perf_counter: Fix COMM and MMAP events for cpu wide counters
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49 int sysctl_perf_counter_limit __read_mostly = 100000; /* max NMIs per second */
50
51 /*
52 * Lock for (sysadmin-configurable) counter reservations:
53 */
54 static DEFINE_SPINLOCK(perf_resource_lock);
55
56 /*
57 * Architecture provided APIs - weak aliases:
58 */
59 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
60 {
61 return NULL;
62 }
63
64 void __weak hw_perf_disable(void) { barrier(); }
65 void __weak hw_perf_enable(void) { barrier(); }
66
67 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
68 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
69 struct perf_cpu_context *cpuctx,
70 struct perf_counter_context *ctx, int cpu)
71 {
72 return 0;
73 }
74
75 void __weak perf_counter_print_debug(void) { }
76
77 static DEFINE_PER_CPU(int, disable_count);
78
79 void __perf_disable(void)
80 {
81 __get_cpu_var(disable_count)++;
82 }
83
84 bool __perf_enable(void)
85 {
86 return !--__get_cpu_var(disable_count);
87 }
88
89 void perf_disable(void)
90 {
91 __perf_disable();
92 hw_perf_disable();
93 }
94
95 void perf_enable(void)
96 {
97 if (__perf_enable())
98 hw_perf_enable();
99 }
100
101 static void get_ctx(struct perf_counter_context *ctx)
102 {
103 atomic_inc(&ctx->refcount);
104 }
105
106 static void free_ctx(struct rcu_head *head)
107 {
108 struct perf_counter_context *ctx;
109
110 ctx = container_of(head, struct perf_counter_context, rcu_head);
111 kfree(ctx);
112 }
113
114 static void put_ctx(struct perf_counter_context *ctx)
115 {
116 if (atomic_dec_and_test(&ctx->refcount)) {
117 if (ctx->parent_ctx)
118 put_ctx(ctx->parent_ctx);
119 if (ctx->task)
120 put_task_struct(ctx->task);
121 call_rcu(&ctx->rcu_head, free_ctx);
122 }
123 }
124
125 /*
126 * Add a counter from the lists for its context.
127 * Must be called with ctx->mutex and ctx->lock held.
128 */
129 static void
130 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
131 {
132 struct perf_counter *group_leader = counter->group_leader;
133
134 /*
135 * Depending on whether it is a standalone or sibling counter,
136 * add it straight to the context's counter list, or to the group
137 * leader's sibling list:
138 */
139 if (group_leader == counter)
140 list_add_tail(&counter->list_entry, &ctx->counter_list);
141 else {
142 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
143 group_leader->nr_siblings++;
144 }
145
146 list_add_rcu(&counter->event_entry, &ctx->event_list);
147 ctx->nr_counters++;
148 }
149
150 /*
151 * Remove a counter from the lists for its context.
152 * Must be called with ctx->mutex and ctx->lock held.
153 */
154 static void
155 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
156 {
157 struct perf_counter *sibling, *tmp;
158
159 if (list_empty(&counter->list_entry))
160 return;
161 ctx->nr_counters--;
162
163 list_del_init(&counter->list_entry);
164 list_del_rcu(&counter->event_entry);
165
166 if (counter->group_leader != counter)
167 counter->group_leader->nr_siblings--;
168
169 /*
170 * If this was a group counter with sibling counters then
171 * upgrade the siblings to singleton counters by adding them
172 * to the context list directly:
173 */
174 list_for_each_entry_safe(sibling, tmp,
175 &counter->sibling_list, list_entry) {
176
177 list_move_tail(&sibling->list_entry, &ctx->counter_list);
178 sibling->group_leader = sibling;
179 }
180 }
181
182 static void
183 counter_sched_out(struct perf_counter *counter,
184 struct perf_cpu_context *cpuctx,
185 struct perf_counter_context *ctx)
186 {
187 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
188 return;
189
190 counter->state = PERF_COUNTER_STATE_INACTIVE;
191 counter->tstamp_stopped = ctx->time;
192 counter->pmu->disable(counter);
193 counter->oncpu = -1;
194
195 if (!is_software_counter(counter))
196 cpuctx->active_oncpu--;
197 ctx->nr_active--;
198 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
199 cpuctx->exclusive = 0;
200 }
201
202 static void
203 group_sched_out(struct perf_counter *group_counter,
204 struct perf_cpu_context *cpuctx,
205 struct perf_counter_context *ctx)
206 {
207 struct perf_counter *counter;
208
209 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
210 return;
211
212 counter_sched_out(group_counter, cpuctx, ctx);
213
214 /*
215 * Schedule out siblings (if any):
216 */
217 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
218 counter_sched_out(counter, cpuctx, ctx);
219
220 if (group_counter->hw_event.exclusive)
221 cpuctx->exclusive = 0;
222 }
223
224 /*
225 * Cross CPU call to remove a performance counter
226 *
227 * We disable the counter on the hardware level first. After that we
228 * remove it from the context list.
229 */
230 static void __perf_counter_remove_from_context(void *info)
231 {
232 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
233 struct perf_counter *counter = info;
234 struct perf_counter_context *ctx = counter->ctx;
235 unsigned long flags;
236
237 local_irq_save(flags);
238 /*
239 * If this is a task context, we need to check whether it is
240 * the current task context of this cpu. If not it has been
241 * scheduled out before the smp call arrived.
242 */
243 if (ctx->task && cpuctx->task_ctx != ctx) {
244 local_irq_restore(flags);
245 return;
246 }
247
248 spin_lock(&ctx->lock);
249 /*
250 * Protect the list operation against NMI by disabling the
251 * counters on a global level.
252 */
253 perf_disable();
254
255 counter_sched_out(counter, cpuctx, ctx);
256
257 list_del_counter(counter, ctx);
258
259 if (!ctx->task) {
260 /*
261 * Allow more per task counters with respect to the
262 * reservation:
263 */
264 cpuctx->max_pertask =
265 min(perf_max_counters - ctx->nr_counters,
266 perf_max_counters - perf_reserved_percpu);
267 }
268
269 perf_enable();
270 spin_unlock_irqrestore(&ctx->lock, flags);
271 }
272
273
274 /*
275 * Remove the counter from a task's (or a CPU's) list of counters.
276 *
277 * Must be called with ctx->mutex held.
278 *
279 * CPU counters are removed with a smp call. For task counters we only
280 * call when the task is on a CPU.
281 *
282 * If counter->ctx is a cloned context, callers must make sure that
283 * every task struct that counter->ctx->task could possibly point to
284 * remains valid. This is OK when called from perf_release since
285 * that only calls us on the top-level context, which can't be a clone.
286 * When called from perf_counter_exit_task, it's OK because the
287 * context has been detached from its task.
288 */
289 static void perf_counter_remove_from_context(struct perf_counter *counter)
290 {
291 struct perf_counter_context *ctx = counter->ctx;
292 struct task_struct *task = ctx->task;
293
294 if (!task) {
295 /*
296 * Per cpu counters are removed via an smp call and
297 * the removal is always sucessful.
298 */
299 smp_call_function_single(counter->cpu,
300 __perf_counter_remove_from_context,
301 counter, 1);
302 return;
303 }
304
305 retry:
306 task_oncpu_function_call(task, __perf_counter_remove_from_context,
307 counter);
308
309 spin_lock_irq(&ctx->lock);
310 /*
311 * If the context is active we need to retry the smp call.
312 */
313 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
314 spin_unlock_irq(&ctx->lock);
315 goto retry;
316 }
317
318 /*
319 * The lock prevents that this context is scheduled in so we
320 * can remove the counter safely, if the call above did not
321 * succeed.
322 */
323 if (!list_empty(&counter->list_entry)) {
324 list_del_counter(counter, ctx);
325 }
326 spin_unlock_irq(&ctx->lock);
327 }
328
329 static inline u64 perf_clock(void)
330 {
331 return cpu_clock(smp_processor_id());
332 }
333
334 /*
335 * Update the record of the current time in a context.
336 */
337 static void update_context_time(struct perf_counter_context *ctx)
338 {
339 u64 now = perf_clock();
340
341 ctx->time += now - ctx->timestamp;
342 ctx->timestamp = now;
343 }
344
345 /*
346 * Update the total_time_enabled and total_time_running fields for a counter.
347 */
348 static void update_counter_times(struct perf_counter *counter)
349 {
350 struct perf_counter_context *ctx = counter->ctx;
351 u64 run_end;
352
353 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
354 return;
355
356 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
357
358 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
359 run_end = counter->tstamp_stopped;
360 else
361 run_end = ctx->time;
362
363 counter->total_time_running = run_end - counter->tstamp_running;
364 }
365
366 /*
367 * Update total_time_enabled and total_time_running for all counters in a group.
368 */
369 static void update_group_times(struct perf_counter *leader)
370 {
371 struct perf_counter *counter;
372
373 update_counter_times(leader);
374 list_for_each_entry(counter, &leader->sibling_list, list_entry)
375 update_counter_times(counter);
376 }
377
378 /*
379 * Cross CPU call to disable a performance counter
380 */
381 static void __perf_counter_disable(void *info)
382 {
383 struct perf_counter *counter = info;
384 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
385 struct perf_counter_context *ctx = counter->ctx;
386 unsigned long flags;
387
388 local_irq_save(flags);
389 /*
390 * If this is a per-task counter, need to check whether this
391 * counter's task is the current task on this cpu.
392 */
393 if (ctx->task && cpuctx->task_ctx != ctx) {
394 local_irq_restore(flags);
395 return;
396 }
397
398 spin_lock(&ctx->lock);
399
400 /*
401 * If the counter is on, turn it off.
402 * If it is in error state, leave it in error state.
403 */
404 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
405 update_context_time(ctx);
406 update_counter_times(counter);
407 if (counter == counter->group_leader)
408 group_sched_out(counter, cpuctx, ctx);
409 else
410 counter_sched_out(counter, cpuctx, ctx);
411 counter->state = PERF_COUNTER_STATE_OFF;
412 }
413
414 spin_unlock_irqrestore(&ctx->lock, flags);
415 }
416
417 /*
418 * Disable a counter.
419 *
420 * If counter->ctx is a cloned context, callers must make sure that
421 * every task struct that counter->ctx->task could possibly point to
422 * remains valid. This condition is satisifed when called through
423 * perf_counter_for_each_child or perf_counter_for_each because they
424 * hold the top-level counter's child_mutex, so any descendant that
425 * goes to exit will block in sync_child_counter.
426 * When called from perf_pending_counter it's OK because counter->ctx
427 * is the current context on this CPU and preemption is disabled,
428 * hence we can't get into perf_counter_task_sched_out for this context.
429 */
430 static void perf_counter_disable(struct perf_counter *counter)
431 {
432 struct perf_counter_context *ctx = counter->ctx;
433 struct task_struct *task = ctx->task;
434
435 if (!task) {
436 /*
437 * Disable the counter on the cpu that it's on
438 */
439 smp_call_function_single(counter->cpu, __perf_counter_disable,
440 counter, 1);
441 return;
442 }
443
444 retry:
445 task_oncpu_function_call(task, __perf_counter_disable, counter);
446
447 spin_lock_irq(&ctx->lock);
448 /*
449 * If the counter is still active, we need to retry the cross-call.
450 */
451 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
452 spin_unlock_irq(&ctx->lock);
453 goto retry;
454 }
455
456 /*
457 * Since we have the lock this context can't be scheduled
458 * in, so we can change the state safely.
459 */
460 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
461 update_counter_times(counter);
462 counter->state = PERF_COUNTER_STATE_OFF;
463 }
464
465 spin_unlock_irq(&ctx->lock);
466 }
467
468 static int
469 counter_sched_in(struct perf_counter *counter,
470 struct perf_cpu_context *cpuctx,
471 struct perf_counter_context *ctx,
472 int cpu)
473 {
474 if (counter->state <= PERF_COUNTER_STATE_OFF)
475 return 0;
476
477 counter->state = PERF_COUNTER_STATE_ACTIVE;
478 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
479 /*
480 * The new state must be visible before we turn it on in the hardware:
481 */
482 smp_wmb();
483
484 if (counter->pmu->enable(counter)) {
485 counter->state = PERF_COUNTER_STATE_INACTIVE;
486 counter->oncpu = -1;
487 return -EAGAIN;
488 }
489
490 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
491
492 if (!is_software_counter(counter))
493 cpuctx->active_oncpu++;
494 ctx->nr_active++;
495
496 if (counter->hw_event.exclusive)
497 cpuctx->exclusive = 1;
498
499 return 0;
500 }
501
502 static int
503 group_sched_in(struct perf_counter *group_counter,
504 struct perf_cpu_context *cpuctx,
505 struct perf_counter_context *ctx,
506 int cpu)
507 {
508 struct perf_counter *counter, *partial_group;
509 int ret;
510
511 if (group_counter->state == PERF_COUNTER_STATE_OFF)
512 return 0;
513
514 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
515 if (ret)
516 return ret < 0 ? ret : 0;
517
518 group_counter->prev_state = group_counter->state;
519 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
520 return -EAGAIN;
521
522 /*
523 * Schedule in siblings as one group (if any):
524 */
525 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
526 counter->prev_state = counter->state;
527 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
528 partial_group = counter;
529 goto group_error;
530 }
531 }
532
533 return 0;
534
535 group_error:
536 /*
537 * Groups can be scheduled in as one unit only, so undo any
538 * partial group before returning:
539 */
540 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
541 if (counter == partial_group)
542 break;
543 counter_sched_out(counter, cpuctx, ctx);
544 }
545 counter_sched_out(group_counter, cpuctx, ctx);
546
547 return -EAGAIN;
548 }
549
550 /*
551 * Return 1 for a group consisting entirely of software counters,
552 * 0 if the group contains any hardware counters.
553 */
554 static int is_software_only_group(struct perf_counter *leader)
555 {
556 struct perf_counter *counter;
557
558 if (!is_software_counter(leader))
559 return 0;
560
561 list_for_each_entry(counter, &leader->sibling_list, list_entry)
562 if (!is_software_counter(counter))
563 return 0;
564
565 return 1;
566 }
567
568 /*
569 * Work out whether we can put this counter group on the CPU now.
