * This does not protect us against NMI, but hw_perf_counter_enable()
394 * sets the enabled bit in the control field of counter _before_
395 * accessing the counter control register. If a NMI hits, then it will
396 * keep the counter running.
397 */
398 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
399 {
400 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
401 struct perf_counter_context *ctx = &task->perf_counter_ctx;
402 struct perf_counter *counter;
403
404 if (likely(!ctx->nr_counters))
405 return;
406
407 spin_lock(&ctx->lock);
408 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
409 if (ctx->nr_active == cpuctx->max_pertask)
410 break;
411
412 /*
413 * Listen to the 'cpu' scheduling filter constraint
414 * of counters:
415 */
416 if (counter->cpu != -1 && counter->cpu != cpu)
417 continue;
418
419 group_sched_in(counter, cpuctx, ctx, cpu);
420 }
421 spin_unlock(&ctx->lock);
422
423 cpuctx->task_ctx = ctx;
424 }
425
426 int perf_counter_task_disable(void)
427 {
428 struct task_struct *curr = current;
429 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
430 struct perf_counter *counter;
431 u64 perf_flags;
432 int cpu;
433
434 if (likely(!ctx->nr_counters))
435 return 0;
436
437 local_irq_disable();
438 cpu = smp_processor_id();
439
440 perf_counter_task_sched_out(curr, cpu);
441
442 spin_lock(&ctx->lock);
443
444 /*
445 * Disable all the counters:
446 */
447 perf_flags = hw_perf_save_disable();
448
449 list_for_each_entry(counter, &ctx->counter_list, list_entry)
450 counter->state = PERF_COUNTER_STATE_OFF;
451
452 hw_perf_restore(perf_flags);
453
454 spin_unlock(&ctx->lock);
455
456 local_irq_enable();
457
458 return 0;
459 }
460
461 int perf_counter_task_enable(void)
462 {
463 struct task_struct *curr = current;
464 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
465 struct perf_counter *counter;
466 u64 perf_flags;
467 int cpu;
468
469 if (likely(!ctx->nr_counters))
470 return 0;
471
472 local_irq_disable();
473 cpu = smp_processor_id();
474
475 spin_lock(&ctx->lock);
476
477 /*
478 * Disable all the counters:
479 */
480 perf_flags = hw_perf_save_disable();
481
482 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
483 if (counter->state != PERF_COUNTER_STATE_OFF)
484 continue;
485 counter->state = PERF_COUNTER_STATE_INACTIVE;
486 }
487 hw_perf_restore(perf_flags);
488
489 spin_unlock(&ctx->lock);
490
491 perf_counter_task_sched_in(curr, cpu);
492
493 local_irq_enable();
494
495 return 0;
496 }
497
498 void perf_counter_task_tick(struct task_struct *curr, int cpu)
499 {
500 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
501 struct perf_counter *counter;
502 u64 perf_flags;
503
504 if (likely(!ctx->nr_counters))
505 return;
506
507 perf_counter_task_sched_out(curr, cpu);
508
509 spin_lock(&ctx->lock);
510
511 /*
512 * Rotate the first entry last (works just fine for group counters too):
513 */
514 perf_flags = hw_perf_save_disable();
515 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
516 list_del(&counter->list_entry);
517 list_add_tail(&counter->list_entry, &ctx->counter_list);
518 break;
519 }
520 hw_perf_restore(perf_flags);
521
522 spin_unlock(&ctx->lock);
523
524 perf_counter_task_sched_in(curr, cpu);
525 }
526
527 /*
528 * Cross CPU call to read the hardware counter
529 */
530 static void __hw_perf_counter_read(void *info)
531 {
532 struct perf_counter *counter = info;
533
534 counter->hw_ops->hw_perf_counter_read(counter);
535 }
536
537 static u64 perf_counter_read(struct perf_counter *counter)
538 {
539 /*
540 * If counter is enabled and currently active on a CPU, update the
541 * value in the counter structure:
542 */
543 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
544 smp_call_function_single(counter->oncpu,
545 __hw_perf_counter_read, counter, 1);
546 }
547
548 return atomic64_read(&counter->count);
549 }
550
551 /*
552 * Cross CPU call to switch performance data pointers
553 */
554 static void __perf_switch_irq_data(void *info)
555 {
556 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
557 struct perf_counter *counter = info;
558 struct perf_counter_context *ctx = counter->ctx;
559 struct perf_data *oldirqdata = counter->irqdata;
560
561 /*
562 * If this is a task context, we need to check whether it is
563 * the current task context of this cpu. If not it has been
564 * scheduled out before the smp call arrived.
