perf_counter: allow and require one-page mmap on counting counters
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7 *
8 * For licensing details see kernel-base/COPYING
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/file.h>
16 #include <linux/poll.h>
17 #include <linux/sysfs.h>
18 #include <linux/ptrace.h>
19 #include <linux/percpu.h>
20 #include <linux/vmstat.h>
21 #include <linux/hardirq.h>
22 #include <linux/rculist.h>
23 #include <linux/uaccess.h>
24 #include <linux/syscalls.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/perf_counter.h>
28
29 #include <asm/irq_regs.h>
30
31 /*
32 * Each CPU has a list of per CPU counters:
33 */
34 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
35
36 int perf_max_counters __read_mostly = 1;
37 static int perf_reserved_percpu __read_mostly;
38 static int perf_overcommit __read_mostly = 1;
39
40 /*
41 * Mutex for (sysadmin-configurable) counter reservations:
42 */
43 static DEFINE_MUTEX(perf_resource_mutex);
44
45 /*
46 * Architecture provided APIs - weak aliases:
47 */
48 extern __weak const struct hw_perf_counter_ops *
49 hw_perf_counter_init(struct perf_counter *counter)
50 {
51 return NULL;
52 }
53
54 u64 __weak hw_perf_save_disable(void) { return 0; }
55 void __weak hw_perf_restore(u64 ctrl) { barrier(); }
56 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
57 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
58 struct perf_cpu_context *cpuctx,
59 struct perf_counter_context *ctx, int cpu)
60 {
61 return 0;
62 }
63
64 void __weak perf_counter_print_debug(void) { }
65
66 static void
67 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
68 {
69 struct perf_counter *group_leader = counter->group_leader;
70
71 /*
72 * Depending on whether it is a standalone or sibling counter,
73 * add it straight to the context's counter list, or to the group
74 * leader's sibling list:
75 */
76 if (counter->group_leader == counter)
77 list_add_tail(&counter->list_entry, &ctx->counter_list);
78 else {
79 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
80 group_leader->nr_siblings++;
81 }
82
83 list_add_rcu(&counter->event_entry, &ctx->event_list);
84 }
85
86 static void
87 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
88 {
89 struct perf_counter *sibling, *tmp;
90
91 list_del_init(&counter->list_entry);
92 list_del_rcu(&counter->event_entry);
93
94 if (counter->group_leader != counter)
95 counter->group_leader->nr_siblings--;
96
97 /*
98 * If this was a group counter with sibling counters then
99 * upgrade the siblings to singleton counters by adding them
100 * to the context list directly:
101 */
102 list_for_each_entry_safe(sibling, tmp,
103 &counter->sibling_list, list_entry) {
104
105 list_move_tail(&sibling->list_entry, &ctx->counter_list);
106 sibling->group_leader = sibling;
107 }
108 }
109
110 static void
111 counter_sched_out(struct perf_counter *counter,
112 struct perf_cpu_context *cpuctx,
113 struct perf_counter_context *ctx)
114 {
115 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
116 return;
117
118 counter->state = PERF_COUNTER_STATE_INACTIVE;
119 counter->hw_ops->disable(counter);
120 counter->oncpu = -1;
121
122 if (!is_software_counter(counter))
123 cpuctx->active_oncpu--;
124 ctx->nr_active--;
125 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
126 cpuctx->exclusive = 0;
127 }
128
129 static void
130 group_sched_out(struct perf_counter *group_counter,
131 struct perf_cpu_context *cpuctx,
132 struct perf_counter_context *ctx)
133 {
134 struct perf_counter *counter;
135
136 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
137 return;
138
139 counter_sched_out(group_counter, cpuctx, ctx);
140
141 /*
142 * Schedule out siblings (if any):
143 */
144 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
145 counter_sched_out(counter, cpuctx, ctx);
146
147 if (group_counter->hw_event.exclusive)
148 cpuctx->exclusive = 0;
149 }
150
151 /*
152 * Cross CPU call to remove a performance counter
153 *
154 * We disable the counter on the hardware level first. After that we
155 * remove it from the context list.
156 */
157 static void __perf_counter_remove_from_context(void *info)
158 {
159 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
160 struct perf_counter *counter = info;
161 struct perf_counter_context *ctx = counter->ctx;
162 unsigned long flags;
163 u64 perf_flags;
164
165 /*
166 * If this is a task context, we need to check whether it is
167 * the current task context of this cpu. If not it has been
168 * scheduled out before the smp call arrived.
169 */
170 if (ctx->task && cpuctx->task_ctx != ctx)
171 return;
172
173 curr_rq_lock_irq_save(&flags);
174 spin_lock(&ctx->lock);
175
176 counter_sched_out(counter, cpuctx, ctx);
177
178 counter->task = NULL;
179 ctx->nr_counters--;
180
181 /*
182 * Protect the list operation against NMI by disabling the
183 * counters on a global level. NOP for non NMI based counters.
184 */
185 perf_flags = hw_perf_save_disable();
186 list_del_counter(counter, ctx);
187 hw_perf_restore(perf_flags);
188
189 if (!ctx->task) {
190 /*
191 * Allow more per task counters with respect to the
192 * reservation:
193 */
194 cpuctx->max_pertask =
195 min(perf_max_counters - ctx->nr_counters,
196 perf_max_counters - perf_reserved_percpu);
197 }
198
199 spin_unlock(&ctx->lock);
200 curr_rq_unlock_irq_restore(&flags);
201 }
202
203
204 /*
205 * Remove the counter from a task's (or a CPU's) list of counters.
206 *
207 * Must be called with counter->mutex and ctx->mutex held.
208 *
209 * CPU counters are removed with a smp call. For task counters we only
210 * call when the task is on a CPU.
211 */
212 static void perf_counter_remove_from_context(struct perf_counter *counter)
213 {
214 struct perf_counter_context *ctx = counter->ctx;
215 struct task_struct *task = ctx->task;
216
217 if (!task) {
218 /*
219 * Per cpu counters are removed via an smp call and
220 * the removal is always sucessful.
221 */
222 smp_call_function_single(counter->cpu,
223 __perf_counter_remove_from_context,
224 counter, 1);
225 return;
226 }
227
228 retry:
229 task_oncpu_function_call(task, __perf_counter_remove_from_context,
230 counter);
231
232 spin_lock_irq(&ctx->lock);
233 /*
234 * If the context is active we need to retry the smp call.
235 */
236 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
237 spin_unlock_irq(&ctx->lock);
238 goto retry;
239 }
240
241 /*
242 * The lock prevents that this context is scheduled in so we
243 * can remove the counter safely, if the call above did not
244 * succeed.
245 */
246 if (!list_empty(&counter->list_entry)) {
247 ctx->nr_counters--;
248 list_del_counter(counter, ctx);
249 counter->task = NULL;
250 }
251 spin_unlock_irq(&ctx->lock);
252 }
253
254 /*
255 * Cross CPU call to disable a performance counter
256 */
257 static void __perf_counter_disable(void *info)
258 {
259 struct perf_counter *counter = info;
260 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
261 struct perf_counter_context *ctx = counter->ctx;
262 unsigned long flags;
263
264 /*
265 * If this is a per-task counter, need to check whether this
266 * counter's task is the current task on this cpu.
267 */
268 if (ctx->task && cpuctx->task_ctx != ctx)
269 return;
270
271 curr_rq_lock_irq_save(&flags);
272 spin_lock(&ctx->lock);
273
274 /*
275 * If the counter is on, turn it off.
276 * If it is in error state, leave it in error state.
277 */
278 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
279 if (counter == counter->group_leader)
280 group_sched_out(counter, cpuctx, ctx);
281 else
282 counter_sched_out(counter, cpuctx, ctx);
283 counter->state = PERF_COUNTER_STATE_OFF;
284 }
285
286 spin_unlock(&ctx->lock);
287 curr_rq_unlock_irq_restore(&flags);
288 }
289
290 /*
291 * Disable a counter.
292 */
293 static void perf_counter_disable(struct perf_counter *counter)
294 {
295 struct perf_counter_context *ctx = counter->ctx;
296 struct task_struct *task = ctx->task;
297
298 if (!task) {
299 /*
300 * Disable the counter on the cpu that it's on
301 */
302 smp_call_function_single(counter->cpu, __perf_counter_disable,
303 counter, 1);
304 return;
305 }
306
307 retry:
308 task_oncpu_function_call(task, __perf_counter_disable, counter);
309
310 spin_lock_irq(&ctx->lock);
311 /*
312 * If the counter is still active, we need to retry the cross-call.
313 */
314 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
315 spin_unlock_irq(&ctx->lock);
316 goto retry;
317 }
318
319 /*
320 * Since we have the lock this context can't be scheduled
321 * in, so we can change the state safely.
322 */
323 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
324 counter->state = PERF_COUNTER_STATE_OFF;
325
326 spin_unlock_irq(&ctx->lock);
327 }
328
329 /*
330 * Disable a counter and all its children.
331 */
332 static void perf_counter_disable_family(struct perf_counter *counter)
333 {
334 struct perf_counter *child;
335
336 perf_counter_disable(counter);
337
338 /*
339 * Lock the mutex to protect the list of children
340 */
341 mutex_lock(&counter->mutex);
342 list_for_each_entry(child, &counter->child_list, child_list)
343 perf_counter_disable(child);
344 mutex_unlock(&counter->mutex);
345 }
346
347 static int
348 counter_sched_in(struct perf_counter *counter,
349 struct perf_cpu_context *cpuctx,
350 struct perf_counter_context *ctx,
351 int cpu)
352 {
353 if (counter->state <= PERF_COUNTER_STATE_OFF)
354 return 0;
355
356 counter->state = PERF_COUNTER_STATE_ACTIVE;
357 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
358 /*
359 * The new state must be visible before we turn it on in the hardware:
360 */
361 smp_wmb();
362
363 if (counter->hw_ops->enable(counter)) {
364 counter->state = PERF_COUNTER_STATE_INACTIVE;
365 counter->oncpu = -1;
366 return -EAGAIN;
367 }
368
369 if (!is_software_counter(counter))
370 cpuctx->active_oncpu++;
371 ctx->nr_active++;
372
373 if (counter->hw_event.exclusive)
374 cpuctx->exclusive = 1;
375
376 return 0;
377 }
378
379 /*
380 * Return 1 for a group consisting entirely of software counters,
381 * 0 if the group contains any hardware counters.