570 */
571 static int group_can_go_on(struct perf_counter *counter,
572 struct perf_cpu_context *cpuctx,
573 int can_add_hw)
574 {
575 /*
576 * Groups consisting entirely of software counters can always go on.
577 */
578 if (is_software_only_group(counter))
579 return 1;
580 /*
581 * If an exclusive group is already on, no other hardware
582 * counters can go on.
583 */
584 if (cpuctx->exclusive)
585 return 0;
586 /*
587 * If this group is exclusive and there are already
588 * counters on the CPU, it can't go on.
589 */
590 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
591 return 0;
592 /*
593 * Otherwise, try to add it if all previous groups were able
594 * to go on.
595 */
596 return can_add_hw;
597 }
598
599 static void add_counter_to_ctx(struct perf_counter *counter,
600 struct perf_counter_context *ctx)
601 {
602 list_add_counter(counter, ctx);
603 counter->prev_state = PERF_COUNTER_STATE_OFF;
604 counter->tstamp_enabled = ctx->time;
605 counter->tstamp_running = ctx->time;
606 counter->tstamp_stopped = ctx->time;
607 }
608
609 /*
610 * Cross CPU call to install and enable a performance counter
611 *
612 * Must be called with ctx->mutex held
613 */
614 static void __perf_install_in_context(void *info)
615 {
616 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
617 struct perf_counter *counter = info;
618 struct perf_counter_context *ctx = counter->ctx;
619 struct perf_counter *leader = counter->group_leader;
620 int cpu = smp_processor_id();
621 unsigned long flags;
622 int err;
623
624 local_irq_save(flags);
625 /*
626 * If this is a task context, we need to check whether it is
627 * the current task context of this cpu. If not it has been
628 * scheduled out before the smp call arrived.
629 * Or possibly this is the right context but it isn't
630 * on this cpu because it had no counters.
631 */
632 if (ctx->task && cpuctx->task_ctx != ctx) {
633 if (cpuctx->task_ctx || ctx->task != current) {
634 local_irq_restore(flags);
635 return;
636 }
637 cpuctx->task_ctx = ctx;
638 }
639
640 spin_lock(&ctx->lock);
641 ctx->is_active = 1;
642 update_context_time(ctx);
643
644 /*
645 * Protect the list operation against NMI by disabling the
646 * counters on a global level. NOP for non NMI based counters.
647 */
648 perf_disable();
649
650 add_counter_to_ctx(counter, ctx);
651
652 /*
653 * Don't put the counter on if it is disabled or if
654 * it is in a group and the group isn't on.
655 */
656 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
657 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
658 goto unlock;
659
660 /*
661 * An exclusive counter can't go on if there are already active
662 * hardware counters, and no hardware counter can go on if there
663 * is already an exclusive counter on.
664 */
665 if (!group_can_go_on(counter, cpuctx, 1))
666 err = -EEXIST;
667 else
668 err = counter_sched_in(counter, cpuctx, ctx, cpu);
669
670 if (err) {
671 /*
672 * This counter couldn't go on. If it is in a group
673 * then we have to pull the whole group off.
674 * If the counter group is pinned then put it in error state.
675 */
676 if (leader != counter)
677 group_sched_out(leader, cpuctx, ctx);
678 if (leader->hw_event.pinned) {
679 update_group_times(leader);
680 leader->state = PERF_COUNTER_STATE_ERROR;
681 }
682 }
683
684 if (!err && !ctx->task && cpuctx->max_pertask)
685 cpuctx->max_pertask--;
686
687 unlock:
688 perf_enable();
689
690 spin_unlock_irqrestore(&ctx->lock, flags);
691 }
692
693 /*
694 * Attach a performance counter to a context
695 *
696 * First we add the counter to the list with the hardware enable bit
697 * in counter->hw_config cleared.
698 *
699 * If the counter is attached to a task which is on a CPU we use a smp
700 * call to enable it in the task context. The task might have been
701 * scheduled away, but we check this in the smp call again.
702 *
703 * Must be called with ctx->mutex held.
704 */
705 static void
706 perf_install_in_context(struct perf_counter_context *ctx,
707 struct perf_counter *counter,
708 int cpu)
709 {
710 struct task_struct *task = ctx->task;
711
712 if (!task) {
713 /*
714 * Per cpu counters are installed via an smp call and
715 * the install is always sucessful.
716 */
717 smp_call_function_single(cpu, __perf_install_in_context,
718 counter, 1);
719 return;
720 }
721
722 retry:
723 task_oncpu_function_call(task, __perf_install_in_context,
724 counter);
725
726 spin_lock_irq(&ctx->lock);
727 /*
728 * we need to retry the smp call.
729 */
730 if (ctx->is_active && list_empty(&counter->list_entry)) {
731 spin_unlock_irq(&ctx->lock);
732 goto retry;
733 }
734
735 /*
736 * The lock prevents that this context is scheduled in so we
737 * can add the counter safely, if it the call above did not
738 * succeed.
739 */
740 if (list_empty(&counter->list_entry))
741 add_counter_to_ctx(counter, ctx);
742 spin_unlock_irq(&ctx->lock);
743 }
744
745 /*
746 * Cross CPU call to enable a performance counter
747 */
748 static void __perf_counter_enable(void *info)
749 {
750 struct perf_counter *counter = info;
751 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
752 struct perf_counter_context *ctx = counter->ctx;
753 struct perf_counter *leader = counter->group_leader;
754 unsigned long flags;
755 int err;
756
757 local_irq_save(flags);
758 /*
759 * If this is a per-task counter, need to check whether this
760 * counter's task is the current task on this cpu.
761 */
762 if (ctx->task && cpuctx->task_ctx != ctx) {
763 if (cpuctx->task_ctx || ctx->task != current) {
764 local_irq_restore(flags);
765 return;
766 }
767 cpuctx->task_ctx = ctx;
768 }
769
770 spin_lock(&ctx->lock);
771 ctx->is_active = 1;
772 update_context_time(ctx);
773
774 counter->prev_state = counter->state;
775 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
776 goto unlock;
777 counter->state = PERF_COUNTER_STATE_INACTIVE;
778 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
779
780 /*
781 * If the counter is in a group and isn't the group leader,
782 * then don't put it on unless the group is on.
783 */
784 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
785 goto unlock;
786
787 if (!group_can_go_on(counter, cpuctx, 1)) {
788 err = -EEXIST;
789 } else {
790 perf_disable();
791 if (counter == leader)
792 err = group_sched_in(counter, cpuctx, ctx,
793 smp_processor_id());
794 else
795 err = counter_sched_in(counter, cpuctx, ctx,
796 smp_processor_id());
797 perf_enable();
798 }
799
800 if (err) {
801 /*
802 * If this counter can't go on and it's part of a
803 * group, then the whole group has to come off.
804 */
805 if (leader != counter)
806 group_sched_out(leader, cpuctx, ctx);
807 if (leader->hw_event.pinned) {
808 update_group_times(leader);
809 leader->state = PERF_COUNTER_STATE_ERROR;
810 }
811 }
812
813 unlock:
814 spin_unlock_irqrestore(&ctx->lock, flags);
815 }
816
817 /*
818 * Enable a counter.
819 *
820 * If counter->ctx is a cloned context, callers must make sure that
821 * every task struct that counter->ctx->task could possibly point to
822 * remains valid. This condition is satisfied when called through
823 * perf_counter_for_each_child or perf_counter_for_each as described
824 * for perf_counter_disable.
825 */
826 static void perf_counter_enable(struct perf_counter *counter)
827 {
828 struct perf_counter_context *ctx = counter->ctx;
829 struct task_struct *task = ctx->task;
830
831 if (!task) {
832 /*
833 * Enable the counter on the cpu that it's on
834 */
835 smp_call_function_single(counter->cpu, __perf_counter_enable,
836 counter, 1);
837 return;
838 }
839
840 spin_lock_irq(&ctx->lock);
841 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
842 goto out;
843
844 /*
845 * If the counter is in error state, clear that first.
846 * That way, if we see the counter in error state below, we
847 * know that it has gone back into error state, as distinct
848 * from the task having been scheduled away before the
849 * cross-call arrived.
850 */
851 if (counter->state == PERF_COUNTER_STATE_ERROR)
852 counter->state = PERF_COUNTER_STATE_OFF;
853
854 retry:
855 spin_unlock_irq(&ctx->lock);
856 task_oncpu_function_call(task, __perf_counter_enable, counter);
857
858 spin_lock_irq(&ctx->lock);
859
860 /*
861 * If the context is active and the counter is still off,
862 * we need to retry the cross-call.
863 */
864 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
865 goto retry;
866
867 /*
868 * Since we have the lock this context can't be scheduled
869 * in, so we can change the state safely.
870 */
871 if (counter->state == PERF_COUNTER_STATE_OFF) {
872 counter->state = PERF_COUNTER_STATE_INACTIVE;
873 counter->tstamp_enabled =
874 ctx->time - counter->total_time_enabled;
875 }
876 out:
877 spin_unlock_irq(&ctx->lock);
878 }
879
880 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
881 {
882 /*
883 * not supported on inherited counters
884 */
885 if (counter->hw_event.inherit)
886 return -EINVAL;
887
888 atomic_add(refresh, &counter->event_limit);
889 perf_counter_enable(counter);
890
891 return 0;
892 }
893
894 void __perf_counter_sched_out(struct perf_counter_context *ctx,
895 struct perf_cpu_context *cpuctx)
896 {
897 struct perf_counter *counter;
898
899 spin_lock(&ctx->lock);
900 ctx->is_active = 0;
901 if (likely(!ctx->nr_counters))
902 goto out;
903 update_context_time(ctx);
904
905 perf_disable();
906 if (ctx->nr_active) {
907 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
908 if (counter != counter->group_leader)
909 counter_sched_out(counter, cpuctx, ctx);
910 else
911 group_sched_out(counter, cpuctx, ctx);
912 }
913 }
914 perf_enable();
915 out:
916 spin_unlock(&ctx->lock);
917 }
918
919 /*
920 * Test whether two contexts are equivalent, i.e. whether they
921 * have both been cloned from the same version of the same context
922 * and they both have the same number of enabled counters.
923 * If the number of enabled counters is the same, then the set
924 * of enabled counters should be the same, because these are both
925 * inherited contexts, therefore we can't access individual counters
926 * in them directly with an fd; we can only enable/disable all
927 * counters via prctl, or enable/disable all counters in a family
928 * via ioctl, which will have the same effect on both contexts.
929 */
930 static int context_equiv(struct perf_counter_context *ctx1,
931 struct perf_counter_context *ctx2)
932 {
933 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
934 && ctx1->parent_gen == ctx2->parent_gen
935 && ctx1->parent_gen != ~0ull;
936 }
937
938 /*
939 * Called from scheduler to remove the counters of the current task,
940 * with interrupts disabled.
941 *
942 * We stop each counter and update the counter value in counter->count.
943 *
944 * This does not protect us against NMI, but disable()
945 * sets the disabled bit in the control field of counter _before_
946 * accessing the counter control register. If a NMI hits, then it will
947 * not restart the counter.
948 */
949 void perf_counter_task_sched_out(struct task_struct *task,
950 struct task_struct *next, int cpu)
951 {
952 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
953 struct perf_counter_context *ctx = task->perf_counter_ctxp;
954 struct perf_counter_context *next_ctx;
955 struct perf_counter_context *parent;
956 struct pt_regs *regs;
957 int do_switch = 1;
958
959 regs = task_pt_regs(task);
960 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
961
962 if (likely(!ctx || !cpuctx->task_ctx))
963 return;
964
965 update_context_time(ctx);
966
967 rcu_read_lock();
968 parent = rcu_dereference(ctx->parent_ctx);
969 next_ctx = next->perf_counter_ctxp;
970 if (parent && next_ctx &&
971 rcu_dereference(next_ctx->parent_ctx) == parent) {
972 /*
973 * Looks like the two contexts are clones, so we might be
974 * able to optimize the context switch. We lock both
975 * contexts and check that they are clones under the
976 * lock (including re-checking that neither has been
977 * uncloned in the meantime). It doesn't matter which
978 * order we take the locks because no other cpu could
979 * be trying to lock both of these tasks.
980 */
981 spin_lock(&ctx->lock);
982 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
983 if (context_equiv(ctx, next_ctx)) {
984 task->perf_counter_ctxp = next_ctx;
985 next->perf_counter_ctxp = ctx;
986 ctx->task = next;
987 next_ctx->task = task;
988 do_switch = 0;
989 }
990 spin_unlock(&next_ctx->lock);
991 spin_unlock(&ctx->lock);
992 }
993 rcu_read_unlock();
994
995 if (do_switch) {
996 __perf_counter_sched_out(ctx, cpuctx);
997 cpuctx->task_ctx = NULL;
998 }
999 }
1000
1001 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1002 {
1003 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1004
1005 if (!cpuctx->task_ctx)
1006 return;
1007
1008 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1009 return;
1010
1011 __perf_counter_sched_out(ctx, cpuctx);
1012 cpuctx->task_ctx = NULL;
1013 }
1014
1015 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1016 {
1017 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1018 }
1019
1020 static void
1021 __perf_counter_sched_in(struct perf_counter_context *ctx,
1022 struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024 struct perf_counter *counter;
1025 int can_add_hw = 1;
1026
1027 spin_lock(&ctx->lock);
1028 ctx->is_active = 1;
1029 if (likely(!ctx->nr_counters))
1030 goto out;
1031
1032 ctx->timestamp = perf_clock();
1033
1034 perf_disable();
1035
1036 /*
1037 * First go through the list and put on any pinned groups
1038 * in order to give them the best chance of going on.
1039 */
1040 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1041 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1042 !counter->hw_event.pinned)
1043 continue;
1044 if (counter->cpu != -1 && counter->cpu != cpu)
1045 continue;
1046
1047 if (counter != counter->group_leader)
1048 counter_sched_in(counter, cpuctx, ctx, cpu);
1049 else {
1050 if (group_can_go_on(counter, cpuctx, 1))
1051 group_sched_in(counter, cpuctx, ctx, cpu);
1052 }
1053
1054 /*
1055 * If this pinned group hasn't been scheduled,
1056 * put it in error state.