565 */
566 if (ctx->task) {
567 if (cpuctx->task_ctx != ctx)
568 return;
569 spin_lock(&ctx->lock);
570 }
571
572 /* Change the pointer NMI safe */
573 atomic_long_set((atomic_long_t *)&counter->irqdata,
574 (unsigned long) counter->usrdata);
575 counter->usrdata = oldirqdata;
576
577 if (ctx->task)
578 spin_unlock(&ctx->lock);
579 }
580
581 static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
582 {
583 struct perf_counter_context *ctx = counter->ctx;
584 struct perf_data *oldirqdata = counter->irqdata;
585 struct task_struct *task = ctx->task;
586
587 if (!task) {
588 smp_call_function_single(counter->cpu,
589 __perf_switch_irq_data,
590 counter, 1);
591 return counter->usrdata;
592 }
593
594 retry:
595 spin_lock_irq(&ctx->lock);
596 if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
597 counter->irqdata = counter->usrdata;
598 counter->usrdata = oldirqdata;
599 spin_unlock_irq(&ctx->lock);
600 return oldirqdata;
601 }
602 spin_unlock_irq(&ctx->lock);
603 task_oncpu_function_call(task, __perf_switch_irq_data, counter);
604 /* Might have failed, because task was scheduled out */
605 if (counter->irqdata == oldirqdata)
606 goto retry;
607
608 return counter->usrdata;
609 }
610
611 static void put_context(struct perf_counter_context *ctx)
612 {
613 if (ctx->task)
614 put_task_struct(ctx->task);
615 }
616
617 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
618 {
619 struct perf_cpu_context *cpuctx;
620 struct perf_counter_context *ctx;
621 struct task_struct *task;
622
623 /*
624 * If cpu is not a wildcard then this is a percpu counter:
625 */
626 if (cpu != -1) {
627 /* Must be root to operate on a CPU counter: */
628 if (!capable(CAP_SYS_ADMIN))
629 return ERR_PTR(-EACCES);
630
631 if (cpu < 0 || cpu > num_possible_cpus())
632 return ERR_PTR(-EINVAL);
633
634 /*
635 * We could be clever and allow to attach a counter to an
636 * offline CPU and activate it when the CPU comes up, but
637 * that's for later.
638 */
639 if (!cpu_isset(cpu, cpu_online_map))
640 return ERR_PTR(-ENODEV);
641
642 cpuctx = &per_cpu(perf_cpu_context, cpu);
643 ctx = &cpuctx->ctx;
644
645 return ctx;
646 }
647
648 rcu_read_lock();
649 if (!pid)
650 task = current;
651 else
652 task = find_task_by_vpid(pid);
653 if (task)
654 get_task_struct(task);
655 rcu_read_unlock();
656
657 if (!task)
658 return ERR_PTR(-ESRCH);
659
660 ctx = &task->perf_counter_ctx;
661 ctx->task = task;
662
663 /* Reuse ptrace permission checks for now. */
664 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
665 put_context(ctx);
666 return ERR_PTR(-EACCES);
667 }
668
669 return ctx;
670 }
671
672 /*
673 * Called when the last reference to the file is gone.
