perf_counter: call atomic64_set for counter->count
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 128; /* 'free' kb per counter */
49
50 /*
51 * Lock for (sysadmin-configurable) counter reservations:
52 */
53 static DEFINE_SPINLOCK(perf_resource_lock);
54
55 /*
56 * Architecture provided APIs - weak aliases:
57 */
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
59 {
60 return NULL;
61 }
62
63 u64 __weak hw_perf_save_disable(void) { return 0; }
64 void __weak hw_perf_restore(u64 ctrl) { barrier(); }
65 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
66 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
67 struct perf_cpu_context *cpuctx,
68 struct perf_counter_context *ctx, int cpu)
69 {
70 return 0;
71 }
72
73 void __weak perf_counter_print_debug(void) { }
74
75 static void
76 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
77 {
78 struct perf_counter *group_leader = counter->group_leader;
79
80 /*
81 * Depending on whether it is a standalone or sibling counter,
82 * add it straight to the context's counter list, or to the group
83 * leader's sibling list:
84 */
85 if (group_leader == counter)
86 list_add_tail(&counter->list_entry, &ctx->counter_list);
87 else {
88 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
89 group_leader->nr_siblings++;
90 }
91
92 list_add_rcu(&counter->event_entry, &ctx->event_list);
93 }
94
95 static void
96 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
97 {
98 struct perf_counter *sibling, *tmp;
99
100 list_del_init(&counter->list_entry);
101 list_del_rcu(&counter->event_entry);
102
103 if (counter->group_leader != counter)
104 counter->group_leader->nr_siblings--;
105
106 /*
107 * If this was a group counter with sibling counters then
108 * upgrade the siblings to singleton counters by adding them
109 * to the context list directly:
110 */
111 list_for_each_entry_safe(sibling, tmp,
112 &counter->sibling_list, list_entry) {
113
114 list_move_tail(&sibling->list_entry, &ctx->counter_list);
115 sibling->group_leader = sibling;
116 }
117 }
118
119 static void
120 counter_sched_out(struct perf_counter *counter,
121 struct perf_cpu_context *cpuctx,
122 struct perf_counter_context *ctx)
123 {
124 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
125 return;
126
127 counter->state = PERF_COUNTER_STATE_INACTIVE;
128 counter->tstamp_stopped = ctx->time;
129 counter->pmu->disable(counter);
130 counter->oncpu = -1;
131
132 if (!is_software_counter(counter))
133 cpuctx->active_oncpu--;
134 ctx->nr_active--;
135 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
136 cpuctx->exclusive = 0;
137 }
138
139 static void
140 group_sched_out(struct perf_counter *group_counter,
141 struct perf_cpu_context *cpuctx,
142 struct perf_counter_context *ctx)
143 {
144 struct perf_counter *counter;
145
146 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
147 return;
148
149 counter_sched_out(group_counter, cpuctx, ctx);
150
151 /*
152 * Schedule out siblings (if any):
153 */
154 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
155 counter_sched_out(counter, cpuctx, ctx);
156
157 if (group_counter->hw_event.exclusive)
158 cpuctx->exclusive = 0;
159 }
160
161 /*
162 * Cross CPU call to remove a performance counter
163 *
164 * We disable the counter on the hardware level first. After that we
165 * remove it from the context list.
166 */
167 static void __perf_counter_remove_from_context(void *info)
168 {
169 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
170 struct perf_counter *counter = info;
171 struct perf_counter_context *ctx = counter->ctx;
172 unsigned long flags;
173 u64 perf_flags;
174
175 /*
176 * If this is a task context, we need to check whether it is
177 * the current task context of this cpu. If not it has been
178 * scheduled out before the smp call arrived.
179 */
180 if (ctx->task && cpuctx->task_ctx != ctx)
181 return;
182
183 spin_lock_irqsave(&ctx->lock, flags);
184
185 counter_sched_out(counter, cpuctx, ctx);
186
187 counter->task = NULL;
188 ctx->nr_counters--;
189
190 /*
191 * Protect the list operation against NMI by disabling the
192 * counters on a global level. NOP for non NMI based counters.
193 */
194 perf_flags = hw_perf_save_disable();
195 list_del_counter(counter, ctx);
196 hw_perf_restore(perf_flags);
197
198 if (!ctx->task) {
199 /*
200 * Allow more per task counters with respect to the
201 * reservation:
202 */
203 cpuctx->max_pertask =
204 min(perf_max_counters - ctx->nr_counters,
205 perf_max_counters - perf_reserved_percpu);
206 }
207
208 spin_unlock_irqrestore(&ctx->lock, flags);
209 }
210
211
212 /*
213 * Remove the counter from a task's (or a CPU's) list of counters.
214 *
215 * Must be called with counter->mutex and ctx->mutex held.
216 *
217 * CPU counters are removed with a smp call. For task counters we only
218 * call when the task is on a CPU.
219 */
220 static void perf_counter_remove_from_context(struct perf_counter *counter)
221 {
222 struct perf_counter_context *ctx = counter->ctx;
223 struct task_struct *task = ctx->task;
224
225 if (!task) {
226 /*
227 * Per cpu counters are removed via an smp call and
228 * the removal is always sucessful.
229 */
230 smp_call_function_single(counter->cpu,
231 __perf_counter_remove_from_context,
232 counter, 1);
233 return;
234 }
235
236 retry:
237 task_oncpu_function_call(task, __perf_counter_remove_from_context,
238 counter);
239
240 spin_lock_irq(&ctx->lock);
241 /*
242 * If the context is active we need to retry the smp call.
243 */
244 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
245 spin_unlock_irq(&ctx->lock);
246 goto retry;
247 }
248
249 /*
250 * The lock prevents that this context is scheduled in so we
251 * can remove the counter safely, if the call above did not
252 * succeed.
253 */
254 if (!list_empty(&counter->list_entry)) {
255 ctx->nr_counters--;
256 list_del_counter(counter, ctx);
257 counter->task = NULL;
258 }
259 spin_unlock_irq(&ctx->lock);
260 }
261
262 static inline u64 perf_clock(void)
263 {
264 return cpu_clock(smp_processor_id());
265 }
266
267 /*
268 * Update the record of the current time in a context.
269 */
270 static void update_context_time(struct perf_counter_context *ctx)
271 {
272 u64 now = perf_clock();
273
274 ctx->time += now - ctx->timestamp;
275 ctx->timestamp = now;
276 }
277
278 /*
279 * Update the total_time_enabled and total_time_running fields for a counter.
280 */
281 static void update_counter_times(struct perf_counter *counter)
282 {
283 struct perf_counter_context *ctx = counter->ctx;
284 u64 run_end;
285
286 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
287 return;
288
289 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
290
291 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
292 run_end = counter->tstamp_stopped;
293 else
294 run_end = ctx->time;
295
296 counter->total_time_running = run_end - counter->tstamp_running;
297 }
298
299 /*
300 * Update total_time_enabled and total_time_running for all counters in a group.
301 */
302 static void update_group_times(struct perf_counter *leader)
303 {
304 struct perf_counter *counter;
305
306 update_counter_times(leader);
307 list_for_each_entry(counter, &leader->sibling_list, list_entry)
308 update_counter_times(counter);
309 }
310
311 /*
312 * Cross CPU call to disable a performance counter
313 */
314 static void __perf_counter_disable(void *info)
315 {
316 struct perf_counter *counter = info;
317 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
318 struct perf_counter_context *ctx = counter->ctx;
319 unsigned long flags;
320
321 /*
322 * If this is a per-task counter, need to check whether this
323 * counter's task is the current task on this cpu.
324 */
325 if (ctx->task && cpuctx->task_ctx != ctx)
326 return;
327
328 spin_lock_irqsave(&ctx->lock, flags);
329
330 /*
331 * If the counter is on, turn it off.
332 * If it is in error state, leave it in error state.
333 */
334 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
335 update_context_time(ctx);
336 update_counter_times(counter);
337 if (counter == counter->group_leader)
338 group_sched_out(counter, cpuctx, ctx);
339 else
340 counter_sched_out(counter, cpuctx, ctx);
341 counter->state = PERF_COUNTER_STATE_OFF;
342 }
343
344 spin_unlock_irqrestore(&ctx->lock, flags);
345 }
346
347 /*
348 * Disable a counter.
349 */
350 static void perf_counter_disable(struct perf_counter *counter)
351 {
352 struct perf_counter_context *ctx = counter->ctx;
353 struct task_struct *task = ctx->task;
354
355 if (!task) {
356 /*
357 * Disable the counter on the cpu that it's on
358 */
359 smp_call_function_single(counter->cpu, __perf_counter_disable,
360 counter, 1);
361 return;
362 }
363
364 retry:
365 task_oncpu_function_call(task, __perf_counter_disable, counter);
366
367 spin_lock_irq(&ctx->lock);
368 /*
369 * If the counter is still active, we need to retry the cross-call.
370 */
371 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
372 spin_unlock_irq(&ctx->lock);
373 goto retry;
374 }
375
376 /*
377 * Since we have the lock this context can't be scheduled
378 * in, so we can change the state safely.
379 */
380 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
381 update_counter_times(counter);
382 counter->state = PERF_COUNTER_STATE_OFF;
383 }
384
385 spin_unlock_irq(&ctx->lock);
386 }
387
388 static int
389 counter_sched_in(struct perf_counter *counter,
390 struct perf_cpu_context *cpuctx,
391 struct perf_counter_context *ctx,
392 int cpu)
393 {
394 if (counter->state <= PERF_COUNTER_STATE_OFF)
395 return 0;
396
397 counter->state = PERF_COUNTER_STATE_ACTIVE;
398 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
399 /*
400 * The new state must be visible before we turn it on in the hardware:
401 */
402 smp_wmb();
403
404 if (counter->pmu->enable(counter)) {
405 counter->state = PERF_COUNTER_STATE_INACTIVE;
406 counter->oncpu = -1;
407 return -EAGAIN;
408 }
409
410 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
411
412 if (!is_software_counter(counter))
413 cpuctx->active_oncpu++;
414 ctx->nr_active++;
415
416 if (counter->hw_event.exclusive)
417 cpuctx->exclusive = 1;
418
419 return 0;
420 }
421
422 static int
423 group_sched_in(struct perf_counter *group_counter,
424 struct perf_cpu_context *cpuctx,
425 struct perf_counter_context *ctx,
426 int cpu)
427 {
428 struct perf_counter *counter, *partial_group;
429 int ret;
430
431 if (group_counter->state == PERF_COUNTER_STATE_OFF)
432 return 0;
433
434 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
435 if (ret)
436 return ret < 0 ? ret : 0;
437
438 group_counter->prev_state = group_counter->state;
439 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
440 return -EAGAIN;
441
442 /*
443 * Schedule in siblings as one group (if any):
444 */
445 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
446 counter->prev_state = counter->state;
447 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
448 partial_group = counter;
449 goto group_error;
450 }
451 }
452
453 return 0;
454
455 group_error:
456 /*
457 * Groups can be scheduled in as one unit only, so undo any
458 * partial group before returning:
459 */
460 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
461 if (counter == partial_group)
462 break;
463 counter_sched_out(counter, cpuctx, ctx);
464 }
465 counter_sched_out(group_counter, cpuctx, ctx);
466
467 return -EAGAIN;
468 }
469
470 /*
471 * Return 1 for a group consisting entirely of software counters,
472 * 0 if the group contains any hardware counters.
473 */
474 static int is_software_only_group(struct perf_counter *leader)
475 {
476 struct perf_counter *counter;
477
478 if (!is_software_counter(leader))
479 return 0;
480
481 list_for_each_entry(counter, &leader->sibling_list, list_entry)
482 if (!is_software_counter(counter))
483 return 0;
484
485 return 1;
486 }
487
488 /*
489 * Work out whether we can put this counter group on the CPU now.
490 */
491 static int group_can_go_on(struct perf_counter *counter,
492 struct perf_cpu_context *cpuctx,
493 int can_add_hw)
494 {
495 /*
496 * Groups consisting entirely of software counters can always go on.
497 */
498 if (is_software_only_group(counter))
499 return 1;
500 /*
501 * If an exclusive group is already on, no other hardware
502 * counters can go on.
503 */
504 if (cpuctx->exclusive)
505 return 0;
506 /*
507 * If this group is exclusive and there are already
508 * counters on the CPU, it can't go on.