382 */
383 static int is_software_only_group(struct perf_counter *leader)
384 {
385 struct perf_counter *counter;
386
387 if (!is_software_counter(leader))
388 return 0;
389
390 list_for_each_entry(counter, &leader->sibling_list, list_entry)
391 if (!is_software_counter(counter))
392 return 0;
393
394 return 1;
395 }
396
397 /*
398 * Work out whether we can put this counter group on the CPU now.
399 */
400 static int group_can_go_on(struct perf_counter *counter,
401 struct perf_cpu_context *cpuctx,
402 int can_add_hw)
403 {
404 /*
405 * Groups consisting entirely of software counters can always go on.
406 */
407 if (is_software_only_group(counter))
408 return 1;
409 /*
410 * If an exclusive group is already on, no other hardware
411 * counters can go on.
412 */
413 if (cpuctx->exclusive)
414 return 0;
415 /*
416 * If this group is exclusive and there are already
417 * counters on the CPU, it can't go on.
418 */
419 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
420 return 0;
421 /*
422 * Otherwise, try to add it if all previous groups were able
423 * to go on.
424 */
425 return can_add_hw;
426 }
427
428 /*
429 * Cross CPU call to install and enable a performance counter
430 */
431 static void __perf_install_in_context(void *info)
432 {
433 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
434 struct perf_counter *counter = info;
435 struct perf_counter_context *ctx = counter->ctx;
436 struct perf_counter *leader = counter->group_leader;
437 int cpu = smp_processor_id();
438 unsigned long flags;
439 u64 perf_flags;
440 int err;
441
442 /*
443 * If this is a task context, we need to check whether it is
444 * the current task context of this cpu. If not it has been
445 * scheduled out before the smp call arrived.
446 */
447 if (ctx->task && cpuctx->task_ctx != ctx)
448 return;
449
450 curr_rq_lock_irq_save(&flags);
451 spin_lock(&ctx->lock);
452
453 /*
454 * Protect the list operation against NMI by disabling the
455 * counters on a global level. NOP for non NMI based counters.
456 */
457 perf_flags = hw_perf_save_disable();
458
459 list_add_counter(counter, ctx);
460 ctx->nr_counters++;
461 counter->prev_state = PERF_COUNTER_STATE_OFF;
462
463 /*
464 * Don't put the counter on if it is disabled or if
465 * it is in a group and the group isn't on.
466 */
467 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
468 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
469 goto unlock;
470
471 /*
472 * An exclusive counter can't go on if there are already active
473 * hardware counters, and no hardware counter can go on if there
474 * is already an exclusive counter on.
475 */
476 if (!group_can_go_on(counter, cpuctx, 1))
477 err = -EEXIST;
478 else
479 err = counter_sched_in(counter, cpuctx, ctx, cpu);
480
481 if (err) {
482 /*
483 * This counter couldn't go on. If it is in a group
484 * then we have to pull the whole group off.
485 * If the counter group is pinned then put it in error state.
486 */
487 if (leader != counter)
488 group_sched_out(leader, cpuctx, ctx);
489 if (leader->hw_event.pinned)
490 leader->state = PERF_COUNTER_STATE_ERROR;
491 }
492
493 if (!err && !ctx->task && cpuctx->max_pertask)
494 cpuctx->max_pertask--;
495
496 unlock:
497 hw_perf_restore(perf_flags);
498
499 spin_unlock(&ctx->lock);
500 curr_rq_unlock_irq_restore(&flags);
501 }
502
503 /*
504 * Attach a performance counter to a context
505 *
506 * First we add the counter to the list with the hardware enable bit
507 * in counter->hw_config cleared.
508 *
509 * If the counter is attached to a task which is on a CPU we use a smp
510 * call to enable it in the task context. The task might have been
511 * scheduled away, but we check this in the smp call again.
512 *
513 * Must be called with ctx->mutex held.
514 */
515 static void
516 perf_install_in_context(struct perf_counter_context *ctx,
517 struct perf_counter *counter,
518 int cpu)
519 {
520 struct task_struct *task = ctx->task;
521
522 if (!task) {
523 /*
524 * Per cpu counters are installed via an smp call and
525 * the install is always sucessful.
526 */
527 smp_call_function_single(cpu, __perf_install_in_context,
528 counter, 1);
529 return;
530 }
531
532 counter->task = task;
533 retry:
534 task_oncpu_function_call(task, __perf_install_in_context,
535 counter);
536
537 spin_lock_irq(&ctx->lock);
538 /*
539 * we need to retry the smp call.
540 */
541 if (ctx->is_active && list_empty(&counter->list_entry)) {
542 spin_unlock_irq(&ctx->lock);
543 goto retry;
544 }
545
546 /*
547 * The lock prevents that this context is scheduled in so we
548 * can add the counter safely, if it the call above did not
549 * succeed.
550 */
551 if (list_empty(&counter->list_entry)) {
552 list_add_counter(counter, ctx);
553 ctx->nr_counters++;
554 }
555 spin_unlock_irq(&ctx->lock);
556 }
557
558 /*
559 * Cross CPU call to enable a performance counter
560 */
561 static void __perf_counter_enable(void *info)
562 {
563 struct perf_counter *counter = info;
564 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
565 struct perf_counter_context *ctx = counter->ctx;
566 struct perf_counter *leader = counter->group_leader;
567 unsigned long flags;
568 int err;
569
570 /*
571 * If this is a per-task counter, need to check whether this
572 * counter's task is the current task on this cpu.
573 */
574 if (ctx->task && cpuctx->task_ctx != ctx)
575 return;
576
577 curr_rq_lock_irq_save(&flags);
578 spin_lock(&ctx->lock);
579
580 counter->prev_state = counter->state;
581 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
582 goto unlock;
583 counter->state = PERF_COUNTER_STATE_INACTIVE;
584
585 /*
586 * If the counter is in a group and isn't the group leader,
587 * then don't put it on unless the group is on.
588 */
589 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
590 goto unlock;
591
592 if (!group_can_go_on(counter, cpuctx, 1))
593 err = -EEXIST;
594 else
595 err = counter_sched_in(counter, cpuctx, ctx,
596 smp_processor_id());
597
598 if (err) {
599 /*
600 * If this counter can't go on and it's part of a
601 * group, then the whole group has to come off.
602 */
603 if (leader != counter)
604 group_sched_out(leader, cpuctx, ctx);
605 if (leader->hw_event.pinned)
606 leader->state = PERF_COUNTER_STATE_ERROR;
607 }
608
609 unlock:
610 spin_unlock(&ctx->lock);
611 curr_rq_unlock_irq_restore(&flags);
612 }
613
614 /*
615 * Enable a counter.
616 */
617 static void perf_counter_enable(struct perf_counter *counter)
618 {
619 struct perf_counter_context *ctx = counter->ctx;
620 struct task_struct *task = ctx->task;
621
622 if (!task) {
623 /*
624 * Enable the counter on the cpu that it's on
625 */
626 smp_call_function_single(counter->cpu, __perf_counter_enable,
627 counter, 1);
628 return;
629 }
630
631 spin_lock_irq(&ctx->lock);
632 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
633 goto out;
634
635 /*
636 * If the counter is in error state, clear that first.
637 * That way, if we see the counter in error state below, we
638 * know that it has gone back into error state, as distinct
639 * from the task having been scheduled away before the
640 * cross-call arrived.
641 */
642 if (counter->state == PERF_COUNTER_STATE_ERROR)
643 counter->state = PERF_COUNTER_STATE_OFF;
644
645 retry:
646 spin_unlock_irq(&ctx->lock);
647 task_oncpu_function_call(task, __perf_counter_enable, counter);
648
649 spin_lock_irq(&ctx->lock);
650
651 /*
652 * If the context is active and the counter is still off,
653 * we need to retry the cross-call.
654 */
655 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
656 goto retry;
657
658 /*
659 * Since we have the lock this context can't be scheduled
660 * in, so we can change the state safely.
661 */
662 if (counter->state == PERF_COUNTER_STATE_OFF)
663 counter->state = PERF_COUNTER_STATE_INACTIVE;
664 out:
665 spin_unlock_irq(&ctx->lock);
666 }
667
668 /*
669 * Enable a counter and all its children.
670 */
671 static void perf_counter_enable_family(struct perf_counter *counter)
672 {
673 struct perf_counter *child;
674
675 perf_counter_enable(counter);
676
677 /*
678 * Lock the mutex to protect the list of children
679 */
680 mutex_lock(&counter->mutex);
681 list_for_each_entry(child, &counter->child_list, child_list)
682 perf_counter_enable(child);
683 mutex_unlock(&counter->mutex);
684 }
685
686 void __perf_counter_sched_out(struct perf_counter_context *ctx,
687 struct perf_cpu_context *cpuctx)
688 {
689 struct perf_counter *counter;
690 u64 flags;
691
692 spin_lock(&ctx->lock);
693 ctx->is_active = 0;
694 if (likely(!ctx->nr_counters))
695 goto out;
696
697 flags = hw_perf_save_disable();
698 if (ctx->nr_active) {
699 list_for_each_entry(counter, &ctx->counter_list, list_entry)
700 group_sched_out(counter, cpuctx, ctx);
701 }
702 hw_perf_restore(flags);
703 out:
704 spin_unlock(&ctx->lock);
705 }
706
707 /*
708 * Called from scheduler to remove the counters of the current task,
709 * with interrupts disabled.