1057 */
1058 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1059 update_group_times(counter);
1060 counter->state = PERF_COUNTER_STATE_ERROR;
1061 }
1062 }
1063
1064 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1065 /*
1066 * Ignore counters in OFF or ERROR state, and
1067 * ignore pinned counters since we did them already.
1068 */
1069 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1070 counter->hw_event.pinned)
1071 continue;
1072
1073 /*
1074 * Listen to the 'cpu' scheduling filter constraint
1075 * of counters:
1076 */
1077 if (counter->cpu != -1 && counter->cpu != cpu)
1078 continue;
1079
1080 if (counter != counter->group_leader) {
1081 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1082 can_add_hw = 0;
1083 } else {
1084 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1085 if (group_sched_in(counter, cpuctx, ctx, cpu))
1086 can_add_hw = 0;
1087 }
1088 }
1089 }
1090 perf_enable();
1091 out:
1092 spin_unlock(&ctx->lock);
1093 }
1094
1095 /*
1096 * Called from scheduler to add the counters of the current task
1097 * with interrupts disabled.
1098 *
1099 * We restore the counter value and then enable it.
1100 *
1101 * This does not protect us against NMI, but enable()
1102 * sets the enabled bit in the control field of counter _before_
1103 * accessing the counter control register. If a NMI hits, then it will
1104 * keep the counter running.
1105 */
1106 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1107 {
1108 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1109 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1110
1111 if (likely(!ctx))
1112 return;
1113 if (cpuctx->task_ctx == ctx)
1114 return;
1115 __perf_counter_sched_in(ctx, cpuctx, cpu);
1116 cpuctx->task_ctx = ctx;
1117 }
1118
1119 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1120 {
1121 struct perf_counter_context *ctx = &cpuctx->ctx;
1122
1123 __perf_counter_sched_in(ctx, cpuctx, cpu);
1124 }
1125
1126 #define MAX_INTERRUPTS (~0ULL)
1127
1128 static void perf_log_throttle(struct perf_counter *counter, int enable);
1129 static void perf_log_period(struct perf_counter *counter, u64 period);
1130
1131 static void perf_adjust_freq(struct perf_counter_context *ctx)
1132 {
1133 struct perf_counter *counter;
1134 u64 interrupts, irq_period;
1135 u64 events, period;
1136 s64 delta;
1137
1138 spin_lock(&ctx->lock);
1139 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1140 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1141 continue;
1142
1143 interrupts = counter->hw.interrupts;
1144 counter->hw.interrupts = 0;
1145
1146 if (interrupts == MAX_INTERRUPTS) {
1147 perf_log_throttle(counter, 1);
1148 counter->pmu->unthrottle(counter);
1149 interrupts = 2*sysctl_perf_counter_limit/HZ;
1150 }
1151
1152 if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
1153 continue;
1154
1155 events = HZ * interrupts * counter->hw.irq_period;
1156 period = div64_u64(events, counter->hw_event.irq_freq);
1157
1158 delta = (s64)(1 + period - counter->hw.irq_period);
1159 delta >>= 1;
1160
1161 irq_period = counter->hw.irq_period + delta;
1162
1163 if (!irq_period)
1164 irq_period = 1;
1165
1166 perf_log_period(counter, irq_period);
1167
1168 counter->hw.irq_period = irq_period;
1169 }
1170 spin_unlock(&ctx->lock);
1171 }
1172
1173 /*
1174 * Round-robin a context's counters:
1175 */
1176 static void rotate_ctx(struct perf_counter_context *ctx)
1177 {
1178 struct perf_counter *counter;
1179
1180 if (!ctx->nr_counters)
1181 return;
1182
1183 spin_lock(&ctx->lock);
1184 /*
1185 * Rotate the first entry last (works just fine for group counters too):
1186 */
1187 perf_disable();
1188 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1189 list_move_tail(&counter->list_entry, &ctx->counter_list);
1190 break;
1191 }
1192 perf_enable();
1193
1194 spin_unlock(&ctx->lock);
1195 }
1196
1197 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1198 {
1199 struct perf_cpu_context *cpuctx;
1200 struct perf_counter_context *ctx;
1201
1202 if (!atomic_read(&nr_counters))
1203 return;
1204
1205 cpuctx = &per_cpu(perf_cpu_context, cpu);
1206 ctx = curr->perf_counter_ctxp;
1207
1208 perf_adjust_freq(&cpuctx->ctx);
1209 if (ctx)
1210 perf_adjust_freq(ctx);
1211
1212 perf_counter_cpu_sched_out(cpuctx);
1213 if (ctx)
1214 __perf_counter_task_sched_out(ctx);
1215
1216 rotate_ctx(&cpuctx->ctx);
1217 if (ctx)
1218 rotate_ctx(ctx);
1219
1220 perf_counter_cpu_sched_in(cpuctx, cpu);
1221 if (ctx)
1222 perf_counter_task_sched_in(curr, cpu);
1223 }
1224
1225 /*
1226 * Cross CPU call to read the hardware counter
1227 */
1228 static void __read(void *info)
1229 {
1230 struct perf_counter *counter = info;
1231 struct perf_counter_context *ctx = counter->ctx;
1232 unsigned long flags;
1233
1234 local_irq_save(flags);
1235 if (ctx->is_active)
1236 update_context_time(ctx);
1237 counter->pmu->read(counter);
1238 update_counter_times(counter);
1239 local_irq_restore(flags);
1240 }
1241
1242 static u64 perf_counter_read(struct perf_counter *counter)
1243 {
1244 /*
1245 * If counter is enabled and currently active on a CPU, update the
1246 * value in the counter structure:
1247 */
1248 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1249 smp_call_function_single(counter->oncpu,
1250 __read, counter, 1);
1251 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1252 update_counter_times(counter);
1253 }
1254
1255 return atomic64_read(&counter->count);
1256 }
1257
1258 /*
1259 * Initialize the perf_counter context in a task_struct:
1260 */
1261 static void
1262 __perf_counter_init_context(struct perf_counter_context *ctx,
1263 struct task_struct *task)
1264 {
1265 memset(ctx, 0, sizeof(*ctx));
1266 spin_lock_init(&ctx->lock);
1267 mutex_init(&ctx->mutex);
1268 INIT_LIST_HEAD(&ctx->counter_list);
1269 INIT_LIST_HEAD(&ctx->event_list);
1270 atomic_set(&ctx->refcount, 1);
1271 ctx->task = task;
1272 }
1273
1274 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1275 {
1276 struct perf_cpu_context *cpuctx;
1277 struct perf_counter_context *ctx;
1278 struct perf_counter_context *parent_ctx;
1279 struct task_struct *task;
1280 int err;
1281
1282 /*
1283 * If cpu is not a wildcard then this is a percpu counter:
1284 */
1285 if (cpu != -1) {
1286 /* Must be root to operate on a CPU counter: */
1287 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1288 return ERR_PTR(-EACCES);
1289
1290 if (cpu < 0 || cpu > num_possible_cpus())
1291 return ERR_PTR(-EINVAL);
1292
1293 /*
1294 * We could be clever and allow to attach a counter to an
1295 * offline CPU and activate it when the CPU comes up, but
1296 * that's for later.
1297 */
1298 if (!cpu_isset(cpu, cpu_online_map))
1299 return ERR_PTR(-ENODEV);
1300
1301 cpuctx = &per_cpu(perf_cpu_context, cpu);
1302 ctx = &cpuctx->ctx;
1303 get_ctx(ctx);
1304
1305 return ctx;
1306 }
1307
1308 rcu_read_lock();
1309 if (!pid)
1310 task = current;
1311 else
1312 task = find_task_by_vpid(pid);
1313 if (task)
1314 get_task_struct(task);
1315 rcu_read_unlock();
1316
1317 if (!task)
1318 return ERR_PTR(-ESRCH);
1319
1320 /*
1321 * Can't attach counters to a dying task.
1322 */
1323 err = -ESRCH;
1324 if (task->flags & PF_EXITING)
1325 goto errout;
1326
1327 /* Reuse ptrace permission checks for now. */
1328 err = -EACCES;
1329 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1330 goto errout;
1331
1332 retry_lock:
1333 rcu_read_lock();
1334 retry:
1335 ctx = rcu_dereference(task->perf_counter_ctxp);
1336 if (ctx) {
1337 /*
1338 * If this context is a clone of another, it might
1339 * get swapped for another underneath us by
1340 * perf_counter_task_sched_out, though the
1341 * rcu_read_lock() protects us from any context
1342 * getting freed. Lock the context and check if it
1343 * got swapped before we could get the lock, and retry
1344 * if so. If we locked the right context, then it
1345 * can't get swapped on us any more and we can
1346 * unclone it if necessary.
1347 * Once it's not a clone things will be stable.
1348 */
1349 spin_lock_irq(&ctx->lock);
1350 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
1351 spin_unlock_irq(&ctx->lock);
1352 goto retry;
1353 }
1354 parent_ctx = ctx->parent_ctx;
1355 if (parent_ctx) {
1356 put_ctx(parent_ctx);
1357 ctx->parent_ctx = NULL; /* no longer a clone */
1358 }
1359 /*
1360 * Get an extra reference before dropping the lock so that
1361 * this context won't get freed if the task exits.
1362 */
1363 get_ctx(ctx);
1364 spin_unlock_irq(&ctx->lock);
1365 }
1366 rcu_read_unlock();
1367
1368 if (!ctx) {
1369 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1370 err = -ENOMEM;
1371 if (!ctx)
1372 goto errout;
1373 __perf_counter_init_context(ctx, task);
1374 get_ctx(ctx);
1375 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1376 /*
1377 * We raced with some other task; use
1378 * the context they set.
1379 */
1380 kfree(ctx);
1381 goto retry_lock;
1382 }
1383 get_task_struct(task);
1384 }
1385
1386 put_task_struct(task);
1387 return ctx;
1388
1389 errout:
1390 put_task_struct(task);
1391 return ERR_PTR(err);
1392 }
1393
1394 static void free_counter_rcu(struct rcu_head *head)
1395 {
1396 struct perf_counter *counter;
1397
1398 counter = container_of(head, struct perf_counter, rcu_head);
1399 kfree(counter);
1400 }
1401
1402 static void perf_pending_sync(struct perf_counter *counter);
1403
1404 static void free_counter(struct perf_counter *counter)
1405 {
1406 perf_pending_sync(counter);
1407
1408 atomic_dec(&nr_counters);
1409 if (counter->hw_event.mmap)
1410 atomic_dec(&nr_mmap_tracking);
1411 if (counter->hw_event.munmap)
1412 atomic_dec(&nr_munmap_tracking);
1413 if (counter->hw_event.comm)
1414 atomic_dec(&nr_comm_tracking);
1415
1416 if (counter->destroy)
1417 counter->destroy(counter);
1418
1419 put_ctx(counter->ctx);
1420 call_rcu(&counter->rcu_head, free_counter_rcu);
1421 }
1422
1423 /*
1424 * Called when the last reference to the file is gone.
1425 */
1426 static int perf_release(struct inode *inode, struct file *file)
1427 {
1428 struct perf_counter *counter = file->private_data;
1429 struct perf_counter_context *ctx = counter->ctx;
1430
1431 file->private_data = NULL;
1432
1433 WARN_ON_ONCE(ctx->parent_ctx);
1434 mutex_lock(&ctx->mutex);
1435 perf_counter_remove_from_context(counter);
1436 mutex_unlock(&ctx->mutex);
1437
1438 mutex_lock(&counter->owner->perf_counter_mutex);
1439 list_del_init(&counter->owner_entry);
1440 mutex_unlock(&counter->owner->perf_counter_mutex);
1441 put_task_struct(counter->owner);
1442
1443 free_counter(counter);
1444
1445 return 0;
1446 }
1447
1448 /*
1449 * Read the performance counter - simple non blocking version for now
1450 */
1451 static ssize_t
1452 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1453 {
1454 u64 values[3];
1455 int n;
1456
1457 /*
1458 * Return end-of-file for a read on a counter that is in
1459 * error state (i.e. because it was pinned but it couldn't be
1460 * scheduled on to the CPU at some point).
1461 */
1462 if (counter->state == PERF_COUNTER_STATE_ERROR)
1463 return 0;
1464
1465 WARN_ON_ONCE(counter->ctx->parent_ctx);
1466 mutex_lock(&counter->child_mutex);
1467 values[0] = perf_counter_read(counter);
1468 n = 1;
1469 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1470 values[n++] = counter->total_time_enabled +
1471 atomic64_read(&counter->child_total_time_enabled);
1472 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1473 values[n++] = counter->total_time_running +
1474 atomic64_read(&counter->child_total_time_running);
1475 mutex_unlock(&counter->child_mutex);
1476
1477 if (count < n * sizeof(u64))
1478 return -EINVAL;
1479 count = n * sizeof(u64);
1480
1481 if (copy_to_user(buf, values, count))
1482 return -EFAULT;
1483
1484 return count;
1485 }
1486
1487 static ssize_t
1488 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1489 {
1490 struct perf_counter *counter = file->private_data;
1491
1492 return perf_read_hw(counter, buf, count);
1493 }
1494
1495 static unsigned int perf_poll(struct file *file, poll_table *wait)
1496 {
1497 struct perf_counter *counter = file->private_data;
1498 struct perf_mmap_data *data;
1499 unsigned int events = POLL_HUP;
1500
1501 rcu_read_lock();
1502 data = rcu_dereference(counter->data);
1503 if (data)
1504 events = atomic_xchg(&data->poll, 0);
1505 rcu_read_unlock();
1506
1507 poll_wait(file, &counter->waitq, wait);
1508
1509 return events;
1510 }
1511
1512 static void perf_counter_reset(struct perf_counter *counter)
1513 {
1514 (void)perf_counter_read(counter);
1515 atomic64_set(&counter->count, 0);
1516 perf_counter_update_userpage(counter);
1517 }
1518
1519 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1520 void (*func)(struct perf_counter *))
1521 {
1522 struct perf_counter_context *ctx = counter->ctx;
1523 struct perf_counter *sibling;
1524
1525 WARN_ON_ONCE(ctx->parent_ctx);
1526 mutex_lock(&ctx->mutex);
1527 counter = counter->group_leader;
1528
1529 func(counter);
1530 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1531 func(sibling);
1532 mutex_unlock(&ctx->mutex);
1533 }
1534
1535 /*
1536 * Holding the top-level counter's child_mutex means that any
1537 * descendant process that has inherited this counter will block
1538 * in sync_child_counter if it goes to exit, thus satisfying the
1539 * task existence requirements of perf_counter_enable/disable.
