perf_counter: More aggressive frequency adjustment
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
45
46 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
47 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
48 int sysctl_perf_counter_limit __read_mostly = 100000; /* max NMIs per second */
49
50 static atomic64_t perf_counter_id;
51
52 /*
53 * Lock for (sysadmin-configurable) counter reservations:
54 */
55 static DEFINE_SPINLOCK(perf_resource_lock);
56
57 /*
58 * Architecture provided APIs - weak aliases:
59 */
60 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
61 {
62 return NULL;
63 }
64
65 void __weak hw_perf_disable(void) { barrier(); }
66 void __weak hw_perf_enable(void) { barrier(); }
67
68 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
69
70 int __weak
71 hw_perf_group_sched_in(struct perf_counter *group_leader,
72 struct perf_cpu_context *cpuctx,
73 struct perf_counter_context *ctx, int cpu)
74 {
75 return 0;
76 }
77
78 void __weak perf_counter_print_debug(void) { }
79
80 static DEFINE_PER_CPU(int, disable_count);
81
82 void __perf_disable(void)
83 {
84 __get_cpu_var(disable_count)++;
85 }
86
87 bool __perf_enable(void)
88 {
89 return !--__get_cpu_var(disable_count);
90 }
91
92 void perf_disable(void)
93 {
94 __perf_disable();
95 hw_perf_disable();
96 }
97
98 void perf_enable(void)
99 {
100 if (__perf_enable())
101 hw_perf_enable();
102 }
103
104 static void get_ctx(struct perf_counter_context *ctx)
105 {
106 atomic_inc(&ctx->refcount);
107 }
108
109 static void free_ctx(struct rcu_head *head)
110 {
111 struct perf_counter_context *ctx;
112
113 ctx = container_of(head, struct perf_counter_context, rcu_head);
114 kfree(ctx);
115 }
116
117 static void put_ctx(struct perf_counter_context *ctx)
118 {
119 if (atomic_dec_and_test(&ctx->refcount)) {
120 if (ctx->parent_ctx)
121 put_ctx(ctx->parent_ctx);
122 if (ctx->task)
123 put_task_struct(ctx->task);
124 call_rcu(&ctx->rcu_head, free_ctx);
125 }
126 }
127
128 /*
129 * Get the perf_counter_context for a task and lock it.
130 * This has to cope with with the fact that until it is locked,
131 * the context could get moved to another task.
132 */
133 static struct perf_counter_context *
134 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
135 {
136 struct perf_counter_context *ctx;
137
138 rcu_read_lock();
139 retry:
140 ctx = rcu_dereference(task->perf_counter_ctxp);
141 if (ctx) {
142 /*
143 * If this context is a clone of another, it might
144 * get swapped for another underneath us by
145 * perf_counter_task_sched_out, though the
146 * rcu_read_lock() protects us from any context
147 * getting freed. Lock the context and check if it
148 * got swapped before we could get the lock, and retry
149 * if so. If we locked the right context, then it
150 * can't get swapped on us any more.
151 */
152 spin_lock_irqsave(&ctx->lock, *flags);
153 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
154 spin_unlock_irqrestore(&ctx->lock, *flags);
155 goto retry;
156 }
157 }
158 rcu_read_unlock();
159 return ctx;
160 }
161
162 /*
163 * Get the context for a task and increment its pin_count so it
164 * can't get swapped to another task. This also increments its
165 * reference count so that the context can't get freed.
166 */
167 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
168 {
169 struct perf_counter_context *ctx;
170 unsigned long flags;
171
172 ctx = perf_lock_task_context(task, &flags);
173 if (ctx) {
174 ++ctx->pin_count;
175 get_ctx(ctx);
176 spin_unlock_irqrestore(&ctx->lock, flags);
177 }
178 return ctx;
179 }
180
181 static void perf_unpin_context(struct perf_counter_context *ctx)
182 {
183 unsigned long flags;
184
185 spin_lock_irqsave(&ctx->lock, flags);
186 --ctx->pin_count;
187 spin_unlock_irqrestore(&ctx->lock, flags);
188 put_ctx(ctx);
189 }
190
191 /*
192 * Add a counter from the lists for its context.
193 * Must be called with ctx->mutex and ctx->lock held.
194 */
195 static void
196 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
197 {
198 struct perf_counter *group_leader = counter->group_leader;
199
200 /*
201 * Depending on whether it is a standalone or sibling counter,
202 * add it straight to the context's counter list, or to the group
203 * leader's sibling list:
204 */
205 if (group_leader == counter)
206 list_add_tail(&counter->list_entry, &ctx->counter_list);
207 else {
208 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
209 group_leader->nr_siblings++;
210 }
211
212 list_add_rcu(&counter->event_entry, &ctx->event_list);
213 ctx->nr_counters++;
214 }
215
216 /*
217 * Remove a counter from the lists for its context.
218 * Must be called with ctx->mutex and ctx->lock held.
219 */
220 static void
221 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
222 {
223 struct perf_counter *sibling, *tmp;
224
225 if (list_empty(&counter->list_entry))
226 return;
227 ctx->nr_counters--;
228
229 list_del_init(&counter->list_entry);
230 list_del_rcu(&counter->event_entry);
231
232 if (counter->group_leader != counter)
233 counter->group_leader->nr_siblings--;
234
235 /*
236 * If this was a group counter with sibling counters then
237 * upgrade the siblings to singleton counters by adding them
238 * to the context list directly:
239 */
240 list_for_each_entry_safe(sibling, tmp,
241 &counter->sibling_list, list_entry) {
242
243 list_move_tail(&sibling->list_entry, &ctx->counter_list);
244 sibling->group_leader = sibling;
245 }
246 }
247
248 static void
249 counter_sched_out(struct perf_counter *counter,
250 struct perf_cpu_context *cpuctx,
251 struct perf_counter_context *ctx)
252 {
253 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
254 return;
255
256 counter->state = PERF_COUNTER_STATE_INACTIVE;
257 counter->tstamp_stopped = ctx->time;
258 counter->pmu->disable(counter);
259 counter->oncpu = -1;
260
261 if (!is_software_counter(counter))
262 cpuctx->active_oncpu--;
263 ctx->nr_active--;
264 if (counter->attr.exclusive || !cpuctx->active_oncpu)
265 cpuctx->exclusive = 0;
266 }
267
268 static void
269 group_sched_out(struct perf_counter *group_counter,
270 struct perf_cpu_context *cpuctx,
271 struct perf_counter_context *ctx)
272 {
273 struct perf_counter *counter;
274
275 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
276 return;
277
278 counter_sched_out(group_counter, cpuctx, ctx);
279
280 /*
281 * Schedule out siblings (if any):
282 */
283 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
284 counter_sched_out(counter, cpuctx, ctx);
285
286 if (group_counter->attr.exclusive)
287 cpuctx->exclusive = 0;
288 }
289
290 /*
291 * Cross CPU call to remove a performance counter
292 *
293 * We disable the counter on the hardware level first. After that we
294 * remove it from the context list.
295 */
296 static void __perf_counter_remove_from_context(void *info)
297 {
298 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
299 struct perf_counter *counter = info;
300 struct perf_counter_context *ctx = counter->ctx;
301
302 /*
303 * If this is a task context, we need to check whether it is
304 * the current task context of this cpu. If not it has been
305 * scheduled out before the smp call arrived.
306 */
307 if (ctx->task && cpuctx->task_ctx != ctx)
308 return;
309
310 spin_lock(&ctx->lock);
311 /*
312 * Protect the list operation against NMI by disabling the
313 * counters on a global level.
314 */
315 perf_disable();
316
317 counter_sched_out(counter, cpuctx, ctx);
318
319 list_del_counter(counter, ctx);
320
321 if (!ctx->task) {
322 /*
323 * Allow more per task counters with respect to the
324 * reservation:
325 */
326 cpuctx->max_pertask =
327 min(perf_max_counters - ctx->nr_counters,
328 perf_max_counters - perf_reserved_percpu);
329 }
330
331 perf_enable();
332 spin_unlock(&ctx->lock);
333 }
334
335
336 /*
337 * Remove the counter from a task's (or a CPU's) list of counters.
338 *
339 * Must be called with ctx->mutex held.
340 *
341 * CPU counters are removed with a smp call. For task counters we only
342 * call when the task is on a CPU.
343 *
344 * If counter->ctx is a cloned context, callers must make sure that
345 * every task struct that counter->ctx->task could possibly point to
346 * remains valid. This is OK when called from perf_release since
347 * that only calls us on the top-level context, which can't be a clone.
348 * When called from perf_counter_exit_task, it's OK because the
349 * context has been detached from its task.
350 */
351 static void perf_counter_remove_from_context(struct perf_counter *counter)
352 {
353 struct perf_counter_context *ctx = counter->ctx;
354 struct task_struct *task = ctx->task;
355
356 if (!task) {
357 /*
358 * Per cpu counters are removed via an smp call and
359 * the removal is always sucessful.
360 */
361 smp_call_function_single(counter->cpu,
362 __perf_counter_remove_from_context,
363 counter, 1);
364 return;
365 }
366
367 retry:
368 task_oncpu_function_call(task, __perf_counter_remove_from_context,
369 counter);
370
371 spin_lock_irq(&ctx->lock);
372 /*
373 * If the context is active we need to retry the smp call.
374 */
375 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
376 spin_unlock_irq(&ctx->lock);
377 goto retry;
378 }
379
380 /*
381 * The lock prevents that this context is scheduled in so we
382 * can remove the counter safely, if the call above did not
383 * succeed.
384 */
385 if (!list_empty(&counter->list_entry)) {
386 list_del_counter(counter, ctx);
387 }
388 spin_unlock_irq(&ctx->lock);
389 }
390
391 static inline u64 perf_clock(void)
392 {
393 return cpu_clock(smp_processor_id());
394 }
395
396 /*
397 * Update the record of the current time in a context.
398 */
399 static void update_context_time(struct perf_counter_context *ctx)
400 {
401 u64 now = perf_clock();
402
403 ctx->time += now - ctx->timestamp;
404 ctx->timestamp = now;
405 }
406
407 /*
408 * Update the total_time_enabled and total_time_running fields for a counter.
409 */
410 static void update_counter_times(struct perf_counter *counter)
411 {
412 struct perf_counter_context *ctx = counter->ctx;
413 u64 run_end;
414
415 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
416 return;
417
418 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
419
420 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
421 run_end = counter->tstamp_stopped;
422 else
423 run_end = ctx->time;
424
425 counter->total_time_running = run_end - counter->tstamp_running;
426 }
427
428 /*
429 * Update total_time_enabled and total_time_running for all counters in a group.
430 */
431 static void update_group_times(struct perf_counter *leader)
432 {
433 struct perf_counter *counter;
434
435 update_counter_times(leader);
436 list_for_each_entry(counter, &leader->sibling_list, list_entry)
437 update_counter_times(counter);
438 }
439
440 /*
441 * Cross CPU call to disable a performance counter
442 */
443 static void __perf_counter_disable(void *info)
444 {
445 struct perf_counter *counter = info;
446 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
447 struct perf_counter_context *ctx = counter->ctx;
448
449 /*
450 * If this is a per-task counter, need to check whether this
451 * counter's task is the current task on this cpu.
452 */
453 if (ctx->task && cpuctx->task_ctx != ctx)
454 return;
455
456 spin_lock(&ctx->lock);
457
458 /*
459 * If the counter is on, turn it off.
460 * If it is in error state, leave it in error state.
461 */
462 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
463 update_context_time(ctx);
464 update_counter_times(counter);
465 if (counter == counter->group_leader)
466 group_sched_out(counter, cpuctx, ctx);
467 else
468 counter_sched_out(counter, cpuctx, ctx);
469 counter->state = PERF_COUNTER_STATE_OFF;
470 }
471
472 spin_unlock(&ctx->lock);
473 }
474
475 /*
476 * Disable a counter.
477 *
478 * If counter->ctx is a cloned context, callers must make sure that
479 * every task struct that counter->ctx->task could possibly point to
480 * remains valid. This condition is satisifed when called through
481 * perf_counter_for_each_child or perf_counter_for_each because they
482 * hold the top-level counter's child_mutex, so any descendant that
483 * goes to exit will block in sync_child_counter.
484 * When called from perf_pending_counter it's OK because counter->ctx
485 * is the current context on this CPU and preemption is disabled,
486 * hence we can't get into perf_counter_task_sched_out for this context.
487 */
488 static void perf_counter_disable(struct perf_counter *counter)
489 {
490 struct perf_counter_context *ctx = counter->ctx;
491 struct task_struct *task = ctx->task;
492
493 if (!task) {
494 /*
495 * Disable the counter on the cpu that it's on
496 */
497 smp_call_function_single(counter->cpu, __perf_counter_disable,
498 counter, 1);
499 return;
500 }
501
502 retry:
503 task_oncpu_function_call(task, __perf_counter_disable, counter);
504
505 spin_lock_irq(&ctx->lock);
506 /*
507 * If the counter is still active, we need to retry the cross-call.
508 */
509 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
510 spin_unlock_irq(&ctx->lock);
511 goto retry;
512 }
513
514 /*
515 * Since we have the lock this context can't be scheduled
516 * in, so we can change the state safely.
517 */
518 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
519 update_counter_times(counter);
520 counter->state = PERF_COUNTER_STATE_OFF;
521 }
522
523 spin_unlock_irq(&ctx->lock);
524 }
525
526 static int
527 counter_sched_in(struct perf_counter *counter,
528 struct perf_cpu_context *cpuctx,
529 struct perf_counter_context *ctx,
530 int cpu)
531 {
532 if (counter->state <= PERF_COUNTER_STATE_OFF)
533 return 0;
534
535 counter->state = PERF_COUNTER_STATE_ACTIVE;
536 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
537 /*
538 * The new state must be visible before we turn it on in the hardware:
539 */
540 smp_wmb();
541
542 if (counter->pmu->enable(counter)) {
543 counter->state = PERF_COUNTER_STATE_INACTIVE;
544 counter->oncpu = -1;
545 return -EAGAIN;
546 }
547
548 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
549
550 if (!is_software_counter(counter))
551 cpuctx->active_oncpu++;
552 ctx->nr_active++;
553
554 if (counter->attr.exclusive)
555 cpuctx->exclusive = 1;
556
557 return 0;
558 }
559
560 static int
561 group_sched_in(struct perf_counter *group_counter,
562 struct perf_cpu_context *cpuctx,
563 struct perf_counter_context *ctx,
564 int cpu)
565 {
566 struct perf_counter *counter, *partial_group;
567 int ret;
568
569 if (group_counter->state == PERF_COUNTER_STATE_OFF)
570 return 0;
571
572 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
573 if (ret)
574 return ret < 0 ? ret : 0;
575
576 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
577 return -EAGAIN;
578
579 /*
580 * Schedule in siblings as one group (if any):
581 */
582 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
583 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
584 partial_group = counter;
585 goto group_error;
586 }
587 }
588
589 return 0;
590
591 group_error:
592 /*
593 * Groups can be scheduled in as one unit only, so undo any
594 * partial group before returning:
595 */
596 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
597 if (counter == partial_group)
598 break;
599 counter_sched_out(counter, cpuctx, ctx);
600 }
601 counter_sched_out(group_counter, cpuctx, ctx);
602
603 return -EAGAIN;
604 }
605
606 /*
607 * Return 1 for a group consisting entirely of software counters,
608 * 0 if the group contains any hardware counters.