710 *
711 * We stop each counter and update the counter value in counter->count.
712 *
713 * This does not protect us against NMI, but disable()
714 * sets the disabled bit in the control field of counter _before_
715 * accessing the counter control register. If a NMI hits, then it will
716 * not restart the counter.
717 */
718 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
719 {
720 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
721 struct perf_counter_context *ctx = &task->perf_counter_ctx;
722 struct pt_regs *regs;
723
724 if (likely(!cpuctx->task_ctx))
725 return;
726
727 regs = task_pt_regs(task);
728 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
729 __perf_counter_sched_out(ctx, cpuctx);
730
731 cpuctx->task_ctx = NULL;
732 }
733
734 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
735 {
736 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
737 }
738
739 static int
740 group_sched_in(struct perf_counter *group_counter,
741 struct perf_cpu_context *cpuctx,
742 struct perf_counter_context *ctx,
743 int cpu)
744 {
745 struct perf_counter *counter, *partial_group;
746 int ret;
747
748 if (group_counter->state == PERF_COUNTER_STATE_OFF)
749 return 0;
750
751 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
752 if (ret)
753 return ret < 0 ? ret : 0;
754
755 group_counter->prev_state = group_counter->state;
756 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
757 return -EAGAIN;
758
759 /*
760 * Schedule in siblings as one group (if any):
761 */
762 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
763 counter->prev_state = counter->state;
764 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
765 partial_group = counter;
766 goto group_error;
767 }
768 }
769
770 return 0;
771
772 group_error:
773 /*
774 * Groups can be scheduled in as one unit only, so undo any
775 * partial group before returning:
776 */
777 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
778 if (counter == partial_group)
779 break;
780 counter_sched_out(counter, cpuctx, ctx);
781 }
782 counter_sched_out(group_counter, cpuctx, ctx);
783
784 return -EAGAIN;
785 }
786
787 static void
788 __perf_counter_sched_in(struct perf_counter_context *ctx,
789 struct perf_cpu_context *cpuctx, int cpu)
790 {
791 struct perf_counter *counter;
792 u64 flags;
793 int can_add_hw = 1;
794
795 spin_lock(&ctx->lock);
796 ctx->is_active = 1;
797 if (likely(!ctx->nr_counters))
798 goto out;
799
800 flags = hw_perf_save_disable();
801
802 /*
803 * First go through the list and put on any pinned groups
804 * in order to give them the best chance of going on.
805 */
806 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
807 if (counter->state <= PERF_COUNTER_STATE_OFF ||
808 !counter->hw_event.pinned)
809 continue;
810 if (counter->cpu != -1 && counter->cpu != cpu)
811 continue;
812
813 if (group_can_go_on(counter, cpuctx, 1))
814 group_sched_in(counter, cpuctx, ctx, cpu);
815
816 /*
817 * If this pinned group hasn't been scheduled,
818 * put it in error state.
819 */
820 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
821 counter->state = PERF_COUNTER_STATE_ERROR;
822 }
823
824 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
825 /*
826 * Ignore counters in OFF or ERROR state, and
827 * ignore pinned counters since we did them already.
828 */
829 if (counter->state <= PERF_COUNTER_STATE_OFF ||
830 counter->hw_event.pinned)
831 continue;
832
833 /*
834 * Listen to the 'cpu' scheduling filter constraint
835 * of counters:
836 */
837 if (counter->cpu != -1 && counter->cpu != cpu)
838 continue;
839
840 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
841 if (group_sched_in(counter, cpuctx, ctx, cpu))
842 can_add_hw = 0;
843 }
844 }
845 hw_perf_restore(flags);
846 out:
847 spin_unlock(&ctx->lock);
848 }
849
850 /*
851 * Called from scheduler to add the counters of the current task
852 * with interrupts disabled.
853 *
854 * We restore the counter value and then enable it.
855 *
856 * This does not protect us against NMI, but enable()
857 * sets the enabled bit in the control field of counter _before_
858 * accessing the counter control register. If a NMI hits, then it will
859 * keep the counter running.
860 */
861 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
862 {
863 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
864 struct perf_counter_context *ctx = &task->perf_counter_ctx;
865
866 __perf_counter_sched_in(ctx, cpuctx, cpu);
867 cpuctx->task_ctx = ctx;
868 }
869
870 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
871 {
872 struct perf_counter_context *ctx = &cpuctx->ctx;
873
874 __perf_counter_sched_in(ctx, cpuctx, cpu);
875 }
876
877 int perf_counter_task_disable(void)
878 {
879 struct task_struct *curr = current;
880 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
881 struct perf_counter *counter;
882 unsigned long flags;
883 u64 perf_flags;
884 int cpu;
885
886 if (likely(!ctx->nr_counters))
887 return 0;
888
889 curr_rq_lock_irq_save(&flags);
890 cpu = smp_processor_id();
891
892 /* force the update of the task clock: */
893 __task_delta_exec(curr, 1);
894
895 perf_counter_task_sched_out(curr, cpu);
896
897 spin_lock(&ctx->lock);
898
899 /*
900 * Disable all the counters:
901 */
902 perf_flags = hw_perf_save_disable();
903
904 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
905 if (counter->state != PERF_COUNTER_STATE_ERROR)
906 counter->state = PERF_COUNTER_STATE_OFF;
907 }
908
909 hw_perf_restore(perf_flags);
910
911 spin_unlock(&ctx->lock);
912
913 curr_rq_unlock_irq_restore(&flags);
914
915 return 0;
916 }
917
918 int perf_counter_task_enable(void)
919 {
920 struct task_struct *curr = current;
921 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
922 struct perf_counter *counter;
923 unsigned long flags;
924 u64 perf_flags;
925 int cpu;
926
927 if (likely(!ctx->nr_counters))
928 return 0;
929
930 curr_rq_lock_irq_save(&flags);
931 cpu = smp_processor_id();
932
933 /* force the update of the task clock: */
934 __task_delta_exec(curr, 1);
935
936 perf_counter_task_sched_out(curr, cpu);
937
938 spin_lock(&ctx->lock);
939
940 /*
941 * Disable all the counters:
942 */
943 perf_flags = hw_perf_save_disable();
944
945 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
946 if (counter->state > PERF_COUNTER_STATE_OFF)
947 continue;
948 counter->state = PERF_COUNTER_STATE_INACTIVE;
949 counter->hw_event.disabled = 0;
950 }
951 hw_perf_restore(perf_flags);
952
953 spin_unlock(&ctx->lock);
954
955 perf_counter_task_sched_in(curr, cpu);
956
957 curr_rq_unlock_irq_restore(&flags);
958
959 return 0;
960 }
961
962 /*
963 * Round-robin a context's counters:
964 */
965 static void rotate_ctx(struct perf_counter_context *ctx)
966 {
967 struct perf_counter *counter;
968 u64 perf_flags;
969
970 if (!ctx->nr_counters)
971 return;
972
973 spin_lock(&ctx->lock);
974 /*
975 * Rotate the first entry last (works just fine for group counters too):
976 */
977 perf_flags = hw_perf_save_disable();
978 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
979 list_move_tail(&counter->list_entry, &ctx->counter_list);
980 break;
981 }
982 hw_perf_restore(perf_flags);
983
984 spin_unlock(&ctx->lock);
985 }
986
987 void perf_counter_task_tick(struct task_struct *curr, int cpu)
988 {
989 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
990 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
991 const int rotate_percpu = 0;
992
993 if (rotate_percpu)
994 perf_counter_cpu_sched_out(cpuctx);
995 perf_counter_task_sched_out(curr, cpu);
996
997 if (rotate_percpu)
998 rotate_ctx(&cpuctx->ctx);
999 rotate_ctx(ctx);
1000
1001 if (rotate_percpu)
1002 perf_counter_cpu_sched_in(cpuctx, cpu);
1003 perf_counter_task_sched_in(curr, cpu);
1004 }
1005
1006 /*
1007 * Cross CPU call to read the hardware counter
1008 */
1009 static void __read(void *info)
1010 {
1011 struct perf_counter *counter = info;
1012 unsigned long flags;
1013
1014 curr_rq_lock_irq_save(&flags);
1015 counter->hw_ops->read(counter);
1016 curr_rq_unlock_irq_restore(&flags);
1017 }
1018
1019 static u64 perf_counter_read(struct perf_counter *counter)
1020 {
1021 /*
1022 * If counter is enabled and currently active on a CPU, update the
1023 * value in the counter structure:
1024 */
1025 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1026 smp_call_function_single(counter->oncpu,
1027 __read, counter, 1);
1028 }
1029
1030 return atomic64_read(&counter->count);
1031 }
1032
1033 static void put_context(struct perf_counter_context *ctx)
1034 {
1035 if (ctx->task)
1036 put_task_struct(ctx->task);
1037 }
1038
1039 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1040 {
1041 struct perf_cpu_context *cpuctx;
1042 struct perf_counter_context *ctx;
1043 struct task_struct *task;
1044
1045 /*
1046 * If cpu is not a wildcard then this is a percpu counter:
1047 */
1048 if (cpu != -1) {
1049 /* Must be root to operate on a CPU counter: */
1050 if (!capable(CAP_SYS_ADMIN))
1051 return ERR_PTR(-EACCES);
1052
1053 if (cpu < 0 || cpu > num_possible_cpus())
1054 return ERR_PTR(-EINVAL);
1055
1056 /*
1057 * We could be clever and allow to attach a counter to an
1058 * offline CPU and activate it when the CPU comes up, but
1059 * that's for later.