509 */
510 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
511 return 0;
512 /*
513 * Otherwise, try to add it if all previous groups were able
514 * to go on.
515 */
516 return can_add_hw;
517 }
518
519 static void add_counter_to_ctx(struct perf_counter *counter,
520 struct perf_counter_context *ctx)
521 {
522 list_add_counter(counter, ctx);
523 ctx->nr_counters++;
524 counter->prev_state = PERF_COUNTER_STATE_OFF;
525 counter->tstamp_enabled = ctx->time;
526 counter->tstamp_running = ctx->time;
527 counter->tstamp_stopped = ctx->time;
528 }
529
530 /*
531 * Cross CPU call to install and enable a performance counter
532 */
533 static void __perf_install_in_context(void *info)
534 {
535 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
536 struct perf_counter *counter = info;
537 struct perf_counter_context *ctx = counter->ctx;
538 struct perf_counter *leader = counter->group_leader;
539 int cpu = smp_processor_id();
540 unsigned long flags;
541 u64 perf_flags;
542 int err;
543
544 /*
545 * If this is a task context, we need to check whether it is
546 * the current task context of this cpu. If not it has been
547 * scheduled out before the smp call arrived.
548 */
549 if (ctx->task && cpuctx->task_ctx != ctx)
550 return;
551
552 spin_lock_irqsave(&ctx->lock, flags);
553 update_context_time(ctx);
554
555 /*
556 * Protect the list operation against NMI by disabling the
557 * counters on a global level. NOP for non NMI based counters.
558 */
559 perf_flags = hw_perf_save_disable();
560
561 add_counter_to_ctx(counter, ctx);
562
563 /*
564 * Don't put the counter on if it is disabled or if
565 * it is in a group and the group isn't on.
566 */
567 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
568 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
569 goto unlock;
570
571 /*
572 * An exclusive counter can't go on if there are already active
573 * hardware counters, and no hardware counter can go on if there
574 * is already an exclusive counter on.
575 */
576 if (!group_can_go_on(counter, cpuctx, 1))
577 err = -EEXIST;
578 else
579 err = counter_sched_in(counter, cpuctx, ctx, cpu);
580
581 if (err) {
582 /*
583 * This counter couldn't go on. If it is in a group
584 * then we have to pull the whole group off.
585 * If the counter group is pinned then put it in error state.
586 */
587 if (leader != counter)
588 group_sched_out(leader, cpuctx, ctx);
589 if (leader->hw_event.pinned) {
590 update_group_times(leader);
591 leader->state = PERF_COUNTER_STATE_ERROR;
592 }
593 }
594
595 if (!err && !ctx->task && cpuctx->max_pertask)
596 cpuctx->max_pertask--;
597
598 unlock:
599 hw_perf_restore(perf_flags);
600
601 spin_unlock_irqrestore(&ctx->lock, flags);
602 }
603
604 /*
605 * Attach a performance counter to a context
606 *
607 * First we add the counter to the list with the hardware enable bit
608 * in counter->hw_config cleared.
609 *
610 * If the counter is attached to a task which is on a CPU we use a smp
611 * call to enable it in the task context. The task might have been
612 * scheduled away, but we check this in the smp call again.
613 *
614 * Must be called with ctx->mutex held.
615 */
616 static void
617 perf_install_in_context(struct perf_counter_context *ctx,
618 struct perf_counter *counter,
619 int cpu)
620 {
621 struct task_struct *task = ctx->task;
622
623 if (!task) {
624 /*
625 * Per cpu counters are installed via an smp call and
626 * the install is always sucessful.
627 */
628 smp_call_function_single(cpu, __perf_install_in_context,
629 counter, 1);
630 return;
631 }
632
633 counter->task = task;
634 retry:
635 task_oncpu_function_call(task, __perf_install_in_context,
636 counter);
637
638 spin_lock_irq(&ctx->lock);
639 /*
640 * we need to retry the smp call.
641 */
642 if (ctx->is_active && list_empty(&counter->list_entry)) {
643 spin_unlock_irq(&ctx->lock);
644 goto retry;
645 }
646
647 /*
648 * The lock prevents that this context is scheduled in so we
649 * can add the counter safely, if it the call above did not
650 * succeed.
651 */
652 if (list_empty(&counter->list_entry))
653 add_counter_to_ctx(counter, ctx);
654 spin_unlock_irq(&ctx->lock);
655 }
656
657 /*
658 * Cross CPU call to enable a performance counter
659 */
660 static void __perf_counter_enable(void *info)
661 {
662 struct perf_counter *counter = info;
663 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
664 struct perf_counter_context *ctx = counter->ctx;
665 struct perf_counter *leader = counter->group_leader;
666 unsigned long flags;
667 int err;
668
669 /*
670 * If this is a per-task counter, need to check whether this
671 * counter's task is the current task on this cpu.
672 */
673 if (ctx->task && cpuctx->task_ctx != ctx)
674 return;
675
676 spin_lock_irqsave(&ctx->lock, flags);
677 update_context_time(ctx);
678
679 counter->prev_state = counter->state;
680 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
681 goto unlock;
682 counter->state = PERF_COUNTER_STATE_INACTIVE;
683 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
684
685 /*
686 * If the counter is in a group and isn't the group leader,
687 * then don't put it on unless the group is on.
688 */
689 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
690 goto unlock;
691
692 if (!group_can_go_on(counter, cpuctx, 1))
693 err = -EEXIST;
694 else if (counter == leader)
695 err = group_sched_in(counter, cpuctx, ctx,
696 smp_processor_id());
697 else
698 err = counter_sched_in(counter, cpuctx, ctx,
699 smp_processor_id());
700
701 if (err) {
702 /*
703 * If this counter can't go on and it's part of a
704 * group, then the whole group has to come off.
705 */
706 if (leader != counter)
707 group_sched_out(leader, cpuctx, ctx);
708 if (leader->hw_event.pinned) {
709 update_group_times(leader);
710 leader->state = PERF_COUNTER_STATE_ERROR;
711 }
712 }
713
714 unlock:
715 spin_unlock_irqrestore(&ctx->lock, flags);
716 }
717
718 /*
719 * Enable a counter.
720 */
721 static void perf_counter_enable(struct perf_counter *counter)
722 {
723 struct perf_counter_context *ctx = counter->ctx;
724 struct task_struct *task = ctx->task;
725
726 if (!task) {
727 /*
728 * Enable the counter on the cpu that it's on
729 */
730 smp_call_function_single(counter->cpu, __perf_counter_enable,
731 counter, 1);
732 return;
733 }
734
735 spin_lock_irq(&ctx->lock);
736 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
737 goto out;
738
739 /*
740 * If the counter is in error state, clear that first.
741 * That way, if we see the counter in error state below, we
742 * know that it has gone back into error state, as distinct
743 * from the task having been scheduled away before the
744 * cross-call arrived.
745 */
746 if (counter->state == PERF_COUNTER_STATE_ERROR)
747 counter->state = PERF_COUNTER_STATE_OFF;
748
749 retry:
750 spin_unlock_irq(&ctx->lock);
751 task_oncpu_function_call(task, __perf_counter_enable, counter);
752
753 spin_lock_irq(&ctx->lock);
754
755 /*
756 * If the context is active and the counter is still off,
757 * we need to retry the cross-call.
758 */
759 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
760 goto retry;
761
762 /*
763 * Since we have the lock this context can't be scheduled
764 * in, so we can change the state safely.
765 */
766 if (counter->state == PERF_COUNTER_STATE_OFF) {
767 counter->state = PERF_COUNTER_STATE_INACTIVE;
768 counter->tstamp_enabled =
769 ctx->time - counter->total_time_enabled;
770 }
771 out:
772 spin_unlock_irq(&ctx->lock);
773 }
774
775 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
776 {
777 /*
778 * not supported on inherited counters
779 */
780 if (counter->hw_event.inherit)
781 return -EINVAL;
782
783 atomic_add(refresh, &counter->event_limit);
784 perf_counter_enable(counter);
785
786 return 0;
787 }
788
789 void __perf_counter_sched_out(struct perf_counter_context *ctx,
790 struct perf_cpu_context *cpuctx)
791 {
792 struct perf_counter *counter;
793 u64 flags;
794
795 spin_lock(&ctx->lock);
796 ctx->is_active = 0;
797 if (likely(!ctx->nr_counters))
798 goto out;
799 update_context_time(ctx);
800
801 flags = hw_perf_save_disable();
802 if (ctx->nr_active) {
803 list_for_each_entry(counter, &ctx->counter_list, list_entry)
804 group_sched_out(counter, cpuctx, ctx);
805 }
806 hw_perf_restore(flags);
807 out:
808 spin_unlock(&ctx->lock);
809 }
810
811 /*
812 * Called from scheduler to remove the counters of the current task,
813 * with interrupts disabled.
814 *
815 * We stop each counter and update the counter value in counter->count.
816 *
817 * This does not protect us against NMI, but disable()
818 * sets the disabled bit in the control field of counter _before_
819 * accessing the counter control register. If a NMI hits, then it will
820 * not restart the counter.
821 */
822 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
823 {
824 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
825 struct perf_counter_context *ctx = &task->perf_counter_ctx;
826 struct pt_regs *regs;
827
828 if (likely(!cpuctx->task_ctx))
829 return;
830
831 update_context_time(ctx);
832
833 regs = task_pt_regs(task);
834 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
835 __perf_counter_sched_out(ctx, cpuctx);
836
837 cpuctx->task_ctx = NULL;
838 }
839
840 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
841 {
842 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
843
844 __perf_counter_sched_out(ctx, cpuctx);
845 cpuctx->task_ctx = NULL;
846 }
847
848 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
849 {
850 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
851 }
852
853 static void
854 __perf_counter_sched_in(struct perf_counter_context *ctx,
855 struct perf_cpu_context *cpuctx, int cpu)
856 {
857 struct perf_counter *counter;
858 u64 flags;
859 int can_add_hw = 1;
860
861 spin_lock(&ctx->lock);
862 ctx->is_active = 1;
863 if (likely(!ctx->nr_counters))
864 goto out;
865
866 ctx->timestamp = perf_clock();
867
868 flags = hw_perf_save_disable();
869
870 /*
871 * First go through the list and put on any pinned groups
872 * in order to give them the best chance of going on.
873 */
874 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
875 if (counter->state <= PERF_COUNTER_STATE_OFF ||
876 !counter->hw_event.pinned)
877 continue;
878 if (counter->cpu != -1 && counter->cpu != cpu)
879 continue;
880
881 if (group_can_go_on(counter, cpuctx, 1))
882 group_sched_in(counter, cpuctx, ctx, cpu);
883
884 /*
885 * If this pinned group hasn't been scheduled,
886 * put it in error state.
887 */
888 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
889 update_group_times(counter);
890 counter->state = PERF_COUNTER_STATE_ERROR;
891 }
892 }
893
894 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
895 /*
896 * Ignore counters in OFF or ERROR state, and
897 * ignore pinned counters since we did them already.
898 */
899 if (counter->state <= PERF_COUNTER_STATE_OFF ||
900 counter->hw_event.pinned)
901 continue;
902
903 /*
904 * Listen to the 'cpu' scheduling filter constraint
905 * of counters:
906 */
907 if (counter->cpu != -1 && counter->cpu != cpu)
908 continue;
909
910 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
911 if (group_sched_in(counter, cpuctx, ctx, cpu))
912 can_add_hw = 0;
913 }
914 }
915 hw_perf_restore(flags);
916 out:
917 spin_unlock(&ctx->lock);
918 }
919
920 /*
921 * Called from scheduler to add the counters of the current task
922 * with interrupts disabled.
923 *
924 * We restore the counter value and then enable it.
925 *
926 * This does not protect us against NMI, but enable()
927 * sets the enabled bit in the control field of counter _before_
928 * accessing the counter control register. If a NMI hits, then it will
929 * keep the counter running.