1540 */
1541 static void perf_counter_for_each_child(struct perf_counter *counter,
1542 void (*func)(struct perf_counter *))
1543 {
1544 struct perf_counter *child;
1545
1546 WARN_ON_ONCE(counter->ctx->parent_ctx);
1547 mutex_lock(&counter->child_mutex);
1548 func(counter);
1549 list_for_each_entry(child, &counter->child_list, child_list)
1550 func(child);
1551 mutex_unlock(&counter->child_mutex);
1552 }
1553
1554 static void perf_counter_for_each(struct perf_counter *counter,
1555 void (*func)(struct perf_counter *))
1556 {
1557 struct perf_counter *child;
1558
1559 WARN_ON_ONCE(counter->ctx->parent_ctx);
1560 mutex_lock(&counter->child_mutex);
1561 perf_counter_for_each_sibling(counter, func);
1562 list_for_each_entry(child, &counter->child_list, child_list)
1563 perf_counter_for_each_sibling(child, func);
1564 mutex_unlock(&counter->child_mutex);
1565 }
1566
1567 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1568 {
1569 struct perf_counter *counter = file->private_data;
1570 void (*func)(struct perf_counter *);
1571 u32 flags = arg;
1572
1573 switch (cmd) {
1574 case PERF_COUNTER_IOC_ENABLE:
1575 func = perf_counter_enable;
1576 break;
1577 case PERF_COUNTER_IOC_DISABLE:
1578 func = perf_counter_disable;
1579 break;
1580 case PERF_COUNTER_IOC_RESET:
1581 func = perf_counter_reset;
1582 break;
1583
1584 case PERF_COUNTER_IOC_REFRESH:
1585 return perf_counter_refresh(counter, arg);
1586 default:
1587 return -ENOTTY;
1588 }
1589
1590 if (flags & PERF_IOC_FLAG_GROUP)
1591 perf_counter_for_each(counter, func);
1592 else
1593 perf_counter_for_each_child(counter, func);
1594
1595 return 0;
1596 }
1597
1598 int perf_counter_task_enable(void)
1599 {
1600 struct perf_counter *counter;
1601
1602 mutex_lock(&current->perf_counter_mutex);
1603 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1604 perf_counter_for_each_child(counter, perf_counter_enable);
1605 mutex_unlock(&current->perf_counter_mutex);
1606
1607 return 0;
1608 }
1609
1610 int perf_counter_task_disable(void)
1611 {
1612 struct perf_counter *counter;
1613
1614 mutex_lock(&current->perf_counter_mutex);
1615 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1616 perf_counter_for_each_child(counter, perf_counter_disable);
1617 mutex_unlock(&current->perf_counter_mutex);
1618
1619 return 0;
1620 }
1621
1622 /*
1623 * Callers need to ensure there can be no nesting of this function, otherwise
1624 * the seqlock logic goes bad. We can not serialize this because the arch
1625 * code calls this from NMI context.
1626 */
1627 void perf_counter_update_userpage(struct perf_counter *counter)
1628 {
1629 struct perf_mmap_data *data;
1630 struct perf_counter_mmap_page *userpg;
1631
1632 rcu_read_lock();
1633 data = rcu_dereference(counter->data);
1634 if (!data)
1635 goto unlock;
1636
1637 userpg = data->user_page;
1638
1639 /*
1640 * Disable preemption so as to not let the corresponding user-space
1641 * spin too long if we get preempted.
1642 */
1643 preempt_disable();
1644 ++userpg->lock;
1645 barrier();
1646 userpg->index = counter->hw.idx;
1647 userpg->offset = atomic64_read(&counter->count);
1648 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1649 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1650
1651 barrier();
1652 ++userpg->lock;
1653 preempt_enable();
1654 unlock:
1655 rcu_read_unlock();
1656 }
1657
1658 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1659 {
1660 struct perf_counter *counter = vma->vm_file->private_data;
1661 struct perf_mmap_data *data;
1662 int ret = VM_FAULT_SIGBUS;
1663
1664 rcu_read_lock();
1665 data = rcu_dereference(counter->data);
1666 if (!data)
1667 goto unlock;
1668
1669 if (vmf->pgoff == 0) {
1670 vmf->page = virt_to_page(data->user_page);
1671 } else {
1672 int nr = vmf->pgoff - 1;
1673
1674 if ((unsigned)nr > data->nr_pages)
1675 goto unlock;
1676
1677 vmf->page = virt_to_page(data->data_pages[nr]);
1678 }
1679 get_page(vmf->page);
1680 ret = 0;
1681 unlock:
1682 rcu_read_unlock();
1683
1684 return ret;
1685 }
1686
1687 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1688 {
1689 struct perf_mmap_data *data;
1690 unsigned long size;
1691 int i;
1692
1693 WARN_ON(atomic_read(&counter->mmap_count));
1694
1695 size = sizeof(struct perf_mmap_data);
1696 size += nr_pages * sizeof(void *);
1697
1698 data = kzalloc(size, GFP_KERNEL);
1699 if (!data)
1700 goto fail;
1701
1702 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1703 if (!data->user_page)
1704 goto fail_user_page;
1705
1706 for (i = 0; i < nr_pages; i++) {
1707 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1708 if (!data->data_pages[i])
1709 goto fail_data_pages;
1710 }
1711
1712 data->nr_pages = nr_pages;
1713 atomic_set(&data->lock, -1);
1714
1715 rcu_assign_pointer(counter->data, data);
1716
1717 return 0;
1718
1719 fail_data_pages:
1720 for (i--; i >= 0; i--)
1721 free_page((unsigned long)data->data_pages[i]);
1722
1723 free_page((unsigned long)data->user_page);
1724
1725 fail_user_page:
1726 kfree(data);
1727
1728 fail:
1729 return -ENOMEM;
1730 }
1731
1732 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1733 {
1734 struct perf_mmap_data *data = container_of(rcu_head,
1735 struct perf_mmap_data, rcu_head);
1736 int i;
1737
1738 free_page((unsigned long)data->user_page);
1739 for (i = 0; i < data->nr_pages; i++)
1740 free_page((unsigned long)data->data_pages[i]);
1741 kfree(data);
1742 }
1743
1744 static void perf_mmap_data_free(struct perf_counter *counter)
1745 {
1746 struct perf_mmap_data *data = counter->data;
1747
1748 WARN_ON(atomic_read(&counter->mmap_count));
1749
1750 rcu_assign_pointer(counter->data, NULL);
1751 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1752 }
1753
1754 static void perf_mmap_open(struct vm_area_struct *vma)
1755 {
1756 struct perf_counter *counter = vma->vm_file->private_data;
1757
1758 atomic_inc(&counter->mmap_count);
1759 }
1760
1761 static void perf_mmap_close(struct vm_area_struct *vma)
1762 {
1763 struct perf_counter *counter = vma->vm_file->private_data;
1764
1765 WARN_ON_ONCE(counter->ctx->parent_ctx);
1766 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1767 &counter->mmap_mutex)) {
1768 struct user_struct *user = current_user();
1769
1770 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1771 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1772 perf_mmap_data_free(counter);
1773 mutex_unlock(&counter->mmap_mutex);
1774 }
1775 }
1776
1777 static struct vm_operations_struct perf_mmap_vmops = {
1778 .open = perf_mmap_open,
1779 .close = perf_mmap_close,
1780 .fault = perf_mmap_fault,
1781 };
1782
1783 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1784 {
1785 struct perf_counter *counter = file->private_data;
1786 struct user_struct *user = current_user();
1787 unsigned long vma_size;
1788 unsigned long nr_pages;
1789 unsigned long user_locked, user_lock_limit;
1790 unsigned long locked, lock_limit;
1791 long user_extra, extra;
1792 int ret = 0;
1793
1794 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1795 return -EINVAL;
1796
1797 vma_size = vma->vm_end - vma->vm_start;
1798 nr_pages = (vma_size / PAGE_SIZE) - 1;
1799
1800 /*
1801 * If we have data pages ensure they're a power-of-two number, so we
1802 * can do bitmasks instead of modulo.
1803 */
1804 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1805 return -EINVAL;
1806
1807 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1808 return -EINVAL;
1809
1810 if (vma->vm_pgoff != 0)
1811 return -EINVAL;
1812
1813 WARN_ON_ONCE(counter->ctx->parent_ctx);
1814 mutex_lock(&counter->mmap_mutex);
1815 if (atomic_inc_not_zero(&counter->mmap_count)) {
1816 if (nr_pages != counter->data->nr_pages)
1817 ret = -EINVAL;
1818 goto unlock;
1819 }
1820
1821 user_extra = nr_pages + 1;
1822 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1823
1824 /*
1825 * Increase the limit linearly with more CPUs:
1826 */
1827 user_lock_limit *= num_online_cpus();
1828
1829 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1830
1831 extra = 0;
1832 if (user_locked > user_lock_limit)
1833 extra = user_locked - user_lock_limit;
1834
1835 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1836 lock_limit >>= PAGE_SHIFT;
1837 locked = vma->vm_mm->locked_vm + extra;
1838
1839 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1840 ret = -EPERM;
1841 goto unlock;
1842 }
1843
1844 WARN_ON(counter->data);
1845 ret = perf_mmap_data_alloc(counter, nr_pages);
1846 if (ret)
1847 goto unlock;
1848
1849 atomic_set(&counter->mmap_count, 1);
1850 atomic_long_add(user_extra, &user->locked_vm);
1851 vma->vm_mm->locked_vm += extra;
1852 counter->data->nr_locked = extra;
1853 unlock:
1854 mutex_unlock(&counter->mmap_mutex);
1855
1856 vma->vm_flags &= ~VM_MAYWRITE;
1857 vma->vm_flags |= VM_RESERVED;
1858 vma->vm_ops = &perf_mmap_vmops;
1859
1860 return ret;
1861 }
1862
1863 static int perf_fasync(int fd, struct file *filp, int on)
1864 {
1865 struct perf_counter *counter = filp->private_data;
1866 struct inode *inode = filp->f_path.dentry->d_inode;
1867 int retval;
1868
1869 mutex_lock(&inode->i_mutex);
1870 retval = fasync_helper(fd, filp, on, &counter->fasync);
1871 mutex_unlock(&inode->i_mutex);
1872
1873 if (retval < 0)
1874 return retval;
1875
1876 return 0;
1877 }
1878
1879 static const struct file_operations perf_fops = {
1880 .release = perf_release,
1881 .read = perf_read,
1882 .poll = perf_poll,
1883 .unlocked_ioctl = perf_ioctl,
1884 .compat_ioctl = perf_ioctl,
1885 .mmap = perf_mmap,
1886 .fasync = perf_fasync,
1887 };
1888
1889 /*
1890 * Perf counter wakeup
1891 *
1892 * If there's data, ensure we set the poll() state and publish everything
1893 * to user-space before waking everybody up.
1894 */
1895
1896 void perf_counter_wakeup(struct perf_counter *counter)
1897 {
1898 wake_up_all(&counter->waitq);
1899
1900 if (counter->pending_kill) {
1901 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1902 counter->pending_kill = 0;
1903 }
1904 }
1905
1906 /*
1907 * Pending wakeups
1908 *
1909 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1910 *
1911 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1912 * single linked list and use cmpxchg() to add entries lockless.
1913 */
1914
1915 static void perf_pending_counter(struct perf_pending_entry *entry)
1916 {
1917 struct perf_counter *counter = container_of(entry,
1918 struct perf_counter, pending);
1919
1920 if (counter->pending_disable) {
1921 counter->pending_disable = 0;
1922 perf_counter_disable(counter);
1923 }
1924
1925 if (counter->pending_wakeup) {
1926 counter->pending_wakeup = 0;
1927 perf_counter_wakeup(counter);
1928 }
1929 }
1930
1931 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1932
1933 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1934 PENDING_TAIL,
1935 };
1936
1937 static void perf_pending_queue(struct perf_pending_entry *entry,
1938 void (*func)(struct perf_pending_entry *))
1939 {
1940 struct perf_pending_entry **head;
1941
1942 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1943 return;
1944
1945 entry->func = func;
1946
1947 head = &get_cpu_var(perf_pending_head);
1948
1949 do {
1950 entry->next = *head;
1951 } while (cmpxchg(head, entry->next, entry) != entry->next);
1952
1953 set_perf_counter_pending();
1954
1955 put_cpu_var(perf_pending_head);
1956 }
1957
1958 static int __perf_pending_run(void)
1959 {
1960 struct perf_pending_entry *list;
1961 int nr = 0;
1962
1963 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1964 while (list != PENDING_TAIL) {
1965 void (*func)(struct perf_pending_entry *);
1966 struct perf_pending_entry *entry = list;
1967
1968 list = list->next;
1969
1970 func = entry->func;
1971 entry->next = NULL;
1972 /*
1973 * Ensure we observe the unqueue before we issue the wakeup,
1974 * so that we won't be waiting forever.
1975 * -- see perf_not_pending().
1976 */
1977 smp_wmb();
1978
1979 func(entry);
1980 nr++;
1981 }
1982
1983 return nr;
1984 }
1985
1986 static inline int perf_not_pending(struct perf_counter *counter)
1987 {
1988 /*
1989 * If we flush on whatever cpu we run, there is a chance we don't
1990 * need to wait.