1060 */
1061 if (!cpu_isset(cpu, cpu_online_map))
1062 return ERR_PTR(-ENODEV);
1063
1064 cpuctx = &per_cpu(perf_cpu_context, cpu);
1065 ctx = &cpuctx->ctx;
1066
1067 return ctx;
1068 }
1069
1070 rcu_read_lock();
1071 if (!pid)
1072 task = current;
1073 else
1074 task = find_task_by_vpid(pid);
1075 if (task)
1076 get_task_struct(task);
1077 rcu_read_unlock();
1078
1079 if (!task)
1080 return ERR_PTR(-ESRCH);
1081
1082 ctx = &task->perf_counter_ctx;
1083 ctx->task = task;
1084
1085 /* Reuse ptrace permission checks for now. */
1086 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1087 put_context(ctx);
1088 return ERR_PTR(-EACCES);
1089 }
1090
1091 return ctx;
1092 }
1093
1094 static void free_counter_rcu(struct rcu_head *head)
1095 {
1096 struct perf_counter *counter;
1097
1098 counter = container_of(head, struct perf_counter, rcu_head);
1099 kfree(counter);
1100 }
1101
1102 static void free_counter(struct perf_counter *counter)
1103 {
1104 if (counter->destroy)
1105 counter->destroy(counter);
1106
1107 call_rcu(&counter->rcu_head, free_counter_rcu);
1108 }
1109
1110 /*
1111 * Called when the last reference to the file is gone.
1112 */
1113 static int perf_release(struct inode *inode, struct file *file)
1114 {
1115 struct perf_counter *counter = file->private_data;
1116 struct perf_counter_context *ctx = counter->ctx;
1117
1118 file->private_data = NULL;
1119
1120 mutex_lock(&ctx->mutex);
1121 mutex_lock(&counter->mutex);
1122
1123 perf_counter_remove_from_context(counter);
1124
1125 mutex_unlock(&counter->mutex);
1126 mutex_unlock(&ctx->mutex);
1127
1128 free_counter(counter);
1129 put_context(ctx);
1130
1131 return 0;
1132 }
1133
1134 /*
1135 * Read the performance counter - simple non blocking version for now
1136 */
1137 static ssize_t
1138 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1139 {
1140 u64 cntval;
1141
1142 if (count < sizeof(cntval))
1143 return -EINVAL;
1144
1145 /*
1146 * Return end-of-file for a read on a counter that is in
1147 * error state (i.e. because it was pinned but it couldn't be
1148 * scheduled on to the CPU at some point).
1149 */
1150 if (counter->state == PERF_COUNTER_STATE_ERROR)
1151 return 0;
1152
1153 mutex_lock(&counter->mutex);
1154 cntval = perf_counter_read(counter);
1155 mutex_unlock(&counter->mutex);
1156
1157 return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
1158 }
1159
1160 static ssize_t
1161 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1162 {
1163 struct perf_counter *counter = file->private_data;
1164
1165 return perf_read_hw(counter, buf, count);
1166 }
1167
1168 static unsigned int perf_poll(struct file *file, poll_table *wait)
1169 {
1170 struct perf_counter *counter = file->private_data;
1171 struct perf_mmap_data *data;
1172 unsigned int events;
1173
1174 rcu_read_lock();
1175 data = rcu_dereference(counter->data);
1176 if (data)
1177 events = atomic_xchg(&data->wakeup, 0);
1178 else
1179 events = POLL_HUP;
1180 rcu_read_unlock();
1181
1182 poll_wait(file, &counter->waitq, wait);
1183
1184 return events;
1185 }
1186
1187 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1188 {
1189 struct perf_counter *counter = file->private_data;
1190 int err = 0;
1191
1192 switch (cmd) {
1193 case PERF_COUNTER_IOC_ENABLE:
1194 perf_counter_enable_family(counter);
1195 break;
1196 case PERF_COUNTER_IOC_DISABLE:
1197 perf_counter_disable_family(counter);
1198 break;
1199 default:
1200 err = -ENOTTY;
1201 }
1202 return err;
1203 }
1204
1205 static void __perf_counter_update_userpage(struct perf_counter *counter,
1206 struct perf_mmap_data *data)
1207 {
1208 struct perf_counter_mmap_page *userpg = data->user_page;
1209
1210 /*
1211 * Disable preemption so as to not let the corresponding user-space
1212 * spin too long if we get preempted.
1213 */
1214 preempt_disable();
1215 ++userpg->lock;
1216 smp_wmb();
1217 userpg->index = counter->hw.idx;
1218 userpg->offset = atomic64_read(&counter->count);
1219 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1220 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1221
1222 userpg->data_head = atomic_read(&data->head);
1223 smp_wmb();
1224 ++userpg->lock;
1225 preempt_enable();
1226 }
1227
1228 void perf_counter_update_userpage(struct perf_counter *counter)
1229 {
1230 struct perf_mmap_data *data;
1231
1232 rcu_read_lock();
1233 data = rcu_dereference(counter->data);
1234 if (data)
1235 __perf_counter_update_userpage(counter, data);
1236 rcu_read_unlock();
1237 }
1238
1239 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1240 {
1241 struct perf_counter *counter = vma->vm_file->private_data;
1242 struct perf_mmap_data *data;
1243 int ret = VM_FAULT_SIGBUS;
1244
1245 rcu_read_lock();
1246 data = rcu_dereference(counter->data);
1247 if (!data)
1248 goto unlock;
1249
1250 if (vmf->pgoff == 0) {
1251 vmf->page = virt_to_page(data->user_page);
1252 } else {
1253 int nr = vmf->pgoff - 1;
1254
1255 if ((unsigned)nr > data->nr_pages)
1256 goto unlock;
1257
1258 vmf->page = virt_to_page(data->data_pages[nr]);
1259 }
1260 get_page(vmf->page);
1261 ret = 0;
1262 unlock:
1263 rcu_read_unlock();
1264
1265 return ret;
1266 }
1267
1268 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1269 {
1270 struct perf_mmap_data *data;
1271 unsigned long size;
1272 int i;
1273
1274 WARN_ON(atomic_read(&counter->mmap_count));
1275
1276 size = sizeof(struct perf_mmap_data);
1277 size += nr_pages * sizeof(void *);
1278
1279 data = kzalloc(size, GFP_KERNEL);
1280 if (!data)
1281 goto fail;
1282
1283 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1284 if (!data->user_page)
1285 goto fail_user_page;
1286
1287 for (i = 0; i < nr_pages; i++) {
1288 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1289 if (!data->data_pages[i])
1290 goto fail_data_pages;
1291 }
1292
1293 data->nr_pages = nr_pages;
1294
1295 rcu_assign_pointer(counter->data, data);
1296
1297 return 0;
1298
1299 fail_data_pages:
1300 for (i--; i >= 0; i--)
1301 free_page((unsigned long)data->data_pages[i]);
1302
1303 free_page((unsigned long)data->user_page);
1304
1305 fail_user_page:
1306 kfree(data);
1307
1308 fail:
1309 return -ENOMEM;
1310 }
1311
1312 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1313 {
1314 struct perf_mmap_data *data = container_of(rcu_head,
1315 struct perf_mmap_data, rcu_head);
1316 int i;
1317
1318 free_page((unsigned long)data->user_page);
1319 for (i = 0; i < data->nr_pages; i++)
1320 free_page((unsigned long)data->data_pages[i]);
1321 kfree(data);
1322 }
1323
1324 static void perf_mmap_data_free(struct perf_counter *counter)
1325 {
1326 struct perf_mmap_data *data = counter->data;
1327
1328 WARN_ON(atomic_read(&counter->mmap_count));
1329
1330 rcu_assign_pointer(counter->data, NULL);
1331 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1332 }
1333
1334 static void perf_mmap_open(struct vm_area_struct *vma)
1335 {
1336 struct perf_counter *counter = vma->vm_file->private_data;
1337
1338 atomic_inc(&counter->mmap_count);
1339 }
1340
1341 static void perf_mmap_close(struct vm_area_struct *vma)
1342 {
1343 struct perf_counter *counter = vma->vm_file->private_data;
1344
1345 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1346 &counter->mmap_mutex)) {
1347 perf_mmap_data_free(counter);
1348 mutex_unlock(&counter->mmap_mutex);
1349 }
1350 }
1351
1352 static struct vm_operations_struct perf_mmap_vmops = {
1353 .open = perf_mmap_open,
1354 .close = perf_mmap_close,
1355 .fault = perf_mmap_fault,
1356 };
1357
1358 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1359 {
1360 struct perf_counter *counter = file->private_data;
1361 unsigned long vma_size;
1362 unsigned long nr_pages;
1363 unsigned long locked, lock_limit;
1364 int ret = 0;
1365
1366 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1367 return -EINVAL;
1368
1369 vma_size = vma->vm_end - vma->vm_start;
1370 nr_pages = (vma_size / PAGE_SIZE) - 1;
1371
1372 /*
1373 * If we have data pages ensure they're a power-of-two number, so we
1374 * can do bitmasks instead of modulo.