609 */
610 static int is_software_only_group(struct perf_counter *leader)
611 {
612 struct perf_counter *counter;
613
614 if (!is_software_counter(leader))
615 return 0;
616
617 list_for_each_entry(counter, &leader->sibling_list, list_entry)
618 if (!is_software_counter(counter))
619 return 0;
620
621 return 1;
622 }
623
624 /*
625 * Work out whether we can put this counter group on the CPU now.
626 */
627 static int group_can_go_on(struct perf_counter *counter,
628 struct perf_cpu_context *cpuctx,
629 int can_add_hw)
630 {
631 /*
632 * Groups consisting entirely of software counters can always go on.
633 */
634 if (is_software_only_group(counter))
635 return 1;
636 /*
637 * If an exclusive group is already on, no other hardware
638 * counters can go on.
639 */
640 if (cpuctx->exclusive)
641 return 0;
642 /*
643 * If this group is exclusive and there are already
644 * counters on the CPU, it can't go on.
645 */
646 if (counter->attr.exclusive && cpuctx->active_oncpu)
647 return 0;
648 /*
649 * Otherwise, try to add it if all previous groups were able
650 * to go on.
651 */
652 return can_add_hw;
653 }
654
655 static void add_counter_to_ctx(struct perf_counter *counter,
656 struct perf_counter_context *ctx)
657 {
658 list_add_counter(counter, ctx);
659 counter->tstamp_enabled = ctx->time;
660 counter->tstamp_running = ctx->time;
661 counter->tstamp_stopped = ctx->time;
662 }
663
664 /*
665 * Cross CPU call to install and enable a performance counter
666 *
667 * Must be called with ctx->mutex held
668 */
669 static void __perf_install_in_context(void *info)
670 {
671 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
672 struct perf_counter *counter = info;
673 struct perf_counter_context *ctx = counter->ctx;
674 struct perf_counter *leader = counter->group_leader;
675 int cpu = smp_processor_id();
676 int err;
677
678 /*
679 * If this is a task context, we need to check whether it is
680 * the current task context of this cpu. If not it has been
681 * scheduled out before the smp call arrived.
682 * Or possibly this is the right context but it isn't
683 * on this cpu because it had no counters.
684 */
685 if (ctx->task && cpuctx->task_ctx != ctx) {
686 if (cpuctx->task_ctx || ctx->task != current)
687 return;
688 cpuctx->task_ctx = ctx;
689 }
690
691 spin_lock(&ctx->lock);
692 ctx->is_active = 1;
693 update_context_time(ctx);
694
695 /*
696 * Protect the list operation against NMI by disabling the
697 * counters on a global level. NOP for non NMI based counters.
698 */
699 perf_disable();
700
701 add_counter_to_ctx(counter, ctx);
702
703 /*
704 * Don't put the counter on if it is disabled or if
705 * it is in a group and the group isn't on.
706 */
707 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
708 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
709 goto unlock;
710
711 /*
712 * An exclusive counter can't go on if there are already active
713 * hardware counters, and no hardware counter can go on if there
714 * is already an exclusive counter on.
715 */
716 if (!group_can_go_on(counter, cpuctx, 1))
717 err = -EEXIST;
718 else
719 err = counter_sched_in(counter, cpuctx, ctx, cpu);
720
721 if (err) {
722 /*
723 * This counter couldn't go on. If it is in a group
724 * then we have to pull the whole group off.
725 * If the counter group is pinned then put it in error state.
726 */
727 if (leader != counter)
728 group_sched_out(leader, cpuctx, ctx);
729 if (leader->attr.pinned) {
730 update_group_times(leader);
731 leader->state = PERF_COUNTER_STATE_ERROR;
732 }
733 }
734
735 if (!err && !ctx->task && cpuctx->max_pertask)
736 cpuctx->max_pertask--;
737
738 unlock:
739 perf_enable();
740
741 spin_unlock(&ctx->lock);
742 }
743
744 /*
745 * Attach a performance counter to a context
746 *
747 * First we add the counter to the list with the hardware enable bit
748 * in counter->hw_config cleared.
749 *
750 * If the counter is attached to a task which is on a CPU we use a smp
751 * call to enable it in the task context. The task might have been
752 * scheduled away, but we check this in the smp call again.
753 *
754 * Must be called with ctx->mutex held.
755 */
756 static void
757 perf_install_in_context(struct perf_counter_context *ctx,
758 struct perf_counter *counter,
759 int cpu)
760 {
761 struct task_struct *task = ctx->task;
762
763 if (!task) {
764 /*
765 * Per cpu counters are installed via an smp call and
766 * the install is always sucessful.
767 */
768 smp_call_function_single(cpu, __perf_install_in_context,
769 counter, 1);
770 return;
771 }
772
773 retry:
774 task_oncpu_function_call(task, __perf_install_in_context,
775 counter);
776
777 spin_lock_irq(&ctx->lock);
778 /*
779 * we need to retry the smp call.
780 */
781 if (ctx->is_active && list_empty(&counter->list_entry)) {
782 spin_unlock_irq(&ctx->lock);
783 goto retry;
784 }
785
786 /*
787 * The lock prevents that this context is scheduled in so we
788 * can add the counter safely, if it the call above did not
789 * succeed.
790 */
791 if (list_empty(&counter->list_entry))
792 add_counter_to_ctx(counter, ctx);
793 spin_unlock_irq(&ctx->lock);
794 }
795
796 /*
797 * Cross CPU call to enable a performance counter
798 */
799 static void __perf_counter_enable(void *info)
800 {
801 struct perf_counter *counter = info;
802 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
803 struct perf_counter_context *ctx = counter->ctx;
804 struct perf_counter *leader = counter->group_leader;
805 int err;
806
807 /*
808 * If this is a per-task counter, need to check whether this
809 * counter's task is the current task on this cpu.
810 */
811 if (ctx->task && cpuctx->task_ctx != ctx) {
812 if (cpuctx->task_ctx || ctx->task != current)
813 return;
814 cpuctx->task_ctx = ctx;
815 }
816
817 spin_lock(&ctx->lock);
818 ctx->is_active = 1;
819 update_context_time(ctx);
820
821 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
822 goto unlock;
823 counter->state = PERF_COUNTER_STATE_INACTIVE;
824 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
825
826 /*
827 * If the counter is in a group and isn't the group leader,
828 * then don't put it on unless the group is on.
829 */
830 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
831 goto unlock;
832
833 if (!group_can_go_on(counter, cpuctx, 1)) {
834 err = -EEXIST;
835 } else {
836 perf_disable();
837 if (counter == leader)
838 err = group_sched_in(counter, cpuctx, ctx,
839 smp_processor_id());
840 else
841 err = counter_sched_in(counter, cpuctx, ctx,
842 smp_processor_id());
843 perf_enable();
844 }
845
846 if (err) {
847 /*
848 * If this counter can't go on and it's part of a
849 * group, then the whole group has to come off.
850 */
851 if (leader != counter)
852 group_sched_out(leader, cpuctx, ctx);
853 if (leader->attr.pinned) {
854 update_group_times(leader);
855 leader->state = PERF_COUNTER_STATE_ERROR;
856 }
857 }
858
859 unlock:
860 spin_unlock(&ctx->lock);
861 }
862
863 /*
864 * Enable a counter.
865 *
866 * If counter->ctx is a cloned context, callers must make sure that
867 * every task struct that counter->ctx->task could possibly point to
868 * remains valid. This condition is satisfied when called through
869 * perf_counter_for_each_child or perf_counter_for_each as described
870 * for perf_counter_disable.
871 */
872 static void perf_counter_enable(struct perf_counter *counter)
873 {
874 struct perf_counter_context *ctx = counter->ctx;
875 struct task_struct *task = ctx->task;
876
877 if (!task) {
878 /*
879 * Enable the counter on the cpu that it's on
880 */
881 smp_call_function_single(counter->cpu, __perf_counter_enable,
882 counter, 1);
883 return;
884 }
885
886 spin_lock_irq(&ctx->lock);
887 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
888 goto out;
889
890 /*
891 * If the counter is in error state, clear that first.
892 * That way, if we see the counter in error state below, we
893 * know that it has gone back into error state, as distinct
894 * from the task having been scheduled away before the
895 * cross-call arrived.
896 */
897 if (counter->state == PERF_COUNTER_STATE_ERROR)
898 counter->state = PERF_COUNTER_STATE_OFF;
899
900 retry:
901 spin_unlock_irq(&ctx->lock);
902 task_oncpu_function_call(task, __perf_counter_enable, counter);
903
904 spin_lock_irq(&ctx->lock);
905
906 /*
907 * If the context is active and the counter is still off,
908 * we need to retry the cross-call.
909 */
910 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
911 goto retry;
912
913 /*
914 * Since we have the lock this context can't be scheduled
915 * in, so we can change the state safely.
916 */
917 if (counter->state == PERF_COUNTER_STATE_OFF) {
918 counter->state = PERF_COUNTER_STATE_INACTIVE;
919 counter->tstamp_enabled =
920 ctx->time - counter->total_time_enabled;
921 }
922 out:
923 spin_unlock_irq(&ctx->lock);
924 }
925
926 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
927 {
928 /*
929 * not supported on inherited counters
930 */
931 if (counter->attr.inherit)
932 return -EINVAL;
933
934 atomic_add(refresh, &counter->event_limit);
935 perf_counter_enable(counter);
936
937 return 0;
938 }
939
940 void __perf_counter_sched_out(struct perf_counter_context *ctx,
941 struct perf_cpu_context *cpuctx)
942 {
943 struct perf_counter *counter;
944
945 spin_lock(&ctx->lock);
946 ctx->is_active = 0;
947 if (likely(!ctx->nr_counters))
948 goto out;
949 update_context_time(ctx);
950
951 perf_disable();
952 if (ctx->nr_active) {
953 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
954 if (counter != counter->group_leader)
955 counter_sched_out(counter, cpuctx, ctx);
956 else
957 group_sched_out(counter, cpuctx, ctx);
958 }
959 }
960 perf_enable();
961 out:
962 spin_unlock(&ctx->lock);
963 }
964
965 /*
966 * Test whether two contexts are equivalent, i.e. whether they
967 * have both been cloned from the same version of the same context
968 * and they both have the same number of enabled counters.
969 * If the number of enabled counters is the same, then the set
970 * of enabled counters should be the same, because these are both
971 * inherited contexts, therefore we can't access individual counters
972 * in them directly with an fd; we can only enable/disable all
973 * counters via prctl, or enable/disable all counters in a family
974 * via ioctl, which will have the same effect on both contexts.
975 */
976 static int context_equiv(struct perf_counter_context *ctx1,
977 struct perf_counter_context *ctx2)
978 {
979 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
980 && ctx1->parent_gen == ctx2->parent_gen
981 && !ctx1->pin_count && !ctx2->pin_count;
982 }
983
984 /*
985 * Called from scheduler to remove the counters of the current task,
986 * with interrupts disabled.
987 *
988 * We stop each counter and update the counter value in counter->count.
989 *
990 * This does not protect us against NMI, but disable()
991 * sets the disabled bit in the control field of counter _before_
992 * accessing the counter control register. If a NMI hits, then it will
993 * not restart the counter.
994 */
995 void perf_counter_task_sched_out(struct task_struct *task,
996 struct task_struct *next, int cpu)
997 {
998 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
999 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1000 struct perf_counter_context *next_ctx;
1001 struct perf_counter_context *parent;
1002 struct pt_regs *regs;
1003 int do_switch = 1;
1004
1005 regs = task_pt_regs(task);
1006 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
1007
1008 if (likely(!ctx || !cpuctx->task_ctx))
1009 return;
1010
1011 update_context_time(ctx);
1012
1013 rcu_read_lock();
1014 parent = rcu_dereference(ctx->parent_ctx);
1015 next_ctx = next->perf_counter_ctxp;
1016 if (parent && next_ctx &&
1017 rcu_dereference(next_ctx->parent_ctx) == parent) {
1018 /*
1019 * Looks like the two contexts are clones, so we might be
1020 * able to optimize the context switch. We lock both
1021 * contexts and check that they are clones under the
1022 * lock (including re-checking that neither has been
1023 * uncloned in the meantime). It doesn't matter which
1024 * order we take the locks because no other cpu could
1025 * be trying to lock both of these tasks.
1026 */
1027 spin_lock(&ctx->lock);
1028 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1029 if (context_equiv(ctx, next_ctx)) {
1030 /*
1031 * XXX do we need a memory barrier of sorts
1032 * wrt to rcu_dereference() of perf_counter_ctxp
1033 */
1034 task->perf_counter_ctxp = next_ctx;
1035 next->perf_counter_ctxp = ctx;
1036 ctx->task = next;
1037 next_ctx->task = task;
1038 do_switch = 0;
1039 }
1040 spin_unlock(&next_ctx->lock);
1041 spin_unlock(&ctx->lock);
1042 }
1043 rcu_read_unlock();
1044
1045 if (do_switch) {
1046 __perf_counter_sched_out(ctx, cpuctx);
1047 cpuctx->task_ctx = NULL;
1048 }
1049 }
1050
1051 /*
1052 * Called with IRQs disabled
1053 */
1054 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1055 {
1056 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1057
1058 if (!cpuctx->task_ctx)
1059 return;
1060
1061 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1062 return;
1063
1064 __perf_counter_sched_out(ctx, cpuctx);
1065 cpuctx->task_ctx = NULL;
1066 }
1067
1068 /*
1069 * Called with IRQs disabled
1070 */
1071 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1072 {
1073 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1074 }
1075
1076 static void
1077 __perf_counter_sched_in(struct perf_counter_context *ctx,
1078 struct perf_cpu_context *cpuctx, int cpu)
1079 {
1080 struct perf_counter *counter;
1081 int can_add_hw = 1;
1082
1083 spin_lock(&ctx->lock);
1084 ctx->is_active = 1;
1085 if (likely(!ctx->nr_counters))
1086 goto out;
1087
1088 ctx->timestamp = perf_clock();
1089
1090 perf_disable();
1091
1092 /*
1093 * First go through the list and put on any pinned groups
1094 * in order to give them the best chance of going on.
1095 */
1096 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1097 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1098 !counter->attr.pinned)
1099 continue;
1100 if (counter->cpu != -1 && counter->cpu != cpu)
1101 continue;
1102
1103 if (counter != counter->group_leader)
1104 counter_sched_in(counter, cpuctx, ctx, cpu);
1105 else {
1106 if (group_can_go_on(counter, cpuctx, 1))
1107 group_sched_in(counter, cpuctx, ctx, cpu);
1108 }
1109
1110 /*
1111 * If this pinned group hasn't been scheduled,
1112 * put it in error state.
1113 */
1114 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1115 update_group_times(counter);
1116 counter->state = PERF_COUNTER_STATE_ERROR;
1117 }
1118 }
1119
1120 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1121 /*
1122 * Ignore counters in OFF or ERROR state, and
1123 * ignore pinned counters since we did them already.