1991 */
1992 get_cpu();
1993 __perf_pending_run();
1994 put_cpu();
1995
1996 /*
1997 * Ensure we see the proper queue state before going to sleep
1998 * so that we do not miss the wakeup. -- see perf_pending_handle()
1999 */
2000 smp_rmb();
2001 return counter->pending.next == NULL;
2002 }
2003
2004 static void perf_pending_sync(struct perf_counter *counter)
2005 {
2006 wait_event(counter->waitq, perf_not_pending(counter));
2007 }
2008
2009 void perf_counter_do_pending(void)
2010 {
2011 __perf_pending_run();
2012 }
2013
2014 /*
2015 * Callchain support -- arch specific
2016 */
2017
2018 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2019 {
2020 return NULL;
2021 }
2022
2023 /*
2024 * Output
2025 */
2026
2027 struct perf_output_handle {
2028 struct perf_counter *counter;
2029 struct perf_mmap_data *data;
2030 unsigned int offset;
2031 unsigned int head;
2032 int nmi;
2033 int overflow;
2034 int locked;
2035 unsigned long flags;
2036 };
2037
2038 static void perf_output_wakeup(struct perf_output_handle *handle)
2039 {
2040 atomic_set(&handle->data->poll, POLL_IN);
2041
2042 if (handle->nmi) {
2043 handle->counter->pending_wakeup = 1;
2044 perf_pending_queue(&handle->counter->pending,
2045 perf_pending_counter);
2046 } else
2047 perf_counter_wakeup(handle->counter);
2048 }
2049
2050 /*
2051 * Curious locking construct.
2052 *
2053 * We need to ensure a later event doesn't publish a head when a former
2054 * event isn't done writing. However since we need to deal with NMIs we
2055 * cannot fully serialize things.
2056 *
2057 * What we do is serialize between CPUs so we only have to deal with NMI
2058 * nesting on a single CPU.
2059 *
2060 * We only publish the head (and generate a wakeup) when the outer-most
2061 * event completes.
2062 */
2063 static void perf_output_lock(struct perf_output_handle *handle)
2064 {
2065 struct perf_mmap_data *data = handle->data;
2066 int cpu;
2067
2068 handle->locked = 0;
2069
2070 local_irq_save(handle->flags);
2071 cpu = smp_processor_id();
2072
2073 if (in_nmi() && atomic_read(&data->lock) == cpu)
2074 return;
2075
2076 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2077 cpu_relax();
2078
2079 handle->locked = 1;
2080 }
2081
2082 static void perf_output_unlock(struct perf_output_handle *handle)
2083 {
2084 struct perf_mmap_data *data = handle->data;
2085 int head, cpu;
2086
2087 data->done_head = data->head;
2088
2089 if (!handle->locked)
2090 goto out;
2091
2092 again:
2093 /*
2094 * The xchg implies a full barrier that ensures all writes are done
2095 * before we publish the new head, matched by a rmb() in userspace when
2096 * reading this position.
2097 */
2098 while ((head = atomic_xchg(&data->done_head, 0)))
2099 data->user_page->data_head = head;
2100
2101 /*
2102 * NMI can happen here, which means we can miss a done_head update.
2103 */
2104
2105 cpu = atomic_xchg(&data->lock, -1);
2106 WARN_ON_ONCE(cpu != smp_processor_id());
2107
2108 /*
2109 * Therefore we have to validate we did not indeed do so.
2110 */
2111 if (unlikely(atomic_read(&data->done_head))) {
2112 /*
2113 * Since we had it locked, we can lock it again.
2114 */
2115 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2116 cpu_relax();
2117
2118 goto again;
2119 }
2120
2121 if (atomic_xchg(&data->wakeup, 0))
2122 perf_output_wakeup(handle);
2123 out:
2124 local_irq_restore(handle->flags);
2125 }
2126
2127 static int perf_output_begin(struct perf_output_handle *handle,
2128 struct perf_counter *counter, unsigned int size,
2129 int nmi, int overflow)
2130 {
2131 struct perf_mmap_data *data;
2132 unsigned int offset, head;
2133
2134 /*
2135 * For inherited counters we send all the output towards the parent.
2136 */
2137 if (counter->parent)
2138 counter = counter->parent;
2139
2140 rcu_read_lock();
2141 data = rcu_dereference(counter->data);
2142 if (!data)
2143 goto out;
2144
2145 handle->data = data;
2146 handle->counter = counter;
2147 handle->nmi = nmi;
2148 handle->overflow = overflow;
2149
2150 if (!data->nr_pages)
2151 goto fail;
2152
2153 perf_output_lock(handle);
2154
2155 do {
2156 offset = head = atomic_read(&data->head);
2157 head += size;
2158 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
2159
2160 handle->offset = offset;
2161 handle->head = head;
2162
2163 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2164 atomic_set(&data->wakeup, 1);
2165
2166 return 0;
2167
2168 fail:
2169 perf_output_wakeup(handle);
2170 out:
2171 rcu_read_unlock();
2172
2173 return -ENOSPC;
2174 }
2175
2176 static void perf_output_copy(struct perf_output_handle *handle,
2177 void *buf, unsigned int len)
2178 {
2179 unsigned int pages_mask;
2180 unsigned int offset;
2181 unsigned int size;
2182 void **pages;
2183
2184 offset = handle->offset;
2185 pages_mask = handle->data->nr_pages - 1;
2186 pages = handle->data->data_pages;
2187
2188 do {
2189 unsigned int page_offset;
2190 int nr;
2191
2192 nr = (offset >> PAGE_SHIFT) & pages_mask;
2193 page_offset = offset & (PAGE_SIZE - 1);
2194 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2195
2196 memcpy(pages[nr] + page_offset, buf, size);
2197
2198 len -= size;
2199 buf += size;
2200 offset += size;
2201 } while (len);
2202
2203 handle->offset = offset;
2204
2205 /*
2206 * Check we didn't copy past our reservation window, taking the
2207 * possible unsigned int wrap into account.
2208 */
2209 WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2210 }
2211
2212 #define perf_output_put(handle, x) \
2213 perf_output_copy((handle), &(x), sizeof(x))
2214
2215 static void perf_output_end(struct perf_output_handle *handle)
2216 {
2217 struct perf_counter *counter = handle->counter;
2218 struct perf_mmap_data *data = handle->data;
2219
2220 int wakeup_events = counter->hw_event.wakeup_events;
2221
2222 if (handle->overflow && wakeup_events) {
2223 int events = atomic_inc_return(&data->events);
2224 if (events >= wakeup_events) {
2225 atomic_sub(wakeup_events, &data->events);
2226 atomic_set(&data->wakeup, 1);
2227 }
2228 }
2229
2230 perf_output_unlock(handle);
2231 rcu_read_unlock();
2232 }
2233
2234 static void perf_counter_output(struct perf_counter *counter,
2235 int nmi, struct pt_regs *regs, u64 addr)
2236 {
2237 int ret;
2238 u64 record_type = counter->hw_event.record_type;
2239 struct perf_output_handle handle;
2240 struct perf_event_header header;
2241 u64 ip;
2242 struct {
2243 u32 pid, tid;
2244 } tid_entry;
2245 struct {
2246 u64 event;
2247 u64 counter;
2248 } group_entry;
2249 struct perf_callchain_entry *callchain = NULL;
2250 int callchain_size = 0;
2251 u64 time;
2252 struct {
2253 u32 cpu, reserved;
2254 } cpu_entry;
2255
2256 header.type = 0;
2257 header.size = sizeof(header);
2258
2259 header.misc = PERF_EVENT_MISC_OVERFLOW;
2260 header.misc |= perf_misc_flags(regs);
2261
2262 if (record_type & PERF_RECORD_IP) {
2263 ip = perf_instruction_pointer(regs);
2264 header.type |= PERF_RECORD_IP;
2265 header.size += sizeof(ip);
2266 }
2267
2268 if (record_type & PERF_RECORD_TID) {
2269 /* namespace issues */
2270 tid_entry.pid = current->group_leader->pid;
2271 tid_entry.tid = current->pid;
2272
2273 header.type |= PERF_RECORD_TID;
2274 header.size += sizeof(tid_entry);
2275 }
2276
2277 if (record_type & PERF_RECORD_TIME) {
2278 /*
2279 * Maybe do better on x86 and provide cpu_clock_nmi()
2280 */
2281 time = sched_clock();
2282
2283 header.type |= PERF_RECORD_TIME;
2284 header.size += sizeof(u64);
2285 }
2286
2287 if (record_type & PERF_RECORD_ADDR) {
2288 header.type |= PERF_RECORD_ADDR;
2289 header.size += sizeof(u64);
2290 }
2291
2292 if (record_type & PERF_RECORD_CONFIG) {
2293 header.type |= PERF_RECORD_CONFIG;
2294 header.size += sizeof(u64);
2295 }
2296
2297 if (record_type & PERF_RECORD_CPU) {
2298 header.type |= PERF_RECORD_CPU;
2299 header.size += sizeof(cpu_entry);
2300
2301 cpu_entry.cpu = raw_smp_processor_id();
2302 }
2303
2304 if (record_type & PERF_RECORD_GROUP) {
2305 header.type |= PERF_RECORD_GROUP;
2306 header.size += sizeof(u64) +
2307 counter->nr_siblings * sizeof(group_entry);
2308 }
2309
2310 if (record_type & PERF_RECORD_CALLCHAIN) {
2311 callchain = perf_callchain(regs);
2312
2313 if (callchain) {
2314 callchain_size = (1 + callchain->nr) * sizeof(u64);
2315
2316 header.type |= PERF_RECORD_CALLCHAIN;
2317 header.size += callchain_size;
2318 }
2319 }
2320
2321 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2322 if (ret)
2323 return;
2324
2325 perf_output_put(&handle, header);
2326
2327 if (record_type & PERF_RECORD_IP)
2328 perf_output_put(&handle, ip);
2329
2330 if (record_type & PERF_RECORD_TID)
2331 perf_output_put(&handle, tid_entry);
2332
2333 if (record_type & PERF_RECORD_TIME)
2334 perf_output_put(&handle, time);
2335
2336 if (record_type & PERF_RECORD_ADDR)
2337 perf_output_put(&handle, addr);
2338
2339 if (record_type & PERF_RECORD_CONFIG)
2340 perf_output_put(&handle, counter->hw_event.config);
2341
2342 if (record_type & PERF_RECORD_CPU)
2343 perf_output_put(&handle, cpu_entry);
2344
2345 /*
2346 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2347 */
2348 if (record_type & PERF_RECORD_GROUP) {
2349 struct perf_counter *leader, *sub;
2350 u64 nr = counter->nr_siblings;
2351
2352 perf_output_put(&handle, nr);
2353
2354 leader = counter->group_leader;
2355 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2356 if (sub != counter)
2357 sub->pmu->read(sub);
2358
2359 group_entry.event = sub->hw_event.config;
2360 group_entry.counter = atomic64_read(&sub->count);
2361
2362 perf_output_put(&handle, group_entry);
2363 }
2364 }
2365
2366 if (callchain)
2367 perf_output_copy(&handle, callchain, callchain_size);
2368
2369 perf_output_end(&handle);
2370 }
2371
2372 /*
2373 * comm tracking
2374 */
2375
2376 struct perf_comm_event {
2377 struct task_struct *task;
2378 char *comm;
2379 int comm_size;
2380
2381 struct {
2382 struct perf_event_header header;
2383
2384 u32 pid;
2385 u32 tid;
2386 } event;
2387 };
2388
2389 static void perf_counter_comm_output(struct perf_counter *counter,
2390 struct perf_comm_event *comm_event)
2391 {
2392 struct perf_output_handle handle;
2393 int size = comm_event->event.header.size;
2394 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2395
2396 if (ret)
2397 return;
2398
2399 perf_output_put(&handle, comm_event->event);
2400 perf_output_copy(&handle, comm_event->comm,
2401 comm_event->comm_size);
2402 perf_output_end(&handle);
2403 }
2404
2405 static int perf_counter_comm_match(struct perf_counter *counter,
2406 struct perf_comm_event *comm_event)
2407 {
2408 if (counter->hw_event.comm &&
2409 comm_event->event.header.type == PERF_EVENT_COMM)
2410 return 1;
2411
2412 return 0;
2413 }
2414
2415 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2416 struct perf_comm_event *comm_event)
2417 {
2418 struct perf_counter *counter;
2419
2420 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2421 return;
2422
2423 rcu_read_lock();
2424 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2425 if (perf_counter_comm_match(counter, comm_event))
2426 perf_counter_comm_output(counter, comm_event);
2427 }
2428 rcu_read_unlock();
2429 }
2430
2431 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2432 {
2433 struct perf_cpu_context *cpuctx;
2434 unsigned int size;
2435 char *comm = comm_event->task->comm;
2436
2437 size = ALIGN(strlen(comm)+1, sizeof(u64));
2438
2439 comm_event->comm = comm;
2440 comm_event->comm_size = size;
2441
2442 comm_event->event.header.size = sizeof(comm_event->event) + size;
2443
2444 cpuctx = &get_cpu_var(perf_cpu_context);
2445 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2446 if (cpuctx->task_ctx)
2447 perf_counter_comm_ctx(cpuctx->task_ctx, comm_event);
2448 put_cpu_var(perf_cpu_context);
2449 }
2450
2451 void perf_counter_comm(struct task_struct *task)
2452 {
2453 struct perf_comm_event comm_event;
2454
2455 if (!atomic_read(&nr_comm_tracking))
2456 return;
2457
2458 comm_event = (struct perf_comm_event){
2459 .task = task,
2460 .event = {
2461 .header = { .type = PERF_EVENT_COMM, },
2462 .pid = task->group_leader->pid,
2463 .tid = task->pid,
2464 },
2465 };
2466
2467 perf_counter_comm_event(&comm_event);
2468 }
2469
2470 /*
2471 * mmap tracking
2472 */
2473
2474 struct perf_mmap_event {
2475 struct file *file;
2476 char *file_name;
2477 int file_size;
2478
2479 struct {
2480 struct perf_event_header header;
2481
2482 u32 pid;
2483 u32 tid;
2484 u64 start;
2485 u64 len;
2486 u64 pgoff;
2487 } event;
2488 };
2489
2490 static void perf_counter_mmap_output(struct perf_counter *counter,
2491 struct perf_mmap_event *mmap_event)
2492 {
2493 struct perf_output_handle handle;
2494 int size = mmap_event->event.header.size;
2495 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2496
2497 if (ret)
2498 return;
2499
2500 perf_output_put(&handle, mmap_event->event);
2501 perf_output_copy(&handle, mmap_event->file_name,
2502 mmap_event->file_size);
2503 perf_output_end(&handle);
2504 }
2505
2506 static int perf_counter_mmap_match(struct perf_counter *counter,
2507 struct perf_mmap_event *mmap_event)
2508 {
2509 if (counter->hw_event.mmap &&
2510 mmap_event->event.header.type == PERF_EVENT_MMAP)
2511 return 1;
2512
2513 if (counter->hw_event.munmap &&
2514 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2515 return 1;
2516
2517 return 0;
2518 }
2519
2520 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2521 struct perf_mmap_event *mmap_event)
2522 {
2523 struct perf_counter *counter;
2524
2525 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2526 return;
2527
2528 rcu_read_lock();
2529 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2530 if (perf_counter_mmap_match(counter, mmap_event))
2531 perf_counter_mmap_output(counter, mmap_event);
2532 }
2533 rcu_read_unlock();
2534 }
2535
2536 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2537 {
2538 struct perf_cpu_context *cpuctx;
2539 struct file *file = mmap_event->file;
2540 unsigned int size;
2541 char tmp[16];
2542 char *buf = NULL;
2543 char *name;
2544
2545 if (file) {
2546 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2547 if (!buf) {
2548 name = strncpy(tmp, "//enomem", sizeof(tmp));
2549 goto got_name;
2550 }
2551 name = d_path(&file->f_path, buf, PATH_MAX);
2552 if (IS_ERR(name)) {
2553 name = strncpy(tmp, "//toolong", sizeof(tmp));
2554 goto got_name;
2555 }
2556 } else {
2557 name = strncpy(tmp, "//anon", sizeof(tmp));
2558 goto got_name;
2559 }
2560
2561 got_name:
2562 size = ALIGN(strlen(name)+1, sizeof(u64));
2563
2564 mmap_event->file_name = name;
2565 mmap_event->file_size = size;
2566
2567 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2568
2569 cpuctx = &get_cpu_var(perf_cpu_context);
2570 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2571 if (cpuctx->task_ctx)
2572 perf_counter_mmap_ctx(cpuctx->task_ctx, mmap_event);
2573 put_cpu_var(perf_cpu_context);
2574
2575 kfree(buf);
2576 }
2577
2578 void perf_counter_mmap(unsigned long addr, unsigned long len,
2579 unsigned long pgoff, struct file *file)
2580 {
2581 struct perf_mmap_event mmap_event;
2582
2583 if (!atomic_read(&nr_mmap_tracking))
2584 return;
2585
2586 mmap_event = (struct perf_mmap_event){
2587 .file = file,
2588 .event = {
2589 .header = { .type = PERF_EVENT_MMAP, },
2590 .pid = current->group_leader->pid,
2591 .tid = current->pid,
2592 .start = addr,
2593 .len = len,
2594 .pgoff = pgoff,
2595 },
2596 };
2597
2598 perf_counter_mmap_event(&mmap_event);
2599 }
2600
2601 void perf_counter_munmap(unsigned long addr, unsigned long len,
2602 unsigned long pgoff, struct file *file)
2603 {
2604 struct perf_mmap_event mmap_event;
2605
2606 if (!atomic_read(&nr_munmap_tracking))
2607 return;
2608
2609 mmap_event = (struct perf_mmap_event){
2610 .file = file,
2611 .event = {
2612 .header = { .type = PERF_EVENT_MUNMAP, },
2613 .pid = current->group_leader->pid,
2614 .tid = current->pid,
2615 .start = addr,
2616 .len = len,
2617 .pgoff = pgoff,
2618 },
2619 };
2620
2621 perf_counter_mmap_event(&mmap_event);
2622 }
2623
2624 /*
2625 * Log irq_period changes so that analyzing tools can re-normalize the
2626 * event flow.