930 */
931 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
932 {
933 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
934 struct perf_counter_context *ctx = &task->perf_counter_ctx;
935
936 __perf_counter_sched_in(ctx, cpuctx, cpu);
937 cpuctx->task_ctx = ctx;
938 }
939
940 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
941 {
942 struct perf_counter_context *ctx = &cpuctx->ctx;
943
944 __perf_counter_sched_in(ctx, cpuctx, cpu);
945 }
946
947 int perf_counter_task_disable(void)
948 {
949 struct task_struct *curr = current;
950 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
951 struct perf_counter *counter;
952 unsigned long flags;
953 u64 perf_flags;
954
955 if (likely(!ctx->nr_counters))
956 return 0;
957
958 local_irq_save(flags);
959
960 __perf_counter_task_sched_out(ctx);
961
962 spin_lock(&ctx->lock);
963
964 /*
965 * Disable all the counters:
966 */
967 perf_flags = hw_perf_save_disable();
968
969 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
970 if (counter->state != PERF_COUNTER_STATE_ERROR) {
971 update_group_times(counter);
972 counter->state = PERF_COUNTER_STATE_OFF;
973 }
974 }
975
976 hw_perf_restore(perf_flags);
977
978 spin_unlock_irqrestore(&ctx->lock, flags);
979
980 return 0;
981 }
982
983 int perf_counter_task_enable(void)
984 {
985 struct task_struct *curr = current;
986 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
987 struct perf_counter *counter;
988 unsigned long flags;
989 u64 perf_flags;
990 int cpu;
991
992 if (likely(!ctx->nr_counters))
993 return 0;
994
995 local_irq_save(flags);
996 cpu = smp_processor_id();
997
998 __perf_counter_task_sched_out(ctx);
999
1000 spin_lock(&ctx->lock);
1001
1002 /*
1003 * Disable all the counters:
1004 */
1005 perf_flags = hw_perf_save_disable();
1006
1007 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1008 if (counter->state > PERF_COUNTER_STATE_OFF)
1009 continue;
1010 counter->state = PERF_COUNTER_STATE_INACTIVE;
1011 counter->tstamp_enabled =
1012 ctx->time - counter->total_time_enabled;
1013 counter->hw_event.disabled = 0;
1014 }
1015 hw_perf_restore(perf_flags);
1016
1017 spin_unlock(&ctx->lock);
1018
1019 perf_counter_task_sched_in(curr, cpu);
1020
1021 local_irq_restore(flags);
1022
1023 return 0;
1024 }
1025
1026 /*
1027 * Round-robin a context's counters:
1028 */
1029 static void rotate_ctx(struct perf_counter_context *ctx)
1030 {
1031 struct perf_counter *counter;
1032 u64 perf_flags;
1033
1034 if (!ctx->nr_counters)
1035 return;
1036
1037 spin_lock(&ctx->lock);
1038 /*
1039 * Rotate the first entry last (works just fine for group counters too):
1040 */
1041 perf_flags = hw_perf_save_disable();
1042 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1043 list_move_tail(&counter->list_entry, &ctx->counter_list);
1044 break;
1045 }
1046 hw_perf_restore(perf_flags);
1047
1048 spin_unlock(&ctx->lock);
1049 }
1050
1051 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1052 {
1053 struct perf_cpu_context *cpuctx;
1054 struct perf_counter_context *ctx;
1055
1056 if (!atomic_read(&nr_counters))
1057 return;
1058
1059 cpuctx = &per_cpu(perf_cpu_context, cpu);
1060 ctx = &curr->perf_counter_ctx;
1061
1062 perf_counter_cpu_sched_out(cpuctx);
1063 __perf_counter_task_sched_out(ctx);
1064
1065 rotate_ctx(&cpuctx->ctx);
1066 rotate_ctx(ctx);
1067
1068 perf_counter_cpu_sched_in(cpuctx, cpu);
1069 perf_counter_task_sched_in(curr, cpu);
1070 }
1071
1072 /*
1073 * Cross CPU call to read the hardware counter
1074 */
1075 static void __read(void *info)
1076 {
1077 struct perf_counter *counter = info;
1078 struct perf_counter_context *ctx = counter->ctx;
1079 unsigned long flags;
1080
1081 local_irq_save(flags);
1082 if (ctx->is_active)
1083 update_context_time(ctx);
1084 counter->pmu->read(counter);
1085 update_counter_times(counter);
1086 local_irq_restore(flags);
1087 }
1088
1089 static u64 perf_counter_read(struct perf_counter *counter)
1090 {
1091 /*
1092 * If counter is enabled and currently active on a CPU, update the
1093 * value in the counter structure:
1094 */
1095 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1096 smp_call_function_single(counter->oncpu,
1097 __read, counter, 1);
1098 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1099 update_counter_times(counter);
1100 }
1101
1102 return atomic64_read(&counter->count);
1103 }
1104
1105 static void put_context(struct perf_counter_context *ctx)
1106 {
1107 if (ctx->task)
1108 put_task_struct(ctx->task);
1109 }
1110
1111 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1112 {
1113 struct perf_cpu_context *cpuctx;
1114 struct perf_counter_context *ctx;
1115 struct task_struct *task;
1116
1117 /*
1118 * If cpu is not a wildcard then this is a percpu counter:
1119 */
1120 if (cpu != -1) {
1121 /* Must be root to operate on a CPU counter: */
1122 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1123 return ERR_PTR(-EACCES);
1124
1125 if (cpu < 0 || cpu > num_possible_cpus())
1126 return ERR_PTR(-EINVAL);
1127
1128 /*
1129 * We could be clever and allow to attach a counter to an
1130 * offline CPU and activate it when the CPU comes up, but
1131 * that's for later.
1132 */
1133 if (!cpu_isset(cpu, cpu_online_map))
1134 return ERR_PTR(-ENODEV);
1135
1136 cpuctx = &per_cpu(perf_cpu_context, cpu);
1137 ctx = &cpuctx->ctx;
1138
1139 return ctx;
1140 }
1141
1142 rcu_read_lock();
1143 if (!pid)
1144 task = current;
1145 else
1146 task = find_task_by_vpid(pid);
1147 if (task)
1148 get_task_struct(task);
1149 rcu_read_unlock();
1150
1151 if (!task)
1152 return ERR_PTR(-ESRCH);
1153
1154 ctx = &task->perf_counter_ctx;
1155 ctx->task = task;
1156
1157 /* Reuse ptrace permission checks for now. */
1158 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1159 put_context(ctx);
1160 return ERR_PTR(-EACCES);
1161 }
1162
1163 return ctx;
1164 }
1165
1166 static void free_counter_rcu(struct rcu_head *head)
1167 {
1168 struct perf_counter *counter;
1169
1170 counter = container_of(head, struct perf_counter, rcu_head);
1171 kfree(counter);
1172 }
1173
1174 static void perf_pending_sync(struct perf_counter *counter);
1175
1176 static void free_counter(struct perf_counter *counter)
1177 {
1178 perf_pending_sync(counter);
1179
1180 atomic_dec(&nr_counters);
1181 if (counter->hw_event.mmap)
1182 atomic_dec(&nr_mmap_tracking);
1183 if (counter->hw_event.munmap)
1184 atomic_dec(&nr_munmap_tracking);
1185 if (counter->hw_event.comm)
1186 atomic_dec(&nr_comm_tracking);
1187
1188 if (counter->destroy)
1189 counter->destroy(counter);
1190
1191 call_rcu(&counter->rcu_head, free_counter_rcu);
1192 }
1193
1194 /*
1195 * Called when the last reference to the file is gone.
1196 */
1197 static int perf_release(struct inode *inode, struct file *file)
1198 {
1199 struct perf_counter *counter = file->private_data;
1200 struct perf_counter_context *ctx = counter->ctx;
1201
1202 file->private_data = NULL;
1203
1204 mutex_lock(&ctx->mutex);
1205 mutex_lock(&counter->mutex);
1206
1207 perf_counter_remove_from_context(counter);
1208
1209 mutex_unlock(&counter->mutex);
1210 mutex_unlock(&ctx->mutex);
1211
1212 free_counter(counter);
1213 put_context(ctx);
1214
1215 return 0;
1216 }
1217
1218 /*
1219 * Read the performance counter - simple non blocking version for now
1220 */
1221 static ssize_t
1222 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1223 {
1224 u64 values[3];
1225 int n;
1226
1227 /*
1228 * Return end-of-file for a read on a counter that is in
1229 * error state (i.e. because it was pinned but it couldn't be
1230 * scheduled on to the CPU at some point).
1231 */
1232 if (counter->state == PERF_COUNTER_STATE_ERROR)
1233 return 0;
1234
1235 mutex_lock(&counter->mutex);
1236 values[0] = perf_counter_read(counter);
1237 n = 1;
1238 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1239 values[n++] = counter->total_time_enabled +
1240 atomic64_read(&counter->child_total_time_enabled);
1241 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1242 values[n++] = counter->total_time_running +
1243 atomic64_read(&counter->child_total_time_running);
1244 mutex_unlock(&counter->mutex);
1245
1246 if (count < n * sizeof(u64))
1247 return -EINVAL;
1248 count = n * sizeof(u64);
1249
1250 if (copy_to_user(buf, values, count))
1251 return -EFAULT;
1252
1253 return count;
1254 }
1255
1256 static ssize_t
1257 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1258 {
1259 struct perf_counter *counter = file->private_data;
1260
1261 return perf_read_hw(counter, buf, count);
1262 }
1263
1264 static unsigned int perf_poll(struct file *file, poll_table *wait)
1265 {
1266 struct perf_counter *counter = file->private_data;
1267 struct perf_mmap_data *data;
1268 unsigned int events = POLL_HUP;
1269
1270 rcu_read_lock();
1271 data = rcu_dereference(counter->data);
1272 if (data)
1273 events = atomic_xchg(&data->poll, 0);
1274 rcu_read_unlock();
1275
1276 poll_wait(file, &counter->waitq, wait);
1277
1278 return events;
1279 }
1280
1281 static void perf_counter_reset(struct perf_counter *counter)
1282 {
1283 (void)perf_counter_read(counter);
1284 atomic64_set(&counter->count, 0);
1285 perf_counter_update_userpage(counter);
1286 }
1287
1288 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1289 void (*func)(struct perf_counter *))
1290 {
1291 struct perf_counter_context *ctx = counter->ctx;
1292 struct perf_counter *sibling;
1293
1294 spin_lock_irq(&ctx->lock);
1295 counter = counter->group_leader;
1296
1297 func(counter);
1298 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1299 func(sibling);
1300 spin_unlock_irq(&ctx->lock);
1301 }
1302
1303 static void perf_counter_for_each_child(struct perf_counter *counter,
1304 void (*func)(struct perf_counter *))
1305 {
1306 struct perf_counter *child;
1307
1308 mutex_lock(&counter->mutex);
1309 func(counter);
1310 list_for_each_entry(child, &counter->child_list, child_list)
1311 func(child);
1312 mutex_unlock(&counter->mutex);
1313 }
1314
1315 static void perf_counter_for_each(struct perf_counter *counter,
1316 void (*func)(struct perf_counter *))
1317 {
1318 struct perf_counter *child;
1319
1320 mutex_lock(&counter->mutex);
1321 perf_counter_for_each_sibling(counter, func);
1322 list_for_each_entry(child, &counter->child_list, child_list)
1323 perf_counter_for_each_sibling(child, func);
1324 mutex_unlock(&counter->mutex);
1325 }
1326
1327 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1328 {
1329 struct perf_counter *counter = file->private_data;
1330 void (*func)(struct perf_counter *);
1331 u32 flags = arg;
1332
1333 switch (cmd) {
1334 case PERF_COUNTER_IOC_ENABLE:
1335 func = perf_counter_enable;
1336 break;
1337 case PERF_COUNTER_IOC_DISABLE:
1338 func = perf_counter_disable;
1339 break;
1340 case PERF_COUNTER_IOC_RESET:
1341 func = perf_counter_reset;
1342 break;
1343
1344 case PERF_COUNTER_IOC_REFRESH:
1345 return perf_counter_refresh(counter, arg);
1346 default:
1347 return -ENOTTY;
1348 }
1349
1350 if (flags & PERF_IOC_FLAG_GROUP)
1351 perf_counter_for_each(counter, func);
1352 else
1353 perf_counter_for_each_child(counter, func);
1354
1355 return 0;
1356 }
1357
1358 /*
1359 * Callers need to ensure there can be no nesting of this function, otherwise
1360 * the seqlock logic goes bad. We can not serialize this because the arch
1361 * code calls this from NMI context.