1124 */
1125 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1126 counter->attr.pinned)
1127 continue;
1128
1129 /*
1130 * Listen to the 'cpu' scheduling filter constraint
1131 * of counters:
1132 */
1133 if (counter->cpu != -1 && counter->cpu != cpu)
1134 continue;
1135
1136 if (counter != counter->group_leader) {
1137 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1138 can_add_hw = 0;
1139 } else {
1140 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1141 if (group_sched_in(counter, cpuctx, ctx, cpu))
1142 can_add_hw = 0;
1143 }
1144 }
1145 }
1146 perf_enable();
1147 out:
1148 spin_unlock(&ctx->lock);
1149 }
1150
1151 /*
1152 * Called from scheduler to add the counters of the current task
1153 * with interrupts disabled.
1154 *
1155 * We restore the counter value and then enable it.
1156 *
1157 * This does not protect us against NMI, but enable()
1158 * sets the enabled bit in the control field of counter _before_
1159 * accessing the counter control register. If a NMI hits, then it will
1160 * keep the counter running.
1161 */
1162 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1163 {
1164 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1165 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1166
1167 if (likely(!ctx))
1168 return;
1169 if (cpuctx->task_ctx == ctx)
1170 return;
1171 __perf_counter_sched_in(ctx, cpuctx, cpu);
1172 cpuctx->task_ctx = ctx;
1173 }
1174
1175 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1176 {
1177 struct perf_counter_context *ctx = &cpuctx->ctx;
1178
1179 __perf_counter_sched_in(ctx, cpuctx, cpu);
1180 }
1181
1182 #define MAX_INTERRUPTS (~0ULL)
1183
1184 static void perf_log_throttle(struct perf_counter *counter, int enable);
1185 static void perf_log_period(struct perf_counter *counter, u64 period);
1186
1187 static void perf_adjust_period(struct perf_counter *counter, u64 events)
1188 {
1189 struct hw_perf_counter *hwc = &counter->hw;
1190 u64 period, sample_period;
1191 s64 delta;
1192
1193 events *= hwc->sample_period;
1194 period = div64_u64(events, counter->attr.sample_freq);
1195
1196 delta = (s64)(period - hwc->sample_period);
1197 delta = (delta + 7) / 8; /* low pass filter */
1198
1199 sample_period = hwc->sample_period + delta;
1200
1201 if (!sample_period)
1202 sample_period = 1;
1203
1204 perf_log_period(counter, sample_period);
1205
1206 hwc->sample_period = sample_period;
1207 }
1208
1209 static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1210 {
1211 struct perf_counter *counter;
1212 struct hw_perf_counter *hwc;
1213 u64 interrupts, freq;
1214
1215 spin_lock(&ctx->lock);
1216 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1217 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1218 continue;
1219
1220 hwc = &counter->hw;
1221
1222 interrupts = hwc->interrupts;
1223 hwc->interrupts = 0;
1224
1225 /*
1226 * unthrottle counters on the tick
1227 */
1228 if (interrupts == MAX_INTERRUPTS) {
1229 perf_log_throttle(counter, 1);
1230 counter->pmu->unthrottle(counter);
1231 interrupts = 2*sysctl_perf_counter_limit/HZ;
1232 }
1233
1234 if (!counter->attr.freq || !counter->attr.sample_freq)
1235 continue;
1236
1237 /*
1238 * if the specified freq < HZ then we need to skip ticks
1239 */
1240 if (counter->attr.sample_freq < HZ) {
1241 freq = counter->attr.sample_freq;
1242
1243 hwc->freq_count += freq;
1244 hwc->freq_interrupts += interrupts;
1245
1246 if (hwc->freq_count < HZ)
1247 continue;
1248
1249 interrupts = hwc->freq_interrupts;
1250 hwc->freq_interrupts = 0;
1251 hwc->freq_count -= HZ;
1252 } else
1253 freq = HZ;
1254
1255 perf_adjust_period(counter, freq * interrupts);
1256
1257 /*
1258 * In order to avoid being stalled by an (accidental) huge
1259 * sample period, force reset the sample period if we didn't
1260 * get any events in this freq period.
1261 */
1262 if (!interrupts) {
1263 perf_disable();
1264 counter->pmu->disable(counter);
1265 atomic_set(&hwc->period_left, 0);
1266 counter->pmu->enable(counter);
1267 perf_enable();
1268 }
1269 }
1270 spin_unlock(&ctx->lock);
1271 }
1272
1273 /*
1274 * Round-robin a context's counters:
1275 */
1276 static void rotate_ctx(struct perf_counter_context *ctx)
1277 {
1278 struct perf_counter *counter;
1279
1280 if (!ctx->nr_counters)
1281 return;
1282
1283 spin_lock(&ctx->lock);
1284 /*
1285 * Rotate the first entry last (works just fine for group counters too):
1286 */
1287 perf_disable();
1288 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1289 list_move_tail(&counter->list_entry, &ctx->counter_list);
1290 break;
1291 }
1292 perf_enable();
1293
1294 spin_unlock(&ctx->lock);
1295 }
1296
1297 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1298 {
1299 struct perf_cpu_context *cpuctx;
1300 struct perf_counter_context *ctx;
1301
1302 if (!atomic_read(&nr_counters))
1303 return;
1304
1305 cpuctx = &per_cpu(perf_cpu_context, cpu);
1306 ctx = curr->perf_counter_ctxp;
1307
1308 perf_ctx_adjust_freq(&cpuctx->ctx);
1309 if (ctx)
1310 perf_ctx_adjust_freq(ctx);
1311
1312 perf_counter_cpu_sched_out(cpuctx);
1313 if (ctx)
1314 __perf_counter_task_sched_out(ctx);
1315
1316 rotate_ctx(&cpuctx->ctx);
1317 if (ctx)
1318 rotate_ctx(ctx);
1319
1320 perf_counter_cpu_sched_in(cpuctx, cpu);
1321 if (ctx)
1322 perf_counter_task_sched_in(curr, cpu);
1323 }
1324
1325 /*
1326 * Cross CPU call to read the hardware counter
1327 */
1328 static void __read(void *info)
1329 {
1330 struct perf_counter *counter = info;
1331 struct perf_counter_context *ctx = counter->ctx;
1332 unsigned long flags;
1333
1334 local_irq_save(flags);
1335 if (ctx->is_active)
1336 update_context_time(ctx);
1337 counter->pmu->read(counter);
1338 update_counter_times(counter);
1339 local_irq_restore(flags);
1340 }
1341
1342 static u64 perf_counter_read(struct perf_counter *counter)
1343 {
1344 /*
1345 * If counter is enabled and currently active on a CPU, update the
1346 * value in the counter structure:
1347 */
1348 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1349 smp_call_function_single(counter->oncpu,
1350 __read, counter, 1);
1351 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1352 update_counter_times(counter);
1353 }
1354
1355 return atomic64_read(&counter->count);
1356 }
1357
1358 /*
1359 * Initialize the perf_counter context in a task_struct:
1360 */
1361 static void
1362 __perf_counter_init_context(struct perf_counter_context *ctx,
1363 struct task_struct *task)
1364 {
1365 memset(ctx, 0, sizeof(*ctx));
1366 spin_lock_init(&ctx->lock);
1367 mutex_init(&ctx->mutex);
1368 INIT_LIST_HEAD(&ctx->counter_list);
1369 INIT_LIST_HEAD(&ctx->event_list);
1370 atomic_set(&ctx->refcount, 1);
1371 ctx->task = task;
1372 }
1373
1374 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1375 {
1376 struct perf_counter_context *parent_ctx;
1377 struct perf_counter_context *ctx;
1378 struct perf_cpu_context *cpuctx;
1379 struct task_struct *task;
1380 unsigned long flags;
1381 int err;
1382
1383 /*
1384 * If cpu is not a wildcard then this is a percpu counter:
1385 */
1386 if (cpu != -1) {
1387 /* Must be root to operate on a CPU counter: */
1388 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1389 return ERR_PTR(-EACCES);
1390
1391 if (cpu < 0 || cpu > num_possible_cpus())
1392 return ERR_PTR(-EINVAL);
1393
1394 /*
1395 * We could be clever and allow to attach a counter to an
1396 * offline CPU and activate it when the CPU comes up, but
1397 * that's for later.
1398 */
1399 if (!cpu_isset(cpu, cpu_online_map))
1400 return ERR_PTR(-ENODEV);
1401
1402 cpuctx = &per_cpu(perf_cpu_context, cpu);
1403 ctx = &cpuctx->ctx;
1404 get_ctx(ctx);
1405
1406 return ctx;
1407 }
1408
1409 rcu_read_lock();
1410 if (!pid)
1411 task = current;
1412 else
1413 task = find_task_by_vpid(pid);
1414 if (task)
1415 get_task_struct(task);
1416 rcu_read_unlock();
1417
1418 if (!task)
1419 return ERR_PTR(-ESRCH);
1420
1421 /*
1422 * Can't attach counters to a dying task.
1423 */
1424 err = -ESRCH;
1425 if (task->flags & PF_EXITING)
1426 goto errout;
1427
1428 /* Reuse ptrace permission checks for now. */
1429 err = -EACCES;
1430 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1431 goto errout;
1432
1433 retry:
1434 ctx = perf_lock_task_context(task, &flags);
1435 if (ctx) {
1436 parent_ctx = ctx->parent_ctx;
1437 if (parent_ctx) {
1438 put_ctx(parent_ctx);
1439 ctx->parent_ctx = NULL; /* no longer a clone */
1440 }
1441 /*
1442 * Get an extra reference before dropping the lock so that
1443 * this context won't get freed if the task exits.
1444 */
1445 get_ctx(ctx);
1446 spin_unlock_irqrestore(&ctx->lock, flags);
1447 }
1448
1449 if (!ctx) {
1450 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1451 err = -ENOMEM;
1452 if (!ctx)
1453 goto errout;
1454 __perf_counter_init_context(ctx, task);
1455 get_ctx(ctx);
1456 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1457 /*
1458 * We raced with some other task; use
1459 * the context they set.
1460 */
1461 kfree(ctx);
1462 goto retry;
1463 }
1464 get_task_struct(task);
1465 }
1466
1467 put_task_struct(task);
1468 return ctx;
1469
1470 errout:
1471 put_task_struct(task);
1472 return ERR_PTR(err);
1473 }
1474
1475 static void free_counter_rcu(struct rcu_head *head)
1476 {
1477 struct perf_counter *counter;
1478
1479 counter = container_of(head, struct perf_counter, rcu_head);
1480 if (counter->ns)
1481 put_pid_ns(counter->ns);
1482 kfree(counter);
1483 }
1484
1485 static void perf_pending_sync(struct perf_counter *counter);
1486
1487 static void free_counter(struct perf_counter *counter)
1488 {
1489 perf_pending_sync(counter);
1490
1491 atomic_dec(&nr_counters);
1492 if (counter->attr.mmap)
1493 atomic_dec(&nr_mmap_counters);
1494 if (counter->attr.comm)
1495 atomic_dec(&nr_comm_counters);
1496
1497 if (counter->destroy)
1498 counter->destroy(counter);
1499
1500 put_ctx(counter->ctx);
1501 call_rcu(&counter->rcu_head, free_counter_rcu);
1502 }
1503
1504 /*
1505 * Called when the last reference to the file is gone.
1506 */
1507 static int perf_release(struct inode *inode, struct file *file)
1508 {
1509 struct perf_counter *counter = file->private_data;
1510 struct perf_counter_context *ctx = counter->ctx;
1511
1512 file->private_data = NULL;
1513
1514 WARN_ON_ONCE(ctx->parent_ctx);
1515 mutex_lock(&ctx->mutex);
1516 perf_counter_remove_from_context(counter);
1517 mutex_unlock(&ctx->mutex);
1518
1519 mutex_lock(&counter->owner->perf_counter_mutex);
1520 list_del_init(&counter->owner_entry);
1521 mutex_unlock(&counter->owner->perf_counter_mutex);
1522 put_task_struct(counter->owner);
1523
1524 free_counter(counter);
1525
1526 return 0;
1527 }
1528
1529 /*
1530 * Read the performance counter - simple non blocking version for now
1531 */
1532 static ssize_t
1533 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1534 {
1535 u64 values[3];
1536 int n;
1537
1538 /*
1539 * Return end-of-file for a read on a counter that is in
1540 * error state (i.e. because it was pinned but it couldn't be
1541 * scheduled on to the CPU at some point).
1542 */
1543 if (counter->state == PERF_COUNTER_STATE_ERROR)
1544 return 0;
1545
1546 WARN_ON_ONCE(counter->ctx->parent_ctx);
1547 mutex_lock(&counter->child_mutex);
1548 values[0] = perf_counter_read(counter);
1549 n = 1;
1550 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1551 values[n++] = counter->total_time_enabled +
1552 atomic64_read(&counter->child_total_time_enabled);
1553 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1554 values[n++] = counter->total_time_running +
1555 atomic64_read(&counter->child_total_time_running);
1556 if (counter->attr.read_format & PERF_FORMAT_ID)
1557 values[n++] = counter->id;
1558 mutex_unlock(&counter->child_mutex);
1559
1560 if (count < n * sizeof(u64))
1561 return -EINVAL;
1562 count = n * sizeof(u64);
1563
1564 if (copy_to_user(buf, values, count))
1565 return -EFAULT;
1566
1567 return count;
1568 }
1569
1570 static ssize_t
1571 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1572 {
1573 struct perf_counter *counter = file->private_data;
1574
1575 return perf_read_hw(counter, buf, count);
1576 }
1577
1578 static unsigned int perf_poll(struct file *file, poll_table *wait)
1579 {
1580 struct perf_counter *counter = file->private_data;
1581 struct perf_mmap_data *data;
1582 unsigned int events = POLL_HUP;
1583
1584 rcu_read_lock();
1585 data = rcu_dereference(counter->data);
1586 if (data)
1587 events = atomic_xchg(&data->poll, 0);
1588 rcu_read_unlock();
1589
1590 poll_wait(file, &counter->waitq, wait);
1591
1592 return events;
1593 }
1594
1595 static void perf_counter_reset(struct perf_counter *counter)
1596 {
1597 (void)perf_counter_read(counter);
1598 atomic64_set(&counter->count, 0);
1599 perf_counter_update_userpage(counter);
1600 }
1601
1602 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1603 void (*func)(struct perf_counter *))
1604 {
1605 struct perf_counter_context *ctx = counter->ctx;
1606 struct perf_counter *sibling;
1607
1608 WARN_ON_ONCE(ctx->parent_ctx);
1609 mutex_lock(&ctx->mutex);
1610 counter = counter->group_leader;
1611
1612 func(counter);
1613 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1614 func(sibling);
1615 mutex_unlock(&ctx->mutex);
1616 }
1617
1618 /*
1619 * Holding the top-level counter's child_mutex means that any
1620 * descendant process that has inherited this counter will block
1621 * in sync_child_counter if it goes to exit, thus satisfying the
1622 * task existence requirements of perf_counter_enable/disable.