2627 */
2628
2629 static void perf_log_period(struct perf_counter *counter, u64 period)
2630 {
2631 struct perf_output_handle handle;
2632 int ret;
2633
2634 struct {
2635 struct perf_event_header header;
2636 u64 time;
2637 u64 period;
2638 } freq_event = {
2639 .header = {
2640 .type = PERF_EVENT_PERIOD,
2641 .misc = 0,
2642 .size = sizeof(freq_event),
2643 },
2644 .time = sched_clock(),
2645 .period = period,
2646 };
2647
2648 if (counter->hw.irq_period == period)
2649 return;
2650
2651 ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2652 if (ret)
2653 return;
2654
2655 perf_output_put(&handle, freq_event);
2656 perf_output_end(&handle);
2657 }
2658
2659 /*
2660 * IRQ throttle logging
2661 */
2662
2663 static void perf_log_throttle(struct perf_counter *counter, int enable)
2664 {
2665 struct perf_output_handle handle;
2666 int ret;
2667
2668 struct {
2669 struct perf_event_header header;
2670 u64 time;
2671 } throttle_event = {
2672 .header = {
2673 .type = PERF_EVENT_THROTTLE + 1,
2674 .misc = 0,
2675 .size = sizeof(throttle_event),
2676 },
2677 .time = sched_clock(),
2678 };
2679
2680 ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
2681 if (ret)
2682 return;
2683
2684 perf_output_put(&handle, throttle_event);
2685 perf_output_end(&handle);
2686 }
2687
2688 /*
2689 * Generic counter overflow handling.
2690 */
2691
2692 int perf_counter_overflow(struct perf_counter *counter,
2693 int nmi, struct pt_regs *regs, u64 addr)
2694 {
2695 int events = atomic_read(&counter->event_limit);
2696 int throttle = counter->pmu->unthrottle != NULL;
2697 int ret = 0;
2698
2699 if (!throttle) {
2700 counter->hw.interrupts++;
2701 } else if (counter->hw.interrupts != MAX_INTERRUPTS) {
2702 counter->hw.interrupts++;
2703 if (HZ*counter->hw.interrupts > (u64)sysctl_perf_counter_limit) {
2704 counter->hw.interrupts = MAX_INTERRUPTS;
2705 perf_log_throttle(counter, 0);
2706 ret = 1;
2707 }
2708 }
2709
2710 /*
2711 * XXX event_limit might not quite work as expected on inherited
2712 * counters
2713 */
2714
2715 counter->pending_kill = POLL_IN;
2716 if (events && atomic_dec_and_test(&counter->event_limit)) {
2717 ret = 1;
2718 counter->pending_kill = POLL_HUP;
2719 if (nmi) {
2720 counter->pending_disable = 1;
2721 perf_pending_queue(&counter->pending,
2722 perf_pending_counter);
2723 } else
2724 perf_counter_disable(counter);
2725 }
2726
2727 perf_counter_output(counter, nmi, regs, addr);
2728 return ret;
2729 }
2730
2731 /*
2732 * Generic software counter infrastructure
2733 */
2734
2735 static void perf_swcounter_update(struct perf_counter *counter)
2736 {
2737 struct hw_perf_counter *hwc = &counter->hw;
2738 u64 prev, now;
2739 s64 delta;
2740
2741 again:
2742 prev = atomic64_read(&hwc->prev_count);
2743 now = atomic64_read(&hwc->count);
2744 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2745 goto again;
2746
2747 delta = now - prev;
2748
2749 atomic64_add(delta, &counter->count);
2750 atomic64_sub(delta, &hwc->period_left);
2751 }
2752
2753 static void perf_swcounter_set_period(struct perf_counter *counter)
2754 {
2755 struct hw_perf_counter *hwc = &counter->hw;
2756 s64 left = atomic64_read(&hwc->period_left);
2757 s64 period = hwc->irq_period;
2758
2759 if (unlikely(left <= -period)) {
2760 left = period;
2761 atomic64_set(&hwc->period_left, left);
2762 }
2763
2764 if (unlikely(left <= 0)) {
2765 left += period;
2766 atomic64_add(period, &hwc->period_left);
2767 }
2768
2769 atomic64_set(&hwc->prev_count, -left);
2770 atomic64_set(&hwc->count, -left);
2771 }
2772
2773 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2774 {
2775 enum hrtimer_restart ret = HRTIMER_RESTART;
2776 struct perf_counter *counter;
2777 struct pt_regs *regs;
2778 u64 period;
2779
2780 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2781 counter->pmu->read(counter);
2782
2783 regs = get_irq_regs();
2784 /*
2785 * In case we exclude kernel IPs or are somehow not in interrupt
2786 * context, provide the next best thing, the user IP.
2787 */
2788 if ((counter->hw_event.exclude_kernel || !regs) &&
2789 !counter->hw_event.exclude_user)
2790 regs = task_pt_regs(current);
2791
2792 if (regs) {
2793 if (perf_counter_overflow(counter, 0, regs, 0))
2794 ret = HRTIMER_NORESTART;
2795 }
2796
2797 period = max_t(u64, 10000, counter->hw.irq_period);
2798 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2799
2800 return ret;
2801 }
2802
2803 static void perf_swcounter_overflow(struct perf_counter *counter,
2804 int nmi, struct pt_regs *regs, u64 addr)
2805 {
2806 perf_swcounter_update(counter);
2807 perf_swcounter_set_period(counter);
2808 if (perf_counter_overflow(counter, nmi, regs, addr))
2809 /* soft-disable the counter */
2810 ;
2811
2812 }
2813
2814 static int perf_swcounter_match(struct perf_counter *counter,
2815 enum perf_event_types type,
2816 u32 event, struct pt_regs *regs)
2817 {
2818 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2819 return 0;
2820
2821 if (perf_event_raw(&counter->hw_event))
2822 return 0;
2823
2824 if (perf_event_type(&counter->hw_event) != type)
2825 return 0;
2826
2827 if (perf_event_id(&counter->hw_event) != event)
2828 return 0;
2829
2830 if (counter->hw_event.exclude_user && user_mode(regs))
2831 return 0;
2832
2833 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2834 return 0;
2835
2836 return 1;
2837 }
2838
2839 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2840 int nmi, struct pt_regs *regs, u64 addr)
2841 {
2842 int neg = atomic64_add_negative(nr, &counter->hw.count);
2843 if (counter->hw.irq_period && !neg)
2844 perf_swcounter_overflow(counter, nmi, regs, addr);
2845 }
2846
2847 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2848 enum perf_event_types type, u32 event,
2849 u64 nr, int nmi, struct pt_regs *regs,
2850 u64 addr)
2851 {
2852 struct perf_counter *counter;
2853
2854 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2855 return;
2856
2857 rcu_read_lock();
2858 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2859 if (perf_swcounter_match(counter, type, event, regs))
2860 perf_swcounter_add(counter, nr, nmi, regs, addr);
2861 }
2862 rcu_read_unlock();
2863 }
2864
2865 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2866 {
2867 if (in_nmi())
2868 return &cpuctx->recursion[3];
2869
2870 if (in_irq())
2871 return &cpuctx->recursion[2];
2872
2873 if (in_softirq())
2874 return &cpuctx->recursion[1];
2875
2876 return &cpuctx->recursion[0];
2877 }
2878
2879 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2880 u64 nr, int nmi, struct pt_regs *regs,
2881 u64 addr)
2882 {
2883 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2884 int *recursion = perf_swcounter_recursion_context(cpuctx);
2885
2886 if (*recursion)
2887 goto out;
2888
2889 (*recursion)++;
2890 barrier();
2891
2892 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2893 nr, nmi, regs, addr);
2894 if (cpuctx->task_ctx) {
2895 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2896 nr, nmi, regs, addr);
2897 }
2898
2899 barrier();
2900 (*recursion)--;
2901
2902 out:
2903 put_cpu_var(perf_cpu_context);
2904 }
2905
2906 void
2907 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2908 {
2909 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2910 }
2911
2912 static void perf_swcounter_read(struct perf_counter *counter)
2913 {
2914 perf_swcounter_update(counter);
2915 }
2916
2917 static int perf_swcounter_enable(struct perf_counter *counter)
2918 {
2919 perf_swcounter_set_period(counter);
2920 return 0;
2921 }
2922
2923 static void perf_swcounter_disable(struct perf_counter *counter)
2924 {
2925 perf_swcounter_update(counter);
2926 }
2927
2928 static const struct pmu perf_ops_generic = {
2929 .enable = perf_swcounter_enable,
2930 .disable = perf_swcounter_disable,
2931 .read = perf_swcounter_read,
2932 };
2933
2934 /*
2935 * Software counter: cpu wall time clock
2936 */
2937
2938 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2939 {
2940 int cpu = raw_smp_processor_id();
2941 s64 prev;
2942 u64 now;
2943
2944 now = cpu_clock(cpu);
2945 prev = atomic64_read(&counter->hw.prev_count);
2946 atomic64_set(&counter->hw.prev_count, now);
2947 atomic64_add(now - prev, &counter->count);
2948 }
2949
2950 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2951 {
2952 struct hw_perf_counter *hwc = &counter->hw;
2953 int cpu = raw_smp_processor_id();
2954
2955 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2956 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2957 hwc->hrtimer.function = perf_swcounter_hrtimer;
2958 if (hwc->irq_period) {
2959 u64 period = max_t(u64, 10000, hwc->irq_period);
2960 __hrtimer_start_range_ns(&hwc->hrtimer,
2961 ns_to_ktime(period), 0,
2962 HRTIMER_MODE_REL, 0);
2963 }
2964
2965 return 0;
2966 }
2967
2968 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2969 {
2970 if (counter->hw.irq_period)
2971 hrtimer_cancel(&counter->hw.hrtimer);
2972 cpu_clock_perf_counter_update(counter);
2973 }
2974
2975 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2976 {
2977 cpu_clock_perf_counter_update(counter);
2978 }
2979
2980 static const struct pmu perf_ops_cpu_clock = {
2981 .enable = cpu_clock_perf_counter_enable,
2982 .disable = cpu_clock_perf_counter_disable,
2983 .read = cpu_clock_perf_counter_read,
2984 };
2985
2986 /*
2987 * Software counter: task time clock
2988 */
2989
2990 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2991 {
2992 u64 prev;
2993 s64 delta;
2994
2995 prev = atomic64_xchg(&counter->hw.prev_count, now);
2996 delta = now - prev;
2997 atomic64_add(delta, &counter->count);
2998 }
2999
3000 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3001 {
3002 struct hw_perf_counter *hwc = &counter->hw;
3003 u64 now;
3004
3005 now = counter->ctx->time;
3006
3007 atomic64_set(&hwc->prev_count, now);
3008 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3009 hwc->hrtimer.function = perf_swcounter_hrtimer;
3010 if (hwc->irq_period) {
3011 u64 period = max_t(u64, 10000, hwc->irq_period);
3012 __hrtimer_start_range_ns(&hwc->hrtimer,
3013 ns_to_ktime(period), 0,
3014 HRTIMER_MODE_REL, 0);
3015 }
3016
3017 return 0;
3018 }
3019
3020 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3021 {
3022 if (counter->hw.irq_period)
3023 hrtimer_cancel(&counter->hw.hrtimer);
3024 task_clock_perf_counter_update(counter, counter->ctx->time);
3025
3026 }
3027
3028 static void task_clock_perf_counter_read(struct perf_counter *counter)
3029 {
3030 u64 time;
3031
3032 if (!in_nmi()) {
3033 update_context_time(counter->ctx);
3034 time = counter->ctx->time;
3035 } else {
3036 u64 now = perf_clock();
3037 u64 delta = now - counter->ctx->timestamp;