1375 */
1376 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1377 return -EINVAL;
1378
1379 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1380 return -EINVAL;
1381
1382 if (vma->vm_pgoff != 0)
1383 return -EINVAL;
1384
1385 locked = vma_size >> PAGE_SHIFT;
1386 locked += vma->vm_mm->locked_vm;
1387
1388 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1389 lock_limit >>= PAGE_SHIFT;
1390
1391 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK))
1392 return -EPERM;
1393
1394 mutex_lock(&counter->mmap_mutex);
1395 if (atomic_inc_not_zero(&counter->mmap_count))
1396 goto out;
1397
1398 WARN_ON(counter->data);
1399 ret = perf_mmap_data_alloc(counter, nr_pages);
1400 if (!ret)
1401 atomic_set(&counter->mmap_count, 1);
1402 out:
1403 mutex_unlock(&counter->mmap_mutex);
1404
1405 vma->vm_flags &= ~VM_MAYWRITE;
1406 vma->vm_flags |= VM_RESERVED;
1407 vma->vm_ops = &perf_mmap_vmops;
1408
1409 return ret;
1410 }
1411
1412 static const struct file_operations perf_fops = {
1413 .release = perf_release,
1414 .read = perf_read,
1415 .poll = perf_poll,
1416 .unlocked_ioctl = perf_ioctl,
1417 .compat_ioctl = perf_ioctl,
1418 .mmap = perf_mmap,
1419 };
1420
1421 /*
1422 * Output
1423 */
1424
1425 struct perf_output_handle {
1426 struct perf_counter *counter;
1427 struct perf_mmap_data *data;
1428 unsigned int offset;
1429 unsigned int head;
1430 int wakeup;
1431 };
1432
1433 static int perf_output_begin(struct perf_output_handle *handle,
1434 struct perf_counter *counter, unsigned int size)
1435 {
1436 struct perf_mmap_data *data;
1437 unsigned int offset, head;
1438
1439 rcu_read_lock();
1440 data = rcu_dereference(counter->data);
1441 if (!data)
1442 goto out;
1443
1444 if (!data->nr_pages)
1445 goto out;
1446
1447 do {
1448 offset = head = atomic_read(&data->head);
1449 head += size;
1450 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1451
1452 handle->counter = counter;
1453 handle->data = data;
1454 handle->offset = offset;
1455 handle->head = head;
1456 handle->wakeup = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1457
1458 return 0;
1459
1460 out:
1461 rcu_read_unlock();
1462
1463 return -ENOSPC;
1464 }
1465
1466 static void perf_output_copy(struct perf_output_handle *handle,
1467 void *buf, unsigned int len)
1468 {
1469 unsigned int pages_mask;
1470 unsigned int offset;
1471 unsigned int size;
1472 void **pages;
1473
1474 offset = handle->offset;
1475 pages_mask = handle->data->nr_pages - 1;
1476 pages = handle->data->data_pages;
1477
1478 do {
1479 unsigned int page_offset;
1480 int nr;
1481
1482 nr = (offset >> PAGE_SHIFT) & pages_mask;
1483 page_offset = offset & (PAGE_SIZE - 1);
1484 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1485
1486 memcpy(pages[nr] + page_offset, buf, size);
1487
1488 len -= size;
1489 buf += size;
1490 offset += size;
1491 } while (len);
1492
1493 handle->offset = offset;
1494
1495 WARN_ON_ONCE(handle->offset > handle->head);
1496 }
1497
1498 #define perf_output_put(handle, x) \
1499 perf_output_copy((handle), &(x), sizeof(x))
1500
1501 static void perf_output_end(struct perf_output_handle *handle, int nmi)
1502 {
1503 if (handle->wakeup) {
1504 (void)atomic_xchg(&handle->data->wakeup, POLL_IN);
1505 __perf_counter_update_userpage(handle->counter, handle->data);
1506 if (nmi) {
1507 handle->counter->wakeup_pending = 1;
1508 set_perf_counter_pending();
1509 } else
1510 wake_up(&handle->counter->waitq);
1511 }
1512 rcu_read_unlock();
1513 }
1514
1515 static int perf_output_write(struct perf_counter *counter, int nmi,
1516 void *buf, ssize_t size)
1517 {
1518 struct perf_output_handle handle;
1519 int ret;
1520
1521 ret = perf_output_begin(&handle, counter, size);
1522 if (ret)
1523 goto out;
1524
1525 perf_output_copy(&handle, buf, size);
1526 perf_output_end(&handle, nmi);
1527
1528 out:
1529 return ret;
1530 }
1531
1532 static void perf_output_simple(struct perf_counter *counter,
1533 int nmi, struct pt_regs *regs)
1534 {
1535 unsigned int size;
1536 struct {
1537 struct perf_event_header header;
1538 u64 ip;
1539 u32 pid, tid;
1540 } event;
1541
1542 event.header.type = PERF_EVENT_IP;
1543 event.ip = instruction_pointer(regs);
1544
1545 size = sizeof(event);
1546
1547 if (counter->hw_event.include_tid) {
1548 /* namespace issues */
1549 event.pid = current->group_leader->pid;
1550 event.tid = current->pid;
1551
1552 event.header.type |= __PERF_EVENT_TID;
1553 } else
1554 size -= sizeof(u64);
1555
1556 event.header.size = size;
1557
1558 perf_output_write(counter, nmi, &event, size);
1559 }
1560
1561 static void perf_output_group(struct perf_counter *counter, int nmi)
1562 {
1563 struct perf_output_handle handle;
1564 struct perf_event_header header;
1565 struct perf_counter *leader, *sub;
1566 unsigned int size;
1567 struct {
1568 u64 event;
1569 u64 counter;
1570 } entry;
1571 int ret;
1572
1573 size = sizeof(header) + counter->nr_siblings * sizeof(entry);
1574
1575 ret = perf_output_begin(&handle, counter, size);
1576 if (ret)
1577 return;
1578
1579 header.type = PERF_EVENT_GROUP;
1580 header.size = size;
1581
1582 perf_output_put(&handle, header);
1583
1584 leader = counter->group_leader;
1585 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1586 if (sub != counter)
1587 sub->hw_ops->read(sub);
1588
1589 entry.event = sub->hw_event.config;
1590 entry.counter = atomic64_read(&sub->count);
1591
1592 perf_output_put(&handle, entry);
1593 }
1594
1595 perf_output_end(&handle, nmi);
1596 }
1597
1598 void perf_counter_output(struct perf_counter *counter,
1599 int nmi, struct pt_regs *regs)
1600 {
1601 switch (counter->hw_event.record_type) {
1602 case PERF_RECORD_SIMPLE:
1603 return;
1604
1605 case PERF_RECORD_IRQ:
1606 perf_output_simple(counter, nmi, regs);
1607 break;
1608
1609 case PERF_RECORD_GROUP:
1610 perf_output_group(counter, nmi);
1611 break;
1612 }
1613 }
1614
1615 /*
1616 * Generic software counter infrastructure
1617 */
1618
1619 static void perf_swcounter_update(struct perf_counter *counter)
1620 {
1621 struct hw_perf_counter *hwc = &counter->hw;
1622 u64 prev, now;
1623 s64 delta;
1624
1625 again:
1626 prev = atomic64_read(&hwc->prev_count);
1627 now = atomic64_read(&hwc->count);
1628 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
1629 goto again;
1630
1631 delta = now - prev;
1632
1633 atomic64_add(delta, &counter->count);
1634 atomic64_sub(delta, &hwc->period_left);
1635 }
1636
1637 static void perf_swcounter_set_period(struct perf_counter *counter)
1638 {
1639 struct hw_perf_counter *hwc = &counter->hw;
1640 s64 left = atomic64_read(&hwc->period_left);
1641 s64 period = hwc->irq_period;
1642
1643 if (unlikely(left <= -period)) {
1644 left = period;
1645 atomic64_set(&hwc->period_left, left);
1646 }
1647
1648 if (unlikely(left <= 0)) {
1649 left += period;
1650 atomic64_add(period, &hwc->period_left);
1651 }
1652
1653 atomic64_set(&hwc->prev_count, -left);
1654 atomic64_set(&hwc->count, -left);
1655 }
1656
1657 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
1658 {
1659 struct perf_counter *counter;
1660 struct pt_regs *regs;
1661
1662 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
1663 counter->hw_ops->read(counter);
1664
1665 regs = get_irq_regs();
1666 /*
1667 * In case we exclude kernel IPs or are somehow not in interrupt
1668 * context, provide the next best thing, the user IP.