674 */
675 static int perf_release(struct inode *inode, struct file *file)
676 {
677 struct perf_counter *counter = file->private_data;
678 struct perf_counter_context *ctx = counter->ctx;
679
680 file->private_data = NULL;
681
682 mutex_lock(&counter->mutex);
683
684 perf_counter_remove_from_context(counter);
685 put_context(ctx);
686
687 mutex_unlock(&counter->mutex);
688
689 kfree(counter);
690
691 return 0;
692 }
693
694 /*
695 * Read the performance counter - simple non blocking version for now
696 */
697 static ssize_t
698 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
699 {
700 u64 cntval;
701
702 if (count != sizeof(cntval))
703 return -EINVAL;
704
705 mutex_lock(&counter->mutex);
706 cntval = perf_counter_read(counter);
707 mutex_unlock(&counter->mutex);
708
709 return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
710 }
711
712 static ssize_t
713 perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
714 {
715 if (!usrdata->len)
716 return 0;
717
718 count = min(count, (size_t)usrdata->len);
719 if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
720 return -EFAULT;
721
722 /* Adjust the counters */
723 usrdata->len -= count;
724 if (!usrdata->len)
725 usrdata->rd_idx = 0;
726 else
727 usrdata->rd_idx += count;
728
729 return count;
730 }
731
732 static ssize_t
733 perf_read_irq_data(struct perf_counter *counter,
734 char __user *buf,
735 size_t count,
736 int nonblocking)
737 {
738 struct perf_data *irqdata, *usrdata;
739 DECLARE_WAITQUEUE(wait, current);
740 ssize_t res;
741
742 irqdata = counter->irqdata;
743 usrdata = counter->usrdata;
744
745 if (usrdata->len + irqdata->len >= count)
746 goto read_pending;
747
748 if (nonblocking)
749 return -EAGAIN;
750
751 spin_lock_irq(&counter->waitq.lock);
752 __add_wait_queue(&counter->waitq, &wait);
753 for (;;) {
754 set_current_state(TASK_INTERRUPTIBLE);
755 if (usrdata->len + irqdata->len >= count)
756 break;
757
758 if (signal_pending(current))
759 break;
760
761 spin_unlock_irq(&counter->waitq.lock);
762 schedule();
763 spin_lock_irq(&counter->waitq.lock);
764 }
765 __remove_wait_queue(&counter->waitq, &wait);
766 __set_current_state(TASK_RUNNING);
767 spin_unlock_irq(&counter->waitq.lock);
768
769 if (usrdata->len + irqdata->len < count)
770 return -ERESTARTSYS;
771 read_pending:
772 mutex_lock(&counter->mutex);
773
774 /* Drain pending data first: */
775 res = perf_copy_usrdata(usrdata, buf, count);
776 if (res < 0 || res == count)
777 goto out;
778
779 /* Switch irq buffer: */
780 usrdata = perf_switch_irq_data(counter);
781 if (perf_copy_usrdata(usrdata, buf + res, count - res) < 0) {
782 if (!res)
783 res = -EFAULT;
784 } else {
785 res = count;
786 }
787 out:
788 mutex_unlock(&counter->mutex);
789
790 return res;
791 }
792
793 static ssize_t
794 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
795 {
796 struct perf_counter *counter = file->private_data;
797
798 switch (counter->hw_event.record_type) {
799 case PERF_RECORD_SIMPLE:
800 return perf_read_hw(counter, buf, count);
801
802 case PERF_RECORD_IRQ:
803 case PERF_RECORD_GROUP:
804 return perf_read_irq_data(counter, buf, count,
805 file->f_flags & O_NONBLOCK);
806 }
807 return -EINVAL;
808 }
809
810 static unsigned int perf_poll(struct file *file, poll_table *wait)
811 {
812 struct perf_counter *counter = file->private_data;
813 unsigned int events = 0;
814 unsigned long flags;
815
816 poll_wait(file, &counter->waitq, wait);
817
818 spin_lock_irqsave(&counter->waitq.lock, flags);
819 if (counter->usrdata->len || counter->irqdata->len)
820 events |= POLLIN;
821 spin_unlock_irqrestore(&counter->waitq.lock, flags);
822
823 return events;
824 }
825
826 static const struct file_operations perf_fops = {
827 .release = perf_release,
828 .read = perf_read,
829 .poll = perf_poll,
830 };
831