3038 time = counter->ctx->time + delta;
3039 }
3040
3041 task_clock_perf_counter_update(counter, time);
3042 }
3043
3044 static const struct pmu perf_ops_task_clock = {
3045 .enable = task_clock_perf_counter_enable,
3046 .disable = task_clock_perf_counter_disable,
3047 .read = task_clock_perf_counter_read,
3048 };
3049
3050 /*
3051 * Software counter: cpu migrations
3052 */
3053
3054 static inline u64 get_cpu_migrations(struct perf_counter *counter)
3055 {
3056 struct task_struct *curr = counter->ctx->task;
3057
3058 if (curr)
3059 return curr->se.nr_migrations;
3060 return cpu_nr_migrations(smp_processor_id());
3061 }
3062
3063 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
3064 {
3065 u64 prev, now;
3066 s64 delta;
3067
3068 prev = atomic64_read(&counter->hw.prev_count);
3069 now = get_cpu_migrations(counter);
3070
3071 atomic64_set(&counter->hw.prev_count, now);
3072
3073 delta = now - prev;
3074
3075 atomic64_add(delta, &counter->count);
3076 }
3077
3078 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
3079 {
3080 cpu_migrations_perf_counter_update(counter);
3081 }
3082
3083 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
3084 {
3085 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
3086 atomic64_set(&counter->hw.prev_count,
3087 get_cpu_migrations(counter));
3088 return 0;
3089 }
3090
3091 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
3092 {
3093 cpu_migrations_perf_counter_update(counter);
3094 }
3095
3096 static const struct pmu perf_ops_cpu_migrations = {
3097 .enable = cpu_migrations_perf_counter_enable,
3098 .disable = cpu_migrations_perf_counter_disable,
3099 .read = cpu_migrations_perf_counter_read,
3100 };
3101
3102 #ifdef CONFIG_EVENT_PROFILE
3103 void perf_tpcounter_event(int event_id)
3104 {
3105 struct pt_regs *regs = get_irq_regs();
3106
3107 if (!regs)
3108 regs = task_pt_regs(current);
3109
3110 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3111 }
3112 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3113
3114 extern int ftrace_profile_enable(int);
3115 extern void ftrace_profile_disable(int);
3116
3117 static void tp_perf_counter_destroy(struct perf_counter *counter)
3118 {
3119 ftrace_profile_disable(perf_event_id(&counter->hw_event));
3120 }
3121
3122 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3123 {
3124 int event_id = perf_event_id(&counter->hw_event);
3125 int ret;
3126
3127 ret = ftrace_profile_enable(event_id);
3128 if (ret)
3129 return NULL;
3130
3131 counter->destroy = tp_perf_counter_destroy;
3132 counter->hw.irq_period = counter->hw_event.irq_period;
3133
3134 return &perf_ops_generic;
3135 }
3136 #else
3137 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3138 {
3139 return NULL;
3140 }
3141 #endif
3142
3143 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3144 {
3145 const struct pmu *pmu = NULL;
3146
3147 /*
3148 * Software counters (currently) can't in general distinguish
3149 * between user, kernel and hypervisor events.
3150 * However, context switches and cpu migrations are considered
3151 * to be kernel events, and page faults are never hypervisor
3152 * events.
3153 */
3154 switch (perf_event_id(&counter->hw_event)) {
3155 case PERF_COUNT_CPU_CLOCK:
3156 pmu = &perf_ops_cpu_clock;
3157
3158 break;
3159 case PERF_COUNT_TASK_CLOCK:
3160 /*
3161 * If the user instantiates this as a per-cpu counter,
3162 * use the cpu_clock counter instead.
3163 */
3164 if (counter->ctx->task)
3165 pmu = &perf_ops_task_clock;
3166 else
3167 pmu = &perf_ops_cpu_clock;
3168
3169 break;
3170 case PERF_COUNT_PAGE_FAULTS:
3171 case PERF_COUNT_PAGE_FAULTS_MIN:
3172 case PERF_COUNT_PAGE_FAULTS_MAJ:
3173 case PERF_COUNT_CONTEXT_SWITCHES:
3174 pmu = &perf_ops_generic;
3175 break;
3176 case PERF_COUNT_CPU_MIGRATIONS:
3177 if (!counter->hw_event.exclude_kernel)
3178 pmu = &perf_ops_cpu_migrations;
3179 break;
3180 }
3181
3182 return pmu;
3183 }
3184
3185 /*
3186 * Allocate and initialize a counter structure
3187 */
3188 static struct perf_counter *
3189 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
3190 int cpu,
3191 struct perf_counter_context *ctx,
3192 struct perf_counter *group_leader,
3193 gfp_t gfpflags)
3194 {
3195 const struct pmu *pmu;
3196 struct perf_counter *counter;
3197 struct hw_perf_counter *hwc;
3198 long err;
3199
3200 counter = kzalloc(sizeof(*counter), gfpflags);
3201 if (!counter)
3202 return ERR_PTR(-ENOMEM);
3203
3204 /*
3205 * Single counters are their own group leaders, with an
3206 * empty sibling list:
3207 */
3208 if (!group_leader)
3209 group_leader = counter;
3210
3211 mutex_init(&counter->child_mutex);
3212 INIT_LIST_HEAD(&counter->child_list);
3213
3214 INIT_LIST_HEAD(&counter->list_entry);
3215 INIT_LIST_HEAD(&counter->event_entry);
3216 INIT_LIST_HEAD(&counter->sibling_list);
3217 init_waitqueue_head(&counter->waitq);
3218
3219 mutex_init(&counter->mmap_mutex);
3220
3221 counter->cpu = cpu;
3222 counter->hw_event = *hw_event;
3223 counter->group_leader = group_leader;
3224 counter->pmu = NULL;
3225 counter->ctx = ctx;
3226 counter->oncpu = -1;
3227
3228 counter->state = PERF_COUNTER_STATE_INACTIVE;
3229 if (hw_event->disabled)
3230 counter->state = PERF_COUNTER_STATE_OFF;
3231
3232 pmu = NULL;
3233
3234 hwc = &counter->hw;
3235 if (hw_event->freq && hw_event->irq_freq)
3236 hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
3237 else
3238 hwc->irq_period = hw_event->irq_period;
3239
3240 /*
3241 * we currently do not support PERF_RECORD_GROUP on inherited counters
3242 */
3243 if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
3244 goto done;
3245
3246 if (perf_event_raw(hw_event)) {
3247 pmu = hw_perf_counter_init(counter);
3248 goto done;
3249 }
3250
3251 switch (perf_event_type(hw_event)) {
3252 case PERF_TYPE_HARDWARE:
3253 pmu = hw_perf_counter_init(counter);
3254 break;
3255
3256 case PERF_TYPE_SOFTWARE:
3257 pmu = sw_perf_counter_init(counter);
3258 break;
3259
3260 case PERF_TYPE_TRACEPOINT:
3261 pmu = tp_perf_counter_init(counter);
3262 break;
3263 }
3264 done:
3265 err = 0;
3266 if (!pmu)
3267 err = -EINVAL;
3268 else if (IS_ERR(pmu))
3269 err = PTR_ERR(pmu);
3270
3271 if (err) {
3272 kfree(counter);
3273 return ERR_PTR(err);
3274 }
3275
3276 counter->pmu = pmu;
3277
3278 atomic_inc(&nr_counters);
3279 if (counter->hw_event.mmap)
3280 atomic_inc(&nr_mmap_tracking);
3281 if (counter->hw_event.munmap)
3282 atomic_inc(&nr_munmap_tracking);
3283 if (counter->hw_event.comm)
3284 atomic_inc(&nr_comm_tracking);
3285
3286 return counter;
3287 }
3288
3289 /**
3290 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3291 *
3292 * @hw_event_uptr: event type attributes for monitoring/sampling
3293 * @pid: target pid
3294 * @cpu: target cpu
3295 * @group_fd: group leader counter fd
3296 */
3297 SYSCALL_DEFINE5(perf_counter_open,
3298 const struct perf_counter_hw_event __user *, hw_event_uptr,
3299 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3300 {
3301 struct perf_counter *counter, *group_leader;
3302 struct perf_counter_hw_event hw_event;
3303 struct perf_counter_context *ctx;
3304 struct file *counter_file = NULL;
3305 struct file *group_file = NULL;
3306 int fput_needed = 0;
3307 int fput_needed2 = 0;
3308 int ret;
3309
3310 /* for future expandability... */
3311 if (flags)
3312 return -EINVAL;
3313
3314 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3315 return -EFAULT;
3316
3317 /*
3318 * Get the target context (task or percpu):
3319 */
3320 ctx = find_get_context(pid, cpu);
3321 if (IS_ERR(ctx))
3322 return PTR_ERR(ctx);
3323
3324 /*
3325 * Look up the group leader (we will attach this counter to it):
3326 */
3327 group_leader = NULL;
3328 if (group_fd != -1) {
3329 ret = -EINVAL;
3330 group_file = fget_light(group_fd, &fput_needed);
3331 if (!group_file)
3332 goto err_put_context;
3333 if (group_file->f_op != &perf_fops)
3334 goto err_put_context;
3335
3336 group_leader = group_file->private_data;
3337 /*
3338 * Do not allow a recursive hierarchy (this new sibling
3339 * becoming part of another group-sibling):
3340 */
3341 if (group_leader->group_leader != group_leader)
3342 goto err_put_context;
3343 /*
3344 * Do not allow to attach to a group in a different
3345 * task or CPU context:
3346 */
3347 if (group_leader->ctx != ctx)
3348 goto err_put_context;
3349 /*
3350 * Only a group leader can be exclusive or pinned
3351 */
3352 if (hw_event.exclusive || hw_event.pinned)
3353 goto err_put_context;
3354 }
3355
3356 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3357 GFP_KERNEL);
3358 ret = PTR_ERR(counter);
3359 if (IS_ERR(counter))
3360 goto err_put_context;
3361
3362 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3363 if (ret < 0)
3364 goto err_free_put_context;
3365
3366 counter_file = fget_light(ret, &fput_needed2);
3367 if (!counter_file)
3368 goto err_free_put_context;
3369
3370 counter->filp = counter_file;
3371 WARN_ON_ONCE(ctx->parent_ctx);
3372 mutex_lock(&ctx->mutex);
3373 perf_install_in_context(ctx, counter, cpu);
3374 ++ctx->generation;
3375 mutex_unlock(&ctx->mutex);
3376
3377 counter->owner = current;
3378 get_task_struct(current);
3379 mutex_lock(&current->perf_counter_mutex);
3380 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3381 mutex_unlock(&current->perf_counter_mutex);
3382
3383 fput_light(counter_file, fput_needed2);
3384
3385 out_fput:
3386 fput_light(group_file, fput_needed);
3387
3388 return ret;
3389
3390 err_free_put_context:
3391 kfree(counter);
3392
3393 err_put_context:
3394 put_ctx(ctx);
3395
3396 goto out_fput;
3397 }
3398
3399 /*
3400 * inherit a counter from parent task to child task:
3401 */
3402 static struct perf_counter *
3403 inherit_counter(struct perf_counter *parent_counter,
3404 struct task_struct *parent,
3405 struct perf_counter_context *parent_ctx,
3406 struct task_struct *child,
3407 struct perf_counter *group_leader,
3408 struct perf_counter_context *child_ctx)
3409 {
3410 struct perf_counter *child_counter;
3411
3412 /*
3413 * Instead of creating recursive hierarchies of counters,
3414 * we link inherited counters back to the original parent,
3415 * which has a filp for sure, which we use as the reference
3416 * count:
3417 */
3418 if (parent_counter->parent)
3419 parent_counter = parent_counter->parent;
3420
3421 child_counter = perf_counter_alloc(&parent_counter->hw_event,
3422 parent_counter->cpu, child_ctx,
3423 group_leader, GFP_KERNEL);
3424 if (IS_ERR(child_counter))
3425 return child_counter;
3426 get_ctx(child_ctx);
3427
3428 /*
3429 * Make the child state follow the state of the parent counter,
3430 * not its hw_event.disabled bit. We hold the parent's mutex,
3431 * so we won't race with perf_counter_{en,dis}able_family.