1669 */
1670 if ((counter->hw_event.exclude_kernel || !regs) &&
1671 !counter->hw_event.exclude_user)
1672 regs = task_pt_regs(current);
1673
1674 if (regs)
1675 perf_counter_output(counter, 0, regs);
1676
1677 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
1678
1679 return HRTIMER_RESTART;
1680 }
1681
1682 static void perf_swcounter_overflow(struct perf_counter *counter,
1683 int nmi, struct pt_regs *regs)
1684 {
1685 perf_swcounter_update(counter);
1686 perf_swcounter_set_period(counter);
1687 perf_counter_output(counter, nmi, regs);
1688 }
1689
1690 static int perf_swcounter_match(struct perf_counter *counter,
1691 enum perf_event_types type,
1692 u32 event, struct pt_regs *regs)
1693 {
1694 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1695 return 0;
1696
1697 if (perf_event_raw(&counter->hw_event))
1698 return 0;
1699
1700 if (perf_event_type(&counter->hw_event) != type)
1701 return 0;
1702
1703 if (perf_event_id(&counter->hw_event) != event)
1704 return 0;
1705
1706 if (counter->hw_event.exclude_user && user_mode(regs))
1707 return 0;
1708
1709 if (counter->hw_event.exclude_kernel && !user_mode(regs))
1710 return 0;
1711
1712 return 1;
1713 }
1714
1715 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
1716 int nmi, struct pt_regs *regs)
1717 {
1718 int neg = atomic64_add_negative(nr, &counter->hw.count);
1719 if (counter->hw.irq_period && !neg)
1720 perf_swcounter_overflow(counter, nmi, regs);
1721 }
1722
1723 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
1724 enum perf_event_types type, u32 event,
1725 u64 nr, int nmi, struct pt_regs *regs)
1726 {
1727 struct perf_counter *counter;
1728
1729 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1730 return;
1731
1732 rcu_read_lock();
1733 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1734 if (perf_swcounter_match(counter, type, event, regs))
1735 perf_swcounter_add(counter, nr, nmi, regs);
1736 }
1737 rcu_read_unlock();
1738 }
1739
1740 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
1741 {
1742 if (in_nmi())
1743 return &cpuctx->recursion[3];
1744
1745 if (in_irq())
1746 return &cpuctx->recursion[2];
1747
1748 if (in_softirq())
1749 return &cpuctx->recursion[1];
1750
1751 return &cpuctx->recursion[0];
1752 }
1753
1754 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
1755 u64 nr, int nmi, struct pt_regs *regs)
1756 {
1757 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
1758 int *recursion = perf_swcounter_recursion_context(cpuctx);
1759
1760 if (*recursion)
1761 goto out;
1762
1763 (*recursion)++;
1764 barrier();
1765
1766 perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
1767 if (cpuctx->task_ctx) {
1768 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
1769 nr, nmi, regs);
1770 }
1771
1772 barrier();
1773 (*recursion)--;
1774
1775 out:
1776 put_cpu_var(perf_cpu_context);
1777 }
1778
1779 void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
1780 {
1781 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
1782 }
1783
1784 static void perf_swcounter_read(struct perf_counter *counter)
1785 {
1786 perf_swcounter_update(counter);
1787 }
1788
1789 static int perf_swcounter_enable(struct perf_counter *counter)
1790 {
1791 perf_swcounter_set_period(counter);
1792 return 0;
1793 }
1794
1795 static void perf_swcounter_disable(struct perf_counter *counter)
1796 {
1797 perf_swcounter_update(counter);
1798 }
1799
1800 static const struct hw_perf_counter_ops perf_ops_generic = {
1801 .enable = perf_swcounter_enable,
1802 .disable = perf_swcounter_disable,
1803 .read = perf_swcounter_read,
1804 };
1805
1806 /*
1807 * Software counter: cpu wall time clock
1808 */
1809
1810 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
1811 {
1812 int cpu = raw_smp_processor_id();
1813 s64 prev;
1814 u64 now;
1815
1816 now = cpu_clock(cpu);
1817 prev = atomic64_read(&counter->hw.prev_count);
1818 atomic64_set(&counter->hw.prev_count, now);
1819 atomic64_add(now - prev, &counter->count);
1820 }
1821
1822 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
1823 {
1824 struct hw_perf_counter *hwc = &counter->hw;
1825 int cpu = raw_smp_processor_id();
1826
1827 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
1828 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1829 hwc->hrtimer.function = perf_swcounter_hrtimer;
1830 if (hwc->irq_period) {
1831 __hrtimer_start_range_ns(&hwc->hrtimer,
1832 ns_to_ktime(hwc->irq_period), 0,
1833 HRTIMER_MODE_REL, 0);
1834 }
1835
1836 return 0;
1837 }
1838
1839 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
1840 {
1841 hrtimer_cancel(&counter->hw.hrtimer);
1842 cpu_clock_perf_counter_update(counter);
1843 }
1844
1845 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
1846 {
1847 cpu_clock_perf_counter_update(counter);
1848 }
1849
1850 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
1851 .enable = cpu_clock_perf_counter_enable,
1852 .disable = cpu_clock_perf_counter_disable,
1853 .read = cpu_clock_perf_counter_read,
1854 };
1855
1856 /*
1857 * Software counter: task time clock
1858 */
1859
1860 /*
1861 * Called from within the scheduler:
1862 */
1863 static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1864 {
1865 struct task_struct *curr = counter->task;
1866 u64 delta;
1867
1868 delta = __task_delta_exec(curr, update);
1869
1870 return curr->se.sum_exec_runtime + delta;
1871 }
1872
1873 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
1874 {
1875 u64 prev;
1876 s64 delta;
1877
1878 prev = atomic64_read(&counter->hw.prev_count);
1879
1880 atomic64_set(&counter->hw.prev_count, now);
1881
1882 delta = now - prev;
1883
1884 atomic64_add(delta, &counter->count);
1885 }
1886
1887 static int task_clock_perf_counter_enable(struct perf_counter *counter)
1888 {
1889 struct hw_perf_counter *hwc = &counter->hw;
1890
1891 atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
1892 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1893 hwc->hrtimer.function = perf_swcounter_hrtimer;
1894 if (hwc->irq_period) {
1895 __hrtimer_start_range_ns(&hwc->hrtimer,
1896 ns_to_ktime(hwc->irq_period), 0,
1897 HRTIMER_MODE_REL, 0);
1898 }
1899
1900 return 0;
1901 }
1902
1903 static void task_clock_perf_counter_disable(struct perf_counter *counter)
1904 {
1905 hrtimer_cancel(&counter->hw.hrtimer);
1906 task_clock_perf_counter_update(counter,
1907 task_clock_perf_counter_val(counter, 0));
1908 }
1909
1910 static void task_clock_perf_counter_read(struct perf_counter *counter)
1911 {
1912 task_clock_perf_counter_update(counter,
1913 task_clock_perf_counter_val(counter, 1));
1914 }
1915
1916 static const struct hw_perf_counter_ops perf_ops_task_clock = {
1917 .enable = task_clock_perf_counter_enable,
1918 .disable = task_clock_perf_counter_disable,
1919 .read = task_clock_perf_counter_read,
1920 };
1921
1922 /*
1923 * Software counter: cpu migrations
1924 */
1925
1926 static inline u64 get_cpu_migrations(struct perf_counter *counter)
1927 {
1928 struct task_struct *curr = counter->ctx->task;
1929
1930 if (curr)
1931 return curr->se.nr_migrations;
1932 return cpu_nr_migrations(smp_processor_id());
1933 }
1934
1935 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
1936 {
1937 u64 prev, now;
1938 s64 delta;
1939
1940 prev = atomic64_read(&counter->hw.prev_count);
1941 now = get_cpu_migrations(counter);
1942
1943 atomic64_set(&counter->hw.prev_count, now);
1944
1945 delta = now - prev;
1946
1947 atomic64_add(delta, &counter->count);
1948 }
1949
1950 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
1951 {
1952 cpu_migrations_perf_counter_update(counter);
1953 }
1954
1955 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
1956 {
1957 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
1958 atomic64_set(&counter->hw.prev_count,
1959 get_cpu_migrations(counter));
1960 return 0;
1961 }
1962
1963 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
1964 {
1965 cpu_migrations_perf_counter_update(counter);
1966 }
1967
1968 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
1969 .enable = cpu_migrations_perf_counter_enable,
1970 .disable = cpu_migrations_perf_counter_disable,
1971 .read = cpu_migrations_perf_counter_read,
1972 };
1973
1974 #ifdef CONFIG_EVENT_PROFILE
1975 void perf_tpcounter_event(int event_id)
1976 {
1977 struct pt_regs *regs = get_irq_regs();
1978
1979 if (!regs)
1980 regs = task_pt_regs(current);
1981
1982 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
1983 }
1984
1985 extern int ftrace_profile_enable(int);
1986 extern void ftrace_profile_disable(int);
1987
1988 static void tp_perf_counter_destroy(struct perf_counter *counter)
1989 {
1990 ftrace_profile_disable(perf_event_id(&counter->hw_event));
1991 }
1992
1993 static const struct hw_perf_counter_ops *
1994 tp_perf_counter_init(struct perf_counter *counter)
1995 {
1996 int event_id = perf_event_id(&counter->hw_event);
1997 int ret;
1998
1999 ret = ftrace_profile_enable(event_id);
2000 if (ret)
2001 return NULL;
2002
2003 counter->destroy = tp_perf_counter_destroy;
2004 counter->hw.irq_period = counter->hw_event.irq_period;
2005
2006 return &perf_ops_generic;
2007 }
2008 #else
2009 static const struct hw_perf_counter_ops *
2010 tp_perf_counter_init(struct perf_counter *counter)
2011 {
2012 return NULL;
2013 }
2014 #endif
2015
2016 static const struct hw_perf_counter_ops *
2017 sw_perf_counter_init(struct perf_counter *counter)
2018 {
2019 struct perf_counter_hw_event *hw_event = &counter->hw_event;
2020 const struct hw_perf_counter_ops *hw_ops = NULL;
2021 struct hw_perf_counter *hwc = &counter->hw;
2022
2023 /*
2024 * Software counters (currently) can't in general distinguish
2025 * between user, kernel and hypervisor events.
2026 * However, context switches and cpu migrations are considered
2027 * to be kernel events, and page faults are never hypervisor
2028 * events.
2029 */
2030 switch (perf_event_id(&counter->hw_event)) {
2031 case PERF_COUNT_CPU_CLOCK:
2032 hw_ops = &perf_ops_cpu_clock;
2033
2034 if (hw_event->irq_period && hw_event->irq_period < 10000)
2035 hw_event->irq_period = 10000;
2036 break;
2037 case PERF_COUNT_TASK_CLOCK:
2038 /*
2039 * If the user instantiates this as a per-cpu counter,
2040 * use the cpu_clock counter instead.