1623 */
1624 static void perf_counter_for_each_child(struct perf_counter *counter,
1625 void (*func)(struct perf_counter *))
1626 {
1627 struct perf_counter *child;
1628
1629 WARN_ON_ONCE(counter->ctx->parent_ctx);
1630 mutex_lock(&counter->child_mutex);
1631 func(counter);
1632 list_for_each_entry(child, &counter->child_list, child_list)
1633 func(child);
1634 mutex_unlock(&counter->child_mutex);
1635 }
1636
1637 static void perf_counter_for_each(struct perf_counter *counter,
1638 void (*func)(struct perf_counter *))
1639 {
1640 struct perf_counter *child;
1641
1642 WARN_ON_ONCE(counter->ctx->parent_ctx);
1643 mutex_lock(&counter->child_mutex);
1644 perf_counter_for_each_sibling(counter, func);
1645 list_for_each_entry(child, &counter->child_list, child_list)
1646 perf_counter_for_each_sibling(child, func);
1647 mutex_unlock(&counter->child_mutex);
1648 }
1649
1650 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1651 {
1652 struct perf_counter_context *ctx = counter->ctx;
1653 unsigned long size;
1654 int ret = 0;
1655 u64 value;
1656
1657 if (!counter->attr.sample_period)
1658 return -EINVAL;
1659
1660 size = copy_from_user(&value, arg, sizeof(value));
1661 if (size != sizeof(value))
1662 return -EFAULT;
1663
1664 if (!value)
1665 return -EINVAL;
1666
1667 spin_lock_irq(&ctx->lock);
1668 if (counter->attr.freq) {
1669 if (value > sysctl_perf_counter_limit) {
1670 ret = -EINVAL;
1671 goto unlock;
1672 }
1673
1674 counter->attr.sample_freq = value;
1675 } else {
1676 perf_log_period(counter, value);
1677
1678 counter->attr.sample_period = value;
1679 counter->hw.sample_period = value;
1680 }
1681 unlock:
1682 spin_unlock_irq(&ctx->lock);
1683
1684 return ret;
1685 }
1686
1687 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1688 {
1689 struct perf_counter *counter = file->private_data;
1690 void (*func)(struct perf_counter *);
1691 u32 flags = arg;
1692
1693 switch (cmd) {
1694 case PERF_COUNTER_IOC_ENABLE:
1695 func = perf_counter_enable;
1696 break;
1697 case PERF_COUNTER_IOC_DISABLE:
1698 func = perf_counter_disable;
1699 break;
1700 case PERF_COUNTER_IOC_RESET:
1701 func = perf_counter_reset;
1702 break;
1703
1704 case PERF_COUNTER_IOC_REFRESH:
1705 return perf_counter_refresh(counter, arg);
1706
1707 case PERF_COUNTER_IOC_PERIOD:
1708 return perf_counter_period(counter, (u64 __user *)arg);
1709
1710 default:
1711 return -ENOTTY;
1712 }
1713
1714 if (flags & PERF_IOC_FLAG_GROUP)
1715 perf_counter_for_each(counter, func);
1716 else
1717 perf_counter_for_each_child(counter, func);
1718
1719 return 0;
1720 }
1721
1722 int perf_counter_task_enable(void)
1723 {
1724 struct perf_counter *counter;
1725
1726 mutex_lock(&current->perf_counter_mutex);
1727 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1728 perf_counter_for_each_child(counter, perf_counter_enable);
1729 mutex_unlock(&current->perf_counter_mutex);
1730
1731 return 0;
1732 }
1733
1734 int perf_counter_task_disable(void)
1735 {
1736 struct perf_counter *counter;
1737
1738 mutex_lock(&current->perf_counter_mutex);
1739 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1740 perf_counter_for_each_child(counter, perf_counter_disable);
1741 mutex_unlock(&current->perf_counter_mutex);
1742
1743 return 0;
1744 }
1745
1746 /*
1747 * Callers need to ensure there can be no nesting of this function, otherwise
1748 * the seqlock logic goes bad. We can not serialize this because the arch
1749 * code calls this from NMI context.
1750 */
1751 void perf_counter_update_userpage(struct perf_counter *counter)
1752 {
1753 struct perf_counter_mmap_page *userpg;
1754 struct perf_mmap_data *data;
1755
1756 rcu_read_lock();
1757 data = rcu_dereference(counter->data);
1758 if (!data)
1759 goto unlock;
1760
1761 userpg = data->user_page;
1762
1763 /*
1764 * Disable preemption so as to not let the corresponding user-space
1765 * spin too long if we get preempted.
1766 */
1767 preempt_disable();
1768 ++userpg->lock;
1769 barrier();
1770 userpg->index = counter->hw.idx;
1771 userpg->offset = atomic64_read(&counter->count);
1772 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1773 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1774
1775 barrier();
1776 ++userpg->lock;
1777 preempt_enable();
1778 unlock:
1779 rcu_read_unlock();
1780 }
1781
1782 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1783 {
1784 struct perf_counter *counter = vma->vm_file->private_data;
1785 struct perf_mmap_data *data;
1786 int ret = VM_FAULT_SIGBUS;
1787
1788 rcu_read_lock();
1789 data = rcu_dereference(counter->data);
1790 if (!data)
1791 goto unlock;
1792
1793 if (vmf->pgoff == 0) {
1794 vmf->page = virt_to_page(data->user_page);
1795 } else {
1796 int nr = vmf->pgoff - 1;
1797
1798 if ((unsigned)nr > data->nr_pages)
1799 goto unlock;
1800
1801 vmf->page = virt_to_page(data->data_pages[nr]);
1802 }
1803 get_page(vmf->page);
1804 ret = 0;
1805 unlock:
1806 rcu_read_unlock();
1807
1808 return ret;
1809 }
1810
1811 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1812 {
1813 struct perf_mmap_data *data;
1814 unsigned long size;
1815 int i;
1816
1817 WARN_ON(atomic_read(&counter->mmap_count));
1818
1819 size = sizeof(struct perf_mmap_data);
1820 size += nr_pages * sizeof(void *);
1821
1822 data = kzalloc(size, GFP_KERNEL);
1823 if (!data)
1824 goto fail;
1825
1826 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1827 if (!data->user_page)
1828 goto fail_user_page;
1829
1830 for (i = 0; i < nr_pages; i++) {
1831 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1832 if (!data->data_pages[i])
1833 goto fail_data_pages;
1834 }
1835
1836 data->nr_pages = nr_pages;
1837 atomic_set(&data->lock, -1);
1838
1839 rcu_assign_pointer(counter->data, data);
1840
1841 return 0;
1842
1843 fail_data_pages:
1844 for (i--; i >= 0; i--)
1845 free_page((unsigned long)data->data_pages[i]);
1846
1847 free_page((unsigned long)data->user_page);
1848
1849 fail_user_page:
1850 kfree(data);
1851
1852 fail:
1853 return -ENOMEM;
1854 }
1855
1856 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1857 {
1858 struct perf_mmap_data *data;
1859 int i;
1860
1861 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
1862
1863 free_page((unsigned long)data->user_page);
1864 for (i = 0; i < data->nr_pages; i++)
1865 free_page((unsigned long)data->data_pages[i]);
1866 kfree(data);
1867 }
1868
1869 static void perf_mmap_data_free(struct perf_counter *counter)
1870 {
1871 struct perf_mmap_data *data = counter->data;
1872
1873 WARN_ON(atomic_read(&counter->mmap_count));
1874
1875 rcu_assign_pointer(counter->data, NULL);
1876 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1877 }
1878
1879 static void perf_mmap_open(struct vm_area_struct *vma)
1880 {
1881 struct perf_counter *counter = vma->vm_file->private_data;
1882
1883 atomic_inc(&counter->mmap_count);
1884 }
1885
1886 static void perf_mmap_close(struct vm_area_struct *vma)
1887 {
1888 struct perf_counter *counter = vma->vm_file->private_data;
1889
1890 WARN_ON_ONCE(counter->ctx->parent_ctx);
1891 if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
1892 struct user_struct *user = current_user();
1893
1894 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1895 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1896 perf_mmap_data_free(counter);
1897 mutex_unlock(&counter->mmap_mutex);
1898 }
1899 }
1900
1901 static struct vm_operations_struct perf_mmap_vmops = {
1902 .open = perf_mmap_open,
1903 .close = perf_mmap_close,
1904 .fault = perf_mmap_fault,
1905 };
1906
1907 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1908 {
1909 struct perf_counter *counter = file->private_data;
1910 unsigned long user_locked, user_lock_limit;
1911 struct user_struct *user = current_user();
1912 unsigned long locked, lock_limit;
1913 unsigned long vma_size;
1914 unsigned long nr_pages;
1915 long user_extra, extra;
1916 int ret = 0;
1917
1918 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1919 return -EINVAL;
1920
1921 vma_size = vma->vm_end - vma->vm_start;
1922 nr_pages = (vma_size / PAGE_SIZE) - 1;
1923
1924 /*
1925 * If we have data pages ensure they're a power-of-two number, so we
1926 * can do bitmasks instead of modulo.
1927 */
1928 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1929 return -EINVAL;
1930
1931 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1932 return -EINVAL;
1933
1934 if (vma->vm_pgoff != 0)
1935 return -EINVAL;
1936
1937 WARN_ON_ONCE(counter->ctx->parent_ctx);
1938 mutex_lock(&counter->mmap_mutex);
1939 if (atomic_inc_not_zero(&counter->mmap_count)) {
1940 if (nr_pages != counter->data->nr_pages)
1941 ret = -EINVAL;
1942 goto unlock;
1943 }
1944
1945 user_extra = nr_pages + 1;
1946 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1947
1948 /*
1949 * Increase the limit linearly with more CPUs:
1950 */
1951 user_lock_limit *= num_online_cpus();
1952
1953 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1954
1955 extra = 0;
1956 if (user_locked > user_lock_limit)
1957 extra = user_locked - user_lock_limit;
1958
1959 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1960 lock_limit >>= PAGE_SHIFT;
1961 locked = vma->vm_mm->locked_vm + extra;
1962
1963 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1964 ret = -EPERM;
1965 goto unlock;
1966 }
1967
1968 WARN_ON(counter->data);
1969 ret = perf_mmap_data_alloc(counter, nr_pages);
1970 if (ret)
1971 goto unlock;
1972
1973 atomic_set(&counter->mmap_count, 1);
1974 atomic_long_add(user_extra, &user->locked_vm);
1975 vma->vm_mm->locked_vm += extra;
1976 counter->data->nr_locked = extra;
1977 unlock:
1978 mutex_unlock(&counter->mmap_mutex);
1979
1980 vma->vm_flags &= ~VM_MAYWRITE;
1981 vma->vm_flags |= VM_RESERVED;
1982 vma->vm_ops = &perf_mmap_vmops;
1983
1984 return ret;
1985 }
1986
1987 static int perf_fasync(int fd, struct file *filp, int on)
1988 {
1989 struct inode *inode = filp->f_path.dentry->d_inode;
1990 struct perf_counter *counter = filp->private_data;
1991 int retval;
1992
1993 mutex_lock(&inode->i_mutex);
1994 retval = fasync_helper(fd, filp, on, &counter->fasync);
1995 mutex_unlock(&inode->i_mutex);
1996
1997 if (retval < 0)
1998 return retval;
1999
2000 return 0;
2001 }
2002
2003 static const struct file_operations perf_fops = {
2004 .release = perf_release,
2005 .read = perf_read,
2006 .poll = perf_poll,
2007 .unlocked_ioctl = perf_ioctl,
2008 .compat_ioctl = perf_ioctl,
2009 .mmap = perf_mmap,
2010 .fasync = perf_fasync,
2011 };
2012
2013 /*
2014 * Perf counter wakeup
2015 *
2016 * If there's data, ensure we set the poll() state and publish everything
2017 * to user-space before waking everybody up.
2018 */
2019
2020 void perf_counter_wakeup(struct perf_counter *counter)
2021 {
2022 wake_up_all(&counter->waitq);
2023
2024 if (counter->pending_kill) {
2025 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
2026 counter->pending_kill = 0;
2027 }
2028 }
2029
2030 /*
2031 * Pending wakeups
2032 *
2033 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2034 *
2035 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2036 * single linked list and use cmpxchg() to add entries lockless.
2037 */
2038
2039 static void perf_pending_counter(struct perf_pending_entry *entry)
2040 {
2041 struct perf_counter *counter = container_of(entry,
2042 struct perf_counter, pending);
2043
2044 if (counter->pending_disable) {
2045 counter->pending_disable = 0;
2046 perf_counter_disable(counter);
2047 }
2048
2049 if (counter->pending_wakeup) {
2050 counter->pending_wakeup = 0;
2051 perf_counter_wakeup(counter);
2052 }
2053 }
2054
2055 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2056
2057 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2058 PENDING_TAIL,
2059 };
2060
2061 static void perf_pending_queue(struct perf_pending_entry *entry,
2062 void (*func)(struct perf_pending_entry *))
2063 {
2064 struct perf_pending_entry **head;
2065
2066 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2067 return;
2068
2069 entry->func = func;
2070
2071 head = &get_cpu_var(perf_pending_head);
2072
2073 do {
2074 entry->next = *head;
2075 } while (cmpxchg(head, entry->next, entry) != entry->next);
2076
2077 set_perf_counter_pending();
2078
2079 put_cpu_var(perf_pending_head);
2080 }
2081
2082 static int __perf_pending_run(void)
2083 {
2084 struct perf_pending_entry *list;
2085 int nr = 0;
2086
2087 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2088 while (list != PENDING_TAIL) {
2089 void (*func)(struct perf_pending_entry *);
2090 struct perf_pending_entry *entry = list;
2091
2092 list = list->next;
2093
2094 func = entry->func;
2095 entry->next = NULL;
2096 /*
2097 * Ensure we observe the unqueue before we issue the wakeup,
2098 * so that we won't be waiting forever.
2099 * -- see perf_not_pending().
2100 */
2101 smp_wmb();
2102
2103 func(entry);
2104 nr++;
2105 }
2106
2107 return nr;
2108 }
2109
2110 static inline int perf_not_pending(struct perf_counter *counter)
2111 {
2112 /*
2113 * If we flush on whatever cpu we run, there is a chance we don't
2114 * need to wait.
2115 */
2116 get_cpu();
2117 __perf_pending_run();
2118 put_cpu();
2119
2120 /*
2121 * Ensure we see the proper queue state before going to sleep
2122 * so that we do not miss the wakeup. -- see perf_pending_handle()
2123 */
2124 smp_rmb();
2125 return counter->pending.next == NULL;
2126 }
2127
2128 static void perf_pending_sync(struct perf_counter *counter)
2129 {
2130 wait_event(counter->waitq, perf_not_pending(counter));
2131 }
2132
2133 void perf_counter_do_pending(void)
2134 {
2135 __perf_pending_run();
2136 }
2137
2138 /*
2139 * Callchain support -- arch specific
2140 */
2141
2142 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2143 {
2144 return NULL;
2145 }
2146
2147 /*
2148 * Output
2149 */
2150
2151 struct perf_output_handle {
2152 struct perf_counter *counter;
2153 struct perf_mmap_data *data;
2154 unsigned long head;
2155 unsigned long offset;
2156 int nmi;
2157 int overflow;
2158 int locked;
2159 unsigned long flags;
2160 };
2161
2162 static void perf_output_wakeup(struct perf_output_handle *handle)
2163 {
2164 atomic_set(&handle->data->poll, POLL_IN);
2165
2166 if (handle->nmi) {
2167 handle->counter->pending_wakeup = 1;
2168 perf_pending_queue(&handle->counter->pending,
2169 perf_pending_counter);
2170 } else
2171 perf_counter_wakeup(handle->counter);
2172 }
2173
2174 /*
2175 * Curious locking construct.