3432 */
3433 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3434 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3435 else
3436 child_counter->state = PERF_COUNTER_STATE_OFF;
3437
3438 /*
3439 * Link it up in the child's context:
3440 */
3441 add_counter_to_ctx(child_counter, child_ctx);
3442
3443 child_counter->parent = parent_counter;
3444 /*
3445 * inherit into child's child as well:
3446 */
3447 child_counter->hw_event.inherit = 1;
3448
3449 /*
3450 * Get a reference to the parent filp - we will fput it
3451 * when the child counter exits. This is safe to do because
3452 * we are in the parent and we know that the filp still
3453 * exists and has a nonzero count:
3454 */
3455 atomic_long_inc(&parent_counter->filp->f_count);
3456
3457 /*
3458 * Link this into the parent counter's child list
3459 */
3460 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3461 mutex_lock(&parent_counter->child_mutex);
3462 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3463 mutex_unlock(&parent_counter->child_mutex);
3464
3465 return child_counter;
3466 }
3467
3468 static int inherit_group(struct perf_counter *parent_counter,
3469 struct task_struct *parent,
3470 struct perf_counter_context *parent_ctx,
3471 struct task_struct *child,
3472 struct perf_counter_context *child_ctx)
3473 {
3474 struct perf_counter *leader;
3475 struct perf_counter *sub;
3476 struct perf_counter *child_ctr;
3477
3478 leader = inherit_counter(parent_counter, parent, parent_ctx,
3479 child, NULL, child_ctx);
3480 if (IS_ERR(leader))
3481 return PTR_ERR(leader);
3482 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3483 child_ctr = inherit_counter(sub, parent, parent_ctx,
3484 child, leader, child_ctx);
3485 if (IS_ERR(child_ctr))
3486 return PTR_ERR(child_ctr);
3487 }
3488 return 0;
3489 }
3490
3491 static void sync_child_counter(struct perf_counter *child_counter,
3492 struct perf_counter *parent_counter)
3493 {
3494 u64 child_val;
3495
3496 child_val = atomic64_read(&child_counter->count);
3497
3498 /*
3499 * Add back the child's count to the parent's count:
3500 */
3501 atomic64_add(child_val, &parent_counter->count);
3502 atomic64_add(child_counter->total_time_enabled,
3503 &parent_counter->child_total_time_enabled);
3504 atomic64_add(child_counter->total_time_running,
3505 &parent_counter->child_total_time_running);
3506
3507 /*
3508 * Remove this counter from the parent's list
3509 */
3510 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3511 mutex_lock(&parent_counter->child_mutex);
3512 list_del_init(&child_counter->child_list);
3513 mutex_unlock(&parent_counter->child_mutex);
3514
3515 /*
3516 * Release the parent counter, if this was the last
3517 * reference to it.
3518 */
3519 fput(parent_counter->filp);
3520 }
3521
3522 static void
3523 __perf_counter_exit_task(struct task_struct *child,
3524 struct perf_counter *child_counter,
3525 struct perf_counter_context *child_ctx)
3526 {
3527 struct perf_counter *parent_counter;
3528
3529 update_counter_times(child_counter);
3530 perf_counter_remove_from_context(child_counter);
3531
3532 parent_counter = child_counter->parent;
3533 /*
3534 * It can happen that parent exits first, and has counters
3535 * that are still around due to the child reference. These
3536 * counters need to be zapped - but otherwise linger.
3537 */
3538 if (parent_counter) {
3539 sync_child_counter(child_counter, parent_counter);
3540 free_counter(child_counter);
3541 }
3542 }
3543
3544 /*
3545 * When a child task exits, feed back counter values to parent counters.
3546 */
3547 void perf_counter_exit_task(struct task_struct *child)
3548 {
3549 struct perf_counter *child_counter, *tmp;
3550 struct perf_counter_context *child_ctx;
3551 unsigned long flags;
3552
3553 if (likely(!child->perf_counter_ctxp))
3554 return;
3555
3556 local_irq_save(flags);
3557 /*
3558 * We can't reschedule here because interrupts are disabled,
3559 * and either child is current or it is a task that can't be
3560 * scheduled, so we are now safe from rescheduling changing
3561 * our context.
3562 */
3563 child_ctx = child->perf_counter_ctxp;
3564 __perf_counter_task_sched_out(child_ctx);
3565
3566 /*
3567 * Take the context lock here so that if find_get_context is
3568 * reading child->perf_counter_ctxp, we wait until it has
3569 * incremented the context's refcount before we do put_ctx below.
3570 */
3571 spin_lock(&child_ctx->lock);
3572 child->perf_counter_ctxp = NULL;
3573 if (child_ctx->parent_ctx) {
3574 /*
3575 * This context is a clone; unclone it so it can't get
3576 * swapped to another process while we're removing all
3577 * the counters from it.
3578 */
3579 put_ctx(child_ctx->parent_ctx);
3580 child_ctx->parent_ctx = NULL;
3581 }
3582 spin_unlock(&child_ctx->lock);
3583 local_irq_restore(flags);
3584
3585 mutex_lock(&child_ctx->mutex);
3586
3587 again:
3588 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3589 list_entry)
3590 __perf_counter_exit_task(child, child_counter, child_ctx);
3591
3592 /*
3593 * If the last counter was a group counter, it will have appended all
3594 * its siblings to the list, but we obtained 'tmp' before that which
3595 * will still point to the list head terminating the iteration.
3596 */
3597 if (!list_empty(&child_ctx->counter_list))
3598 goto again;
3599
3600 mutex_unlock(&child_ctx->mutex);
3601
3602 put_ctx(child_ctx);
3603 }
3604
3605 /*
3606 * Initialize the perf_counter context in task_struct
3607 */
3608 int perf_counter_init_task(struct task_struct *child)
3609 {
3610 struct perf_counter_context *child_ctx, *parent_ctx;
3611 struct perf_counter_context *cloned_ctx;
3612 struct perf_counter *counter;
3613 struct task_struct *parent = current;
3614 int inherited_all = 1;
3615 u64 cloned_gen;
3616 int ret = 0;
3617
3618 child->perf_counter_ctxp = NULL;
3619
3620 mutex_init(&child->perf_counter_mutex);
3621 INIT_LIST_HEAD(&child->perf_counter_list);
3622
3623 if (likely(!parent->perf_counter_ctxp))
3624 return 0;
3625
3626 /*
3627 * This is executed from the parent task context, so inherit
3628 * counters that have been marked for cloning.
3629 * First allocate and initialize a context for the child.
3630 */
3631
3632 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3633 if (!child_ctx)
3634 return -ENOMEM;
3635
3636 __perf_counter_init_context(child_ctx, child);
3637 child->perf_counter_ctxp = child_ctx;
3638 get_task_struct(child);
3639
3640 /*
3641 * If the parent's context is a clone, temporarily set its
3642 * parent_gen to an impossible value (all 1s) so it won't get
3643 * swapped under us. The rcu_read_lock makes sure that
3644 * parent_ctx continues to exist even if it gets swapped to
3645 * another process and then freed while we are trying to get
3646 * its lock.
3647 */
3648 rcu_read_lock();
3649 retry:
3650 parent_ctx = rcu_dereference(parent->perf_counter_ctxp);
3651 /*
3652 * No need to check if parent_ctx != NULL here; since we saw
3653 * it non-NULL earlier, the only reason for it to become NULL
3654 * is if we exit, and since we're currently in the middle of
3655 * a fork we can't be exiting at the same time.
3656 */
3657 spin_lock_irq(&parent_ctx->lock);
3658 if (parent_ctx != rcu_dereference(parent->perf_counter_ctxp)) {
3659 spin_unlock_irq(&parent_ctx->lock);
3660 goto retry;
3661 }
3662 cloned_gen = parent_ctx->parent_gen;
3663 if (parent_ctx->parent_ctx)
3664 parent_ctx->parent_gen = ~0ull;
3665 spin_unlock_irq(&parent_ctx->lock);
3666 rcu_read_unlock();
3667
3668 /*
3669 * Lock the parent list. No need to lock the child - not PID
3670 * hashed yet and not running, so nobody can access it.
3671 */
3672 mutex_lock(&parent_ctx->mutex);
3673
3674 /*
3675 * We dont have to disable NMIs - we are only looking at
3676 * the list, not manipulating it:
3677 */
3678 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3679 if (counter != counter->group_leader)
3680 continue;
3681
3682 if (!counter->hw_event.inherit) {
3683 inherited_all = 0;
3684 continue;
3685 }
3686
3687 ret = inherit_group(counter, parent, parent_ctx,
3688 child, child_ctx);
3689 if (ret) {
3690 inherited_all = 0;
3691 break;
3692 }
3693 }
3694
3695 if (inherited_all) {
3696 /*
3697 * Mark the child context as a clone of the parent
3698 * context, or of whatever the parent is a clone of.
3699 * Note that if the parent is a clone, it could get
3700 * uncloned at any point, but that doesn't matter
3701 * because the list of counters and the generation
3702 * count can't have changed since we took the mutex.
3703 */
3704 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
3705 if (cloned_ctx) {
3706 child_ctx->parent_ctx = cloned_ctx;
3707 child_ctx->parent_gen = cloned_gen;
3708 } else {
3709 child_ctx->parent_ctx = parent_ctx;
3710 child_ctx->parent_gen = parent_ctx->generation;
3711 }
3712 get_ctx(child_ctx->parent_ctx);
3713 }
3714
3715 mutex_unlock(&parent_ctx->mutex);
3716
3717 /*
3718 * Restore the clone status of the parent.
3719 */
3720 if (parent_ctx->parent_ctx) {
3721 spin_lock_irq(&parent_ctx->lock);
3722 if (parent_ctx->parent_ctx)
3723 parent_ctx->parent_gen = cloned_gen;
3724 spin_unlock_irq(&parent_ctx->lock);
3725 }
3726
3727 return ret;
3728 }
3729
3730 static void __cpuinit perf_counter_init_cpu(int cpu)
3731 {
3732 struct perf_cpu_context *cpuctx;
3733
3734 cpuctx = &per_cpu(perf_cpu_context, cpu);
3735 __perf_counter_init_context(&cpuctx->ctx, NULL);
3736
3737 spin_lock(&perf_resource_lock);
3738 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3739 spin_unlock(&perf_resource_lock);
3740
3741 hw_perf_counter_setup(cpu);
3742 }
3743
3744 #ifdef CONFIG_HOTPLUG_CPU
3745 static void __perf_counter_exit_cpu(void *info)
3746 {
3747 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3748 struct perf_counter_context *ctx = &cpuctx->ctx;
3749 struct perf_counter *counter, *tmp;
3750
3751 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3752 __perf_counter_remove_from_context(counter);
3753 }
3754 static void perf_counter_exit_cpu(int cpu)
3755 {
3756 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3757 struct perf_counter_context *ctx = &cpuctx->ctx;
3758
3759 mutex_lock(&ctx->mutex);
3760 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3761 mutex_unlock(&ctx->mutex);
3762 }
3763 #else
3764 static inline void perf_counter_exit_cpu(int cpu) { }
3765 #endif
3766
3767 static int __cpuinit
3768 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3769 {
3770 unsigned int cpu = (long)hcpu;
3771
3772 switch (action) {
3773
3774 case CPU_UP_PREPARE:
3775 case CPU_UP_PREPARE_FROZEN:
3776 perf_counter_init_cpu(cpu);
3777 break;
3778
3779 case CPU_DOWN_PREPARE:
3780 case CPU_DOWN_PREPARE_FROZEN:
3781 perf_counter_exit_cpu(cpu);
3782 break;
3783
3784 default:
3785 break;
3786 }
3787
3788 return NOTIFY_OK;
3789 }
3790
3791 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3792 .notifier_call = perf_cpu_notify,
3793 };
3794
3795 void __init perf_counter_init(void)
3796 {
3797 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3798 (void *)(long)smp_processor_id());
3799 register_cpu_notifier(&perf_cpu_nb);
3800 }
3801
3802 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3803 {
3804 return sprintf(buf, "%d\n", perf_reserved_percpu);
3805 }
3806
3807 static ssize_t
3808 perf_set_reserve_percpu(struct sysdev_class *class,
3809 const char *buf,
3810 size_t count)
3811 {
3812 struct perf_cpu_context *cpuctx;
3813 unsigned long val;
3814 int err, cpu, mpt;
3815
3816 err = strict_strtoul(buf, 10, &val);
3817 if (err)
3818 return err;
3819 if (val > perf_max_counters)
3820 return -EINVAL;
3821
3822 spin_lock(&perf_resource_lock);
3823 perf_reserved_percpu = val;
3824 for_each_online_cpu(cpu) {
3825 cpuctx = &per_cpu(perf_cpu_context, cpu);
3826 spin_lock_irq(&cpuctx->ctx.lock);
3827 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3828 perf_max_counters - perf_reserved_percpu);
3829 cpuctx->max_pertask = mpt;
3830 spin_unlock_irq(&cpuctx->ctx.lock);
3831 }
3832 spin_unlock(&perf_resource_lock);
3833
3834 return count;
3835 }
3836
3837 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3838 {
3839 return sprintf(buf, "%d\n", perf_overcommit);
3840 }
3841
3842 static ssize_t
3843 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3844 {
3845 unsigned long val;
3846 int err;
3847
3848 err = strict_strtoul(buf, 10, &val);
3849 if (err)
3850 return err;
3851 if (val > 1)
3852 return -EINVAL;
3853
3854 spin_lock(&perf_resource_lock);
3855 perf_overcommit = val;
3856 spin_unlock(&perf_resource_lock);
3857
3858 return count;
3859 }
3860
3861 static SYSDEV_CLASS_ATTR(
3862 reserve_percpu,
3863 0644,
3864 perf_show_reserve_percpu,
3865 perf_set_reserve_percpu
3866 );
3867
3868 static SYSDEV_CLASS_ATTR(
3869 overcommit,
3870 0644,
3871 perf_show_overcommit,
3872 perf_set_overcommit
3873 );
3874
3875 static struct attribute *perfclass_attrs[] = {
3876 &attr_reserve_percpu.attr,
3877 &attr_overcommit.attr,
3878 NULL
3879 };
3880
3881 static struct attribute_group perfclass_attr_group = {
3882 .attrs = perfclass_attrs,
3883 .name = "perf_counters",
3884 };
3885
3886 static int __init perf_counter_sysfs_init(void)
3887 {
3888 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3889 &perfclass_attr_group);
3890 }
3891 device_initcall(perf_counter_sysfs_init);
This page took 0.222922 seconds and 5 git commands to generate.