832 static void cpu_clock_perf_counter_enable(struct perf_counter *counter)
833 {
834 }
835
836 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
837 {
838 }
839
840 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
841 {
842 int cpu = raw_smp_processor_id();
843
844 atomic64_set(&counter->count, cpu_clock(cpu));
845 }
846
847 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
848 .hw_perf_counter_enable = cpu_clock_perf_counter_enable,
849 .hw_perf_counter_disable = cpu_clock_perf_counter_disable,
850 .hw_perf_counter_read = cpu_clock_perf_counter_read,
851 };
852
853 static void task_clock_perf_counter_update(struct perf_counter *counter)
854 {
855 u64 prev, now;
856 s64 delta;
857
858 prev = atomic64_read(&counter->hw.prev_count);
859 now = current->se.sum_exec_runtime;
860
861 atomic64_set(&counter->hw.prev_count, now);
862
863 delta = now - prev;
864 if (WARN_ON_ONCE(delta < 0))
865 delta = 0;
866
867 atomic64_add(delta, &counter->count);
868 }
869
870 static void task_clock_perf_counter_read(struct perf_counter *counter)
871 {
872 task_clock_perf_counter_update(counter);
873 }
874
875 static void task_clock_perf_counter_enable(struct perf_counter *counter)
876 {
877 atomic64_set(&counter->hw.prev_count, current->se.sum_exec_runtime);
878 }
879
880 static void task_clock_perf_counter_disable(struct perf_counter *counter)
881 {
882 task_clock_perf_counter_update(counter);
883 }
884
885 static const struct hw_perf_counter_ops perf_ops_task_clock = {
886 .hw_perf_counter_enable = task_clock_perf_counter_enable,
887 .hw_perf_counter_disable = task_clock_perf_counter_disable,
888 .hw_perf_counter_read = task_clock_perf_counter_read,
889 };
890
891 static const struct hw_perf_counter_ops *
892 sw_perf_counter_init(struct perf_counter *counter)
893 {
894 const struct hw_perf_counter_ops *hw_ops = NULL;
895
896 switch (counter->hw_event.type) {
897 case PERF_COUNT_CPU_CLOCK:
898 hw_ops = &perf_ops_cpu_clock;
899 break;
900 case PERF_COUNT_TASK_CLOCK:
901 hw_ops = &perf_ops_task_clock;
902 break;
903 default:
904 break;
905 }
906 return hw_ops;
907 }
908
909 /*
910 * Allocate and initialize a counter structure
911 */
912 static struct perf_counter *
913 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
914 int cpu,
915 struct perf_counter *group_leader,
916 gfp_t gfpflags)
917 {
918 const struct hw_perf_counter_ops *hw_ops;
919 struct perf_counter *counter;
920
921 counter = kzalloc(sizeof(*counter), gfpflags);
922 if (!counter)
923 return NULL;
924
925 /*
926 * Single counters are their own group leaders, with an
927 * empty sibling list:
928 */
929 if (!group_leader)
930 group_leader = counter;
931
932 mutex_init(&counter->mutex);
933 INIT_LIST_HEAD(&counter->list_entry);
934 INIT_LIST_HEAD(&counter->sibling_list);
935 init_waitqueue_head(&counter->waitq);
936
937 counter->irqdata = &counter->data[0];
938 counter->usrdata = &counter->data[1];
939 counter->cpu = cpu;
940 counter->hw_event = *hw_event;
941 counter->wakeup_pending = 0;
942 counter->group_leader = group_leader;
943 counter->hw_ops = NULL;
944
945 hw_ops = NULL;
946 if (!hw_event->raw && hw_event->type < 0)
947 hw_ops = sw_perf_counter_init(counter);
948 if (!hw_ops)
949 hw_ops = hw_perf_counter_init(counter);
950
951 if (!hw_ops) {
952 kfree(counter);
953 return NULL;
954 }
955 counter->hw_ops = hw_ops;
956
957 return counter;
958 }
959
960 /**
961 * sys_perf_task_open - open a performance counter, associate it to a task/cpu
962 *
963 * @hw_event_uptr: event type attributes for monitoring/sampling
964 * @pid: target pid
965 * @cpu: target cpu
966 * @group_fd: group leader counter fd
967 */
968 asmlinkage int
969 sys_perf_counter_open(struct perf_counter_hw_event *hw_event_uptr __user,
970 pid_t pid, int cpu, int group_fd)
971 {
972 struct perf_counter *counter, *group_leader;
973 struct perf_counter_hw_event hw_event;