2176 *
2177 * We need to ensure a later event doesn't publish a head when a former
2178 * event isn't done writing. However since we need to deal with NMIs we
2179 * cannot fully serialize things.
2180 *
2181 * What we do is serialize between CPUs so we only have to deal with NMI
2182 * nesting on a single CPU.
2183 *
2184 * We only publish the head (and generate a wakeup) when the outer-most
2185 * event completes.
2186 */
2187 static void perf_output_lock(struct perf_output_handle *handle)
2188 {
2189 struct perf_mmap_data *data = handle->data;
2190 int cpu;
2191
2192 handle->locked = 0;
2193
2194 local_irq_save(handle->flags);
2195 cpu = smp_processor_id();
2196
2197 if (in_nmi() && atomic_read(&data->lock) == cpu)
2198 return;
2199
2200 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2201 cpu_relax();
2202
2203 handle->locked = 1;
2204 }
2205
2206 static void perf_output_unlock(struct perf_output_handle *handle)
2207 {
2208 struct perf_mmap_data *data = handle->data;
2209 unsigned long head;
2210 int cpu;
2211
2212 data->done_head = data->head;
2213
2214 if (!handle->locked)
2215 goto out;
2216
2217 again:
2218 /*
2219 * The xchg implies a full barrier that ensures all writes are done
2220 * before we publish the new head, matched by a rmb() in userspace when
2221 * reading this position.
2222 */
2223 while ((head = atomic_long_xchg(&data->done_head, 0)))
2224 data->user_page->data_head = head;
2225
2226 /*
2227 * NMI can happen here, which means we can miss a done_head update.
2228 */
2229
2230 cpu = atomic_xchg(&data->lock, -1);
2231 WARN_ON_ONCE(cpu != smp_processor_id());
2232
2233 /*
2234 * Therefore we have to validate we did not indeed do so.
2235 */
2236 if (unlikely(atomic_long_read(&data->done_head))) {
2237 /*
2238 * Since we had it locked, we can lock it again.
2239 */
2240 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2241 cpu_relax();
2242
2243 goto again;
2244 }
2245
2246 if (atomic_xchg(&data->wakeup, 0))
2247 perf_output_wakeup(handle);
2248 out:
2249 local_irq_restore(handle->flags);
2250 }
2251
2252 static int perf_output_begin(struct perf_output_handle *handle,
2253 struct perf_counter *counter, unsigned int size,
2254 int nmi, int overflow)
2255 {
2256 struct perf_mmap_data *data;
2257 unsigned int offset, head;
2258
2259 /*
2260 * For inherited counters we send all the output towards the parent.
2261 */
2262 if (counter->parent)
2263 counter = counter->parent;
2264
2265 rcu_read_lock();
2266 data = rcu_dereference(counter->data);
2267 if (!data)
2268 goto out;
2269
2270 handle->data = data;
2271 handle->counter = counter;
2272 handle->nmi = nmi;
2273 handle->overflow = overflow;
2274
2275 if (!data->nr_pages)
2276 goto fail;
2277
2278 perf_output_lock(handle);
2279
2280 do {
2281 offset = head = atomic_long_read(&data->head);
2282 head += size;
2283 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2284
2285 handle->offset = offset;
2286 handle->head = head;
2287
2288 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2289 atomic_set(&data->wakeup, 1);
2290
2291 return 0;
2292
2293 fail:
2294 perf_output_wakeup(handle);
2295 out:
2296 rcu_read_unlock();
2297
2298 return -ENOSPC;
2299 }
2300
2301 static void perf_output_copy(struct perf_output_handle *handle,
2302 const void *buf, unsigned int len)
2303 {
2304 unsigned int pages_mask;
2305 unsigned int offset;
2306 unsigned int size;
2307 void **pages;
2308
2309 offset = handle->offset;
2310 pages_mask = handle->data->nr_pages - 1;
2311 pages = handle->data->data_pages;
2312
2313 do {
2314 unsigned int page_offset;
2315 int nr;
2316
2317 nr = (offset >> PAGE_SHIFT) & pages_mask;
2318 page_offset = offset & (PAGE_SIZE - 1);
2319 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2320
2321 memcpy(pages[nr] + page_offset, buf, size);
2322
2323 len -= size;
2324 buf += size;
2325 offset += size;
2326 } while (len);
2327
2328 handle->offset = offset;
2329
2330 /*
2331 * Check we didn't copy past our reservation window, taking the
2332 * possible unsigned int wrap into account.
2333 */
2334 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2335 }
2336
2337 #define perf_output_put(handle, x) \
2338 perf_output_copy((handle), &(x), sizeof(x))
2339
2340 static void perf_output_end(struct perf_output_handle *handle)
2341 {
2342 struct perf_counter *counter = handle->counter;
2343 struct perf_mmap_data *data = handle->data;
2344
2345 int wakeup_events = counter->attr.wakeup_events;
2346
2347 if (handle->overflow && wakeup_events) {
2348 int events = atomic_inc_return(&data->events);
2349 if (events >= wakeup_events) {
2350 atomic_sub(wakeup_events, &data->events);
2351 atomic_set(&data->wakeup, 1);
2352 }
2353 }
2354
2355 perf_output_unlock(handle);
2356 rcu_read_unlock();
2357 }
2358
2359 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2360 {
2361 /*
2362 * only top level counters have the pid namespace they were created in
2363 */
2364 if (counter->parent)
2365 counter = counter->parent;
2366
2367 return task_tgid_nr_ns(p, counter->ns);
2368 }
2369
2370 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2371 {
2372 /*
2373 * only top level counters have the pid namespace they were created in
2374 */
2375 if (counter->parent)
2376 counter = counter->parent;
2377
2378 return task_pid_nr_ns(p, counter->ns);
2379 }
2380
2381 static void perf_counter_output(struct perf_counter *counter,
2382 int nmi, struct pt_regs *regs, u64 addr)
2383 {
2384 int ret;
2385 u64 sample_type = counter->attr.sample_type;
2386 struct perf_output_handle handle;
2387 struct perf_event_header header;
2388 u64 ip;
2389 struct {
2390 u32 pid, tid;
2391 } tid_entry;
2392 struct {
2393 u64 id;
2394 u64 counter;
2395 } group_entry;
2396 struct perf_callchain_entry *callchain = NULL;
2397 int callchain_size = 0;
2398 u64 time;
2399 struct {
2400 u32 cpu, reserved;
2401 } cpu_entry;
2402
2403 header.type = 0;
2404 header.size = sizeof(header);
2405
2406 header.misc = PERF_EVENT_MISC_OVERFLOW;
2407 header.misc |= perf_misc_flags(regs);
2408
2409 if (sample_type & PERF_SAMPLE_IP) {
2410 ip = perf_instruction_pointer(regs);
2411 header.type |= PERF_SAMPLE_IP;
2412 header.size += sizeof(ip);
2413 }
2414
2415 if (sample_type & PERF_SAMPLE_TID) {
2416 /* namespace issues */
2417 tid_entry.pid = perf_counter_pid(counter, current);
2418 tid_entry.tid = perf_counter_tid(counter, current);
2419
2420 header.type |= PERF_SAMPLE_TID;
2421 header.size += sizeof(tid_entry);
2422 }
2423
2424 if (sample_type & PERF_SAMPLE_TIME) {
2425 /*
2426 * Maybe do better on x86 and provide cpu_clock_nmi()
2427 */
2428 time = sched_clock();
2429
2430 header.type |= PERF_SAMPLE_TIME;
2431 header.size += sizeof(u64);
2432 }
2433
2434 if (sample_type & PERF_SAMPLE_ADDR) {
2435 header.type |= PERF_SAMPLE_ADDR;
2436 header.size += sizeof(u64);
2437 }
2438
2439 if (sample_type & PERF_SAMPLE_ID) {
2440 header.type |= PERF_SAMPLE_ID;
2441 header.size += sizeof(u64);
2442 }
2443
2444 if (sample_type & PERF_SAMPLE_CPU) {
2445 header.type |= PERF_SAMPLE_CPU;
2446 header.size += sizeof(cpu_entry);
2447
2448 cpu_entry.cpu = raw_smp_processor_id();
2449 }
2450
2451 if (sample_type & PERF_SAMPLE_PERIOD) {
2452 header.type |= PERF_SAMPLE_PERIOD;
2453 header.size += sizeof(u64);
2454 }
2455
2456 if (sample_type & PERF_SAMPLE_GROUP) {
2457 header.type |= PERF_SAMPLE_GROUP;
2458 header.size += sizeof(u64) +
2459 counter->nr_siblings * sizeof(group_entry);
2460 }
2461
2462 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2463 callchain = perf_callchain(regs);
2464
2465 if (callchain) {
2466 callchain_size = (1 + callchain->nr) * sizeof(u64);
2467
2468 header.type |= PERF_SAMPLE_CALLCHAIN;
2469 header.size += callchain_size;
2470 }
2471 }
2472
2473 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2474 if (ret)
2475 return;
2476
2477 perf_output_put(&handle, header);
2478
2479 if (sample_type & PERF_SAMPLE_IP)
2480 perf_output_put(&handle, ip);
2481
2482 if (sample_type & PERF_SAMPLE_TID)
2483 perf_output_put(&handle, tid_entry);
2484
2485 if (sample_type & PERF_SAMPLE_TIME)
2486 perf_output_put(&handle, time);
2487
2488 if (sample_type & PERF_SAMPLE_ADDR)
2489 perf_output_put(&handle, addr);
2490
2491 if (sample_type & PERF_SAMPLE_ID)
2492 perf_output_put(&handle, counter->id);
2493
2494 if (sample_type & PERF_SAMPLE_CPU)
2495 perf_output_put(&handle, cpu_entry);
2496
2497 if (sample_type & PERF_SAMPLE_PERIOD)
2498 perf_output_put(&handle, counter->hw.sample_period);
2499
2500 /*
2501 * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2502 */
2503 if (sample_type & PERF_SAMPLE_GROUP) {
2504 struct perf_counter *leader, *sub;
2505 u64 nr = counter->nr_siblings;
2506
2507 perf_output_put(&handle, nr);
2508
2509 leader = counter->group_leader;
2510 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2511 if (sub != counter)
2512 sub->pmu->read(sub);
2513
2514 group_entry.id = sub->id;
2515 group_entry.counter = atomic64_read(&sub->count);
2516
2517 perf_output_put(&handle, group_entry);
2518 }
2519 }
2520
2521 if (callchain)
2522 perf_output_copy(&handle, callchain, callchain_size);
2523
2524 perf_output_end(&handle);
2525 }
2526
2527 /*
2528 * fork tracking
2529 */
2530
2531 struct perf_fork_event {
2532 struct task_struct *task;
2533
2534 struct {
2535 struct perf_event_header header;
2536
2537 u32 pid;
2538 u32 ppid;
2539 } event;
2540 };
2541
2542 static void perf_counter_fork_output(struct perf_counter *counter,
2543 struct perf_fork_event *fork_event)
2544 {
2545 struct perf_output_handle handle;
2546 int size = fork_event->event.header.size;
2547 struct task_struct *task = fork_event->task;
2548 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2549
2550 if (ret)
2551 return;
2552
2553 fork_event->event.pid = perf_counter_pid(counter, task);
2554 fork_event->event.ppid = perf_counter_pid(counter, task->real_parent);
2555
2556 perf_output_put(&handle, fork_event->event);
2557 perf_output_end(&handle);
2558 }
2559
2560 static int perf_counter_fork_match(struct perf_counter *counter)
2561 {
2562 if (counter->attr.comm || counter->attr.mmap)
2563 return 1;
2564
2565 return 0;
2566 }
2567
2568 static void perf_counter_fork_ctx(struct perf_counter_context *ctx,
2569 struct perf_fork_event *fork_event)
2570 {
2571 struct perf_counter *counter;
2572
2573 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2574 return;
2575
2576 rcu_read_lock();
2577 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2578 if (perf_counter_fork_match(counter))
2579 perf_counter_fork_output(counter, fork_event);
2580 }
2581 rcu_read_unlock();
2582 }
2583
2584 static void perf_counter_fork_event(struct perf_fork_event *fork_event)
2585 {
2586 struct perf_cpu_context *cpuctx;
2587 struct perf_counter_context *ctx;
2588
2589 cpuctx = &get_cpu_var(perf_cpu_context);
2590 perf_counter_fork_ctx(&cpuctx->ctx, fork_event);
2591 put_cpu_var(perf_cpu_context);
2592
2593 rcu_read_lock();
2594 /*
2595 * doesn't really matter which of the child contexts the
2596 * events ends up in.
2597 */
2598 ctx = rcu_dereference(current->perf_counter_ctxp);
2599 if (ctx)
2600 perf_counter_fork_ctx(ctx, fork_event);
2601 rcu_read_unlock();
2602 }
2603
2604 void perf_counter_fork(struct task_struct *task)
2605 {
2606 struct perf_fork_event fork_event;
2607
2608 if (!atomic_read(&nr_comm_counters) &&
2609 !atomic_read(&nr_mmap_counters))
2610 return;
2611
2612 fork_event = (struct perf_fork_event){
2613 .task = task,
2614 .event = {
2615 .header = {
2616 .type = PERF_EVENT_FORK,
2617 .size = sizeof(fork_event.event),
2618 },
2619 },
2620 };
2621
2622 perf_counter_fork_event(&fork_event);
2623 }
2624
2625 /*
2626 * comm tracking
2627 */
2628
2629 struct perf_comm_event {
2630 struct task_struct *task;
2631 char *comm;
2632 int comm_size;
2633
2634 struct {
2635 struct perf_event_header header;
2636
2637 u32 pid;
2638 u32 tid;
2639 } event;
2640 };
2641
2642 static void perf_counter_comm_output(struct perf_counter *counter,
2643 struct perf_comm_event *comm_event)
2644 {
2645 struct perf_output_handle handle;
2646 int size = comm_event->event.header.size;
2647 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2648
2649 if (ret)
2650 return;
2651
2652 comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2653 comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2654
2655 perf_output_put(&handle, comm_event->event);
2656 perf_output_copy(&handle, comm_event->comm,
2657 comm_event->comm_size);
2658 perf_output_end(&handle);
2659 }
2660
2661 static int perf_counter_comm_match(struct perf_counter *counter)
2662 {
2663 if (counter->attr.comm)
2664 return 1;
2665
2666 return 0;
2667 }
2668
2669 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2670 struct perf_comm_event *comm_event)
2671 {
2672 struct perf_counter *counter;
2673
2674 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2675 return;
2676
2677 rcu_read_lock();
2678 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2679 if (perf_counter_comm_match(counter))
2680 perf_counter_comm_output(counter, comm_event);
2681 }
2682 rcu_read_unlock();
2683 }
2684
2685 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2686 {
2687 struct perf_cpu_context *cpuctx;
2688 struct perf_counter_context *ctx;
2689 unsigned int size;
2690 char *comm = comm_event->task->comm;
2691
2692 size = ALIGN(strlen(comm)+1, sizeof(u64));
2693
2694 comm_event->comm = comm;
2695 comm_event->comm_size = size;
2696
2697 comm_event->event.header.size = sizeof(comm_event->event) + size;
2698
2699 cpuctx = &get_cpu_var(perf_cpu_context);
2700 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2701 put_cpu_var(perf_cpu_context);
2702
2703 rcu_read_lock();
2704 /*
2705 * doesn't really matter which of the child contexts the
2706 * events ends up in.