1362 */
1363 void perf_counter_update_userpage(struct perf_counter *counter)
1364 {
1365 struct perf_mmap_data *data;
1366 struct perf_counter_mmap_page *userpg;
1367
1368 rcu_read_lock();
1369 data = rcu_dereference(counter->data);
1370 if (!data)
1371 goto unlock;
1372
1373 userpg = data->user_page;
1374
1375 /*
1376 * Disable preemption so as to not let the corresponding user-space
1377 * spin too long if we get preempted.
1378 */
1379 preempt_disable();
1380 ++userpg->lock;
1381 barrier();
1382 userpg->index = counter->hw.idx;
1383 userpg->offset = atomic64_read(&counter->count);
1384 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1385 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1386
1387 barrier();
1388 ++userpg->lock;
1389 preempt_enable();
1390 unlock:
1391 rcu_read_unlock();
1392 }
1393
1394 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1395 {
1396 struct perf_counter *counter = vma->vm_file->private_data;
1397 struct perf_mmap_data *data;
1398 int ret = VM_FAULT_SIGBUS;
1399
1400 rcu_read_lock();
1401 data = rcu_dereference(counter->data);
1402 if (!data)
1403 goto unlock;
1404
1405 if (vmf->pgoff == 0) {
1406 vmf->page = virt_to_page(data->user_page);
1407 } else {
1408 int nr = vmf->pgoff - 1;
1409
1410 if ((unsigned)nr > data->nr_pages)
1411 goto unlock;
1412
1413 vmf->page = virt_to_page(data->data_pages[nr]);
1414 }
1415 get_page(vmf->page);
1416 ret = 0;
1417 unlock:
1418 rcu_read_unlock();
1419
1420 return ret;
1421 }
1422
1423 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1424 {
1425 struct perf_mmap_data *data;
1426 unsigned long size;
1427 int i;
1428
1429 WARN_ON(atomic_read(&counter->mmap_count));
1430
1431 size = sizeof(struct perf_mmap_data);
1432 size += nr_pages * sizeof(void *);
1433
1434 data = kzalloc(size, GFP_KERNEL);
1435 if (!data)
1436 goto fail;
1437
1438 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1439 if (!data->user_page)
1440 goto fail_user_page;
1441
1442 for (i = 0; i < nr_pages; i++) {
1443 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1444 if (!data->data_pages[i])
1445 goto fail_data_pages;
1446 }
1447
1448 data->nr_pages = nr_pages;
1449 atomic_set(&data->lock, -1);
1450
1451 rcu_assign_pointer(counter->data, data);
1452
1453 return 0;
1454
1455 fail_data_pages:
1456 for (i--; i >= 0; i--)
1457 free_page((unsigned long)data->data_pages[i]);
1458
1459 free_page((unsigned long)data->user_page);
1460
1461 fail_user_page:
1462 kfree(data);
1463
1464 fail:
1465 return -ENOMEM;
1466 }
1467
1468 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1469 {
1470 struct perf_mmap_data *data = container_of(rcu_head,
1471 struct perf_mmap_data, rcu_head);
1472 int i;
1473
1474 free_page((unsigned long)data->user_page);
1475 for (i = 0; i < data->nr_pages; i++)
1476 free_page((unsigned long)data->data_pages[i]);
1477 kfree(data);
1478 }
1479
1480 static void perf_mmap_data_free(struct perf_counter *counter)
1481 {
1482 struct perf_mmap_data *data = counter->data;
1483
1484 WARN_ON(atomic_read(&counter->mmap_count));
1485
1486 rcu_assign_pointer(counter->data, NULL);
1487 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1488 }
1489
1490 static void perf_mmap_open(struct vm_area_struct *vma)
1491 {
1492 struct perf_counter *counter = vma->vm_file->private_data;
1493
1494 atomic_inc(&counter->mmap_count);
1495 }
1496
1497 static void perf_mmap_close(struct vm_area_struct *vma)
1498 {
1499 struct perf_counter *counter = vma->vm_file->private_data;
1500
1501 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1502 &counter->mmap_mutex)) {
1503 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1504 perf_mmap_data_free(counter);
1505 mutex_unlock(&counter->mmap_mutex);
1506 }
1507 }
1508
1509 static struct vm_operations_struct perf_mmap_vmops = {
1510 .open = perf_mmap_open,
1511 .close = perf_mmap_close,
1512 .fault = perf_mmap_fault,
1513 };
1514
1515 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1516 {
1517 struct perf_counter *counter = file->private_data;
1518 unsigned long vma_size;
1519 unsigned long nr_pages;
1520 unsigned long locked, lock_limit;
1521 int ret = 0;
1522 long extra;
1523
1524 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1525 return -EINVAL;
1526
1527 vma_size = vma->vm_end - vma->vm_start;
1528 nr_pages = (vma_size / PAGE_SIZE) - 1;
1529
1530 /*
1531 * If we have data pages ensure they're a power-of-two number, so we
1532 * can do bitmasks instead of modulo.
1533 */
1534 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1535 return -EINVAL;
1536
1537 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1538 return -EINVAL;
1539
1540 if (vma->vm_pgoff != 0)
1541 return -EINVAL;
1542
1543 mutex_lock(&counter->mmap_mutex);
1544 if (atomic_inc_not_zero(&counter->mmap_count)) {
1545 if (nr_pages != counter->data->nr_pages)
1546 ret = -EINVAL;
1547 goto unlock;
1548 }
1549
1550 extra = nr_pages /* + 1 only account the data pages */;
1551 extra -= sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1552 if (extra < 0)
1553 extra = 0;
1554
1555 locked = vma->vm_mm->locked_vm + extra;
1556
1557 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1558 lock_limit >>= PAGE_SHIFT;
1559
1560 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1561 ret = -EPERM;
1562 goto unlock;
1563 }
1564
1565 WARN_ON(counter->data);
1566 ret = perf_mmap_data_alloc(counter, nr_pages);
1567 if (ret)
1568 goto unlock;
1569
1570 atomic_set(&counter->mmap_count, 1);
1571 vma->vm_mm->locked_vm += extra;
1572 counter->data->nr_locked = extra;
1573 unlock:
1574 mutex_unlock(&counter->mmap_mutex);
1575
1576 vma->vm_flags &= ~VM_MAYWRITE;
1577 vma->vm_flags |= VM_RESERVED;
1578 vma->vm_ops = &perf_mmap_vmops;
1579
1580 return ret;
1581 }
1582
1583 static int perf_fasync(int fd, struct file *filp, int on)
1584 {
1585 struct perf_counter *counter = filp->private_data;
1586 struct inode *inode = filp->f_path.dentry->d_inode;
1587 int retval;
1588
1589 mutex_lock(&inode->i_mutex);
1590 retval = fasync_helper(fd, filp, on, &counter->fasync);
1591 mutex_unlock(&inode->i_mutex);
1592
1593 if (retval < 0)
1594 return retval;
1595
1596 return 0;
1597 }
1598
1599 static const struct file_operations perf_fops = {
1600 .release = perf_release,
1601 .read = perf_read,
1602 .poll = perf_poll,
1603 .unlocked_ioctl = perf_ioctl,
1604 .compat_ioctl = perf_ioctl,
1605 .mmap = perf_mmap,
1606 .fasync = perf_fasync,
1607 };
1608
1609 /*
1610 * Perf counter wakeup
1611 *
1612 * If there's data, ensure we set the poll() state and publish everything
1613 * to user-space before waking everybody up.
1614 */
1615
1616 void perf_counter_wakeup(struct perf_counter *counter)
1617 {
1618 wake_up_all(&counter->waitq);
1619
1620 if (counter->pending_kill) {
1621 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1622 counter->pending_kill = 0;
1623 }
1624 }
1625
1626 /*
1627 * Pending wakeups
1628 *
1629 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1630 *
1631 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1632 * single linked list and use cmpxchg() to add entries lockless.
1633 */
1634
1635 static void perf_pending_counter(struct perf_pending_entry *entry)
1636 {
1637 struct perf_counter *counter = container_of(entry,
1638 struct perf_counter, pending);
1639
1640 if (counter->pending_disable) {
1641 counter->pending_disable = 0;
1642 perf_counter_disable(counter);
1643 }
1644
1645 if (counter->pending_wakeup) {
1646 counter->pending_wakeup = 0;
1647 perf_counter_wakeup(counter);
1648 }
1649 }
1650
1651 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1652
1653 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1654 PENDING_TAIL,
1655 };
1656
1657 static void perf_pending_queue(struct perf_pending_entry *entry,
1658 void (*func)(struct perf_pending_entry *))
1659 {
1660 struct perf_pending_entry **head;
1661
1662 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1663 return;
1664
1665 entry->func = func;
1666
1667 head = &get_cpu_var(perf_pending_head);
1668
1669 do {
1670 entry->next = *head;
1671 } while (cmpxchg(head, entry->next, entry) != entry->next);
1672
1673 set_perf_counter_pending();
1674
1675 put_cpu_var(perf_pending_head);
1676 }
1677
1678 static int __perf_pending_run(void)
1679 {
1680 struct perf_pending_entry *list;
1681 int nr = 0;
1682
1683 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1684 while (list != PENDING_TAIL) {
1685 void (*func)(struct perf_pending_entry *);
1686 struct perf_pending_entry *entry = list;
1687
1688 list = list->next;
1689
1690 func = entry->func;
1691 entry->next = NULL;
1692 /*
1693 * Ensure we observe the unqueue before we issue the wakeup,
1694 * so that we won't be waiting forever.
1695 * -- see perf_not_pending().
1696 */
1697 smp_wmb();
1698
1699 func(entry);
1700 nr++;
1701 }
1702
1703 return nr;
1704 }
1705
1706 static inline int perf_not_pending(struct perf_counter *counter)
1707 {
1708 /*
1709 * If we flush on whatever cpu we run, there is a chance we don't
1710 * need to wait.
1711 */
1712 get_cpu();
1713 __perf_pending_run();
1714 put_cpu();
1715
1716 /*
1717 * Ensure we see the proper queue state before going to sleep
1718 * so that we do not miss the wakeup. -- see perf_pending_handle()
1719 */
1720 smp_rmb();
1721 return counter->pending.next == NULL;
1722 }
1723
1724 static void perf_pending_sync(struct perf_counter *counter)
1725 {
1726 wait_event(counter->waitq, perf_not_pending(counter));
1727 }
1728
1729 void perf_counter_do_pending(void)
1730 {
1731 __perf_pending_run();
1732 }
1733
1734 /*
1735 * Callchain support -- arch specific
1736 */
1737
1738 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1739 {
1740 return NULL;
1741 }
1742
1743 /*
1744 * Output
1745 */
1746
1747 struct perf_output_handle {
1748 struct perf_counter *counter;
1749 struct perf_mmap_data *data;
1750 unsigned int offset;
1751 unsigned int head;
1752 int nmi;
1753 int overflow;
1754 int locked;
1755 unsigned long flags;
1756 };
1757
1758 static void perf_output_wakeup(struct perf_output_handle *handle)
1759 {
1760 atomic_set(&handle->data->poll, POLL_IN);
1761
1762 if (handle->nmi) {
1763 handle->counter->pending_wakeup = 1;
1764 perf_pending_queue(&handle->counter->pending,
1765 perf_pending_counter);
1766 } else
1767 perf_counter_wakeup(handle->counter);
1768 }
1769
1770 /*
1771 * Curious locking construct.
1772 *
1773 * We need to ensure a later event doesn't publish a head when a former
1774 * event isn't done writing. However since we need to deal with NMIs we
1775 * cannot fully serialize things.
1776 *
1777 * What we do is serialize between CPUs so we only have to deal with NMI
1778 * nesting on a single CPU.
1779 *
1780 * We only publish the head (and generate a wakeup) when the outer-most
1781 * event completes.