974 struct perf_counter_context *ctx;
975 struct file *counter_file = NULL;
976 struct file *group_file = NULL;
977 int fput_needed = 0;
978 int fput_needed2 = 0;
979 int ret;
980
981 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
982 return -EFAULT;
983
984 /*
985 * Get the target context (task or percpu):
986 */
987 ctx = find_get_context(pid, cpu);
988 if (IS_ERR(ctx))
989 return PTR_ERR(ctx);
990
991 /*
992 * Look up the group leader (we will attach this counter to it):
993 */
994 group_leader = NULL;
995 if (group_fd != -1) {
996 ret = -EINVAL;
997 group_file = fget_light(group_fd, &fput_needed);
998 if (!group_file)
999 goto err_put_context;
1000 if (group_file->f_op != &perf_fops)
1001 goto err_put_context;
1002
1003 group_leader = group_file->private_data;
1004 /*
1005 * Do not allow a recursive hierarchy (this new sibling
1006 * becoming part of another group-sibling):
1007 */
1008 if (group_leader->group_leader != group_leader)
1009 goto err_put_context;
1010 /*
1011 * Do not allow to attach to a group in a different
1012 * task or CPU context:
1013 */
1014 if (group_leader->ctx != ctx)
1015 goto err_put_context;
1016 }
1017
1018 ret = -EINVAL;
1019 counter = perf_counter_alloc(&hw_event, cpu, group_leader, GFP_KERNEL);
1020 if (!counter)
1021 goto err_put_context;
1022
1023 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
1024 if (ret < 0)
1025 goto err_free_put_context;
1026
1027 counter_file = fget_light(ret, &fput_needed2);
1028 if (!counter_file)
1029 goto err_free_put_context;
1030
1031 counter->filp = counter_file;
1032 perf_install_in_context(ctx, counter, cpu);
1033
1034 fput_light(counter_file, fput_needed2);
1035
1036 out_fput:
1037 fput_light(group_file, fput_needed);
1038
1039 return ret;
1040
1041 err_free_put_context:
1042 kfree(counter);
1043
1044 err_put_context:
1045 put_context(ctx);
1046
1047 goto out_fput;
1048 }
1049
1050 /*
1051 * Initialize the perf_counter context in a task_struct:
1052 */
1053 static void
1054 __perf_counter_init_context(struct perf_counter_context *ctx,
1055 struct task_struct *task)
1056 {
1057 memset(ctx, 0, sizeof(*ctx));
1058 spin_lock_init(&ctx->lock);
1059 INIT_LIST_HEAD(&ctx->counter_list);
1060 ctx->task = task;
1061 }
1062
1063 /*
1064 * inherit a counter from parent task to child task:
1065 */
1066 static int
1067 inherit_counter(struct perf_counter *parent_counter,
1068 struct task_struct *parent,
1069 struct perf_counter_context *parent_ctx,
1070 struct task_struct *child,
1071 struct perf_counter_context *child_ctx)
1072 {
1073 struct perf_counter *child_counter;
1074
1075 child_counter = perf_counter_alloc(&parent_counter->hw_event,
1076 parent_counter->cpu, NULL,
1077 GFP_ATOMIC);
1078 if (!child_counter)
1079 return -ENOMEM;
1080
1081 /*
1082 * Link it up in the child's context:
1083 */
1084 child_counter->ctx = child_ctx;
1085 child_counter->task = child;
1086 list_add_counter(child_counter, child_ctx);
1087 child_ctx->nr_counters++;
1088
1089 child_counter->parent = parent_counter;
1090 parent_counter->nr_inherited++;
1091 /*
1092 * inherit into child's child as well:
1093 */
1094 child_counter->hw_event.inherit = 1;
1095
1096 /*
1097 * Get a reference to the parent filp - we will fput it
1098 * when the child counter exits. This is safe to do because
1099 * we are in the parent and we know that the filp still
1100 * exists and has a nonzero count:
1101 */
1102 atomic_long_inc(&parent_counter->filp->f_count);
1103
1104 return 0;
1105 }
1106
1107 static void
1108 __perf_counter_exit_task(struct task_struct *child,
1109 struct perf_counter *child_counter,
1110 struct perf_counter_context *child_ctx)
1111 {
1112 struct perf_counter *parent_counter;
1113 u64 parent_val, child_val;
1114 u64 perf_flags;
1115
1116 /*
1117 * Disable and unlink this counter.