2707 */
2708 ctx = rcu_dereference(current->perf_counter_ctxp);
2709 if (ctx)
2710 perf_counter_comm_ctx(ctx, comm_event);
2711 rcu_read_unlock();
2712 }
2713
2714 void perf_counter_comm(struct task_struct *task)
2715 {
2716 struct perf_comm_event comm_event;
2717
2718 if (!atomic_read(&nr_comm_counters))
2719 return;
2720
2721 comm_event = (struct perf_comm_event){
2722 .task = task,
2723 .event = {
2724 .header = { .type = PERF_EVENT_COMM, },
2725 },
2726 };
2727
2728 perf_counter_comm_event(&comm_event);
2729 }
2730
2731 /*
2732 * mmap tracking
2733 */
2734
2735 struct perf_mmap_event {
2736 struct vm_area_struct *vma;
2737
2738 const char *file_name;
2739 int file_size;
2740
2741 struct {
2742 struct perf_event_header header;
2743
2744 u32 pid;
2745 u32 tid;
2746 u64 start;
2747 u64 len;
2748 u64 pgoff;
2749 } event;
2750 };
2751
2752 static void perf_counter_mmap_output(struct perf_counter *counter,
2753 struct perf_mmap_event *mmap_event)
2754 {
2755 struct perf_output_handle handle;
2756 int size = mmap_event->event.header.size;
2757 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2758
2759 if (ret)
2760 return;
2761
2762 mmap_event->event.pid = perf_counter_pid(counter, current);
2763 mmap_event->event.tid = perf_counter_tid(counter, current);
2764
2765 perf_output_put(&handle, mmap_event->event);
2766 perf_output_copy(&handle, mmap_event->file_name,
2767 mmap_event->file_size);
2768 perf_output_end(&handle);
2769 }
2770
2771 static int perf_counter_mmap_match(struct perf_counter *counter,
2772 struct perf_mmap_event *mmap_event)
2773 {
2774 if (counter->attr.mmap)
2775 return 1;
2776
2777 return 0;
2778 }
2779
2780 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2781 struct perf_mmap_event *mmap_event)
2782 {
2783 struct perf_counter *counter;
2784
2785 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2786 return;
2787
2788 rcu_read_lock();
2789 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2790 if (perf_counter_mmap_match(counter, mmap_event))
2791 perf_counter_mmap_output(counter, mmap_event);
2792 }
2793 rcu_read_unlock();
2794 }
2795
2796 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2797 {
2798 struct perf_cpu_context *cpuctx;
2799 struct perf_counter_context *ctx;
2800 struct vm_area_struct *vma = mmap_event->vma;
2801 struct file *file = vma->vm_file;
2802 unsigned int size;
2803 char tmp[16];
2804 char *buf = NULL;
2805 const char *name;
2806
2807 if (file) {
2808 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2809 if (!buf) {
2810 name = strncpy(tmp, "//enomem", sizeof(tmp));
2811 goto got_name;
2812 }
2813 name = d_path(&file->f_path, buf, PATH_MAX);
2814 if (IS_ERR(name)) {
2815 name = strncpy(tmp, "//toolong", sizeof(tmp));
2816 goto got_name;
2817 }
2818 } else {
2819 name = arch_vma_name(mmap_event->vma);
2820 if (name)
2821 goto got_name;
2822
2823 if (!vma->vm_mm) {
2824 name = strncpy(tmp, "[vdso]", sizeof(tmp));
2825 goto got_name;
2826 }
2827
2828 name = strncpy(tmp, "//anon", sizeof(tmp));
2829 goto got_name;
2830 }
2831
2832 got_name:
2833 size = ALIGN(strlen(name)+1, sizeof(u64));
2834
2835 mmap_event->file_name = name;
2836 mmap_event->file_size = size;
2837
2838 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2839
2840 cpuctx = &get_cpu_var(perf_cpu_context);
2841 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2842 put_cpu_var(perf_cpu_context);
2843
2844 rcu_read_lock();
2845 /*
2846 * doesn't really matter which of the child contexts the
2847 * events ends up in.
2848 */
2849 ctx = rcu_dereference(current->perf_counter_ctxp);
2850 if (ctx)
2851 perf_counter_mmap_ctx(ctx, mmap_event);
2852 rcu_read_unlock();
2853
2854 kfree(buf);
2855 }
2856
2857 void __perf_counter_mmap(struct vm_area_struct *vma)
2858 {
2859 struct perf_mmap_event mmap_event;
2860
2861 if (!atomic_read(&nr_mmap_counters))
2862 return;
2863
2864 mmap_event = (struct perf_mmap_event){
2865 .vma = vma,
2866 .event = {
2867 .header = { .type = PERF_EVENT_MMAP, },
2868 .start = vma->vm_start,
2869 .len = vma->vm_end - vma->vm_start,
2870 .pgoff = vma->vm_pgoff,
2871 },
2872 };
2873
2874 perf_counter_mmap_event(&mmap_event);
2875 }
2876
2877 /*
2878 * Log sample_period changes so that analyzing tools can re-normalize the
2879 * event flow.
2880 */
2881
2882 struct freq_event {
2883 struct perf_event_header header;
2884 u64 time;
2885 u64 id;
2886 u64 period;
2887 };
2888
2889 static void perf_log_period(struct perf_counter *counter, u64 period)
2890 {
2891 struct perf_output_handle handle;
2892 struct freq_event event;
2893 int ret;
2894
2895 if (counter->hw.sample_period == period)
2896 return;
2897
2898 if (counter->attr.sample_type & PERF_SAMPLE_PERIOD)
2899 return;
2900
2901 event = (struct freq_event) {
2902 .header = {
2903 .type = PERF_EVENT_PERIOD,
2904 .misc = 0,
2905 .size = sizeof(event),
2906 },
2907 .time = sched_clock(),
2908 .id = counter->id,
2909 .period = period,
2910 };
2911
2912 ret = perf_output_begin(&handle, counter, sizeof(event), 1, 0);
2913 if (ret)
2914 return;
2915
2916 perf_output_put(&handle, event);
2917 perf_output_end(&handle);
2918 }
2919
2920 /*
2921 * IRQ throttle logging
2922 */
2923
2924 static void perf_log_throttle(struct perf_counter *counter, int enable)
2925 {
2926 struct perf_output_handle handle;
2927 int ret;
2928
2929 struct {
2930 struct perf_event_header header;
2931 u64 time;
2932 } throttle_event = {
2933 .header = {
2934 .type = PERF_EVENT_THROTTLE + 1,
2935 .misc = 0,
2936 .size = sizeof(throttle_event),
2937 },
2938 .time = sched_clock(),
2939 };
2940
2941 ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
2942 if (ret)
2943 return;
2944
2945 perf_output_put(&handle, throttle_event);
2946 perf_output_end(&handle);
2947 }
2948
2949 /*
2950 * Generic counter overflow handling.
2951 */
2952
2953 int perf_counter_overflow(struct perf_counter *counter,
2954 int nmi, struct pt_regs *regs, u64 addr)
2955 {
2956 int events = atomic_read(&counter->event_limit);
2957 int throttle = counter->pmu->unthrottle != NULL;
2958 struct hw_perf_counter *hwc = &counter->hw;
2959 int ret = 0;
2960
2961 if (!throttle) {
2962 hwc->interrupts++;
2963 } else {
2964 if (hwc->interrupts != MAX_INTERRUPTS) {
2965 hwc->interrupts++;
2966 if (HZ * hwc->interrupts > (u64)sysctl_perf_counter_limit) {
2967 hwc->interrupts = MAX_INTERRUPTS;
2968 perf_log_throttle(counter, 0);
2969 ret = 1;
2970 }
2971 } else {
2972 /*
2973 * Keep re-disabling counters even though on the previous
2974 * pass we disabled it - just in case we raced with a
2975 * sched-in and the counter got enabled again:
2976 */
2977 ret = 1;
2978 }
2979 }
2980
2981 if (counter->attr.freq) {
2982 u64 now = sched_clock();
2983 s64 delta = now - hwc->freq_stamp;
2984
2985 hwc->freq_stamp = now;
2986
2987 if (delta > 0 && delta < TICK_NSEC)
2988 perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
2989 }
2990
2991 /*
2992 * XXX event_limit might not quite work as expected on inherited
2993 * counters
2994 */
2995
2996 counter->pending_kill = POLL_IN;
2997 if (events && atomic_dec_and_test(&counter->event_limit)) {
2998 ret = 1;
2999 counter->pending_kill = POLL_HUP;
3000 if (nmi) {
3001 counter->pending_disable = 1;
3002 perf_pending_queue(&counter->pending,
3003 perf_pending_counter);
3004 } else
3005 perf_counter_disable(counter);
3006 }
3007
3008 perf_counter_output(counter, nmi, regs, addr);
3009 return ret;
3010 }
3011
3012 /*
3013 * Generic software counter infrastructure
3014 */
3015
3016 static void perf_swcounter_update(struct perf_counter *counter)
3017 {
3018 struct hw_perf_counter *hwc = &counter->hw;
3019 u64 prev, now;
3020 s64 delta;
3021
3022 again:
3023 prev = atomic64_read(&hwc->prev_count);
3024 now = atomic64_read(&hwc->count);
3025 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
3026 goto again;
3027
3028 delta = now - prev;
3029
3030 atomic64_add(delta, &counter->count);
3031 atomic64_sub(delta, &hwc->period_left);
3032 }
3033
3034 static void perf_swcounter_set_period(struct perf_counter *counter)
3035 {
3036 struct hw_perf_counter *hwc = &counter->hw;
3037 s64 left = atomic64_read(&hwc->period_left);
3038 s64 period = hwc->sample_period;
3039
3040 if (unlikely(left <= -period)) {
3041 left = period;
3042 atomic64_set(&hwc->period_left, left);
3043 }
3044
3045 if (unlikely(left <= 0)) {
3046 left += period;
3047 atomic64_add(period, &hwc->period_left);
3048 }
3049
3050 atomic64_set(&hwc->prev_count, -left);
3051 atomic64_set(&hwc->count, -left);
3052 }
3053
3054 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3055 {
3056 enum hrtimer_restart ret = HRTIMER_RESTART;
3057 struct perf_counter *counter;
3058 struct pt_regs *regs;
3059 u64 period;
3060
3061 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3062 counter->pmu->read(counter);
3063
3064 regs = get_irq_regs();
3065 /*
3066 * In case we exclude kernel IPs or are somehow not in interrupt
3067 * context, provide the next best thing, the user IP.
3068 */
3069 if ((counter->attr.exclude_kernel || !regs) &&
3070 !counter->attr.exclude_user)
3071 regs = task_pt_regs(current);
3072
3073 if (regs) {
3074 if (perf_counter_overflow(counter, 0, regs, 0))
3075 ret = HRTIMER_NORESTART;
3076 }
3077
3078 period = max_t(u64, 10000, counter->hw.sample_period);
3079 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3080
3081 return ret;
3082 }
3083
3084 static void perf_swcounter_overflow(struct perf_counter *counter,
3085 int nmi, struct pt_regs *regs, u64 addr)
3086 {
3087 perf_swcounter_update(counter);
3088 perf_swcounter_set_period(counter);
3089 if (perf_counter_overflow(counter, nmi, regs, addr))
3090 /* soft-disable the counter */
3091 ;
3092
3093 }
3094
3095 static int perf_swcounter_is_counting(struct perf_counter *counter)
3096 {
3097 struct perf_counter_context *ctx;
3098 unsigned long flags;
3099 int count;
3100
3101 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3102 return 1;
3103
3104 if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3105 return 0;
3106
3107 /*
3108 * If the counter is inactive, it could be just because
3109 * its task is scheduled out, or because it's in a group
3110 * which could not go on the PMU. We want to count in
3111 * the first case but not the second. If the context is
3112 * currently active then an inactive software counter must
3113 * be the second case. If it's not currently active then
3114 * we need to know whether the counter was active when the
3115 * context was last active, which we can determine by
3116 * comparing counter->tstamp_stopped with ctx->time.
3117 *
3118 * We are within an RCU read-side critical section,
3119 * which protects the existence of *ctx.
3120 */
3121 ctx = counter->ctx;
3122 spin_lock_irqsave(&ctx->lock, flags);
3123 count = 1;
3124 /* Re-check state now we have the lock */
3125 if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
3126 counter->ctx->is_active ||
3127 counter->tstamp_stopped < ctx->time)
3128 count = 0;
3129 spin_unlock_irqrestore(&ctx->lock, flags);
3130 return count;
3131 }
3132
3133 static int perf_swcounter_match(struct perf_counter *counter,
3134 enum perf_event_types type,
3135 u32 event, struct pt_regs *regs)
3136 {
3137 if (!perf_swcounter_is_counting(counter))
3138 return 0;
3139
3140 if (counter->attr.type != type)
3141 return 0;
3142 if (counter->attr.config != event)
3143 return 0;
3144
3145 if (regs) {
3146 if (counter->attr.exclude_user && user_mode(regs))
3147 return 0;
3148
3149 if (counter->attr.exclude_kernel && !user_mode(regs))
3150 return 0;
3151 }
3152
3153 return 1;
3154 }
3155
3156 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3157 int nmi, struct pt_regs *regs, u64 addr)
3158 {
3159 int neg = atomic64_add_negative(nr, &counter->hw.count);
3160
3161 if (counter->hw.sample_period && !neg && regs)
3162 perf_swcounter_overflow(counter, nmi, regs, addr);
3163 }
3164
3165 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3166 enum perf_event_types type, u32 event,
3167 u64 nr, int nmi, struct pt_regs *regs,
3168 u64 addr)
3169 {
3170 struct perf_counter *counter;
3171
3172 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3173 return;
3174
3175 rcu_read_lock();
3176 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3177 if (perf_swcounter_match(counter, type, event, regs))
3178 perf_swcounter_add(counter, nr, nmi, regs, addr);
3179 }
3180 rcu_read_unlock();
3181 }
3182
3183 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3184 {
3185 if (in_nmi())
3186 return &cpuctx->recursion[3];
3187
3188 if (in_irq())
3189 return &cpuctx->recursion[2];
3190
3191 if (in_softirq())
3192 return &cpuctx->recursion[1];
3193
3194 return &cpuctx->recursion[0];
3195 }
3196
3197 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
3198 u64 nr, int nmi, struct pt_regs *regs,
3199 u64 addr)
3200 {
3201 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3202 int *recursion = perf_swcounter_recursion_context(cpuctx);
3203 struct perf_counter_context *ctx;
3204
3205 if (*recursion)
3206 goto out;
3207
3208 (*recursion)++;
3209 barrier();
3210
3211 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3212 nr, nmi, regs, addr);
3213 rcu_read_lock();
3214 /*
3215 * doesn't really matter which of the child contexts the
3216 * events ends up in.