1782 */
1783 static void perf_output_lock(struct perf_output_handle *handle)
1784 {
1785 struct perf_mmap_data *data = handle->data;
1786 int cpu;
1787
1788 handle->locked = 0;
1789
1790 local_irq_save(handle->flags);
1791 cpu = smp_processor_id();
1792
1793 if (in_nmi() && atomic_read(&data->lock) == cpu)
1794 return;
1795
1796 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1797 cpu_relax();
1798
1799 handle->locked = 1;
1800 }
1801
1802 static void perf_output_unlock(struct perf_output_handle *handle)
1803 {
1804 struct perf_mmap_data *data = handle->data;
1805 int head, cpu;
1806
1807 data->done_head = data->head;
1808
1809 if (!handle->locked)
1810 goto out;
1811
1812 again:
1813 /*
1814 * The xchg implies a full barrier that ensures all writes are done
1815 * before we publish the new head, matched by a rmb() in userspace when
1816 * reading this position.
1817 */
1818 while ((head = atomic_xchg(&data->done_head, 0)))
1819 data->user_page->data_head = head;
1820
1821 /*
1822 * NMI can happen here, which means we can miss a done_head update.
1823 */
1824
1825 cpu = atomic_xchg(&data->lock, -1);
1826 WARN_ON_ONCE(cpu != smp_processor_id());
1827
1828 /*
1829 * Therefore we have to validate we did not indeed do so.
1830 */
1831 if (unlikely(atomic_read(&data->done_head))) {
1832 /*
1833 * Since we had it locked, we can lock it again.
1834 */
1835 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1836 cpu_relax();
1837
1838 goto again;
1839 }
1840
1841 if (atomic_xchg(&data->wakeup, 0))
1842 perf_output_wakeup(handle);
1843 out:
1844 local_irq_restore(handle->flags);
1845 }
1846
1847 static int perf_output_begin(struct perf_output_handle *handle,
1848 struct perf_counter *counter, unsigned int size,
1849 int nmi, int overflow)
1850 {
1851 struct perf_mmap_data *data;
1852 unsigned int offset, head;
1853
1854 /*
1855 * For inherited counters we send all the output towards the parent.
1856 */
1857 if (counter->parent)
1858 counter = counter->parent;
1859
1860 rcu_read_lock();
1861 data = rcu_dereference(counter->data);
1862 if (!data)
1863 goto out;
1864
1865 handle->data = data;
1866 handle->counter = counter;
1867 handle->nmi = nmi;
1868 handle->overflow = overflow;
1869
1870 if (!data->nr_pages)
1871 goto fail;
1872
1873 perf_output_lock(handle);
1874
1875 do {
1876 offset = head = atomic_read(&data->head);
1877 head += size;
1878 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1879
1880 handle->offset = offset;
1881 handle->head = head;
1882
1883 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
1884 atomic_set(&data->wakeup, 1);
1885
1886 return 0;
1887
1888 fail:
1889 perf_output_wakeup(handle);
1890 out:
1891 rcu_read_unlock();
1892
1893 return -ENOSPC;
1894 }
1895
1896 static void perf_output_copy(struct perf_output_handle *handle,
1897 void *buf, unsigned int len)
1898 {
1899 unsigned int pages_mask;
1900 unsigned int offset;
1901 unsigned int size;
1902 void **pages;
1903
1904 offset = handle->offset;
1905 pages_mask = handle->data->nr_pages - 1;
1906 pages = handle->data->data_pages;
1907
1908 do {
1909 unsigned int page_offset;
1910 int nr;
1911
1912 nr = (offset >> PAGE_SHIFT) & pages_mask;
1913 page_offset = offset & (PAGE_SIZE - 1);
1914 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1915
1916 memcpy(pages[nr] + page_offset, buf, size);
1917
1918 len -= size;
1919 buf += size;
1920 offset += size;
1921 } while (len);
1922
1923 handle->offset = offset;
1924
1925 WARN_ON_ONCE(handle->offset > handle->head);
1926 }
1927
1928 #define perf_output_put(handle, x) \
1929 perf_output_copy((handle), &(x), sizeof(x))
1930
1931 static void perf_output_end(struct perf_output_handle *handle)
1932 {
1933 struct perf_counter *counter = handle->counter;
1934 struct perf_mmap_data *data = handle->data;
1935
1936 int wakeup_events = counter->hw_event.wakeup_events;
1937
1938 if (handle->overflow && wakeup_events) {
1939 int events = atomic_inc_return(&data->events);
1940 if (events >= wakeup_events) {
1941 atomic_sub(wakeup_events, &data->events);
1942 atomic_set(&data->wakeup, 1);
1943 }
1944 }
1945
1946 perf_output_unlock(handle);
1947 rcu_read_unlock();
1948 }
1949
1950 static void perf_counter_output(struct perf_counter *counter,
1951 int nmi, struct pt_regs *regs, u64 addr)
1952 {
1953 int ret;
1954 u64 record_type = counter->hw_event.record_type;
1955 struct perf_output_handle handle;
1956 struct perf_event_header header;
1957 u64 ip;
1958 struct {
1959 u32 pid, tid;
1960 } tid_entry;
1961 struct {
1962 u64 event;
1963 u64 counter;
1964 } group_entry;
1965 struct perf_callchain_entry *callchain = NULL;
1966 int callchain_size = 0;
1967 u64 time;
1968 struct {
1969 u32 cpu, reserved;
1970 } cpu_entry;
1971
1972 header.type = 0;
1973 header.size = sizeof(header);
1974
1975 header.misc = PERF_EVENT_MISC_OVERFLOW;
1976 header.misc |= user_mode(regs) ?
1977 PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
1978
1979 if (record_type & PERF_RECORD_IP) {
1980 ip = instruction_pointer(regs);
1981 header.type |= PERF_RECORD_IP;
1982 header.size += sizeof(ip);
1983 }
1984
1985 if (record_type & PERF_RECORD_TID) {
1986 /* namespace issues */
1987 tid_entry.pid = current->group_leader->pid;
1988 tid_entry.tid = current->pid;
1989
1990 header.type |= PERF_RECORD_TID;
1991 header.size += sizeof(tid_entry);
1992 }
1993
1994 if (record_type & PERF_RECORD_TIME) {
1995 /*
1996 * Maybe do better on x86 and provide cpu_clock_nmi()
1997 */
1998 time = sched_clock();
1999
2000 header.type |= PERF_RECORD_TIME;
2001 header.size += sizeof(u64);
2002 }
2003
2004 if (record_type & PERF_RECORD_ADDR) {
2005 header.type |= PERF_RECORD_ADDR;
2006 header.size += sizeof(u64);
2007 }
2008
2009 if (record_type & PERF_RECORD_CONFIG) {
2010 header.type |= PERF_RECORD_CONFIG;
2011 header.size += sizeof(u64);
2012 }
2013
2014 if (record_type & PERF_RECORD_CPU) {
2015 header.type |= PERF_RECORD_CPU;
2016 header.size += sizeof(cpu_entry);
2017
2018 cpu_entry.cpu = raw_smp_processor_id();
2019 }
2020
2021 if (record_type & PERF_RECORD_GROUP) {
2022 header.type |= PERF_RECORD_GROUP;
2023 header.size += sizeof(u64) +
2024 counter->nr_siblings * sizeof(group_entry);
2025 }
2026
2027 if (record_type & PERF_RECORD_CALLCHAIN) {
2028 callchain = perf_callchain(regs);
2029
2030 if (callchain) {
2031 callchain_size = (1 + callchain->nr) * sizeof(u64);
2032
2033 header.type |= PERF_RECORD_CALLCHAIN;
2034 header.size += callchain_size;
2035 }
2036 }
2037
2038 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2039 if (ret)
2040 return;
2041
2042 perf_output_put(&handle, header);
2043
2044 if (record_type & PERF_RECORD_IP)
2045 perf_output_put(&handle, ip);
2046
2047 if (record_type & PERF_RECORD_TID)
2048 perf_output_put(&handle, tid_entry);
2049
2050 if (record_type & PERF_RECORD_TIME)
2051 perf_output_put(&handle, time);
2052
2053 if (record_type & PERF_RECORD_ADDR)
2054 perf_output_put(&handle, addr);
2055
2056 if (record_type & PERF_RECORD_CONFIG)
2057 perf_output_put(&handle, counter->hw_event.config);
2058
2059 if (record_type & PERF_RECORD_CPU)
2060 perf_output_put(&handle, cpu_entry);
2061
2062 /*
2063 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2064 */
2065 if (record_type & PERF_RECORD_GROUP) {
2066 struct perf_counter *leader, *sub;
2067 u64 nr = counter->nr_siblings;
2068
2069 perf_output_put(&handle, nr);
2070
2071 leader = counter->group_leader;
2072 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2073 if (sub != counter)
2074 sub->pmu->read(sub);
2075
2076 group_entry.event = sub->hw_event.config;
2077 group_entry.counter = atomic64_read(&sub->count);
2078
2079 perf_output_put(&handle, group_entry);
2080 }
2081 }
2082
2083 if (callchain)
2084 perf_output_copy(&handle, callchain, callchain_size);
2085
2086 perf_output_end(&handle);
2087 }
2088
2089 /*
2090 * comm tracking
2091 */
2092
2093 struct perf_comm_event {
2094 struct task_struct *task;
2095 char *comm;
2096 int comm_size;
2097
2098 struct {
2099 struct perf_event_header header;
2100
2101 u32 pid;
2102 u32 tid;
2103 } event;
2104 };
2105
2106 static void perf_counter_comm_output(struct perf_counter *counter,
2107 struct perf_comm_event *comm_event)
2108 {
2109 struct perf_output_handle handle;
2110 int size = comm_event->event.header.size;
2111 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2112
2113 if (ret)
2114 return;
2115
2116 perf_output_put(&handle, comm_event->event);
2117 perf_output_copy(&handle, comm_event->comm,
2118 comm_event->comm_size);
2119 perf_output_end(&handle);
2120 }
2121
2122 static int perf_counter_comm_match(struct perf_counter *counter,
2123 struct perf_comm_event *comm_event)
2124 {
2125 if (counter->hw_event.comm &&
2126 comm_event->event.header.type == PERF_EVENT_COMM)
2127 return 1;
2128
2129 return 0;
2130 }
2131
2132 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2133 struct perf_comm_event *comm_event)
2134 {
2135 struct perf_counter *counter;
2136
2137 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2138 return;
2139
2140 rcu_read_lock();
2141 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2142 if (perf_counter_comm_match(counter, comm_event))
2143 perf_counter_comm_output(counter, comm_event);
2144 }
2145 rcu_read_unlock();
2146 }
2147
2148 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2149 {
2150 struct perf_cpu_context *cpuctx;
2151 unsigned int size;
2152 char *comm = comm_event->task->comm;
2153
2154 size = ALIGN(strlen(comm)+1, sizeof(u64));
2155
2156 comm_event->comm = comm;
2157 comm_event->comm_size = size;
2158
2159 comm_event->event.header.size = sizeof(comm_event->event) + size;
2160
2161 cpuctx = &get_cpu_var(perf_cpu_context);
2162 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2163 put_cpu_var(perf_cpu_context);
2164
2165 perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2166 }
2167
2168 void perf_counter_comm(struct task_struct *task)
2169 {
2170 struct perf_comm_event comm_event;
2171
2172 if (!atomic_read(&nr_comm_tracking))
2173 return;
2174
2175 comm_event = (struct perf_comm_event){
2176 .task = task,
2177 .event = {
2178 .header = { .type = PERF_EVENT_COMM, },
2179 .pid = task->group_leader->pid,
2180 .tid = task->pid,
2181 },
2182 };
2183
2184 perf_counter_comm_event(&comm_event);
2185 }
2186
2187 /*
2188 * mmap tracking
2189 */
2190
2191 struct perf_mmap_event {
2192 struct file *file;
2193 char *file_name;
2194 int file_size;
2195
2196 struct {
2197 struct perf_event_header header;
2198
2199 u32 pid;
2200 u32 tid;
2201 u64 start;
2202 u64 len;
2203 u64 pgoff;
2204 } event;
2205 };
2206
2207 static void perf_counter_mmap_output(struct perf_counter *counter,
2208 struct perf_mmap_event *mmap_event)
2209 {
2210 struct perf_output_handle handle;
2211 int size = mmap_event->event.header.size;
2212 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2213
2214 if (ret)
2215 return;
2216
2217 perf_output_put(&handle, mmap_event->event);
2218 perf_output_copy(&handle, mmap_event->file_name,
2219 mmap_event->file_size);
2220 perf_output_end(&handle);
2221 }
2222
2223 static int perf_counter_mmap_match(struct perf_counter *counter,
2224 struct perf_mmap_event *mmap_event)
2225 {
2226 if (counter->hw_event.mmap &&
2227 mmap_event->event.header.type == PERF_EVENT_MMAP)
2228 return 1;
2229
2230 if (counter->hw_event.munmap &&
2231 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2232 return 1;
2233
2234 return 0;
2235 }
2236
2237 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2238 struct perf_mmap_event *mmap_event)
2239 {
2240 struct perf_counter *counter;
2241
2242 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2243 return;
2244
2245 rcu_read_lock();
2246 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2247 if (perf_counter_mmap_match(counter, mmap_event))
2248 perf_counter_mmap_output(counter, mmap_event);
2249 }
2250 rcu_read_unlock();
2251 }
2252
2253 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2254 {
2255 struct perf_cpu_context *cpuctx;
2256 struct file *file = mmap_event->file;
2257 unsigned int size;
2258 char tmp[16];
2259 char *buf = NULL;
2260 char *name;
2261
2262 if (file) {
2263 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2264 if (!buf) {
2265 name = strncpy(tmp, "//enomem", sizeof(tmp));
2266 goto got_name;
2267 }
2268 name = d_path(&file->f_path, buf, PATH_MAX);
2269 if (IS_ERR(name)) {
2270 name = strncpy(tmp, "//toolong", sizeof(tmp));
2271 goto got_name;
2272 }
2273 } else {
2274 name = strncpy(tmp, "//anon", sizeof(tmp));
2275 goto got_name;
2276 }
2277
2278 got_name:
2279 size = ALIGN(strlen(name)+1, sizeof(u64));
2280
2281 mmap_event->file_name = name;
2282 mmap_event->file_size = size;
2283
2284 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2285
2286 cpuctx = &get_cpu_var(perf_cpu_context);
2287 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2288 put_cpu_var(perf_cpu_context);
2289
2290 perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2291
2292 kfree(buf);
2293 }
2294
2295 void perf_counter_mmap(unsigned long addr, unsigned long len,
2296 unsigned long pgoff, struct file *file)
2297 {
2298 struct perf_mmap_event mmap_event;
2299
2300 if (!atomic_read(&nr_mmap_tracking))
2301 return;
2302
2303 mmap_event = (struct perf_mmap_event){
2304 .file = file,
2305 .event = {
2306 .header = { .type = PERF_EVENT_MMAP, },
2307 .pid = current->group_leader->pid,
2308 .tid = current->pid,
2309 .start = addr,
2310 .len = len,
2311 .pgoff = pgoff,
2312 },
2313 };
2314
2315 perf_counter_mmap_event(&mmap_event);
2316 }
2317
2318 void perf_counter_munmap(unsigned long addr, unsigned long len,
2319 unsigned long pgoff, struct file *file)
2320 {
2321 struct perf_mmap_event mmap_event;
2322
2323 if (!atomic_read(&nr_munmap_tracking))
2324 return;
2325
2326 mmap_event = (struct perf_mmap_event){
2327 .file = file,
2328 .event = {
2329 .header = { .type = PERF_EVENT_MUNMAP, },
2330 .pid = current->group_leader->pid,
2331 .tid = current->pid,
2332 .start = addr,
2333 .len = len,
2334 .pgoff = pgoff,
2335 },
2336 };
2337
2338 perf_counter_mmap_event(&mmap_event);
2339 }
2340
2341 /*
2342 * Generic counter overflow handling.