2041 */
2042 if (counter->ctx->task)
2043 hw_ops = &perf_ops_task_clock;
2044 else
2045 hw_ops = &perf_ops_cpu_clock;
2046
2047 if (hw_event->irq_period && hw_event->irq_period < 10000)
2048 hw_event->irq_period = 10000;
2049 break;
2050 case PERF_COUNT_PAGE_FAULTS:
2051 case PERF_COUNT_PAGE_FAULTS_MIN:
2052 case PERF_COUNT_PAGE_FAULTS_MAJ:
2053 case PERF_COUNT_CONTEXT_SWITCHES:
2054 hw_ops = &perf_ops_generic;
2055 break;
2056 case PERF_COUNT_CPU_MIGRATIONS:
2057 if (!counter->hw_event.exclude_kernel)
2058 hw_ops = &perf_ops_cpu_migrations;
2059 break;
2060 }
2061
2062 if (hw_ops)
2063 hwc->irq_period = hw_event->irq_period;
2064
2065 return hw_ops;
2066 }
2067
2068 /*
2069 * Allocate and initialize a counter structure
2070 */
2071 static struct perf_counter *
2072 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2073 int cpu,
2074 struct perf_counter_context *ctx,
2075 struct perf_counter *group_leader,
2076 gfp_t gfpflags)
2077 {
2078 const struct hw_perf_counter_ops *hw_ops;
2079 struct perf_counter *counter;
2080
2081 counter = kzalloc(sizeof(*counter), gfpflags);
2082 if (!counter)
2083 return NULL;
2084
2085 /*
2086 * Single counters are their own group leaders, with an
2087 * empty sibling list:
2088 */
2089 if (!group_leader)
2090 group_leader = counter;
2091
2092 mutex_init(&counter->mutex);
2093 INIT_LIST_HEAD(&counter->list_entry);
2094 INIT_LIST_HEAD(&counter->event_entry);
2095 INIT_LIST_HEAD(&counter->sibling_list);
2096 init_waitqueue_head(&counter->waitq);
2097
2098 mutex_init(&counter->mmap_mutex);
2099
2100 INIT_LIST_HEAD(&counter->child_list);
2101
2102 counter->cpu = cpu;
2103 counter->hw_event = *hw_event;
2104 counter->wakeup_pending = 0;
2105 counter->group_leader = group_leader;
2106 counter->hw_ops = NULL;
2107 counter->ctx = ctx;
2108
2109 counter->state = PERF_COUNTER_STATE_INACTIVE;
2110 if (hw_event->disabled)
2111 counter->state = PERF_COUNTER_STATE_OFF;
2112
2113 hw_ops = NULL;
2114
2115 if (perf_event_raw(hw_event)) {
2116 hw_ops = hw_perf_counter_init(counter);
2117 goto done;
2118 }
2119
2120 switch (perf_event_type(hw_event)) {
2121 case PERF_TYPE_HARDWARE:
2122 hw_ops = hw_perf_counter_init(counter);
2123 break;
2124
2125 case PERF_TYPE_SOFTWARE:
2126 hw_ops = sw_perf_counter_init(counter);
2127 break;
2128
2129 case PERF_TYPE_TRACEPOINT:
2130 hw_ops = tp_perf_counter_init(counter);
2131 break;
2132 }
2133
2134 if (!hw_ops) {
2135 kfree(counter);
2136 return NULL;
2137 }
2138 done:
2139 counter->hw_ops = hw_ops;
2140
2141 return counter;
2142 }
2143
2144 /**
2145 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2146 *
2147 * @hw_event_uptr: event type attributes for monitoring/sampling
2148 * @pid: target pid
2149 * @cpu: target cpu
2150 * @group_fd: group leader counter fd
2151 */
2152 SYSCALL_DEFINE5(perf_counter_open,
2153 const struct perf_counter_hw_event __user *, hw_event_uptr,
2154 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2155 {
2156 struct perf_counter *counter, *group_leader;
2157 struct perf_counter_hw_event hw_event;
2158 struct perf_counter_context *ctx;
2159 struct file *counter_file = NULL;
2160 struct file *group_file = NULL;
2161 int fput_needed = 0;
2162 int fput_needed2 = 0;
2163 int ret;
2164
2165 /* for future expandability... */
2166 if (flags)
2167 return -EINVAL;
2168
2169 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2170 return -EFAULT;
2171
2172 /*
2173 * Get the target context (task or percpu):
2174 */
2175 ctx = find_get_context(pid, cpu);
2176 if (IS_ERR(ctx))
2177 return PTR_ERR(ctx);
2178
2179 /*
2180 * Look up the group leader (we will attach this counter to it):
2181 */
2182 group_leader = NULL;
2183 if (group_fd != -1) {
2184 ret = -EINVAL;
2185 group_file = fget_light(group_fd, &fput_needed);
2186 if (!group_file)
2187 goto err_put_context;
2188 if (group_file->f_op != &perf_fops)
2189 goto err_put_context;
2190
2191 group_leader = group_file->private_data;
2192 /*
2193 * Do not allow a recursive hierarchy (this new sibling
2194 * becoming part of another group-sibling):
2195 */
2196 if (group_leader->group_leader != group_leader)
2197 goto err_put_context;
2198 /*
2199 * Do not allow to attach to a group in a different
2200 * task or CPU context:
2201 */
2202 if (group_leader->ctx != ctx)
2203 goto err_put_context;
2204 /*
2205 * Only a group leader can be exclusive or pinned
2206 */
2207 if (hw_event.exclusive || hw_event.pinned)
2208 goto err_put_context;
2209 }
2210
2211 ret = -EINVAL;
2212 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2213 GFP_KERNEL);
2214 if (!counter)
2215 goto err_put_context;
2216
2217 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2218 if (ret < 0)
2219 goto err_free_put_context;
2220
2221 counter_file = fget_light(ret, &fput_needed2);
2222 if (!counter_file)
2223 goto err_free_put_context;
2224
2225 counter->filp = counter_file;
2226 mutex_lock(&ctx->mutex);
2227 perf_install_in_context(ctx, counter, cpu);
2228 mutex_unlock(&ctx->mutex);
2229
2230 fput_light(counter_file, fput_needed2);
2231
2232 out_fput:
2233 fput_light(group_file, fput_needed);
2234
2235 return ret;
2236
2237 err_free_put_context:
2238 kfree(counter);
2239
2240 err_put_context:
2241 put_context(ctx);
2242
2243 goto out_fput;
2244 }
2245
2246 /*
2247 * Initialize the perf_counter context in a task_struct:
2248 */
2249 static void
2250 __perf_counter_init_context(struct perf_counter_context *ctx,
2251 struct task_struct *task)
2252 {
2253 memset(ctx, 0, sizeof(*ctx));
2254 spin_lock_init(&ctx->lock);
2255 mutex_init(&ctx->mutex);
2256 INIT_LIST_HEAD(&ctx->counter_list);
2257 INIT_LIST_HEAD(&ctx->event_list);
2258 ctx->task = task;
2259 }
2260
2261 /*
2262 * inherit a counter from parent task to child task:
2263 */
2264 static struct perf_counter *
2265 inherit_counter(struct perf_counter *parent_counter,
2266 struct task_struct *parent,
2267 struct perf_counter_context *parent_ctx,
2268 struct task_struct *child,
2269 struct perf_counter *group_leader,
2270 struct perf_counter_context *child_ctx)
2271 {
2272 struct perf_counter *child_counter;
2273
2274 /*
2275 * Instead of creating recursive hierarchies of counters,
2276 * we link inherited counters back to the original parent,
2277 * which has a filp for sure, which we use as the reference
2278 * count:
2279 */
2280 if (parent_counter->parent)
2281 parent_counter = parent_counter->parent;
2282
2283 child_counter = perf_counter_alloc(&parent_counter->hw_event,
2284 parent_counter->cpu, child_ctx,
2285 group_leader, GFP_KERNEL);
2286 if (!child_counter)
2287 return NULL;
2288
2289 /*
2290 * Link it up in the child's context:
2291 */
2292 child_counter->task = child;
2293 list_add_counter(child_counter, child_ctx);
2294 child_ctx->nr_counters++;
2295
2296 child_counter->parent = parent_counter;
2297 /*
2298 * inherit into child's child as well:
2299 */
2300 child_counter->hw_event.inherit = 1;
2301
2302 /*
2303 * Get a reference to the parent filp - we will fput it
2304 * when the child counter exits. This is safe to do because
2305 * we are in the parent and we know that the filp still
2306 * exists and has a nonzero count:
2307 */
2308 atomic_long_inc(&parent_counter->filp->f_count);
2309
2310 /*
2311 * Link this into the parent counter's child list
2312 */
2313 mutex_lock(&parent_counter->mutex);
2314 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2315
2316 /*
2317 * Make the child state follow the state of the parent counter,
2318 * not its hw_event.disabled bit. We hold the parent's mutex,
2319 * so we won't race with perf_counter_{en,dis}able_family.
2320 */
2321 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2322 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2323 else
2324 child_counter->state = PERF_COUNTER_STATE_OFF;
2325
2326 mutex_unlock(&parent_counter->mutex);
2327
2328 return child_counter;
2329 }
2330
2331 static int inherit_group(struct perf_counter *parent_counter,
2332 struct task_struct *parent,
2333 struct perf_counter_context *parent_ctx,
2334 struct task_struct *child,
2335 struct perf_counter_context *child_ctx)
2336 {
2337 struct perf_counter *leader;
2338 struct perf_counter *sub;
2339
2340 leader = inherit_counter(parent_counter, parent, parent_ctx,
2341 child, NULL, child_ctx);
2342 if (!leader)
2343 return -ENOMEM;
2344 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2345 if (!inherit_counter(sub, parent, parent_ctx,
2346 child, leader, child_ctx))
2347 return -ENOMEM;
2348 }
2349 return 0;
2350 }
2351
2352 static void sync_child_counter(struct perf_counter *child_counter,
2353 struct perf_counter *parent_counter)
2354 {
2355 u64 parent_val, child_val;
2356
2357 parent_val = atomic64_read(&parent_counter->count);
2358 child_val = atomic64_read(&child_counter->count);
2359
2360 /*
2361 * Add back the child's count to the parent's count:
2362 */
2363 atomic64_add(child_val, &parent_counter->count);
2364
2365 /*
2366 * Remove this counter from the parent's list
2367 */
2368 mutex_lock(&parent_counter->mutex);
2369 list_del_init(&child_counter->child_list);
2370 mutex_unlock(&parent_counter->mutex);
2371
2372 /*
2373 * Release the parent counter, if this was the last
2374 * reference to it.