1118 *
1119 * Be careful about zapping the list - IRQ/NMI context
1120 * could still be processing it:
1121 */
1122 local_irq_disable();
1123 perf_flags = hw_perf_save_disable();
1124
1125 if (child_counter->state == PERF_COUNTER_STATE_ACTIVE)
1126 child_counter->hw_ops->hw_perf_counter_disable(child_counter);
1127 list_del_init(&child_counter->list_entry);
1128
1129 hw_perf_restore(perf_flags);
1130 local_irq_enable();
1131
1132 parent_counter = child_counter->parent;
1133 /*
1134 * It can happen that parent exits first, and has counters
1135 * that are still around due to the child reference. These
1136 * counters need to be zapped - but otherwise linger.
1137 */
1138 if (!parent_counter)
1139 return;
1140
1141 parent_val = atomic64_read(&parent_counter->count);
1142 child_val = atomic64_read(&child_counter->count);
1143
1144 /*
1145 * Add back the child's count to the parent's count:
1146 */
1147 atomic64_add(child_val, &parent_counter->count);
1148
1149 fput(parent_counter->filp);
1150
1151 kfree(child_counter);
1152 }
1153
1154 /*
1155 * When a child task exist, feed back counter values to parent counters.
1156 *
1157 * Note: we are running in child context, but the PID is not hashed
1158 * anymore so new counters will not be added.
1159 */
1160 void perf_counter_exit_task(struct task_struct *child)
1161 {
1162 struct perf_counter *child_counter, *tmp;
1163 struct perf_counter_context *child_ctx;
1164
1165 child_ctx = &child->perf_counter_ctx;
1166
1167 if (likely(!child_ctx->nr_counters))
1168 return;
1169
1170 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
1171 list_entry)
1172 __perf_counter_exit_task(child, child_counter, child_ctx);
1173 }
1174
1175 /*
1176 * Initialize the perf_counter context in task_struct
1177 */
1178 void perf_counter_init_task(struct task_struct *child)
1179 {
1180 struct perf_counter_context *child_ctx, *parent_ctx;
1181 struct perf_counter *counter, *parent_counter;
1182 struct task_struct *parent = current;
1183 unsigned long flags;
1184
1185 child_ctx = &child->perf_counter_ctx;
1186 parent_ctx = &parent->perf_counter_ctx;
1187
1188 __perf_counter_init_context(child_ctx, child);
1189
1190 /*
1191 * This is executed from the parent task context, so inherit
1192 * counters that have been marked for cloning:
1193 */
1194
1195 if (likely(!parent_ctx->nr_counters))
1196 return;
1197
1198 /*
1199 * Lock the parent list. No need to lock the child - not PID
1200 * hashed yet and not running, so nobody can access it.
1201 */
1202 spin_lock_irqsave(&parent_ctx->lock, flags);
1203
1204 /*
1205 * We dont have to disable NMIs - we are only looking at
1206 * the list, not manipulating it:
1207 */
1208 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
1209 if (!counter->hw_event.inherit || counter->group_leader != counter)
1210 continue;
1211
1212 /*
1213 * Instead of creating recursive hierarchies of counters,
1214 * we link inheritd counters back to the original parent,
1215 * which has a filp for sure, which we use as the reference
1216 * count:
1217 */
1218 parent_counter = counter;
1219 if (counter->parent)
1220 parent_counter = counter->parent;
1221
1222 if (inherit_counter(parent_counter, parent,
1223 parent_ctx, child, child_ctx))
1224 break;
1225 }
1226
1227 spin_unlock_irqrestore(&parent_ctx->lock, flags);
1228 }
1229
1230 static void __cpuinit perf_counter_init_cpu(int cpu)
1231 {
1232 struct perf_cpu_context *cpuctx;
1233
1234 cpuctx = &per_cpu(perf_cpu_context, cpu);
1235 __perf_counter_init_context(&cpuctx->ctx, NULL);
1236
1237 mutex_lock(&perf_resource_mutex);
1238 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
1239 mutex_unlock(&perf_resource_mutex);
1240
1241 hw_perf_counter_setup();