2343 */
2344
2345 int perf_counter_overflow(struct perf_counter *counter,
2346 int nmi, struct pt_regs *regs, u64 addr)
2347 {
2348 int events = atomic_read(&counter->event_limit);
2349 int ret = 0;
2350
2351 /*
2352 * XXX event_limit might not quite work as expected on inherited
2353 * counters
2354 */
2355
2356 counter->pending_kill = POLL_IN;
2357 if (events && atomic_dec_and_test(&counter->event_limit)) {
2358 ret = 1;
2359 counter->pending_kill = POLL_HUP;
2360 if (nmi) {
2361 counter->pending_disable = 1;
2362 perf_pending_queue(&counter->pending,
2363 perf_pending_counter);
2364 } else
2365 perf_counter_disable(counter);
2366 }
2367
2368 perf_counter_output(counter, nmi, regs, addr);
2369 return ret;
2370 }
2371
2372 /*
2373 * Generic software counter infrastructure
2374 */
2375
2376 static void perf_swcounter_update(struct perf_counter *counter)
2377 {
2378 struct hw_perf_counter *hwc = &counter->hw;
2379 u64 prev, now;
2380 s64 delta;
2381
2382 again:
2383 prev = atomic64_read(&hwc->prev_count);
2384 now = atomic64_read(&hwc->count);
2385 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2386 goto again;
2387
2388 delta = now - prev;
2389
2390 atomic64_add(delta, &counter->count);
2391 atomic64_sub(delta, &hwc->period_left);
2392 }
2393
2394 static void perf_swcounter_set_period(struct perf_counter *counter)
2395 {
2396 struct hw_perf_counter *hwc = &counter->hw;
2397 s64 left = atomic64_read(&hwc->period_left);
2398 s64 period = hwc->irq_period;
2399
2400 if (unlikely(left <= -period)) {
2401 left = period;
2402 atomic64_set(&hwc->period_left, left);
2403 }
2404
2405 if (unlikely(left <= 0)) {
2406 left += period;
2407 atomic64_add(period, &hwc->period_left);
2408 }
2409
2410 atomic64_set(&hwc->prev_count, -left);
2411 atomic64_set(&hwc->count, -left);
2412 }
2413
2414 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2415 {
2416 enum hrtimer_restart ret = HRTIMER_RESTART;
2417 struct perf_counter *counter;
2418 struct pt_regs *regs;
2419
2420 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2421 counter->pmu->read(counter);
2422
2423 regs = get_irq_regs();
2424 /*
2425 * In case we exclude kernel IPs or are somehow not in interrupt
2426 * context, provide the next best thing, the user IP.
2427 */
2428 if ((counter->hw_event.exclude_kernel || !regs) &&
2429 !counter->hw_event.exclude_user)
2430 regs = task_pt_regs(current);
2431
2432 if (regs) {
2433 if (perf_counter_overflow(counter, 0, regs, 0))
2434 ret = HRTIMER_NORESTART;
2435 }
2436
2437 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2438
2439 return ret;
2440 }
2441
2442 static void perf_swcounter_overflow(struct perf_counter *counter,
2443 int nmi, struct pt_regs *regs, u64 addr)
2444 {
2445 perf_swcounter_update(counter);
2446 perf_swcounter_set_period(counter);
2447 if (perf_counter_overflow(counter, nmi, regs, addr))
2448 /* soft-disable the counter */
2449 ;
2450
2451 }
2452
2453 static int perf_swcounter_match(struct perf_counter *counter,
2454 enum perf_event_types type,
2455 u32 event, struct pt_regs *regs)
2456 {
2457 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2458 return 0;
2459
2460 if (perf_event_raw(&counter->hw_event))
2461 return 0;
2462
2463 if (perf_event_type(&counter->hw_event) != type)
2464 return 0;
2465
2466 if (perf_event_id(&counter->hw_event) != event)
2467 return 0;
2468
2469 if (counter->hw_event.exclude_user && user_mode(regs))
2470 return 0;
2471
2472 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2473 return 0;
2474
2475 return 1;
2476 }
2477
2478 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2479 int nmi, struct pt_regs *regs, u64 addr)
2480 {
2481 int neg = atomic64_add_negative(nr, &counter->hw.count);
2482 if (counter->hw.irq_period && !neg)
2483 perf_swcounter_overflow(counter, nmi, regs, addr);
2484 }
2485
2486 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2487 enum perf_event_types type, u32 event,
2488 u64 nr, int nmi, struct pt_regs *regs,
2489 u64 addr)
2490 {
2491 struct perf_counter *counter;
2492
2493 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2494 return;
2495
2496 rcu_read_lock();
2497 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2498 if (perf_swcounter_match(counter, type, event, regs))
2499 perf_swcounter_add(counter, nr, nmi, regs, addr);
2500 }
2501 rcu_read_unlock();
2502 }
2503
2504 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2505 {
2506 if (in_nmi())
2507 return &cpuctx->recursion[3];
2508
2509 if (in_irq())
2510 return &cpuctx->recursion[2];
2511
2512 if (in_softirq())
2513 return &cpuctx->recursion[1];
2514
2515 return &cpuctx->recursion[0];
2516 }
2517
2518 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2519 u64 nr, int nmi, struct pt_regs *regs,
2520 u64 addr)
2521 {
2522 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2523 int *recursion = perf_swcounter_recursion_context(cpuctx);
2524
2525 if (*recursion)
2526 goto out;
2527
2528 (*recursion)++;
2529 barrier();
2530
2531 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2532 nr, nmi, regs, addr);
2533 if (cpuctx->task_ctx) {
2534 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2535 nr, nmi, regs, addr);
2536 }
2537
2538 barrier();
2539 (*recursion)--;
2540
2541 out:
2542 put_cpu_var(perf_cpu_context);
2543 }
2544
2545 void
2546 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2547 {
2548 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2549 }
2550
2551 static void perf_swcounter_read(struct perf_counter *counter)
2552 {
2553 perf_swcounter_update(counter);
2554 }
2555
2556 static int perf_swcounter_enable(struct perf_counter *counter)
2557 {
2558 perf_swcounter_set_period(counter);
2559 return 0;
2560 }
2561
2562 static void perf_swcounter_disable(struct perf_counter *counter)
2563 {
2564 perf_swcounter_update(counter);
2565 }
2566
2567 static const struct pmu perf_ops_generic = {
2568 .enable = perf_swcounter_enable,
2569 .disable = perf_swcounter_disable,
2570 .read = perf_swcounter_read,
2571 };
2572
2573 /*
2574 * Software counter: cpu wall time clock
2575 */
2576
2577 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2578 {
2579 int cpu = raw_smp_processor_id();
2580 s64 prev;
2581 u64 now;
2582
2583 now = cpu_clock(cpu);
2584 prev = atomic64_read(&counter->hw.prev_count);
2585 atomic64_set(&counter->hw.prev_count, now);
2586 atomic64_add(now - prev, &counter->count);
2587 }
2588
2589 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2590 {
2591 struct hw_perf_counter *hwc = &counter->hw;
2592 int cpu = raw_smp_processor_id();
2593
2594 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2595 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2596 hwc->hrtimer.function = perf_swcounter_hrtimer;
2597 if (hwc->irq_period) {
2598 __hrtimer_start_range_ns(&hwc->hrtimer,
2599 ns_to_ktime(hwc->irq_period), 0,
2600 HRTIMER_MODE_REL, 0);
2601 }
2602
2603 return 0;
2604 }
2605
2606 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2607 {
2608 hrtimer_cancel(&counter->hw.hrtimer);
2609 cpu_clock_perf_counter_update(counter);
2610 }
2611
2612 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2613 {
2614 cpu_clock_perf_counter_update(counter);
2615 }
2616
2617 static const struct pmu perf_ops_cpu_clock = {
2618 .enable = cpu_clock_perf_counter_enable,
2619 .disable = cpu_clock_perf_counter_disable,
2620 .read = cpu_clock_perf_counter_read,
2621 };
2622
2623 /*
2624 * Software counter: task time clock
2625 */
2626
2627 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2628 {
2629 u64 prev;
2630 s64 delta;
2631
2632 prev = atomic64_xchg(&counter->hw.prev_count, now);
2633 delta = now - prev;
2634 atomic64_add(delta, &counter->count);
2635 }
2636
2637 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2638 {
2639 struct hw_perf_counter *hwc = &counter->hw;
2640 u64 now;
2641
2642 now = counter->ctx->time;
2643
2644 atomic64_set(&hwc->prev_count, now);
2645 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2646 hwc->hrtimer.function = perf_swcounter_hrtimer;
2647 if (hwc->irq_period) {
2648 __hrtimer_start_range_ns(&hwc->hrtimer,
2649 ns_to_ktime(hwc->irq_period), 0,
2650 HRTIMER_MODE_REL, 0);
2651 }
2652
2653 return 0;
2654 }
2655
2656 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2657 {
2658 hrtimer_cancel(&counter->hw.hrtimer);
2659 task_clock_perf_counter_update(counter, counter->ctx->time);
2660
2661 }
2662
2663 static void task_clock_perf_counter_read(struct perf_counter *counter)
2664 {
2665 u64 time;
2666
2667 if (!in_nmi()) {
2668 update_context_time(counter->ctx);
2669 time = counter->ctx->time;
2670 } else {
2671 u64 now = perf_clock();
2672 u64 delta = now - counter->ctx->timestamp;
2673 time = counter->ctx->time + delta;
2674 }
2675
2676 task_clock_perf_counter_update(counter, time);
2677 }
2678
2679 static const struct pmu perf_ops_task_clock = {
2680 .enable = task_clock_perf_counter_enable,
2681 .disable = task_clock_perf_counter_disable,
2682 .read = task_clock_perf_counter_read,
2683 };
2684
2685 /*
2686 * Software counter: cpu migrations
2687 */
2688
2689 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2690 {
2691 struct task_struct *curr = counter->ctx->task;
2692
2693 if (curr)
2694 return curr->se.nr_migrations;
2695 return cpu_nr_migrations(smp_processor_id());
2696 }
2697
2698 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2699 {
2700 u64 prev, now;
2701 s64 delta;
2702
2703 prev = atomic64_read(&counter->hw.prev_count);
2704 now = get_cpu_migrations(counter);
2705
2706 atomic64_set(&counter->hw.prev_count, now);
2707
2708 delta = now - prev;
2709
2710 atomic64_add(delta, &counter->count);
2711 }
2712
2713 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2714 {
2715 cpu_migrations_perf_counter_update(counter);
2716 }
2717
2718 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2719 {
2720 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2721 atomic64_set(&counter->hw.prev_count,
2722 get_cpu_migrations(counter));
2723 return 0;
2724 }
2725
2726 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2727 {
2728 cpu_migrations_perf_counter_update(counter);
2729 }
2730
2731 static const struct pmu perf_ops_cpu_migrations = {
2732 .enable = cpu_migrations_perf_counter_enable,
2733 .disable = cpu_migrations_perf_counter_disable,
2734 .read = cpu_migrations_perf_counter_read,
2735 };
2736
2737 #ifdef CONFIG_EVENT_PROFILE
2738 void perf_tpcounter_event(int event_id)
2739 {
2740 struct pt_regs *regs = get_irq_regs();
2741
2742 if (!regs)
2743 regs = task_pt_regs(current);
2744
2745 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2746 }
2747 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2748
2749 extern int ftrace_profile_enable(int);
2750 extern void ftrace_profile_disable(int);
2751
2752 static void tp_perf_counter_destroy(struct perf_counter *counter)
2753 {
2754 ftrace_profile_disable(perf_event_id(&counter->hw_event));
2755 }
2756
2757 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2758 {
2759 int event_id = perf_event_id(&counter->hw_event);
2760 int ret;
2761
2762 ret = ftrace_profile_enable(event_id);
2763 if (ret)
2764 return NULL;
2765
2766 counter->destroy = tp_perf_counter_destroy;
2767 counter->hw.irq_period = counter->hw_event.irq_period;
2768
2769 return &perf_ops_generic;
2770 }
2771 #else
2772 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2773 {
2774 return NULL;
2775 }
2776 #endif
2777
2778 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2779 {
2780 struct perf_counter_hw_event *hw_event = &counter->hw_event;
2781 const struct pmu *pmu = NULL;
2782 struct hw_perf_counter *hwc = &counter->hw;
2783
2784 /*
2785 * Software counters (currently) can't in general distinguish
2786 * between user, kernel and hypervisor events.