3217 */
3218 ctx = rcu_dereference(current->perf_counter_ctxp);
3219 if (ctx)
3220 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, regs, addr);
3221 rcu_read_unlock();
3222
3223 barrier();
3224 (*recursion)--;
3225
3226 out:
3227 put_cpu_var(perf_cpu_context);
3228 }
3229
3230 void
3231 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
3232 {
3233 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
3234 }
3235
3236 static void perf_swcounter_read(struct perf_counter *counter)
3237 {
3238 perf_swcounter_update(counter);
3239 }
3240
3241 static int perf_swcounter_enable(struct perf_counter *counter)
3242 {
3243 perf_swcounter_set_period(counter);
3244 return 0;
3245 }
3246
3247 static void perf_swcounter_disable(struct perf_counter *counter)
3248 {
3249 perf_swcounter_update(counter);
3250 }
3251
3252 static const struct pmu perf_ops_generic = {
3253 .enable = perf_swcounter_enable,
3254 .disable = perf_swcounter_disable,
3255 .read = perf_swcounter_read,
3256 };
3257
3258 /*
3259 * Software counter: cpu wall time clock
3260 */
3261
3262 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3263 {
3264 int cpu = raw_smp_processor_id();
3265 s64 prev;
3266 u64 now;
3267
3268 now = cpu_clock(cpu);
3269 prev = atomic64_read(&counter->hw.prev_count);
3270 atomic64_set(&counter->hw.prev_count, now);
3271 atomic64_add(now - prev, &counter->count);
3272 }
3273
3274 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3275 {
3276 struct hw_perf_counter *hwc = &counter->hw;
3277 int cpu = raw_smp_processor_id();
3278
3279 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3280 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3281 hwc->hrtimer.function = perf_swcounter_hrtimer;
3282 if (hwc->sample_period) {
3283 u64 period = max_t(u64, 10000, hwc->sample_period);
3284 __hrtimer_start_range_ns(&hwc->hrtimer,
3285 ns_to_ktime(period), 0,
3286 HRTIMER_MODE_REL, 0);
3287 }
3288
3289 return 0;
3290 }
3291
3292 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3293 {
3294 if (counter->hw.sample_period)
3295 hrtimer_cancel(&counter->hw.hrtimer);
3296 cpu_clock_perf_counter_update(counter);
3297 }
3298
3299 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3300 {
3301 cpu_clock_perf_counter_update(counter);
3302 }
3303
3304 static const struct pmu perf_ops_cpu_clock = {
3305 .enable = cpu_clock_perf_counter_enable,
3306 .disable = cpu_clock_perf_counter_disable,
3307 .read = cpu_clock_perf_counter_read,
3308 };
3309
3310 /*
3311 * Software counter: task time clock
3312 */
3313
3314 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3315 {
3316 u64 prev;
3317 s64 delta;
3318
3319 prev = atomic64_xchg(&counter->hw.prev_count, now);
3320 delta = now - prev;
3321 atomic64_add(delta, &counter->count);
3322 }
3323
3324 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3325 {
3326 struct hw_perf_counter *hwc = &counter->hw;
3327 u64 now;
3328
3329 now = counter->ctx->time;
3330
3331 atomic64_set(&hwc->prev_count, now);
3332 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3333 hwc->hrtimer.function = perf_swcounter_hrtimer;
3334 if (hwc->sample_period) {
3335 u64 period = max_t(u64, 10000, hwc->sample_period);
3336 __hrtimer_start_range_ns(&hwc->hrtimer,
3337 ns_to_ktime(period), 0,
3338 HRTIMER_MODE_REL, 0);
3339 }
3340
3341 return 0;
3342 }
3343
3344 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3345 {
3346 if (counter->hw.sample_period)
3347 hrtimer_cancel(&counter->hw.hrtimer);
3348 task_clock_perf_counter_update(counter, counter->ctx->time);
3349
3350 }
3351
3352 static void task_clock_perf_counter_read(struct perf_counter *counter)
3353 {
3354 u64 time;
3355
3356 if (!in_nmi()) {
3357 update_context_time(counter->ctx);
3358 time = counter->ctx->time;
3359 } else {
3360 u64 now = perf_clock();
3361 u64 delta = now - counter->ctx->timestamp;
3362 time = counter->ctx->time + delta;
3363 }
3364
3365 task_clock_perf_counter_update(counter, time);
3366 }
3367
3368 static const struct pmu perf_ops_task_clock = {
3369 .enable = task_clock_perf_counter_enable,
3370 .disable = task_clock_perf_counter_disable,
3371 .read = task_clock_perf_counter_read,
3372 };
3373
3374 /*
3375 * Software counter: cpu migrations
3376 */
3377 void perf_counter_task_migration(struct task_struct *task, int cpu)
3378 {
3379 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3380 struct perf_counter_context *ctx;
3381
3382 perf_swcounter_ctx_event(&cpuctx->ctx, PERF_TYPE_SOFTWARE,
3383 PERF_COUNT_CPU_MIGRATIONS,
3384 1, 1, NULL, 0);
3385
3386 ctx = perf_pin_task_context(task);
3387 if (ctx) {
3388 perf_swcounter_ctx_event(ctx, PERF_TYPE_SOFTWARE,
3389 PERF_COUNT_CPU_MIGRATIONS,
3390 1, 1, NULL, 0);
3391 perf_unpin_context(ctx);
3392 }
3393 }
3394
3395 #ifdef CONFIG_EVENT_PROFILE
3396 void perf_tpcounter_event(int event_id)
3397 {
3398 struct pt_regs *regs = get_irq_regs();
3399
3400 if (!regs)
3401 regs = task_pt_regs(current);
3402
3403 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3404 }
3405 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3406
3407 extern int ftrace_profile_enable(int);
3408 extern void ftrace_profile_disable(int);
3409
3410 static void tp_perf_counter_destroy(struct perf_counter *counter)
3411 {
3412 ftrace_profile_disable(perf_event_id(&counter->attr));
3413 }
3414
3415 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3416 {
3417 int event_id = perf_event_id(&counter->attr);
3418 int ret;
3419
3420 ret = ftrace_profile_enable(event_id);
3421 if (ret)
3422 return NULL;
3423
3424 counter->destroy = tp_perf_counter_destroy;
3425
3426 return &perf_ops_generic;
3427 }
3428 #else
3429 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3430 {
3431 return NULL;
3432 }
3433 #endif
3434
3435 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3436 {
3437 const struct pmu *pmu = NULL;
3438
3439 /*
3440 * Software counters (currently) can't in general distinguish
3441 * between user, kernel and hypervisor events.
3442 * However, context switches and cpu migrations are considered
3443 * to be kernel events, and page faults are never hypervisor
3444 * events.
3445 */
3446 switch (counter->attr.config) {
3447 case PERF_COUNT_CPU_CLOCK:
3448 pmu = &perf_ops_cpu_clock;
3449
3450 break;
3451 case PERF_COUNT_TASK_CLOCK:
3452 /*
3453 * If the user instantiates this as a per-cpu counter,
3454 * use the cpu_clock counter instead.
3455 */
3456 if (counter->ctx->task)
3457 pmu = &perf_ops_task_clock;
3458 else
3459 pmu = &perf_ops_cpu_clock;
3460
3461 break;
3462 case PERF_COUNT_PAGE_FAULTS:
3463 case PERF_COUNT_PAGE_FAULTS_MIN:
3464 case PERF_COUNT_PAGE_FAULTS_MAJ:
3465 case PERF_COUNT_CONTEXT_SWITCHES:
3466 case PERF_COUNT_CPU_MIGRATIONS:
3467 pmu = &perf_ops_generic;
3468 break;
3469 }
3470
3471 return pmu;
3472 }
3473
3474 /*
3475 * Allocate and initialize a counter structure
3476 */
3477 static struct perf_counter *
3478 perf_counter_alloc(struct perf_counter_attr *attr,
3479 int cpu,
3480 struct perf_counter_context *ctx,
3481 struct perf_counter *group_leader,
3482 gfp_t gfpflags)
3483 {
3484 const struct pmu *pmu;
3485 struct perf_counter *counter;
3486 struct hw_perf_counter *hwc;
3487 long err;
3488
3489 counter = kzalloc(sizeof(*counter), gfpflags);
3490 if (!counter)
3491 return ERR_PTR(-ENOMEM);
3492
3493 /*
3494 * Single counters are their own group leaders, with an
3495 * empty sibling list:
3496 */
3497 if (!group_leader)
3498 group_leader = counter;
3499
3500 mutex_init(&counter->child_mutex);
3501 INIT_LIST_HEAD(&counter->child_list);
3502
3503 INIT_LIST_HEAD(&counter->list_entry);
3504 INIT_LIST_HEAD(&counter->event_entry);
3505 INIT_LIST_HEAD(&counter->sibling_list);
3506 init_waitqueue_head(&counter->waitq);
3507
3508 mutex_init(&counter->mmap_mutex);
3509
3510 counter->cpu = cpu;
3511 counter->attr = *attr;
3512 counter->group_leader = group_leader;
3513 counter->pmu = NULL;
3514 counter->ctx = ctx;
3515 counter->oncpu = -1;
3516
3517 counter->ns = get_pid_ns(current->nsproxy->pid_ns);
3518 counter->id = atomic64_inc_return(&perf_counter_id);
3519
3520 counter->state = PERF_COUNTER_STATE_INACTIVE;
3521
3522 if (attr->disabled)
3523 counter->state = PERF_COUNTER_STATE_OFF;
3524
3525 pmu = NULL;
3526
3527 hwc = &counter->hw;
3528 hwc->sample_period = attr->sample_period;
3529 if (attr->freq && attr->sample_freq)
3530 hwc->sample_period = 1;
3531
3532 atomic64_set(&hwc->period_left, hwc->sample_period);
3533
3534 /*
3535 * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3536 */
3537 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3538 goto done;
3539
3540 if (attr->type == PERF_TYPE_RAW) {
3541 pmu = hw_perf_counter_init(counter);
3542 goto done;
3543 }
3544
3545 switch (attr->type) {
3546 case PERF_TYPE_HARDWARE:
3547 case PERF_TYPE_HW_CACHE:
3548 pmu = hw_perf_counter_init(counter);
3549 break;
3550
3551 case PERF_TYPE_SOFTWARE:
3552 pmu = sw_perf_counter_init(counter);
3553 break;
3554
3555 case PERF_TYPE_TRACEPOINT:
3556 pmu = tp_perf_counter_init(counter);
3557 break;
3558 }
3559 done:
3560 err = 0;
3561 if (!pmu)
3562 err = -EINVAL;
3563 else if (IS_ERR(pmu))
3564 err = PTR_ERR(pmu);
3565
3566 if (err) {
3567 if (counter->ns)
3568 put_pid_ns(counter->ns);
3569 kfree(counter);
3570 return ERR_PTR(err);
3571 }
3572
3573 counter->pmu = pmu;
3574
3575 atomic_inc(&nr_counters);
3576 if (counter->attr.mmap)
3577 atomic_inc(&nr_mmap_counters);
3578 if (counter->attr.comm)
3579 atomic_inc(&nr_comm_counters);
3580
3581 return counter;
3582 }
3583
3584 /**
3585 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3586 *
3587 * @attr_uptr: event type attributes for monitoring/sampling
3588 * @pid: target pid
3589 * @cpu: target cpu
3590 * @group_fd: group leader counter fd
3591 */
3592 SYSCALL_DEFINE5(perf_counter_open,
3593 const struct perf_counter_attr __user *, attr_uptr,
3594 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3595 {
3596 struct perf_counter *counter, *group_leader;
3597 struct perf_counter_attr attr;
3598 struct perf_counter_context *ctx;
3599 struct file *counter_file = NULL;
3600 struct file *group_file = NULL;
3601 int fput_needed = 0;
3602 int fput_needed2 = 0;
3603 int ret;
3604
3605 /* for future expandability... */
3606 if (flags)
3607 return -EINVAL;
3608
3609 if (copy_from_user(&attr, attr_uptr, sizeof(attr)) != 0)
3610 return -EFAULT;
3611
3612 /*
3613 * Get the target context (task or percpu):
3614 */
3615 ctx = find_get_context(pid, cpu);
3616 if (IS_ERR(ctx))
3617 return PTR_ERR(ctx);
3618
3619 /*
3620 * Look up the group leader (we will attach this counter to it):
3621 */
3622 group_leader = NULL;
3623 if (group_fd != -1) {
3624 ret = -EINVAL;
3625 group_file = fget_light(group_fd, &fput_needed);
3626 if (!group_file)
3627 goto err_put_context;
3628 if (group_file->f_op != &perf_fops)
3629 goto err_put_context;
3630
3631 group_leader = group_file->private_data;
3632 /*
3633 * Do not allow a recursive hierarchy (this new sibling
3634 * becoming part of another group-sibling):
3635 */
3636 if (group_leader->group_leader != group_leader)
3637 goto err_put_context;
3638 /*
3639 * Do not allow to attach to a group in a different
3640 * task or CPU context:
3641 */
3642 if (group_leader->ctx != ctx)
3643 goto err_put_context;
3644 /*
3645 * Only a group leader can be exclusive or pinned
3646 */
3647 if (attr.exclusive || attr.pinned)
3648 goto err_put_context;
3649 }
3650
3651 counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
3652 GFP_KERNEL);
3653 ret = PTR_ERR(counter);
3654 if (IS_ERR(counter))
3655 goto err_put_context;
3656
3657 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3658 if (ret < 0)
3659 goto err_free_put_context;
3660
3661 counter_file = fget_light(ret, &fput_needed2);
3662 if (!counter_file)
3663 goto err_free_put_context;
3664
3665 counter->filp = counter_file;
3666 WARN_ON_ONCE(ctx->parent_ctx);
3667 mutex_lock(&ctx->mutex);
3668 perf_install_in_context(ctx, counter, cpu);
3669 ++ctx->generation;
3670 mutex_unlock(&ctx->mutex);
3671
3672 counter->owner = current;
3673 get_task_struct(current);
3674 mutex_lock(&current->perf_counter_mutex);
3675 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3676 mutex_unlock(&current->perf_counter_mutex);
3677
3678 fput_light(counter_file, fput_needed2);
3679
3680 out_fput:
3681 fput_light(group_file, fput_needed);
3682
3683 return ret;
3684
3685 err_free_put_context:
3686 kfree(counter);
3687
3688 err_put_context:
3689 put_ctx(ctx);
3690
3691 goto out_fput;
3692 }
3693
3694 /*
3695 * inherit a counter from parent task to child task:
3696 */
3697 static struct perf_counter *
3698 inherit_counter(struct perf_counter *parent_counter,
3699 struct task_struct *parent,
3700 struct perf_counter_context *parent_ctx,
3701 struct task_struct *child,
3702 struct perf_counter *group_leader,
3703 struct perf_counter_context *child_ctx)
3704 {
3705 struct perf_counter *child_counter;
3706
3707 /*
3708 * Instead of creating recursive hierarchies of counters,
3709 * we link inherited counters back to the original parent,
3710 * which has a filp for sure, which we use as the reference
3711 * count:
3712 */
3713 if (parent_counter->parent)
3714 parent_counter = parent_counter->parent;
3715
3716 child_counter = perf_counter_alloc(&parent_counter->attr,
3717 parent_counter->cpu, child_ctx,
3718 group_leader, GFP_KERNEL);
3719 if (IS_ERR(child_counter))
3720 return child_counter;
3721 get_ctx(child_ctx);
3722
3723 /*
3724 * Make the child state follow the state of the parent counter,
3725 * not its attr.disabled bit. We hold the parent's mutex,
3726 * so we won't race with perf_counter_{en, dis}able_family.