1242 }
1243
1244 #ifdef CONFIG_HOTPLUG_CPU
1245 static void __perf_counter_exit_cpu(void *info)
1246 {
1247 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1248 struct perf_counter_context *ctx = &cpuctx->ctx;
1249 struct perf_counter *counter, *tmp;
1250
1251 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
1252 __perf_counter_remove_from_context(counter);
1253
1254 }
1255 static void perf_counter_exit_cpu(int cpu)
1256 {
1257 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
1258 }
1259 #else
1260 static inline void perf_counter_exit_cpu(int cpu) { }
1261 #endif
1262
1263 static int __cpuinit
1264 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
1265 {
1266 unsigned int cpu = (long)hcpu;
1267
1268 switch (action) {
1269
1270 case CPU_UP_PREPARE:
1271 case CPU_UP_PREPARE_FROZEN:
1272 perf_counter_init_cpu(cpu);
1273 break;
1274
1275 case CPU_DOWN_PREPARE:
1276 case CPU_DOWN_PREPARE_FROZEN:
1277 perf_counter_exit_cpu(cpu);
1278 break;
1279
1280 default:
1281 break;
1282 }
1283
1284 return NOTIFY_OK;
1285 }
1286
1287 static struct notifier_block __cpuinitdata perf_cpu_nb = {
1288 .notifier_call = perf_cpu_notify,
1289 };
1290
1291 static int __init perf_counter_init(void)
1292 {
1293 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
1294 (void *)(long)smp_processor_id());
1295 register_cpu_notifier(&perf_cpu_nb);
1296
1297 return 0;
1298 }
1299 early_initcall(perf_counter_init);
1300
1301 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
1302 {
1303 return sprintf(buf, "%d\n", perf_reserved_percpu);
1304 }
1305
1306 static ssize_t
1307 perf_set_reserve_percpu(struct sysdev_class *class,
1308 const char *buf,
1309 size_t count)
1310 {
1311 struct perf_cpu_context *cpuctx;
1312 unsigned long val;
1313 int err, cpu, mpt;
1314
1315 err = strict_strtoul(buf, 10, &val);
1316 if (err)
1317 return err;
1318 if (val > perf_max_counters)
1319 return -EINVAL;
1320
1321 mutex_lock(&perf_resource_mutex);
1322 perf_reserved_percpu = val;
1323 for_each_online_cpu(cpu) {
1324 cpuctx = &per_cpu(perf_cpu_context, cpu);
1325 spin_lock_irq(&cpuctx->ctx.lock);
1326 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
1327 perf_max_counters - perf_reserved_percpu);
1328 cpuctx->max_pertask = mpt;
1329 spin_unlock_irq(&cpuctx->ctx.lock);
1330 }
1331 mutex_unlock(&perf_resource_mutex);
1332
1333 return count;
1334 }
1335
1336 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
1337 {
1338 return sprintf(buf, "%d\n", perf_overcommit);
1339 }
1340
1341 static ssize_t
1342 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
1343 {
1344 unsigned long val;
1345 int err;
1346
1347 err = strict_strtoul(buf, 10, &val);
1348 if (err)
1349 return err;
1350 if (val > 1)
1351 return -EINVAL;
1352
1353 mutex_lock(&perf_resource_mutex);
1354 perf_overcommit = val;
1355 mutex_unlock(&perf_resource_mutex);
1356
1357 return count;
1358 }
1359
1360 static SYSDEV_CLASS_ATTR(
1361 reserve_percpu,
1362 0644,
1363 perf_show_reserve_percpu,
1364 perf_set_reserve_percpu
1365 );
1366
1367 static SYSDEV_CLASS_ATTR(
1368 overcommit,
1369 0644,
1370 perf_show_overcommit,
1371 perf_set_overcommit
1372 );
1373
1374 static struct attribute *perfclass_attrs[] = {
1375 &attr_reserve_percpu.attr,
1376 &attr_overcommit.attr,
1377 NULL
1378 };
1379
1380 static struct attribute_group perfclass_attr_group = {
1381 .attrs = perfclass_attrs,
1382 .name = "perf_counters",
1383 };
1384
1385 static int __init perf_counter_sysfs_init(void)
1386 {
1387 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
1388 &perfclass_attr_group);
1389 }
1390 device_initcall(perf_counter_sysfs_init);
1391
This page took 0.063391 seconds and 5 git commands to generate.