2787 * However, context switches and cpu migrations are considered
2788 * to be kernel events, and page faults are never hypervisor
2789 * events.
2790 */
2791 switch (perf_event_id(&counter->hw_event)) {
2792 case PERF_COUNT_CPU_CLOCK:
2793 pmu = &perf_ops_cpu_clock;
2794
2795 if (hw_event->irq_period && hw_event->irq_period < 10000)
2796 hw_event->irq_period = 10000;
2797 break;
2798 case PERF_COUNT_TASK_CLOCK:
2799 /*
2800 * If the user instantiates this as a per-cpu counter,
2801 * use the cpu_clock counter instead.
2802 */
2803 if (counter->ctx->task)
2804 pmu = &perf_ops_task_clock;
2805 else
2806 pmu = &perf_ops_cpu_clock;
2807
2808 if (hw_event->irq_period && hw_event->irq_period < 10000)
2809 hw_event->irq_period = 10000;
2810 break;
2811 case PERF_COUNT_PAGE_FAULTS:
2812 case PERF_COUNT_PAGE_FAULTS_MIN:
2813 case PERF_COUNT_PAGE_FAULTS_MAJ:
2814 case PERF_COUNT_CONTEXT_SWITCHES:
2815 pmu = &perf_ops_generic;
2816 break;
2817 case PERF_COUNT_CPU_MIGRATIONS:
2818 if (!counter->hw_event.exclude_kernel)
2819 pmu = &perf_ops_cpu_migrations;
2820 break;
2821 }
2822
2823 if (pmu)
2824 hwc->irq_period = hw_event->irq_period;
2825
2826 return pmu;
2827 }
2828
2829 /*
2830 * Allocate and initialize a counter structure
2831 */
2832 static struct perf_counter *
2833 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2834 int cpu,
2835 struct perf_counter_context *ctx,
2836 struct perf_counter *group_leader,
2837 gfp_t gfpflags)
2838 {
2839 const struct pmu *pmu;
2840 struct perf_counter *counter;
2841 long err;
2842
2843 counter = kzalloc(sizeof(*counter), gfpflags);
2844 if (!counter)
2845 return ERR_PTR(-ENOMEM);
2846
2847 /*
2848 * Single counters are their own group leaders, with an
2849 * empty sibling list:
2850 */
2851 if (!group_leader)
2852 group_leader = counter;
2853
2854 mutex_init(&counter->mutex);
2855 INIT_LIST_HEAD(&counter->list_entry);
2856 INIT_LIST_HEAD(&counter->event_entry);
2857 INIT_LIST_HEAD(&counter->sibling_list);
2858 init_waitqueue_head(&counter->waitq);
2859
2860 mutex_init(&counter->mmap_mutex);
2861
2862 INIT_LIST_HEAD(&counter->child_list);
2863
2864 counter->cpu = cpu;
2865 counter->hw_event = *hw_event;
2866 counter->group_leader = group_leader;
2867 counter->pmu = NULL;
2868 counter->ctx = ctx;
2869
2870 counter->state = PERF_COUNTER_STATE_INACTIVE;
2871 if (hw_event->disabled)
2872 counter->state = PERF_COUNTER_STATE_OFF;
2873
2874 pmu = NULL;
2875
2876 /*
2877 * we currently do not support PERF_RECORD_GROUP on inherited counters
2878 */
2879 if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
2880 goto done;
2881
2882 if (perf_event_raw(hw_event)) {
2883 pmu = hw_perf_counter_init(counter);
2884 goto done;
2885 }
2886
2887 switch (perf_event_type(hw_event)) {
2888 case PERF_TYPE_HARDWARE:
2889 pmu = hw_perf_counter_init(counter);
2890 break;
2891
2892 case PERF_TYPE_SOFTWARE:
2893 pmu = sw_perf_counter_init(counter);
2894 break;
2895
2896 case PERF_TYPE_TRACEPOINT:
2897 pmu = tp_perf_counter_init(counter);
2898 break;
2899 }
2900 done:
2901 err = 0;
2902 if (!pmu)
2903 err = -EINVAL;
2904 else if (IS_ERR(pmu))
2905 err = PTR_ERR(pmu);
2906
2907 if (err) {
2908 kfree(counter);
2909 return ERR_PTR(err);
2910 }
2911
2912 counter->pmu = pmu;
2913
2914 atomic_inc(&nr_counters);
2915 if (counter->hw_event.mmap)
2916 atomic_inc(&nr_mmap_tracking);
2917 if (counter->hw_event.munmap)
2918 atomic_inc(&nr_munmap_tracking);
2919 if (counter->hw_event.comm)
2920 atomic_inc(&nr_comm_tracking);
2921
2922 return counter;
2923 }
2924
2925 /**
2926 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2927 *
2928 * @hw_event_uptr: event type attributes for monitoring/sampling
2929 * @pid: target pid
2930 * @cpu: target cpu
2931 * @group_fd: group leader counter fd
2932 */
2933 SYSCALL_DEFINE5(perf_counter_open,
2934 const struct perf_counter_hw_event __user *, hw_event_uptr,
2935 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2936 {
2937 struct perf_counter *counter, *group_leader;
2938 struct perf_counter_hw_event hw_event;
2939 struct perf_counter_context *ctx;
2940 struct file *counter_file = NULL;
2941 struct file *group_file = NULL;
2942 int fput_needed = 0;
2943 int fput_needed2 = 0;
2944 int ret;
2945
2946 /* for future expandability... */
2947 if (flags)
2948 return -EINVAL;
2949
2950 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2951 return -EFAULT;
2952
2953 /*
2954 * Get the target context (task or percpu):
2955 */
2956 ctx = find_get_context(pid, cpu);
2957 if (IS_ERR(ctx))
2958 return PTR_ERR(ctx);
2959
2960 /*
2961 * Look up the group leader (we will attach this counter to it):
2962 */
2963 group_leader = NULL;
2964 if (group_fd != -1) {
2965 ret = -EINVAL;
2966 group_file = fget_light(group_fd, &fput_needed);
2967 if (!group_file)
2968 goto err_put_context;
2969 if (group_file->f_op != &perf_fops)
2970 goto err_put_context;
2971
2972 group_leader = group_file->private_data;
2973 /*
2974 * Do not allow a recursive hierarchy (this new sibling
2975 * becoming part of another group-sibling):
2976 */
2977 if (group_leader->group_leader != group_leader)
2978 goto err_put_context;
2979 /*
2980 * Do not allow to attach to a group in a different
2981 * task or CPU context:
2982 */
2983 if (group_leader->ctx != ctx)
2984 goto err_put_context;
2985 /*
2986 * Only a group leader can be exclusive or pinned
2987 */
2988 if (hw_event.exclusive || hw_event.pinned)
2989 goto err_put_context;
2990 }
2991
2992 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2993 GFP_KERNEL);
2994 ret = PTR_ERR(counter);
2995 if (IS_ERR(counter))
2996 goto err_put_context;
2997
2998 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2999 if (ret < 0)
3000 goto err_free_put_context;
3001
3002 counter_file = fget_light(ret, &fput_needed2);
3003 if (!counter_file)
3004 goto err_free_put_context;
3005
3006 counter->filp = counter_file;
3007 mutex_lock(&ctx->mutex);
3008 perf_install_in_context(ctx, counter, cpu);
3009 mutex_unlock(&ctx->mutex);
3010
3011 fput_light(counter_file, fput_needed2);
3012
3013 out_fput:
3014 fput_light(group_file, fput_needed);
3015
3016 return ret;
3017
3018 err_free_put_context:
3019 kfree(counter);
3020
3021 err_put_context:
3022 put_context(ctx);
3023
3024 goto out_fput;
3025 }
3026
3027 /*
3028 * Initialize the perf_counter context in a task_struct:
3029 */
3030 static void
3031 __perf_counter_init_context(struct perf_counter_context *ctx,
3032 struct task_struct *task)
3033 {
3034 memset(ctx, 0, sizeof(*ctx));
3035 spin_lock_init(&ctx->lock);
3036 mutex_init(&ctx->mutex);
3037 INIT_LIST_HEAD(&ctx->counter_list);
3038 INIT_LIST_HEAD(&ctx->event_list);
3039 ctx->task = task;
3040 }
3041
3042 /*
3043 * inherit a counter from parent task to child task:
3044 */
3045 static struct perf_counter *
3046 inherit_counter(struct perf_counter *parent_counter,
3047 struct task_struct *parent,
3048 struct perf_counter_context *parent_ctx,
3049 struct task_struct *child,
3050 struct perf_counter *group_leader,
3051 struct perf_counter_context *child_ctx)
3052 {
3053 struct perf_counter *child_counter;
3054
3055 /*
3056 * Instead of creating recursive hierarchies of counters,
3057 * we link inherited counters back to the original parent,
3058 * which has a filp for sure, which we use as the reference
3059 * count:
3060 */
3061 if (parent_counter->parent)
3062 parent_counter = parent_counter->parent;
3063
3064 child_counter = perf_counter_alloc(&parent_counter->hw_event,
3065 parent_counter->cpu, child_ctx,
3066 group_leader, GFP_KERNEL);
3067 if (IS_ERR(child_counter))
3068 return child_counter;
3069
3070 /*
3071 * Link it up in the child's context:
3072 */
3073 child_counter->task = child;
3074 add_counter_to_ctx(child_counter, child_ctx);
3075
3076 child_counter->parent = parent_counter;
3077 /*
3078 * inherit into child's child as well:
3079 */
3080 child_counter->hw_event.inherit = 1;
3081
3082 /*
3083 * Get a reference to the parent filp - we will fput it
3084 * when the child counter exits. This is safe to do because
3085 * we are in the parent and we know that the filp still
3086 * exists and has a nonzero count:
3087 */
3088 atomic_long_inc(&parent_counter->filp->f_count);
3089
3090 /*
3091 * Link this into the parent counter's child list
3092 */
3093 mutex_lock(&parent_counter->mutex);
3094 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3095
3096 /*
3097 * Make the child state follow the state of the parent counter,
3098 * not its hw_event.disabled bit. We hold the parent's mutex,
3099 * so we won't race with perf_counter_{en,dis}able_family.