3727 */
3728 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3729 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3730 else
3731 child_counter->state = PERF_COUNTER_STATE_OFF;
3732
3733 if (parent_counter->attr.freq)
3734 child_counter->hw.sample_period = parent_counter->hw.sample_period;
3735
3736 /*
3737 * Link it up in the child's context:
3738 */
3739 add_counter_to_ctx(child_counter, child_ctx);
3740
3741 child_counter->parent = parent_counter;
3742 /*
3743 * inherit into child's child as well:
3744 */
3745 child_counter->attr.inherit = 1;
3746
3747 /*
3748 * Get a reference to the parent filp - we will fput it
3749 * when the child counter exits. This is safe to do because
3750 * we are in the parent and we know that the filp still
3751 * exists and has a nonzero count:
3752 */
3753 atomic_long_inc(&parent_counter->filp->f_count);
3754
3755 /*
3756 * Link this into the parent counter's child list
3757 */
3758 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3759 mutex_lock(&parent_counter->child_mutex);
3760 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3761 mutex_unlock(&parent_counter->child_mutex);
3762
3763 return child_counter;
3764 }
3765
3766 static int inherit_group(struct perf_counter *parent_counter,
3767 struct task_struct *parent,
3768 struct perf_counter_context *parent_ctx,
3769 struct task_struct *child,
3770 struct perf_counter_context *child_ctx)
3771 {
3772 struct perf_counter *leader;
3773 struct perf_counter *sub;
3774 struct perf_counter *child_ctr;
3775
3776 leader = inherit_counter(parent_counter, parent, parent_ctx,
3777 child, NULL, child_ctx);
3778 if (IS_ERR(leader))
3779 return PTR_ERR(leader);
3780 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3781 child_ctr = inherit_counter(sub, parent, parent_ctx,
3782 child, leader, child_ctx);
3783 if (IS_ERR(child_ctr))
3784 return PTR_ERR(child_ctr);
3785 }
3786 return 0;
3787 }
3788
3789 static void sync_child_counter(struct perf_counter *child_counter,
3790 struct perf_counter *parent_counter)
3791 {
3792 u64 child_val;
3793
3794 child_val = atomic64_read(&child_counter->count);
3795
3796 /*
3797 * Add back the child's count to the parent's count:
3798 */
3799 atomic64_add(child_val, &parent_counter->count);
3800 atomic64_add(child_counter->total_time_enabled,
3801 &parent_counter->child_total_time_enabled);
3802 atomic64_add(child_counter->total_time_running,
3803 &parent_counter->child_total_time_running);
3804
3805 /*
3806 * Remove this counter from the parent's list
3807 */
3808 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3809 mutex_lock(&parent_counter->child_mutex);
3810 list_del_init(&child_counter->child_list);
3811 mutex_unlock(&parent_counter->child_mutex);
3812
3813 /*
3814 * Release the parent counter, if this was the last
3815 * reference to it.
3816 */
3817 fput(parent_counter->filp);
3818 }
3819
3820 static void
3821 __perf_counter_exit_task(struct perf_counter *child_counter,
3822 struct perf_counter_context *child_ctx)
3823 {
3824 struct perf_counter *parent_counter;
3825
3826 update_counter_times(child_counter);
3827 perf_counter_remove_from_context(child_counter);
3828
3829 parent_counter = child_counter->parent;
3830 /*
3831 * It can happen that parent exits first, and has counters
3832 * that are still around due to the child reference. These
3833 * counters need to be zapped - but otherwise linger.
3834 */
3835 if (parent_counter) {
3836 sync_child_counter(child_counter, parent_counter);
3837 free_counter(child_counter);
3838 }
3839 }
3840
3841 /*
3842 * When a child task exits, feed back counter values to parent counters.
3843 */
3844 void perf_counter_exit_task(struct task_struct *child)
3845 {
3846 struct perf_counter *child_counter, *tmp;
3847 struct perf_counter_context *child_ctx;
3848 unsigned long flags;
3849
3850 if (likely(!child->perf_counter_ctxp))
3851 return;
3852
3853 local_irq_save(flags);
3854 /*
3855 * We can't reschedule here because interrupts are disabled,
3856 * and either child is current or it is a task that can't be
3857 * scheduled, so we are now safe from rescheduling changing
3858 * our context.
3859 */
3860 child_ctx = child->perf_counter_ctxp;
3861 __perf_counter_task_sched_out(child_ctx);
3862
3863 /*
3864 * Take the context lock here so that if find_get_context is
3865 * reading child->perf_counter_ctxp, we wait until it has
3866 * incremented the context's refcount before we do put_ctx below.
3867 */
3868 spin_lock(&child_ctx->lock);
3869 child->perf_counter_ctxp = NULL;
3870 if (child_ctx->parent_ctx) {
3871 /*
3872 * This context is a clone; unclone it so it can't get
3873 * swapped to another process while we're removing all
3874 * the counters from it.
3875 */
3876 put_ctx(child_ctx->parent_ctx);
3877 child_ctx->parent_ctx = NULL;
3878 }
3879 spin_unlock(&child_ctx->lock);
3880 local_irq_restore(flags);
3881
3882 mutex_lock(&child_ctx->mutex);
3883
3884 again:
3885 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3886 list_entry)
3887 __perf_counter_exit_task(child_counter, child_ctx);
3888
3889 /*
3890 * If the last counter was a group counter, it will have appended all
3891 * its siblings to the list, but we obtained 'tmp' before that which
3892 * will still point to the list head terminating the iteration.
3893 */
3894 if (!list_empty(&child_ctx->counter_list))
3895 goto again;
3896
3897 mutex_unlock(&child_ctx->mutex);
3898
3899 put_ctx(child_ctx);
3900 }
3901
3902 /*
3903 * free an unexposed, unused context as created by inheritance by
3904 * init_task below, used by fork() in case of fail.
3905 */
3906 void perf_counter_free_task(struct task_struct *task)
3907 {
3908 struct perf_counter_context *ctx = task->perf_counter_ctxp;
3909 struct perf_counter *counter, *tmp;
3910
3911 if (!ctx)
3912 return;
3913
3914 mutex_lock(&ctx->mutex);
3915 again:
3916 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
3917 struct perf_counter *parent = counter->parent;
3918
3919 if (WARN_ON_ONCE(!parent))
3920 continue;
3921
3922 mutex_lock(&parent->child_mutex);
3923 list_del_init(&counter->child_list);
3924 mutex_unlock(&parent->child_mutex);
3925
3926 fput(parent->filp);
3927
3928 list_del_counter(counter, ctx);
3929 free_counter(counter);
3930 }
3931
3932 if (!list_empty(&ctx->counter_list))
3933 goto again;
3934
3935 mutex_unlock(&ctx->mutex);
3936
3937 put_ctx(ctx);
3938 }
3939
3940 /*
3941 * Initialize the perf_counter context in task_struct
3942 */
3943 int perf_counter_init_task(struct task_struct *child)
3944 {
3945 struct perf_counter_context *child_ctx, *parent_ctx;
3946 struct perf_counter_context *cloned_ctx;
3947 struct perf_counter *counter;
3948 struct task_struct *parent = current;
3949 int inherited_all = 1;
3950 int ret = 0;
3951
3952 child->perf_counter_ctxp = NULL;
3953
3954 mutex_init(&child->perf_counter_mutex);
3955 INIT_LIST_HEAD(&child->perf_counter_list);
3956
3957 if (likely(!parent->perf_counter_ctxp))
3958 return 0;
3959
3960 /*
3961 * This is executed from the parent task context, so inherit
3962 * counters that have been marked for cloning.
3963 * First allocate and initialize a context for the child.
3964 */
3965
3966 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3967 if (!child_ctx)
3968 return -ENOMEM;
3969
3970 __perf_counter_init_context(child_ctx, child);
3971 child->perf_counter_ctxp = child_ctx;
3972 get_task_struct(child);
3973
3974 /*
3975 * If the parent's context is a clone, pin it so it won't get
3976 * swapped under us.
3977 */
3978 parent_ctx = perf_pin_task_context(parent);
3979
3980 /*
3981 * No need to check if parent_ctx != NULL here; since we saw
3982 * it non-NULL earlier, the only reason for it to become NULL
3983 * is if we exit, and since we're currently in the middle of
3984 * a fork we can't be exiting at the same time.
3985 */
3986
3987 /*
3988 * Lock the parent list. No need to lock the child - not PID
3989 * hashed yet and not running, so nobody can access it.
3990 */
3991 mutex_lock(&parent_ctx->mutex);
3992
3993 /*
3994 * We dont have to disable NMIs - we are only looking at
3995 * the list, not manipulating it:
3996 */
3997 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3998 if (counter != counter->group_leader)
3999 continue;
4000
4001 if (!counter->attr.inherit) {
4002 inherited_all = 0;
4003 continue;
4004 }
4005
4006 ret = inherit_group(counter, parent, parent_ctx,
4007 child, child_ctx);
4008 if (ret) {
4009 inherited_all = 0;
4010 break;
4011 }
4012 }
4013
4014 if (inherited_all) {
4015 /*
4016 * Mark the child context as a clone of the parent
4017 * context, or of whatever the parent is a clone of.
4018 * Note that if the parent is a clone, it could get
4019 * uncloned at any point, but that doesn't matter
4020 * because the list of counters and the generation
4021 * count can't have changed since we took the mutex.
4022 */
4023 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4024 if (cloned_ctx) {
4025 child_ctx->parent_ctx = cloned_ctx;
4026 child_ctx->parent_gen = parent_ctx->parent_gen;
4027 } else {
4028 child_ctx->parent_ctx = parent_ctx;
4029 child_ctx->parent_gen = parent_ctx->generation;
4030 }
4031 get_ctx(child_ctx->parent_ctx);
4032 }
4033
4034 mutex_unlock(&parent_ctx->mutex);
4035
4036 perf_unpin_context(parent_ctx);
4037
4038 return ret;
4039 }
4040
4041 static void __cpuinit perf_counter_init_cpu(int cpu)
4042 {
4043 struct perf_cpu_context *cpuctx;
4044
4045 cpuctx = &per_cpu(perf_cpu_context, cpu);
4046 __perf_counter_init_context(&cpuctx->ctx, NULL);
4047
4048 spin_lock(&perf_resource_lock);
4049 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4050 spin_unlock(&perf_resource_lock);
4051
4052 hw_perf_counter_setup(cpu);
4053 }
4054
4055 #ifdef CONFIG_HOTPLUG_CPU
4056 static void __perf_counter_exit_cpu(void *info)
4057 {
4058 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4059 struct perf_counter_context *ctx = &cpuctx->ctx;
4060 struct perf_counter *counter, *tmp;
4061
4062 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4063 __perf_counter_remove_from_context(counter);
4064 }
4065 static void perf_counter_exit_cpu(int cpu)
4066 {
4067 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4068 struct perf_counter_context *ctx = &cpuctx->ctx;
4069
4070 mutex_lock(&ctx->mutex);
4071 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4072 mutex_unlock(&ctx->mutex);
4073 }
4074 #else
4075 static inline void perf_counter_exit_cpu(int cpu) { }
4076 #endif
4077
4078 static int __cpuinit
4079 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4080 {
4081 unsigned int cpu = (long)hcpu;
4082
4083 switch (action) {
4084
4085 case CPU_UP_PREPARE:
4086 case CPU_UP_PREPARE_FROZEN:
4087 perf_counter_init_cpu(cpu);
4088 break;
4089
4090 case CPU_DOWN_PREPARE:
4091 case CPU_DOWN_PREPARE_FROZEN:
4092 perf_counter_exit_cpu(cpu);
4093 break;
4094
4095 default:
4096 break;
4097 }
4098
4099 return NOTIFY_OK;
4100 }
4101
4102 /*
4103 * This has to have a higher priority than migration_notifier in sched.c.
4104 */
4105 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4106 .notifier_call = perf_cpu_notify,
4107 .priority = 20,
4108 };
4109
4110 void __init perf_counter_init(void)
4111 {
4112 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4113 (void *)(long)smp_processor_id());
4114 register_cpu_notifier(&perf_cpu_nb);
4115 }
4116
4117 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4118 {
4119 return sprintf(buf, "%d\n", perf_reserved_percpu);
4120 }
4121
4122 static ssize_t
4123 perf_set_reserve_percpu(struct sysdev_class *class,
4124 const char *buf,
4125 size_t count)
4126 {
4127 struct perf_cpu_context *cpuctx;
4128 unsigned long val;
4129 int err, cpu, mpt;
4130
4131 err = strict_strtoul(buf, 10, &val);
4132 if (err)
4133 return err;
4134 if (val > perf_max_counters)
4135 return -EINVAL;
4136
4137 spin_lock(&perf_resource_lock);
4138 perf_reserved_percpu = val;
4139 for_each_online_cpu(cpu) {
4140 cpuctx = &per_cpu(perf_cpu_context, cpu);
4141 spin_lock_irq(&cpuctx->ctx.lock);
4142 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4143 perf_max_counters - perf_reserved_percpu);
4144 cpuctx->max_pertask = mpt;
4145 spin_unlock_irq(&cpuctx->ctx.lock);
4146 }
4147 spin_unlock(&perf_resource_lock);
4148
4149 return count;
4150 }
4151
4152 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4153 {
4154 return sprintf(buf, "%d\n", perf_overcommit);
4155 }
4156
4157 static ssize_t
4158 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4159 {
4160 unsigned long val;
4161 int err;
4162
4163 err = strict_strtoul(buf, 10, &val);
4164 if (err)
4165 return err;
4166 if (val > 1)
4167 return -EINVAL;
4168
4169 spin_lock(&perf_resource_lock);
4170 perf_overcommit = val;
4171 spin_unlock(&perf_resource_lock);
4172
4173 return count;
4174 }
4175
4176 static SYSDEV_CLASS_ATTR(
4177 reserve_percpu,
4178 0644,
4179 perf_show_reserve_percpu,
4180 perf_set_reserve_percpu
4181 );
4182
4183 static SYSDEV_CLASS_ATTR(
4184 overcommit,
4185 0644,
4186 perf_show_overcommit,
4187 perf_set_overcommit
4188 );
4189
4190 static struct attribute *perfclass_attrs[] = {
4191 &attr_reserve_percpu.attr,
4192 &attr_overcommit.attr,
4193 NULL
4194 };
4195
4196 static struct attribute_group perfclass_attr_group = {
4197 .attrs = perfclass_attrs,
4198 .name = "perf_counters",
4199 };
4200
4201 static int __init perf_counter_sysfs_init(void)
4202 {
4203 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4204 &perfclass_attr_group);
4205 }
4206 device_initcall(perf_counter_sysfs_init);
This page took 0.136026 seconds and 5 git commands to generate.