2375 */
2376 fput(parent_counter->filp);
2377 }
2378
2379 static void
2380 __perf_counter_exit_task(struct task_struct *child,
2381 struct perf_counter *child_counter,
2382 struct perf_counter_context *child_ctx)
2383 {
2384 struct perf_counter *parent_counter;
2385 struct perf_counter *sub, *tmp;
2386
2387 /*
2388 * If we do not self-reap then we have to wait for the
2389 * child task to unschedule (it will happen for sure),
2390 * so that its counter is at its final count. (This
2391 * condition triggers rarely - child tasks usually get
2392 * off their CPU before the parent has a chance to
2393 * get this far into the reaping action)
2394 */
2395 if (child != current) {
2396 wait_task_inactive(child, 0);
2397 list_del_init(&child_counter->list_entry);
2398 } else {
2399 struct perf_cpu_context *cpuctx;
2400 unsigned long flags;
2401 u64 perf_flags;
2402
2403 /*
2404 * Disable and unlink this counter.
2405 *
2406 * Be careful about zapping the list - IRQ/NMI context
2407 * could still be processing it:
2408 */
2409 curr_rq_lock_irq_save(&flags);
2410 perf_flags = hw_perf_save_disable();
2411
2412 cpuctx = &__get_cpu_var(perf_cpu_context);
2413
2414 group_sched_out(child_counter, cpuctx, child_ctx);
2415
2416 list_del_init(&child_counter->list_entry);
2417
2418 child_ctx->nr_counters--;
2419
2420 hw_perf_restore(perf_flags);
2421 curr_rq_unlock_irq_restore(&flags);
2422 }
2423
2424 parent_counter = child_counter->parent;
2425 /*
2426 * It can happen that parent exits first, and has counters
2427 * that are still around due to the child reference. These
2428 * counters need to be zapped - but otherwise linger.
2429 */
2430 if (parent_counter) {
2431 sync_child_counter(child_counter, parent_counter);
2432 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2433 list_entry) {
2434 if (sub->parent) {
2435 sync_child_counter(sub, sub->parent);
2436 free_counter(sub);
2437 }
2438 }
2439 free_counter(child_counter);
2440 }
2441 }
2442
2443 /*
2444 * When a child task exits, feed back counter values to parent counters.
2445 *
2446 * Note: we may be running in child context, but the PID is not hashed
2447 * anymore so new counters will not be added.
2448 */
2449 void perf_counter_exit_task(struct task_struct *child)
2450 {
2451 struct perf_counter *child_counter, *tmp;
2452 struct perf_counter_context *child_ctx;
2453
2454 child_ctx = &child->perf_counter_ctx;
2455
2456 if (likely(!child_ctx->nr_counters))
2457 return;
2458
2459 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2460 list_entry)
2461 __perf_counter_exit_task(child, child_counter, child_ctx);
2462 }
2463
2464 /*
2465 * Initialize the perf_counter context in task_struct
2466 */
2467 void perf_counter_init_task(struct task_struct *child)
2468 {
2469 struct perf_counter_context *child_ctx, *parent_ctx;
2470 struct perf_counter *counter;
2471 struct task_struct *parent = current;
2472
2473 child_ctx = &child->perf_counter_ctx;
2474 parent_ctx = &parent->perf_counter_ctx;
2475
2476 __perf_counter_init_context(child_ctx, child);
2477
2478 /*
2479 * This is executed from the parent task context, so inherit
2480 * counters that have been marked for cloning:
2481 */
2482
2483 if (likely(!parent_ctx->nr_counters))
2484 return;
2485
2486 /*
2487 * Lock the parent list. No need to lock the child - not PID
2488 * hashed yet and not running, so nobody can access it.
2489 */
2490 mutex_lock(&parent_ctx->mutex);
2491
2492 /*
2493 * We dont have to disable NMIs - we are only looking at
2494 * the list, not manipulating it:
2495 */
2496 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2497 if (!counter->hw_event.inherit)
2498 continue;
2499
2500 if (inherit_group(counter, parent,
2501 parent_ctx, child, child_ctx))
2502 break;
2503 }
2504
2505 mutex_unlock(&parent_ctx->mutex);
2506 }
2507
2508 static void __cpuinit perf_counter_init_cpu(int cpu)
2509 {
2510 struct perf_cpu_context *cpuctx;
2511
2512 cpuctx = &per_cpu(perf_cpu_context, cpu);
2513 __perf_counter_init_context(&cpuctx->ctx, NULL);
2514
2515 mutex_lock(&perf_resource_mutex);
2516 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
2517 mutex_unlock(&perf_resource_mutex);
2518
2519 hw_perf_counter_setup(cpu);
2520 }
2521
2522 #ifdef CONFIG_HOTPLUG_CPU
2523 static void __perf_counter_exit_cpu(void *info)
2524 {
2525 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2526 struct perf_counter_context *ctx = &cpuctx->ctx;
2527 struct perf_counter *counter, *tmp;
2528
2529 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2530 __perf_counter_remove_from_context(counter);
2531 }
2532 static void perf_counter_exit_cpu(int cpu)
2533 {
2534 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2535 struct perf_counter_context *ctx = &cpuctx->ctx;
2536
2537 mutex_lock(&ctx->mutex);
2538 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2539 mutex_unlock(&ctx->mutex);
2540 }
2541 #else
2542 static inline void perf_counter_exit_cpu(int cpu) { }
2543 #endif
2544
2545 static int __cpuinit
2546 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2547 {
2548 unsigned int cpu = (long)hcpu;
2549
2550 switch (action) {
2551
2552 case CPU_UP_PREPARE:
2553 case CPU_UP_PREPARE_FROZEN:
2554 perf_counter_init_cpu(cpu);
2555 break;
2556
2557 case CPU_DOWN_PREPARE:
2558 case CPU_DOWN_PREPARE_FROZEN:
2559 perf_counter_exit_cpu(cpu);
2560 break;
2561
2562 default:
2563 break;
2564 }
2565
2566 return NOTIFY_OK;
2567 }
2568
2569 static struct notifier_block __cpuinitdata perf_cpu_nb = {
2570 .notifier_call = perf_cpu_notify,
2571 };
2572
2573 static int __init perf_counter_init(void)
2574 {
2575 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
2576 (void *)(long)smp_processor_id());
2577 register_cpu_notifier(&perf_cpu_nb);
2578
2579 return 0;
2580 }
2581 early_initcall(perf_counter_init);
2582
2583 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
2584 {
2585 return sprintf(buf, "%d\n", perf_reserved_percpu);
2586 }
2587
2588 static ssize_t
2589 perf_set_reserve_percpu(struct sysdev_class *class,
2590 const char *buf,
2591 size_t count)
2592 {
2593 struct perf_cpu_context *cpuctx;
2594 unsigned long val;
2595 int err, cpu, mpt;
2596
2597 err = strict_strtoul(buf, 10, &val);
2598 if (err)
2599 return err;
2600 if (val > perf_max_counters)
2601 return -EINVAL;
2602
2603 mutex_lock(&perf_resource_mutex);
2604 perf_reserved_percpu = val;
2605 for_each_online_cpu(cpu) {
2606 cpuctx = &per_cpu(perf_cpu_context, cpu);
2607 spin_lock_irq(&cpuctx->ctx.lock);
2608 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
2609 perf_max_counters - perf_reserved_percpu);
2610 cpuctx->max_pertask = mpt;
2611 spin_unlock_irq(&cpuctx->ctx.lock);
2612 }
2613 mutex_unlock(&perf_resource_mutex);
2614
2615 return count;
2616 }
2617
2618 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
2619 {
2620 return sprintf(buf, "%d\n", perf_overcommit);
2621 }
2622
2623 static ssize_t
2624 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
2625 {
2626 unsigned long val;
2627 int err;
2628
2629 err = strict_strtoul(buf, 10, &val);
2630 if (err)
2631 return err;
2632 if (val > 1)
2633 return -EINVAL;
2634
2635 mutex_lock(&perf_resource_mutex);
2636 perf_overcommit = val;
2637 mutex_unlock(&perf_resource_mutex);
2638
2639 return count;
2640 }
2641
2642 static SYSDEV_CLASS_ATTR(
2643 reserve_percpu,
2644 0644,
2645 perf_show_reserve_percpu,
2646 perf_set_reserve_percpu
2647 );
2648
2649 static SYSDEV_CLASS_ATTR(
2650 overcommit,
2651 0644,
2652 perf_show_overcommit,
2653 perf_set_overcommit
2654 );
2655
2656 static struct attribute *perfclass_attrs[] = {
2657 &attr_reserve_percpu.attr,
2658 &attr_overcommit.attr,
2659 NULL
2660 };
2661
2662 static struct attribute_group perfclass_attr_group = {
2663 .attrs = perfclass_attrs,
2664 .name = "perf_counters",
2665 };
2666
2667 static int __init perf_counter_sysfs_init(void)
2668 {
2669 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
2670 &perfclass_attr_group);
2671 }
2672 device_initcall(perf_counter_sysfs_init);
This page took 0.130572 seconds and 5 git commands to generate.