3100 */
3101 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3102 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3103 else
3104 child_counter->state = PERF_COUNTER_STATE_OFF;
3105
3106 mutex_unlock(&parent_counter->mutex);
3107
3108 return child_counter;
3109 }
3110
3111 static int inherit_group(struct perf_counter *parent_counter,
3112 struct task_struct *parent,
3113 struct perf_counter_context *parent_ctx,
3114 struct task_struct *child,
3115 struct perf_counter_context *child_ctx)
3116 {
3117 struct perf_counter *leader;
3118 struct perf_counter *sub;
3119 struct perf_counter *child_ctr;
3120
3121 leader = inherit_counter(parent_counter, parent, parent_ctx,
3122 child, NULL, child_ctx);
3123 if (IS_ERR(leader))
3124 return PTR_ERR(leader);
3125 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3126 child_ctr = inherit_counter(sub, parent, parent_ctx,
3127 child, leader, child_ctx);
3128 if (IS_ERR(child_ctr))
3129 return PTR_ERR(child_ctr);
3130 }
3131 return 0;
3132 }
3133
3134 static void sync_child_counter(struct perf_counter *child_counter,
3135 struct perf_counter *parent_counter)
3136 {
3137 u64 parent_val, child_val;
3138
3139 parent_val = atomic64_read(&parent_counter->count);
3140 child_val = atomic64_read(&child_counter->count);
3141
3142 /*
3143 * Add back the child's count to the parent's count:
3144 */
3145 atomic64_add(child_val, &parent_counter->count);
3146 atomic64_add(child_counter->total_time_enabled,
3147 &parent_counter->child_total_time_enabled);
3148 atomic64_add(child_counter->total_time_running,
3149 &parent_counter->child_total_time_running);
3150
3151 /*
3152 * Remove this counter from the parent's list
3153 */
3154 mutex_lock(&parent_counter->mutex);
3155 list_del_init(&child_counter->child_list);
3156 mutex_unlock(&parent_counter->mutex);
3157
3158 /*
3159 * Release the parent counter, if this was the last
3160 * reference to it.
3161 */
3162 fput(parent_counter->filp);
3163 }
3164
3165 static void
3166 __perf_counter_exit_task(struct task_struct *child,
3167 struct perf_counter *child_counter,
3168 struct perf_counter_context *child_ctx)
3169 {
3170 struct perf_counter *parent_counter;
3171 struct perf_counter *sub, *tmp;
3172
3173 /*
3174 * If we do not self-reap then we have to wait for the
3175 * child task to unschedule (it will happen for sure),
3176 * so that its counter is at its final count. (This
3177 * condition triggers rarely - child tasks usually get
3178 * off their CPU before the parent has a chance to
3179 * get this far into the reaping action)
3180 */
3181 if (child != current) {
3182 wait_task_inactive(child, 0);
3183 list_del_init(&child_counter->list_entry);
3184 update_counter_times(child_counter);
3185 } else {
3186 struct perf_cpu_context *cpuctx;
3187 unsigned long flags;
3188 u64 perf_flags;
3189
3190 /*
3191 * Disable and unlink this counter.
3192 *
3193 * Be careful about zapping the list - IRQ/NMI context
3194 * could still be processing it:
3195 */
3196 local_irq_save(flags);
3197 perf_flags = hw_perf_save_disable();
3198
3199 cpuctx = &__get_cpu_var(perf_cpu_context);
3200
3201 group_sched_out(child_counter, cpuctx, child_ctx);
3202 update_counter_times(child_counter);
3203
3204 list_del_init(&child_counter->list_entry);
3205
3206 child_ctx->nr_counters--;
3207
3208 hw_perf_restore(perf_flags);
3209 local_irq_restore(flags);
3210 }
3211
3212 parent_counter = child_counter->parent;
3213 /*
3214 * It can happen that parent exits first, and has counters
3215 * that are still around due to the child reference. These
3216 * counters need to be zapped - but otherwise linger.
3217 */
3218 if (parent_counter) {
3219 sync_child_counter(child_counter, parent_counter);
3220 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
3221 list_entry) {
3222 if (sub->parent) {
3223 sync_child_counter(sub, sub->parent);
3224 free_counter(sub);
3225 }
3226 }
3227 free_counter(child_counter);
3228 }
3229 }
3230
3231 /*
3232 * When a child task exits, feed back counter values to parent counters.
3233 *
3234 * Note: we may be running in child context, but the PID is not hashed
3235 * anymore so new counters will not be added.
3236 */
3237 void perf_counter_exit_task(struct task_struct *child)
3238 {
3239 struct perf_counter *child_counter, *tmp;
3240 struct perf_counter_context *child_ctx;
3241
3242 child_ctx = &child->perf_counter_ctx;
3243
3244 if (likely(!child_ctx->nr_counters))
3245 return;
3246
3247 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3248 list_entry)
3249 __perf_counter_exit_task(child, child_counter, child_ctx);
3250 }
3251
3252 /*
3253 * Initialize the perf_counter context in task_struct
3254 */
3255 void perf_counter_init_task(struct task_struct *child)
3256 {
3257 struct perf_counter_context *child_ctx, *parent_ctx;
3258 struct perf_counter *counter;
3259 struct task_struct *parent = current;
3260
3261 child_ctx = &child->perf_counter_ctx;
3262 parent_ctx = &parent->perf_counter_ctx;
3263
3264 __perf_counter_init_context(child_ctx, child);
3265
3266 /*
3267 * This is executed from the parent task context, so inherit
3268 * counters that have been marked for cloning:
3269 */
3270
3271 if (likely(!parent_ctx->nr_counters))
3272 return;
3273
3274 /*
3275 * Lock the parent list. No need to lock the child - not PID
3276 * hashed yet and not running, so nobody can access it.
3277 */
3278 mutex_lock(&parent_ctx->mutex);
3279
3280 /*
3281 * We dont have to disable NMIs - we are only looking at
3282 * the list, not manipulating it:
3283 */
3284 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3285 if (!counter->hw_event.inherit)
3286 continue;
3287
3288 if (inherit_group(counter, parent,
3289 parent_ctx, child, child_ctx))
3290 break;
3291 }
3292
3293 mutex_unlock(&parent_ctx->mutex);
3294 }
3295
3296 static void __cpuinit perf_counter_init_cpu(int cpu)
3297 {
3298 struct perf_cpu_context *cpuctx;
3299
3300 cpuctx = &per_cpu(perf_cpu_context, cpu);
3301 __perf_counter_init_context(&cpuctx->ctx, NULL);
3302
3303 spin_lock(&perf_resource_lock);
3304 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3305 spin_unlock(&perf_resource_lock);
3306
3307 hw_perf_counter_setup(cpu);
3308 }
3309
3310 #ifdef CONFIG_HOTPLUG_CPU
3311 static void __perf_counter_exit_cpu(void *info)
3312 {
3313 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3314 struct perf_counter_context *ctx = &cpuctx->ctx;
3315 struct perf_counter *counter, *tmp;
3316
3317 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3318 __perf_counter_remove_from_context(counter);
3319 }
3320 static void perf_counter_exit_cpu(int cpu)
3321 {
3322 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3323 struct perf_counter_context *ctx = &cpuctx->ctx;
3324
3325 mutex_lock(&ctx->mutex);
3326 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3327 mutex_unlock(&ctx->mutex);
3328 }
3329 #else
3330 static inline void perf_counter_exit_cpu(int cpu) { }
3331 #endif
3332
3333 static int __cpuinit
3334 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3335 {
3336 unsigned int cpu = (long)hcpu;
3337
3338 switch (action) {
3339
3340 case CPU_UP_PREPARE:
3341 case CPU_UP_PREPARE_FROZEN:
3342 perf_counter_init_cpu(cpu);
3343 break;
3344
3345 case CPU_DOWN_PREPARE:
3346 case CPU_DOWN_PREPARE_FROZEN:
3347 perf_counter_exit_cpu(cpu);
3348 break;
3349
3350 default:
3351 break;
3352 }
3353
3354 return NOTIFY_OK;
3355 }
3356
3357 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3358 .notifier_call = perf_cpu_notify,
3359 };
3360
3361 void __init perf_counter_init(void)
3362 {
3363 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3364 (void *)(long)smp_processor_id());
3365 register_cpu_notifier(&perf_cpu_nb);
3366 }
3367
3368 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3369 {
3370 return sprintf(buf, "%d\n", perf_reserved_percpu);
3371 }
3372
3373 static ssize_t
3374 perf_set_reserve_percpu(struct sysdev_class *class,
3375 const char *buf,
3376 size_t count)
3377 {
3378 struct perf_cpu_context *cpuctx;
3379 unsigned long val;
3380 int err, cpu, mpt;
3381
3382 err = strict_strtoul(buf, 10, &val);
3383 if (err)
3384 return err;
3385 if (val > perf_max_counters)
3386 return -EINVAL;
3387
3388 spin_lock(&perf_resource_lock);
3389 perf_reserved_percpu = val;
3390 for_each_online_cpu(cpu) {
3391 cpuctx = &per_cpu(perf_cpu_context, cpu);
3392 spin_lock_irq(&cpuctx->ctx.lock);
3393 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3394 perf_max_counters - perf_reserved_percpu);
3395 cpuctx->max_pertask = mpt;
3396 spin_unlock_irq(&cpuctx->ctx.lock);
3397 }
3398 spin_unlock(&perf_resource_lock);
3399
3400 return count;
3401 }
3402
3403 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3404 {
3405 return sprintf(buf, "%d\n", perf_overcommit);
3406 }
3407
3408 static ssize_t
3409 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3410 {
3411 unsigned long val;
3412 int err;
3413
3414 err = strict_strtoul(buf, 10, &val);
3415 if (err)
3416 return err;
3417 if (val > 1)
3418 return -EINVAL;
3419
3420 spin_lock(&perf_resource_lock);
3421 perf_overcommit = val;
3422 spin_unlock(&perf_resource_lock);
3423
3424 return count;
3425 }
3426
3427 static SYSDEV_CLASS_ATTR(
3428 reserve_percpu,
3429 0644,
3430 perf_show_reserve_percpu,
3431 perf_set_reserve_percpu
3432 );
3433
3434 static SYSDEV_CLASS_ATTR(
3435 overcommit,
3436 0644,
3437 perf_show_overcommit,
3438 perf_set_overcommit
3439 );
3440
3441 static struct attribute *perfclass_attrs[] = {
3442 &attr_reserve_percpu.attr,
3443 &attr_overcommit.attr,
3444 NULL
3445 };
3446
3447 static struct attribute_group perfclass_attr_group = {
3448 .attrs = perfclass_attrs,
3449 .name = "perf_counters",
3450 };
3451
3452 static int __init perf_counter_sysfs_init(void)
3453 {
3454 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3455 &perfclass_attr_group);
3456 }
3457 device_initcall(perf_counter_sysfs_init);
This page took 0.14077 seconds and 5 git commands to generate.